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Abstract. In recent years, several results in the supervised learning set-
ting suggested that classical statistical learning-theoretic measures, such
as VC dimension, do not adequately explain the performance of deep
learning models which prompted a slew of work in the infinite-width and
iteration regimes. However, there is little theoretical explanation for the
success of neural networks beyond the supervised setting. In this paper
we argue that, under some distributional assumptions, classical learning-
theoretic measures can sufficiently explain generalization for graph neural
networks in the transductive setting. In particular, we provide a rigorous
analysis of the performance of neural networks in the context of trans-
ductive inference, specifically by analysing the generalisation properties
of graph convolutional networks for the problem of node classification.
While VC Dimension does result in trivial generalisation error bounds
in this setting as well, we show that transductive Rademacher complex-
ity can explain the generalisation properties of graph convolutional net-
works for stochastic block models. We further use the generalisation error
bounds based on transductive Rademacher complexity to demonstrate
the role of graph convolutions and network architectures in achieving
smaller generalisation error and provide insights into when the graph
structure can help in learning. The findings of this paper could re-new
the interest in studying generalisation in neural networks in terms of
learning-theoretic measures, albeit in specific problems.
An extended version of this paper was published in NeurIPS 2021.

1 Introduction

Neural networks have found tremendous success in a wide range of practical
applications and, in the broader society, it is often considered synonymous to
machine learning. The rapid gain in popularity has, however, come at the cost of
interpretability and reliability of complex neural network architectures. Hence,
there has been an increasing interest in understanding generalization and other
theoretical properties of neural networks in the theoretical machine learning
community (Feldman 2020; Arora et al. 2019a; Ma et al. 2017; Nagarajan et al.
2019; Theisen et al. 2020; Ghorbani et al. 2020). Most of the existing theory
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literature focuses on the supervised learning problem, or more precisely, the
setting of inductive inference. In contrast, there is a general lack of understanding
of transductive problems, in particular the role of unlabeled data in training.
Consequently there has also been little progress in rigorously understanding one
of widely used tools for transductive inference—Graph neural networks (GNN).

Graph neural networks. GNNs were introduced by Gori et al. (2005) and
Scarselli et al. (2009), who used recurrent neural network architectures, for the
purpose of transductive inference on graphs, that is, the task of labelling all the
nodes of a graph given the graph structure, all node features and labels for few
nodes. Broadly, GNNs use a combination of local aggregation of node features
and non-linear transformations to predict on unlabelled nodes. In practice, the
exact form of aggregation and combination steps varies across architectures to
solve domain specific tasks (Kipf et al. 2017; Bruna et al. 2014; Defferrard et al.
2016; Veličković et al. 2018; Xu et al. 2019). While some GNNs focus on the
transductive setting, sometimes referred to as semi-supervised node classifica-
tion,4 GNNs have also found success in supervised learning, where the task is
to label entire graphs, in contrast to labelling nodes in a graph. While the un-
derstanding of GNNs is limited, there are empirical approaches to study GNNs
in the transductive (Bojchevski et al. 2018) and supervised setting (Zhang et al.
2018; Ying et al. 2018). For an extensive survey on the state of the art of GNNs
see for example Wu et al. (2020).

Leaning theoretical analysis of GNNs. While empirical studies provide
some insights into the behaviour of machine learning models, rigorous theoreti-
cal analysis is the key to deep insights into a model. The focus of this paper is
to provide a learning-theoretic analysis of generalisation of GNNs in the trans-
ductive setting. Vapnik first studied the problem of transductive inference and
provided generalisation bounds for empirical risk minimization (Vapnik 1982;
Vapnik 1998). Subsequent works further analysed this setting in transductive
regression (Cortes et al. 2007), and derive VC Dimension and Rademacher com-
plexity for transductive classification (Tolstikhin et al. 2016; El-Yaniv et al.
2009). Generalisation error bounds for 1-layer GNNs have been derived in trans-
ductive setting based on algorithmic stability (Verma et al. 2019). In contrast,
the focus of the current paper is on learning-theoretic measures, which have
been previously used to analyse GNNs in a supervised setting. In Scarselli et al.
(2018), VC Dimension is derived for a specific class of GNNs and a generalisa-
tion error bound is given using node representations. However, their approach
of subsuming the graph convolutions under Pfaffian functions does not allow for
an explicit representation in terms of the diffusion operator which is important
to our presented analysis. Garg et al. (2020) derives the Rademacher complexity

