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ABSTRACT

Generative models hold the promise of significantly expediting the materials de-
sign process when compared to traditional human-guided or rule-based method-
ologies. However, effectively generating high-quality periodic structures of mate-
rials on limited but diverse datasets remains an ongoing challenge. Here we pro-
pose a novel approach for periodic structure generation which fully respect the in-
trinsic symmetries, periodicity, and invariances of the structure space. Namely, we
utilize differentiable, physics-based, structural descriptors which can describe pe-
riodic systems and satisfy the necessary invariances, in conjunction with a denois-
ing diffusion model which generates new materials within this descriptor or repre-
sentation space. Reconstruction is then performed on these representations using
gradient-based optimization to recover the corresponding Cartesian positions of
the crystal structure. This approach differs significantly from current methods by
generating materials in the representation space, rather than in the Cartesian space,
which is made possible using an efficient reconstruction algorithm. Consequently,
known issues with respecting periodic boundaries and translational and rotational
invariances during generation can be avoided, and the model training process can
be greatly simplified. We show this approach is able to provide competitive perfor-
mance on established benchmarks compared to current state-of-the-art methods.

1 INTRODUCTION

Discovering or designing new materials with potentially useful functional properties remains a long-
standing challenge in the material sciences. Traditionally, this is accomplished by the exhaustive ex-
perimental or computational evaluation of materials within a synthetically amenable chemical space
(Ceder, 1998; Alberi et al., 2018; de Pablo et al., 2019; Reymond, 2015). However, this process is
highly time-consuming and costly, and requires covering a nearly infinite chemical space, therefore
there is a strong demand for quicker and more efficient alternatives. While recent developments in
generative models have demonstrated great promise in other domains such as towards protein and
molecular design, similar advancements in materials generation remain limited and under-explored.
This stems from the requirement that it is not sufficient for the generative model to only provide
the chemical composition of the material, but it should also generate the exact three-dimensional
atomic structure defined by a set of Cartesian coordinates within a unit cell (Pauling, 1929; Butler
et al., 2016), which plays a key role in determining the material’s properties (Oganov et al., 2019;
Price, 2014). In addition, generative models for materials should also be robust to data scarcity,
as materials datasets typically contain up to tens or hundreds of thousands of training samples, far
fewer than the millions and billions of samples in other domains such as computer vision and nat-
ural language processing. These limitations have led to the development of new approaches that
can address the symmetries, periodicity, and invariances inherent in periodic structures, and which
perform significantly better than methods which can not, with rare exceptions.

Generative models for periodic materials can be broadly categorized into two groups, representation-
based and direct generation. In the former, materials are first encoded into suitable representations,
which then serve as the training dataset for a generative model. Subsequently, new representations
generated by the trained model are decoded back to the Cartesian space within a unit cell. Such
an approach is analogous to the generation of molecular graphs(Simonovsky & Komodakis, 2018;
De Cao & Kipf, 2018) or SMILES strings(Gómez-Bombarelli et al., 2018; Kotsias et al., 2020) for
molecules. However, since molecular graphs or SMILES lack spatial information, other represen-
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tations are needed, which remains an ongoing challenge for this method. In comparison, the latter
approach directly generates atomic coordinates in the Cartesian space, either in a one-shot manner
or through an iterative process such as denoising. In this approach, the model and the generative pro-
cess would need to respect periodicity and invariances of the structure, which is not always satisfied
in current works.

In this study, we present Structure Representation Diffusion (StructRepDiff), a novel approach for
materials generation that not only overcomes the constraints of existing representation-based meth-
ods, but also leverages on the generative performance of denoising diffusion models commonly
seen in direct generation. Specifically, we employ differentiable, physics-based structural descrip-
tors as representations and perform denoising in the representation space. As these descriptors are
constructed to inherently respect periodicity and invariance, there is no requirement for special con-
siderations such as a custom score function, thereby greatly simplifying the training process. We
concatenate the descriptor with composition and cell vectors to create our final representation vector.
To reconstruct or generate three-dimensional structures, we then utilize an efficient reconstruction
algorithm that builds three-dimensional structures from the representation space. We propose the
novel architecture to implement our Gradient-based structure reconstruction from representation
space to structure space. To our best knowledge, this is the first example of periodic materials gen-
eration with diffusion models in the representation space rather than the Cartesian space. Fig. 1
provides an overview of StructRepDiff.

Main Contributions. In this paper, we present our approach StructRepDiff with the following main
contributions:

• We propose a novel approach to material generation in the representation space, utilizing a
denoising diffusion model commonly employed in direct generation.

• We propose a working invariant representation for materials capable of generating struc-
tures in the representation space, demonstrating competitive performance relative to exist-
ing methods.As discussed in details in section 4.1.

• We propose a novel implementation of a gradient-based reconstruction method for material
reconstruction from our proposed representations. As discussed in details in section 4.3.
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Figure 1: An overview of the StructRepDiff process. The vectorial structure representation R from
section 4.1 is schematically shown in captions as Cell, Comp and Structure for L, Ccomp and Rstr
respectively.