4 In semi-supervised learning, the learner is given a training set of labeled and unla-
beled examples and the goal is to generate a hypothesis that generates predictions
on the unseen examples. In transductive learning all features are available to the
learner, and the goal is to transfer knowledge from the labeled to the unlabeled
data points. The focus of graph-based semi-supervised learning aligns more with the
latter setting.
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for GNN in a supervised setting with the focus of the equivariant structures of
the input graphs and does not allow for an explicit inclusion and analysis of the
graph information. Liao et al. (2021) provides PAC-Bayes bounds for GNNs that
are tighter than the bounds in Garg et al. (2020).

In the context of this work, especially relevant is Oono et al. (2020b) and
Oono et al. (2020a). Oono et al. (2020a) describes the effect of oversmoothing
with increasing number of layers. A more detailed comparison to our work is
presented in section 2.3. Oono et al. (2020b) analyzes GNNs in the transductive
setting. However, they consider a multiscale GCN, and therefore, the analysis is
based in a weak-learning/boosting framework where the focus is mostly on ex-
ploring the weak learning component, whereas this paper focuses on the specific
analysis of the generalization bound and the influence of it’s individual compo-
nents. In addition, we provide a detailed analysis of its dependence on the graph
and feature information and provide a more expressive bound by considering
generalization under planted models.

Infinite limit analysis. In the broader deep learning, there has been a
growing call for alternatives to standard learning-theoretic bounds since they do
not adequately capture the behaviour of deep models (Neyshabur et al. 2017).
To this end, different limiting case analysis have been introduced. In the con-
text of GNNs, it is known that GNNs have a fundamental connection to belief
propagation and message passing (Dai et al. 2016; Gilmer et al. 2017) and some
theoretical analyses of GNNs have been based on cavity methods and mean
field approaches for supervised (Zhou et al. 2020) and transductive settings
(Kawamoto et al. 2019; Chen et al. 2019). The central idea of these approaches
is to show results in the limit of the number of iterations. In another limiting
setting, Du et al. (2019) study GNNs with infintiely wide hidden layers, and de-
rive corresponding neural tangent kernel (Jacot et al. 2018; Arora et al. 2019b)
that can provide generalisation error bounds in the supervised setting. Keriven
et al. (2020) derive continuous versions of GNNs applied to large random graphs.
While limiting assumptions allow for a theoretical analysis, it is difficult to infer
the implications of these results for finite GNNs.

Contributions and paper structure. We reconsider classical learning-
theoretic measures to analyse GNNs, with a specific focus on explicitly charac-
terising the influence of the graph information and the network architecture on
generalisation. In the process, we show that, under careful construction of the
complexity measure and distributional assumptions on the graph data, learning
theory can provide insights into the behaviour of GNNs. The main contributions
are the following:

1) We introduce a formal setup for graph-based transductive inference, and
in Section 2.2, we use this framework to show that VC Dimension based gen-
eralisation error bounds are typically loose, except for few trivial cases. This
observation is along the lines of existing evidence for neural networks.

2) In Section 2.3, we derive generalization bounds based on the transductive
Rademacher complexity. Our results show that these bounds are more informa-
tive, suggesting that the correct choice of complexity measure is important.
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3) We further refine the generalisation error bounds in Section 3 under a
planted model for the graph and features. Such an analysis, under random
graphs, is rare in GNN literature. We empirically show that the test error is con-
sistent with the trends predicted by the theoretical bound. Our results suggest
that, under distributional assumptions, learning-theoretic bounds can explain
behaviour of GNNs.

We conclude in Section 4. All proofs and an overview of the notation are
provided in the appendix.

2 Statistical Framework for Transductive Learning on
GNN

For a rigorous analysis, we introduce a statistical learning framework for graph
based transductive inference in Section 2.1. Based on this, we derive general-
isation error bounds based on VC Dimension in Section 2.2 and demonstrate
that the bounds have limited expresitivity even under strong assumptions. To
overcome this problem we consider transductive Rademacher complexity in Sec-
tion 2.3. While without further assumptions this bound also gives limited insight,
the bound is more expressive and, in Section 3, we show that it can provide
meaningful bounds under certain distributional assumptions.

2.1 Framework for Transductive Learning

We briefly recall the framework for supervised binary classification. Let X = Rd
be the domain or feature space and Y = {±1} be the label set. The goal is to find
a predictor h : X → Y based on m training samples S , {(xi, yi)}mi=1 ⊂ X × Y
and a loss function ` : Y×Y → [0,∞). In a statistical framework, we assume that
S consists independent labelled samples from a distribution D = DX × η, that
is, xi ∼ DX and yi ∼ η(xi), where η(·) governs the label probability for each
feature. The goal of learning is to find h that minimises the risk / generalisation
error LD(h) , E(x,y)∼D[`(h(x), y)]. Since, LD(h) cannot be computed without
the knowledge of D, one minimises the empirical risk over the training sample
S as LS(h) , 1

m

∑m
i=1 ` (h (xi) , yi) .

Transductive learning. In transductive inference, one restricts the domain
to be X , {xi}ni=1, a finite set of features xi ∈ Rd. Without loss of gener-
ality, one may assume that the labels y1, . . . , ym ∈ {±1} are known, and the
goal is to predict ym+1, . . . yn. The problem can be reformulated in the statis-
tical learning framework as follows. We define the feature distribution DX to
be uniform over the n features, whereas yi ∼ η(xi) for some unknown distri-
bution η. Hence D := Unif([n]) × η is the joint distribution on X × Y, and the
goal is to find a predictor h : X → Y that minimises the generalisation error
Lu(h) , 1

n−m
∑n
i=m+1 ` (h(xi), yi). In addition we define the empirical error

of h to be L̂m(h) , 1
m

∑m
i=1 ` (h(xi), yi) and the full sample error of h to be

Ln(h) , 1
n

∑n
i=1 ` (h(xi), yi), which is defined over both labelled and unlabelled
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instances. The purpose of this paper is to derive generalisation error bound for
graph based transduction of the form

Lu(h) ≤ L̂m(h) + complexity term.

The complexity term is typically characterised using learning-theoretic terms
such as VC Dimension and Rademacher complexity. For the transductive setting
see Tolstikhin et al. (2016), El-Yaniv et al. (2009), and Tolstikhin et al. (2014).

Graph-based transductive learning. A typical view of graph information
in transductive inference is as a form of a regularisation (Belkin et al. 2004). In
contrast, we view the graph as part of the hypothesis class and derive the impact
of the graph information on the complexity term. We assume access to a graph
G with n vertices, corresponding to the respective feature vectors x1, . . . ,xn,
and edge (i, j) denoting similarity of vertices i and j. For ease of exposition, we
define the matrixX ∈ Rn×d with rows being the n feature vectors of dimension d.
We also abuse notation to write a predictor as h : Rn×d → {±1}n. Furthermore,
typically neural networks output a soft predictor in R, that is further transformed
into labels through sign or softmax functions. Hence, much of our analysis focuses
on predictors h : Rn×d → Rn, and corresponding hypothesis class

HG =
{
h : Rn×d → Rn : h is parametrized by G

}
⊂ R[n].

When applicable, we denote the hypothesis class of binary predictors obtained
through sign function as sign ◦HG = {sign(h) | h ∈ HG}. Note that sign ◦HG ⊂
HG , and hence, VC Dimension or Rademacher complexity bounds for the latter
also hold for the hypothesis class of binary predictors. We also note that the
presented analysis holds for both sign and sigmoid function for binarisation.