2 RELATED WORKS

2.1 REPRESENTATION-BASED MATERIALS GENERATION

In representation-based materials generation, a suitable encoding or representation of materials is
critical for an effective generation. Specifically, the suitability of a representation is determined by
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whether this representation (1) can describe uniquely the Cartesian positions, unit cell, and com-
position of a given material, (2) is invariant to translations, rotations and permutations, and most
importantly, (3) is invertible back to the Cartesian space. Musil et al. (2021); Noh et al. (2020) It is
important to note that presently, there is no single existing representation that fulfills all three of the
conditions mentioned above, despite numerous ongoing efforts to develop one. Consequently, in all
current cases of representation-based generation, there will be shortcomings in meeting one or more
of these criteria, which can impede the effectiveness of this approach. For instance, voxel-based
representations, as proposed by Hoffmann et al. (2019) and Noh et al. (2019), lack both translational
and rotational invariance. These representations are also susceptible to finite spatial resolution is-
sues and struggle to efficiently capture the compositional dimension. The work presented by Uhrin
(2021) in exploring the structure of representation space is quite noteworthy. While the study did
not integrate these representations into a generative model, which somewhat limits their immediate
applicability, the insights gained are valuable.

Our approach differs from previous methods here by enforcing a strict rule for our representation to
follow conditions (1) and (2), even if it does not intrinsically meet the invertibility requirement in
(3). Instead, we use a separate reconstruction process to satisfy invertibility, which we will describe
in the Methods section.

2.2 DIRECT MATERIALS GENERATION

In the case of direct generation, a generative model decodes the Cartesian positions, unit cell, and
composition directly through various means. Most notable are a class of approaches which make use
of diffusion models to denoise a set of noisy positions to positions resembling a real material. This
was first demonstrated by Xie et al. (2021) in the CDVAE model. In this approach, a graph neural
network (GNN) is used to encode the material into a graph-level embedding, which is separately
used to predict the number of atoms and composition of the material, and used as the condition
in a noise-conditional score network to denoise the positions and atomic numbers. A subsequent
approach by Luo et al. (2023) builds on this method by introducing a modified approach for pre-
dicting atomic numbers and a modified score function for incorporating translational invariance in
the denoising process. Different from these approaches, we perform denoising on the representation
instead of the Cartesian positions, as well as on the composition and lattice parameters directly.

3 BACKGROUND

An arbitrary material structure M with n atoms can be fully described by using three components:
1) atomic numbers A = (a1, . . . , an), where ai ∈ A and A is the set of all chemical elements; 2)
atomic positions X = (x1, . . . ,xn), where xi ∈ R3 is the Cartesian coordinates of atom ai; and
3) lattice parameters L = (l1, l2, l3, γ1, γ2, γ3), where l1, l2 and l3 are the unit cell lengths and γ1,
γ2 and γ3 are the angles between the lattice vectors of the unit cell. In the context of generating a
periodic material structure M = (A,X,L), it is necessary to generate all three components.

3.1 MATERIAL STRUCTURE REPRESENTATION

While the atomic positions X specifies the material structure, it is generally an undesirable choice
of encoding or representation to be directly employed in data-driven approaches for materials gen-
eration. Specifically, this is due to their lack of translation, rotation and permutation invariances.
To address this limitation, we propose to use existing structural descriptors, which are mathematical
representations used to describe the arrangement and electronic environments of atoms in molecules
and crystal structures. While there are many descriptors available, an effective structural descrip-
tor for materials generation should conform to translation, rotation, and permutation invariances.
[Propositions 1, Proof in appendix A.1.1].

Embedded Atom Density (EAD). It is worth noting that StructRepDiff is descriptor-agnostic, as
long as the descriptor exhibits invariance. In this work, we have selected the embedded atom density
(EAD) descriptor as an illustrative example, for it observes all three invariances required. Introduced
by Zhang et al. (2019), the core concept of the EAD descriptor revolves around the notion that each
atom within a system interacts with a collective electron cloud formed by its neighboring atoms.
Readers interested in a more in-depth understanding of the theory can find a brief overview in Ap-
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pendix A.2. We hypothesize that the invariant descriptors like EAD form representation spaces that
are more effective than those from simple distances and angles which lack permutation invariance,
thus leading to improved performance of generative models trained within this space.

3.2 GENERATIVE DIFFUSION MODEL

A generative diffusion model is implemented to learn the training structural distributions and create
novel structures resembling the structures from the initial distribution. Diffusion models have shown
impressive results for images Dhariwal & Nichol (2021), point clouds Cai et al. (2020); Luo & Hu
(2021), and molecular structures Shi et al. (2021); Xie et al. (2021). Different variants of diffu-
sion models exist, encompassing diffusion probabilistic models Sohl-Dickstein et al. (2015), noise
conditioned score networks (NCSN) Song & Ermon (2019), and denoising diffusion probabilistic
models (DDPM) (Ho et al. (2020) Ho et al., 2020). In our approach, we implement the denoising
diffusion probabilistic models (Ho et al., 2020) with a goal to denoise the representation of the input
materials. Starting with the input vector x0, we progressively add Gaussian noise over T steps.

Forward process. Given data-point r0 drawn from the actual data distribution q(r). The up-
dated latent variable for the next diffusion step rt follows a distribution q(rt|rt−1) = N (rt;µt =√
1− βtrt−1,Σt = βtI) from appendix A.3.3.

Reverse Process. From the forward process, as t → T approaches ∞, the latent rT is nearly an
isotropic Gaussian distribution. The reverse diffusion process attempts to approximate q(rt−1|rt)
with a neural network pθ as shown in appendix A.3.3. As the reverse process is also sets up
as a Markov process from rt → rt−1 → ... → r0. With pθ(rT ) = N (rt, 0, I) being the
pure noise distribution. The aim of the model being, learning pθ(r0) =

∫
pθ(r0:T )dr0:T =∫

pθ(rT )
∏T

t=1 pθ(rt−1|rt)dr0:T .

Training. The objective of the model is to maximise the likelihood of the generated sample r0 to
be from the initial data distribution q(r0). Which in the reverse-process framework would mean
maximise the probability pθ(r0), which is the marginalised probability

∫
pθ(r0:T )dr0:T as shown in

appendix A.3.3; While learning the parameters θ of the neural network model.

4 METHODOLOGY

Our proposed approach, StructRepDiff, generates three-dimensional structures by first generating
structure representations in the representation space via a diffusion model. Subsequently, these
representations are reconstructed back to the Cartesian space through an iterative, procedure.

4.1 STRUCTURES TO REPRESENTATIONS

Given a material structure M = (A,X,L), we map it to a vectorial structure representation R =
[Rstr⊕Ccomp⊕L] ∈ RN , where Rstr is the expanded EAD representation, Ccomp is the composition
representation, L is the lattice parameters or representation and ⊕ denotes vector concatenation.

Expanded EAD representation. The expanded EAD representation Rstr forms the backbone of
the full structure representation R. First, note that the EAD descriptor creates individual, atom-level
representations {ei}ni=1 for a system of |A| = n atoms, where ei ∈ RNe with Ne being the hyper-
parameter for the EAD representations. The total number of atoms n in the material is obtained
explicitly. To obtain the structure-level EAD representation READ, we take max- and min-pooling
over all atomic representations, before concatenating them together. Mathematically, we have

READ = [Pmax ({ei}ni=1)⊕ Pmin ({ei}ni=1)] ∈ R2Ne , (1)

where P is a pooling operation over a set of vectors. Furthermore, we also include an additional
dimension to account for the minimum inter-atomic distance dmin present in M . Thus, the expanded
EAD representation Rstr = [READ ⊕ dmin] ∈ R2Ne+1.

Composition representation. The composition representation Ĉcomp is a normalized vector that en-
codes compositional information of M . Concretely, Ĉcomp is an instance of frequency encoding of
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all the atoms in M , normalized by the total number of atoms n. Arrangement of elements in Ĉcomp
corresponds to the periodic table, e.g. normalized count of Hydrogen is the first element in this
vector. To recover the information of the material from there normalised composition, we concate-
nate the number of atoms n with the Ĉcomp vector. Thus, the expanded composition representation
Ccomp = [Ĉcomp ⊕ n] ∈ R|A|+1. In practice, we set |A| = 96, the number of unique elements in our
training dataset.

Lattice representation. The last piece of information needed to fully describe a material structure
M is the lattice parameters L ∈ R6. Here, we use L directly as the lattice representation.

Concatenated together, the three representations outlined above form the full structure representation
R ∈ RN , where N = 2Ne + |A|+ 8.

4.2 GENERATING NEW STRUCTURES IN REPRESENTATION SPACE

xt−1
q(xt |xt−1). . . . . . . .xt

q(xt−1 |xt)

t

Loss = MSE(ϵθ(Rt, t) − ϵ(Rt, t))

ϵ(Rt, t)ϵθ(Rt, t)

Rt

Skip 
connection

Model

Forward diffusion process

R0 RT
Reverse diffusion process

Figure 2: Training pipeline of StructRepDiff model showing the forward and reverse diffusion pro-
cess. The forward diffusion process add noise to the initial representation RM in T time-steps to
reach to RT and the reverse diffusion model learns to remove noise by training against the actual
noise ϵ(Rt, t) from the forward model. The U-net based model tries to predict ϵθ(Rt, t) at every
time-step t during the training.

In the generative process, we aim to first generate representations of new materials before recon-
structing structures from the representation space. Our representation generation can be formulated
as follows: let the dataset D = {R(j)

0 }mj=1 be the set of representations obtained from a set of m
material structure {M (j)}mj=1. The subscript in R0 indicates that this representation is at the first
time step of the forward diffusion process. Our goal is to estimate the true data distribution q(R0)

with our model and generate some representation R̃0, where R̃0 /∈ D. After the diffusion model
has been trained according to the process in Fig. 2, we can generate new representations by succes-
sively removing noises from an initialized representation RT , sampled from Gaussian noise. Here,
T indicates the final time step of the forward diffusion process. This process is outlined in Algo. 3
and Fig. 3. The experimental details and hyper-parameters of the diffusion model and training are
discussed in appendix A.3.4.