Formal setup of GNNs. We next characterise the hypothesis class for
graph neural networks. Consider graph-based neural network model with the
propagation rule for layer k denoted by gk(H) : Rdk−1 → Rdk with layer wise
input matrix H ∈ Rn×dk−1 . Consider a class of GNNs defined over K layers,
with dimension of layer k ∈ [K] being dk and S ∈ Rn×n the graph diffusion
operator. Let φ denote the point-wise activation function of the network, which
we assume to be a Lipschitz function with Lipschitz constant Lφ. We assume φ
to be the same throughout the network. We define the hypothesis class over all
K-layer GNNs as:

HφG ,
{
hφG(X) = gK ◦ · · · ◦ g0 : Rn×d → {±1}n

}
(1)

with gk , φ (bk + Sgk−1 (H)Wk) , k ∈ [K], g0 ,X. (2)

where (2) defines the layer wise transformation with Wk ∈ Rdk−1×dk as the
trainable weight matrix and bk ∈ Rdk the bias term. Here, the graph is treated
as part of the hypothesis class, as indicated by the subscript in HφG . For ease of
notation we drop the superscript for non-linearity where it is unambiguous. For
the diffusion operator S, we consider two main formulations during discussions:
Sloop , A + I (self loop) and Snor , (D + I)− 1

2 (A + I)(D + I)− 1
2 (degree

normalized (Kipf et al. 2017)) where A denotes the graph adjacency matrix and
D is the degree matrix. However, most results are stated for general S.
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2.2 Generalisation Error-bound using VC Dimension

The main focus of this paper is the notion of generalisation, that is, under-
standing how well a GNN can predict the classes of an unlabelled set given the
training data. We start with one of the most fundamental learning-theoretical
concepts in this context which is the Vapnik–Chervonenkis (VC) dimension of
a hypothesis class, a measure of the complexity or expressive power of a space
of functions learned by a binary classification algorithm. The following result
bounds the VC Dimension for the hypothesis class HφG , and use it to derive a
generalisation error bound with respect to the full sample error Ln, which is
close to the generalisation error for unlabelled examples Lu when m� n.

Proposition 1 (Generalisation error bound for GNNs using VC Dimension)
For the hypothesis class over all linear GNNs, that is φ(x) := x, with binary
outputs, the VC Dimension is given by VCdim

(
sign ◦Hlinear

G
)
= min

{
d, rank

(
S
)
,mink∈[K−1] {dk}

}
.

Similarly, the VC Dimension for the hypothesis class of GNNs with ReLU
non-linearities and binary outputs, can be bounded as VCdim

(
sign ◦HReLU

G
)
≤

min {rank(S), dK−1}.
Using the above bounds, it follows that, for any δ ∈ (0, 1), the generalisation

error for any h ∈ sign ◦HG satisfies, with probability 1− δ,

Ln(h)− L̂m(h) ≤

√
8

m

(
min {rank(S), dK−1} · ln(em) + ln

(
4

δ

))
. (3)

To interpret Proposition 1, we note that, by introducing the non-linearity,
we lose the information about the hidden layers, except the last one and there-
fore also on the feature dimension. Nevertheless, the information on the graph
information (that we are primarily interested in) is preserved. There are two
situations that arise. If dK−1 ≤ rank(S), then, from Proposition 1, the graph in-
formation is redundant and one could essentially train a fully connected network
without diffusion on the labelled features, and use it to predict on unlabelled
features. The graph information has an influence for rank(S) < dK−1. While
general statements on the influence of the graph information are difficult, by
considering specific assumptions on the graph we can characterise the generali-
sation error further.

For linear GNN on graph G, one can bound the VC Dimension between those
for empty and complete graphs, that is,VCdim

(
sign ◦Hlinear

complete
)
≤ VCdim

(
sign ◦Hlinear

G
)
≤

VCdim
(
sign ◦Hlinear

empty
)
. Moreover, for disconnected graphs, rank(S) is related

to the number of connected components. Similar observations hold for upper
bounds on VC Dimension for ReLU GNNs. Based on this observation for simple
settings, it holds that considering graph information in comparison to a fully
connected feed forward neural network leads to a decrease in the complexity of
the class, and therefore also in the generalisation error. However, the graph G
is connected in most practical scenarios, and even under strong assumptions on
the graph, for example under consideration of Erdös-Rényi graphs or stochastic
block models, rank(S) = O(n) (Costello et al. 2008). Therefore, for the case
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dK−1 > rank(S) = O(n), Proposition 1 provides a generalisation error bound of

O

(√
n·lnm
m

)
, which holds trivially for 0-1 loss as n > m. Furthermore, rank(S)

is often similar for both self-loop Sloop and degree-normalised diffusion Snor,
and hence, the VC Dimension based error bound does not reflect the positive
influence of degree normalisation—a fact that can be explained through stability
based analysis (Verma et al. 2019).