Algorithm 1 Generative diffusion sampling

1: RT ∼ N (0, I) → RT ∈ RN

2: for t = T, ....1 do
3: z ∼ N (0, I) if t > 0, Else z = 0

4: Rt−1 = 1√
αt

(
Rt − βt√

1−
∏t

s=0 αs

ϵθ(Rt, t)

)
+

√
βtz

5: end for
6: return RT → R̃0 ∈ RN
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Figure 3: Schematic of the overall generation process of StrucRepDiff. Starting from noisy rep-
resentation input RT sampled from N (0, I), to generating representation R̃ after the denoising
process. Finally performing iterative reconstruction of R̃ to get the generated structure.

4.3 ITERATIVE RECONSTRUCTION FROM REPRESENTATION SPACE TO CARTESIAN SPACE

Given a generated representation R̃ via the diffusion model, we now reconstruct its corresponding
new material structure M̃ in the Cartesian space. Specifically, we can decompose R̃ into R̃str, C̃comp

and L̃. We can easily obtain the number of atoms n from C̃comp since it is based on normalized fre-
quency encoding. Given n and L̃ and following from the earlier work (Fung et al., 2022), we first
randomly initialize a set of Cartesian positions X , before calculating the expanded EAD representa-
tion Rstr based on X . Next, we calculate the loss between R̃str and Rstr that quantifies the difference
between the two. Using automatic differentiation to obtain gradients with respect to the atomic po-
sitions X . These gradients can then be used to update the atomic positions X to minimize the
loss between R̃str and Rstr in an iterative way. The reconstruction process is summarized in Algo.
2. The experimental details and hyper-parameters of the reconstruction algorithm are discussed in
appendix A.3.5.

Algorithm 2 Gradient-based structure reconstruction from representation

1: Input: Generated representation R̃str; number of atoms n and (optionally) lattice parameters L̃
2: while initializations < max initializations do
3: Randomly initialize a set of Cartesian positions X within the unit cell defined L̃
4: while hops < max hops do
5: while iterations < max iterations do
6: Calculate Rstr based on X

7: Calculate loss: L
(
R̃str,Rstr

)
8: Obtain gradients ∇ from loss using automatic differentiation
9: Update X to X ′ with ∇

10: end while
11: Add Gaussian noise to X ′ for perturbation.
12: end while
13: end while
14: Select X ′ with the lowest L

(
R̃str,Rstr

)
15: Construct crystal structure with X ′ and L̃

5 RESULTS

We present the results of this study on a set of well-established benchmarks first proposed by Xie
et al. (2021) and later adopted by subsequent materials generation studies. Here we evaluate our ap-
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proach on its reconstruction performance and generation performance. Reconstruction performance
measures the ability of the method to recover the correct Cartesian positions of a material from its
latent space or its representation. The generation performance measures the ability of the method
to generate high quality periodic materials, based on the metrics of structural and compositional
validity, density and element number statistics, and measures of the coverage. The validity, prop-
erty, and coverage metrics are further described in appendix A.3.6 In both cases, the performance
is evaluated for three distinct, curated datasets of periodic materials. The datasets include (a) the
Perov-5 dataset (Castelli et al. (2012)) with perovskite materials. (b) the Carbon-24 dataset (Pickard
(2020)) with structures composed entirely of carbon atoms, and (c) the MP-20 dataset (Jain et al.
(2013)) with materials displaying diversity in both structure and composition. The purpose of this
set of benchmarks is to provide a comprehensive evaluation of the model performance for general
materials generation problems.

Baselines. We evaluate StructRepDiff by comparing it with several existing material generation
methods: FTCP (Ren et al., 2020), Cond-DFC-VAE (Court et al., 2020), G-SchNet (Gebauer et al.,
2019), P-G-SchNet(Gebauer et al., 2019) CDVAE (Xie et al., 2021), Symat(Luo et al., 2023) and
LM-AC (Flam-Shepherd & Aspuru-Guzik, 2023). FTCP and Cond-DFC-VAE generate materi-
als using Fourier-transformed crystal property matrices and VAE models, respectively. However,
Cond-DFC-VAE is limited to generating cubic systems and is only applied to the Perov-5 dataset
with cubic structures. G-SchNet and its variant P-G-SchNet are autoregressive 3D molecule gener-
ation methods, CDVAE and Symat are periodic material generation method, While LM-AC is the
latest language model based material generator. All the methods are compared on the three datasets
(except LM-AC which was only performed for the MP and Perovskite dataset). In our experiments,
we used a 60-20-20 random split of three datasets: MP-20, Perov-5, and Carbon-24, consistent with
previous works.