2.3 Generalisation Error-bound using Transductive Rademacher
Complexity

Due to the triviality of VC Dimension based error bounds, we consider general-
ization error bounds based on transductive Rademacher complexity (TRC). We
start by defining TRC that differs from inductive Rademacher complexity by
taking the unobserved instances into consideration.

Definition 1 (Transductive Rademacher complexity (El-Yaniv et al. 2009))
Let V ⊆ Rn, p ∈ [0, 0.5] andm the number of labeled points. Let σ = (σ1, . . . , σn)

T

be a vector of independent and identically distributed random variables, where
σi takes value +1 or −1, each with probability p, and 0 with probability 1 − 2p.
The transductive Rademacher complexity (TRC) of V is defined as Rm,n(V) ,(

1
m + 1

n−m

)
· E
σ

[
supv∈V σ

>v
]
.

The following result derives a bound for the TRC of GNNs, defined in (1)–
(2), and states the corresponding generalization error bound. The bound involves
standard matrix norms, such as ‖ · ‖∞ (maximum absolute row sum) and the
‘entrywise’ norm, ‖·‖2→∞ (maximum 2-norm of any column).

Theorem 1 (Generalization error bound for GNNs using TRC) Consider
Hφ,β,ωG ⊆ HφG such that the trainable parameters satisfy ‖bk‖1 ≤ β and ‖Wk‖∞ ≤
ω for every k ∈ [K]. The transductive Rademacher complexity (TRC), Rm,n(Hφ,β,ωG ),
of the restricted hypothesis class is bounded as

c1n
2

m(n−m)

(
K−1∑
k=0

ck2 ‖S‖
k
∞

)
+ c3c

K
2 ‖S‖

K
∞ ‖SX‖2→∞

√
log(n) , (4)

where c1 , 2Lφβ, c2 , 2Lφω, c3 , Lφω
√

2/d and Lφ is Lipschitz constant for
activation φ.

The bound on TRC leads to a generalisation error bound following El-Yaniv
et al. (2009). For any δ ∈ (0, 1), the generalisation error, Lu(h) − L̂m(h), for
any h ∈ Hφ,β,ωG satisfies

Rm,n(Hφ,β,ωG ) + c4
n
√

min{m,n−m}
m(n−m)

+ c5

√
n

m(n−m)
ln

(
1

δ

)
(5)

with probability 1−δ, where c4, c5 are absolute constants such that c4 < 5.05 and
c5 < 0.8.
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The additional terms in (5) are O
(
max

{
1√
m
, 1√

n−m

})
, and hence, we may

focus on the upper bound on TRC (4) to understand the influence of the graph
diffusion S as well as its interaction with the feature matrix X. The bound de-
pends on the choice of ω, and it suggests a natural choice of ω = O(1/‖S‖∞)
such that the bound does not grow exponentially with network depth. The sub-
sequent discussions focus on the dependence on ‖S‖∞ and ‖SX‖2→∞, ignoring
the role of ω. Few observations are evident from (4), which are also interesting
in comparison to existing works.

Role of normalisation. In the case of self-loop, it is easy to see that
‖Sloop‖∞ = 1 + dmax, where dmax denotes the maximum degree, and hence,
for fixed ω, the bound grows as O(dKmax). In contrast, for degree normalisa-
tion, ‖Snor‖∞ = O

(√
dmax

dmin

)
, and hence, the growth is much smaller (in fact,

‖Snor‖∞ = 1 on regular graphs). It is worth noting that, in the supervised set-
ting, Liao et al. (2021) derived PAC-Bayes for GNN with diffusion Snor, where
the bound varies as O(dKmax). Theorem 1 is tighter in the sense that, for Snor,
the error bound has weaker dependence on dmax, mainly through ‖SX‖2→∞.