Table 1: Reconstruction performance of our model based on the reconstruction metric. P, C and MP
refers to Perov-5, Carbon-24 and MP-20 datasets respectively. In this context, an upward arrow ↑
indicates that higher metric values correspond to improved performance, while a downward arrow ↓
signifies the opposite. Additional details about the metric and the table are discussed in appendix A.5

Match rate (%) ↑ RMSE ↓
Method P C MP P C MP
FTCP 99.34 62.28 69.89 0.0259.71 0.2563 0.1593
Cond-DFC-VAE 51.65 - - 0.0217 - -
CDVAE 97.51 55.22 45.43 0.0156 0.1251 0.0356
StructRepDiff 100.0 96.93 83.00 0.024 0.18 0.0217

First, we observe a good performance for the reconstruction of a material from its representation
for our approach in table 1. This is measured using the StructureMatcher method from pymatgen to
compare two structures in an invariant manner, and originally used by Xie et al. (2021) and evaluated
for FTCP, Cond-DFC-VAE, and CDVAE. Namely, we are able to obtain a near 100% match rate
between ground truth and reconstructed structures for the Carbon-24 and Perov-5 dataset, while we
get a significant increase in performance for the MP-20 dataset based on the tolerance of stol = 0.5,
angle tol = 10, ltol = 0.3, and the lowest RMSE for the MP-20 dataset, while being close in
the RMSE value for the other datasets. The metrics for table 1 are discussed in further details
in appendix A.5. The significantly better performance compared to FTCP, Cond-DFC-VAE, and
CDVAE is likely due to fact that the mapping from structure to representation in our approach is not a
trainable function but has an exact analytical form, and that our reconstruction algorithm is effective
one at finding the optimum solution. The comparison on methods of reconstruction is discussed in
appendix A.4. Having demonstrated that materials generated in our proposed representation space
can be successfully decoded back to the correct structure, we move on to its end-to-end generation
performance.

Based on the results in table 2, it can also be seen that our model performs competitively with state-
of-the-art models like SyMat and the other models in the list, and obtains the best in 6 out of the 16
metrics and comes 2nd best in 4 metrics, supporting the validity of our approach. We also visualize
randomly sampled structures for each dataset, and find they closely reflect the characteristics of the
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Figure 4: Generated structures from the model. (a) Examples of generated structure from the
Carbon-24 dataset.(b) Examples of generated structure from the Perov-5 dataset.(c) Examples of
generated structure from the MP-20 dataset.

original training dataset fig. 4. For instance, the generated carbon structures correctly exhibit highly
coordinated networks of atoms, and the generated perovskites follow the cubic or distorted cubic of
the classic perovskite structures, as well as all having ABX3 compositions where A and B are metal
cations, and X is an electronegative anion. For the more diverse MP-20 dataset, we see a similar
diversity in the generated structures, while maintaining reasonable bond distances as evidenced by
the non-overlapping spheres (based on atomic radii) and plausible compositions containing primar-
ily of two or three unique elements. We also visualize the coverage of the generated samples (in red)
compared to the training data (in black) by the plotting first two principal components of the repre-
sentations of the materials in the dataset. We find the generated samples fully match the distribution
of the testing data as shown in fig. 5.

We opted to not perform property optimization or condition generation in this work, owing to the
lack of a consistent evaluation method in current studies. In CDVAE and SyMat, separate surrogate
models were trained to predict the property being optimized and used the evaluate the generation
performance. However, as differently constructed and differently trained surrogate models were
used in each study, they do not provide a reliable comparison across the studies, and would conse-
quently be misleading. While a fully first principles method such as density functional theory may
be used, they are prohibitively expensive to run.
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Figure 5: PCA of READ of the generated samples (red) overlaid over the training data (black)

Table 2: Generation performance across the Perov-5, Carbon-24, and MP-20 datasets. Here, an
upward arrow ↑ indicates that higher metric values correspond to improved performance, while a
downward arrow ↓ signifies the opposite. In the results the numbers in bold represent the best
performances and (†) represent the second-best performances, respectively.

Validity (%) ↑ EMD ↓ COV ↑
Dataset Method Comp Str # ρρρ R P

MP-20 FTCP 48.37 1.55 0.7363 23.71 5.26 0.23
G-SchNet 75.96 99.65† 0.6411 3.034 41.68 99.65

P-G-SchNet 76.40 77.51 0.6234 4.04 44.89 99.76
CDVAE 86.70 100.00 1.432 0.6875 99.17 99.64
SyMat 88.26† 100.00 0.5067 0.3805 98.97 99.97

LM-AC 88.87 95.81 0.092 0.696 99.60†* 98.55*
StructRepDiff 80.52 94.16 0.081 0.673† 99.67 99.79†

Perov-5 FTCP 54.24 0.24 0.629 10.27 0.00 0.00
G-SchNet 98.79 99.92 0.0368 1.625 0.25 0.37

P-G-SchNet 99.13 79.63 0.452 0.2755 0.56 0.41
CDVAE 98.59 100.00 0.0628 0.1258† 99.50 98.93
SyMat 97.40 100.00 0.0177 0.1893 99.68† 98.64

LM-AC 98.79† 100.00 0.028 0.089 98.78* 99.36†*
StructRepDiff 98.17 99.99† 0.059 0.289 99.84 99.79

Carbon-24 FTCP - 0.08 - 5.206 0.00 0.00
G-SchNet - 99.94† - 0.9327 0.00 0.00

P-G-SchNet - 48.39 - 1.533 0.00 0.00
CDVAE - 100.00 - 0.1407 100.00 99.98
SyMat - 100.00 - 0.1195† 100.00 97.59

StructRepDiff - 99.76 - 0.1187 100.00 99.56†

6 CONCLUSION

We introduce StructRepDiff as a new paradigm for the efficient generation of periodic materials
which is performed in the representation space. The proposed method is able to perform com-
petitively among all the previous and current methods. This work opens up new possibilities for
future exploration for materials generation in the representation rather than Cartesian space, which
is currently unexplored. We emphasize here that this approach is theoretically model and does not
require any custom architectures or training procedures. Furthermore, it can also be applied to any
other suitable, differentiable, representation which exhibits the necessary invariances. This work
highlights the benefits of incorporating prior developments from the atomistic modelling domain,
namely the use of structural descriptors, to greatly simplify the training and improve the perfor-
mance of generative models for materials.
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A APPENDIX

A.1 PROOF OF PROPOSITIONS

A.1.1 PROPOSITION 1 : THE REPRESENTATION VECTOR R OF A MATERIAL M, FOLLOWS
ALL THE PROPERTIES OF SYMMETRY OF A PERIODIC CRYSTAL

For any material M we showed the representation R = [Rstr ⊕ Ccomp ⊕ L]. We prove the represen-
tation vector is invariant to rotation and permutation, translation and periodic transformation.

1. Invariance to translation and periodic transformation: Given the representaion R = [Rstr ⊕
Ccomp ⊕ L⊕] ; we can represent a structure with a translation as R’ = [R’str,Ccomp,L,D],
as only Rstr is a function of position. From eq. (2) the atomic position dependent term ϕi

remains unchanged as Rij = |ri−rj | = |(ri+d)− (ri−d)| for a translation of the crystal
along d. The same argument holds true for periodic transformation, where translation
distance d = dcrystal.

2. Invariance to rotation: Given the representaion R = [Rstr ⊕ Ccomp ⊕ L]; We can represent
the rotated structure representation as R’ = [R’str ⊕ Ccomp ⊕ L], the rotation of the struc-
ture affects the positions xi ∀i ∈ [1, N ] of the N atoms within the crystal. However the
relative distances |ri− rj | between the atoms remains unchanged during any such rotation.
Following eq. (2) we observe R’str = Rstr.

3. Invariance to permutation: Given the representaion R = [Rstr ⊕Ccomp ⊕L], we can permute
the atoms within the crystal to obtain an updated representation Given the representation
R’ = [R’str⊕C’comp⊕L’]. But permuting the atoms we get the same one-hot representation
Ccomp as the atoms itself don’t change. Simillarly, L remains the same as the lengths and
angles of the unit cells don’t change in magnitude. Finally, for R’str, from eq. (2) the
permutation of atoms doesn’t change the result ϕi as the order of summation over all the
atoms (

∑N
i ̸=j ZjΦ(Rij)) is invariant to permutation in the atoms.

A.2 EMBEDDED ATOM DENSITY

The Embedded Atom Density (EAD) descriptor, inspired by the Embedded Atom Method (EAM)
described by Zhang et al. (2019). The EAM theory incorporates a mathematical formulation that
accommodates the consistent electron density enveloping each ’embedded’ atom, coupled with a
short-range nuclear repulsion potential. Furthermore, this representation involves the square of the
linear combination of atomic orbital components to adapt to various crystal systems, expressed as
the density invariant (ϕi) at the position of atom i. eq. (2).

ϕi =

lx+ly+lz=L∑
lx,ly,lz

L!

lx!ly!lz!

 N∑
i ̸=j

ZjΦ(Rij)

2

(2)

In the above formulation, Zij denotes the atomic number of a neighboring atom labeled as j .
|ri− rj |; where ri = {xi, yi, zi} and rj = {xj , yj , zj} being the Cartesian coordinate vectors of the
central atom i and a neighbor atom j The variable L stands for quantized angular momentum, while
lx,y,z signify quantized directional-dependent angular momentum components. Finally Φ(Rij) is
a Gaussian-type orbital centered at atom j parameterized by its center µ , width η and angular
momenta L = lx + ly + lz . fc is a cutoff function continuously damping the invariant to zero at the
cutoff radius (rc), and Nc is the number of atoms within rc. The specific mathematical expression
for Φ is as show in eq. (3):

Φ(Rij) = xlx
ijy

ly
ij z

lz
ij · exp−η(Rij − µ)2 · fc(Rij) (3)

Additionally, the Electron Affinity Difference (EAD) can be viewed as an enhancement of Gaussian
symmetry functions. EAD does not differentiate between radial and angular terms. In application
the EAD descriptor is a local descriptor for each atom in the material. Thus, to make the overall
descriptor for the material permutationally invariant, we pool over all atoms. This approach, which
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we propose in this work, has proven to be effective. It allows for efficient information retention
without significant loss during reconstruction.

A.3 EXPERIMENTAL DETAIL

A.3.1 DETAILS ABOUT EAD PARAMETERS

In this work, we use L ≤ 1, µ = {0, 0.1, 0.2, ..., 20}, η = {1, 20, 90}, and rc = 20.

A.3.2 DETAILS ABOUT ARCHITECTURE AND MODEL

The model for the reverse diffusion process is based on a U-net architecture (Ronneberger et al.,
2015), with 1 dimensional convolution blocks (LeCun et al., 1995). The fundamental blocks of
our U-net architecture is composed of 2 Res-Net blocks. We implement the Res-Net blocks with
weight standardize convolutions followed by Group–Norms as shown by Kolesnikov et al. (2020).
We implement 2 fundamental blocks in each downsampling, middle and upsampling stages with a
linear attention block between each stage to enhance model’s expressivity. The linear attention block
is chosen to be a multi-head attention block with 4 attention heads and a 256 dim final embedding
size. In the upsampling stage each block is also attached with a skip connection coming from the
downsampling stages. Finally a 1D convolution block to the produce the resultant representation
vector R. The model takes in a batch of noised inputs from the forward diffusion model and predicts
noise at various time-steps of diffusion.

A.3.3 EXTENDED BACKGROUND ON GENERATIVE DIFFUSION MODEL

In our approach, we leverage the existing denoising diffusion probabilistic models (Ho et al., 2020)
with a goal to denoise the representation of the input materials. Diffusion models have been effec-
tive in tasks such as image synthesis, denoising, and data imputation; As they evolve data through
incremental transformations of random samples (Cao et al., 2022; Croitoru et al., 2023). Starting
with the input vector r0, we progressively add Gaussian noise over T steps.

Forward process. Given data-point r0 drawn from the actual data distribution q(r). In this scenario,
it is possible to establish a progressive diffusion process by introducing noise. To be precise, at every
Markov chain iteration, we incorporate Gaussian noise with a variance of β to rt−1, resulting in the
creation of a fresh latent variable rt. This new variable xt follows a distribution q(xt|xt−1).

q(xt|xt−1) = N (xt;µt =
√
1− βtxt−1,Σt = βtI) (4)

q(x1:T |x0) =
T∏

t=1

q(xt|xt−1) (5)

If we define αt = 1− βt, ᾱt =
∏t

s=0 αs where ϵϵϵ0, ...., ϵt−2, ϵt−1 ∼ N (0, I), one can use the repa-
rameterization trick in a recursive manner to obtain the representation vector x at any refinement step
t directly from the initial representation vector x0. To produce a sample xt we can use equation 6.

xt ∼ q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (6)

Reverse Diffusion. Generating new structures involves creating them from noisy forward diffusion
structures. Learning occurs during the reverse process, where a neural network architecture is used
to learn the noise removal process. From the forward process, as t→ T approaches ∞, the latent rT
is nearly an isotropic Gaussian distribution. Therefore if we manage to learn the reverse distribution
q(xt1|rt), we can sample rT from N(0, I), run the reverse process and get a final sample from
q(x0), generating a novel data point from the original data distribution. The task can be formulated
as to approximate q(xt−1|xt) with a neural network pθ as shown in eq. (7), where we take the same
functional form of the reverse process as the forward process as shown by Feller (2015). The mean
and variance of at each time t is shown as µθ(xt, t) and Σθ(xt, t) which are associate different noise
levels at different time-step t.
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q(xt−1|xt) ≈ pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (7)

If we apply the reverse formula for all timesteps pθ(x0:T ), also called trajectory), we can go from
xT to the data distribution. As the reverse process is also sets up as a Markov process from xt →
xt−1 → ... → x0. With pθ(xT ) = N (xt, 0, I) being the pure noise distribution. The aim of the
model being, learning p(x0).

pθ(x0) =
∫

pθ(x0:T )dx0:T =

∫
pθ(xT )

T∏
t=1

pθ(xt−1|xt)dx0:T (8)

Training. The objective of the model is to maximise the likelihood of the generated sample x0 to
be from the initial data distribution q(x0). Which in our reverse-process framework would mean
maximise the probability pθ(x0), which is the marginalised probability

∫
pθ(x0:T )dx0:T as shown

in eq. (8); While learning the parameters θ of the neural network model. The loss term in eq. (9)
takes the simplified form as mentioned by Ho et al. (2020), where we focus on predicting the noise
at each step of the diffusion process.

Loss = E(x0,t,ϵ)

[
||ϵt − ϵθ(x, t)||2

]
(9)

A.3.4 HYPER-PARAMETERS AND TRAINING DETAILS

Algorithm 3 Diffusion training of the representations
1: repeat
2: R0 ∼ q(R0) → R0 ∈ R704

3: t ∼ Uniform({1, 2, ...T})
4: ϵ ∼ N (0, I)
5: Apply gradient descent on ∇θ||ϵ− ϵθ(

√
ᾱR0 +

√
1− ᾱϵ, t)||2

6: until converged

The training of the model was performed on an NVIDIA A100 for a total of 2000 epochs with
a learning rate = 10−4 batch size of 64. The overall training takes around 12 hrs,6 hrs and 3hrs
for MP, Perovskite and Carbon datasets respectively. The number of diffusion steps was set to
2000 following the cosine schedule for addition of the noise. The forward diffusion model destroys
the input representaiton using a cosine scheduler from eq. (4) βt = 1 − αt

α , 0.990; αt

αt−1=f(t) and

f(t) = cos( t/T+s
1+s .π2 )

2 as proposed by Dhariwal & Nichol (2021). The hyper-parameters of the
model included which are selected based on performance metric explained in appendix A.3.6

1. Architecture based hyper-parameters: Number of Res-net blocks = 2, Attention embedding
dimension = 256, Number of attention heads = 4.

2. Diffusion based hyper-parameters: Number of diffusion steps = 2000, Noise scheduler =
‘Cosine’, Final noise level = 0.999.

3. Training based hyper-parameters: Number of epochs = 2000, Learning rate = 10−4, Opti-
mizer = Adam, Batch size = 64.

A.3.5 HYPER-PARAMETERS FOR RECONSTRUCTION ALGORITHM

We implement an L1 Loss for reconstruction, and this loss is used throughout the work. We are
using a basin hopping algorithm with a local gradient descent optimization with Adam optimiser.

• The number of basin hopping trials is 6

• The number of basin hops is 7

• The basin hopping step size is a random number in the range [-1, 1]
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• The max number of iterations in gradient descent is 300

The loss function values for the iterative reconstruction of our generated structures is usually around
[0.005, 0.05] and the reconstruction for errors for valid structures is ≤ 0.01.

A.3.6 DETAILS ON COMPARISON METRIC:

In the context of the random generation task, when evaluating COV-R and COV-P metrics, we
determine that one material encompasses another material if the disparities in their chemical ele-
ment composition fingerprints and 3D structure fingerprints fall below certain predefined thresh-
olds, denoted as δc and δs, respectively. The structural distance between generated materials and
their ground truth counterparts is determined using the Euclidean distance of the CrystalNN fin-
gerprint from Zimmermann & Jain (2020), while the composition distance is assessed through the
Euclidean distance of the normalized Magpie fingerprint Ward et al. (2016) .Specifically, for the
Perov-5 dataset, we set δc to 6 and δs to 0.8. For the Carbon-24 dataset, we establish δc as 4 and δs
as 1.0. Finally, for the MP-24 dataset, we define δc as 12 and δs as 0.6. These values are chosen ac-
cording to previous publications (Xie et al., 2021; Luo et al., 2023), and we acknowledge that more
future work is required to come up with physical explanation towards selection of these thresholds.

1) Validity: According to the criterion proposed by Court et al. (2020) to determine the validity of
the generated structures. A structure is considered valid if the shortest distance between any pair of
atoms is greater than 0.5 Ångstroms. Additionally, we assess the validity of composition by ensuring
that the overall charge is neutral, as calculated by SMACT by Davies et al. (2019).

2) Coverage Metrics (COV): Two coverage metrics, COV-R (Recall) and COV-P (Precision). COV-
R measures the percentage of correctly predicted ground truth materials, while COV-P quantifies the
percentage of predicted materials with high quality.

3) Property Statistics: To evaluate the property statistics of the generated materials, the Earth
Mover’s Distance (EMD) between the property distributions of the generated materials and the test
materials. The properties considered include density (ρ, unit: g/cm3) and the number of unique
elements (# elem.).

The mathematical formulation and details of implementation is provided by Xie et al. (2021).

A.4 MATERIAL RECONSTRUCTION:

The comparison of different methods of reconstruction are summarised for better understanding of
the results in section 5. Table 1 measures the ability to reconstruct a material from its representation
to the Cartesian positions. In the compared examples, these are from the latent representations which
are obtained from a trainable model. FTCP and Cond-DFC-VAE implements some form of varia-
tional auto-encoder (VAE) and thus reconstructs the latent vector with the VAE’s decoder. While
CDVAE reconstructs the material using Annealed Langevin dynamics steps on an initial predicted
structure, which is predicted from their VAE’s latent space. In our case, our representation can be
obtained directly from an analytical function. Nonetheless, the means of evaluation are identical,
i.e. we are looking at the Cartesian positions of the reconstructed structure.

A.5 DETAILS ON RECONSTRUCTION METRICS:

To assess the reconstruction ability of the model, we have employ the StructureMatcher method
from Pymatgen Ong et al. (2013) as implemented by Xie et al. (2021). This tool helps identify
the closest match between the generated structure and the input structure for all materials in the
test dataset, taking into account various material properties. The matching rate is determined by the
percentage of materials that meet the specified criteria, which include stol = 0.5, angle tol = 10, and
ltol = 0.3. To ensure fairness in our evaluation, the Root Mean Square Error (RMSE) is calculated
averaged across all the successfully matched materials. The RMSE used for comparing the original
and reconstructed structre is based on Pymatgen StructureMatcher method by Ong et al. (2013). This
method calculate RMS displacement between two structures, which is rms displacement normalized

by
( Vol

nsites

) 1
3 and maximum distance between paired sites only for the structures which pass through

the specified match criteria. If no matching lattice is found None is returned.
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