From spectral radius to ‖SX‖2→∞. Previous analyses of GNNs in trans-
ductive setting rely on the spectral properties of S. For instance, the stabil-
ity based generalisation error bound for 1-layer GNN in Verma et al. (2019)
is O(‖S‖22), where ‖S‖2 is the spectral norm. In contrast, Theorem 1 shows
TRC = O(‖S‖∞ ‖SX‖2→∞). This is the first result that explicitly uses the
relation between the graph-information and the feature information explicitly
via ‖SX‖2→∞. One may note that without node features, that is X = I, we
have ‖S‖2→∞ ≤ ‖S‖2 ≤ ‖S‖∞ and hence, a direct comparison between (5) and
O(‖S‖22) bound of Verma et al. (2019) is inconclusive. However, in presence of
featuresX, Theorem 1 shows that the bound depends on the alignment between
the feature and graph information.

In the presence of graph information we can still express Theorem 1 in
terms of spectral components by considering ‖SX‖2→∞ = maxj ‖(SX)·j‖2 ≤
maxj ‖S‖2 ‖X.j‖2 ≤ ‖S‖2‖X‖2→∞ and ‖SX‖2→∞ which can be bound as
1√
n
‖S‖∞ ≤ ‖S‖2.
Oversmoothing. While the above bound provides a weaker result than

(4) it allows to directly connect to the oversmoothing (Li et al. 2018) effect
as the diffusion operator in now only included as ‖S‖k2 , k ∈ [K]. Therefore
with an increasing number of layers (and especially in the setting considered in
Oono et al. (2020a) where the number of layers goes to infinity), the information
provided by the graph gets oversmoothed and therefore, a loss of information
can be observed.

3 Generalization using TRC under Planted Models

The discussion in previous section shows that TRC based generalisation error
bound provides some insights into the behaviour of GNNs (example, Snor is pre-
ferred over Sloop), but the bound is too general to give insights into the influence
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of the graph information on the generalisation error. The key quantity of interest
is ‖SX‖2→∞, which characterises how the graph and feature information inter-
act. To understand this interaction, we make specific distributional assumptions
on both graph and node features. We assume that node features are sampled from
a mixture of two d-dimensional isotropic Gaussians (Dasgupta 1999), and graph
is independently generated from a two-community stochastic block model (Abbe
2018). Both models have been extensively studied in the context of recovering
the latent classes from random observations of features matrix X or adjacency
matrix A, respectively. Our interest, however, is to quantitatively analyse the in-
fluence of graph information when the latent classes in features X and graph A
do not align completely. In Section 3.1, we present the model and derive bounds
on expected TRC, where the expectation is with respect to random features
and graph. We then experimentally illustrate the bounds in Section 3.2, and
demonstrate that the corresponding generalisation error bounds indeed capture
the trends in performance of GNN.

3.1 Model and Bounds on TRC

We assume that the node features are sampled latent true classes, given a z =
(z1, . . . , zn) ∈ {±1}n. The node features are sampled from a Gaussian mixture
model (GMM), that is, feature for node-i is sampled as xi ∼ N (ziµ, σ

2I) for
some µ ∈ Rd and σ ∈ (0,∞). We express this in terms of X as

X = X + ε ∈ Rn×d, with X = zµ> & ε = (εij)i∈[n],j∈[d]
i.i.d.∼ N (0, σ2). (6)

We refer to above as X ∼ 2GMM. On the other hand, we assume that graph
has two latent communities, characterised by y ∈ {±1}n. The graph is generated
from a stochastic block model with two classes (2SBM), where edges (i, j) are
added independently with probability p ∈ (0, 1] if yi = yj , and with probability
q < [0, p) if yi 6= yj . In other words, we define the random adjacency A ∼ 2SBM
as a symmetric binary matrix with Aii = 0, and (Aij)i<j indenpendent such
that

Aij ∼ Bernoulli(Aij), where A =
p+ q

2
11> +

p− q
2
yy> − pI. (7)

The choice of two different latent classes z,y ∈ {±1}n allows study of the
case where the graph and feature information of do not align completely. We
use Γ = |y>z| ∈ [0, n] to quantify this alignment. Assuming y, z are both
balanced, that is,

∑
i yi =

∑
i zi = 0, one can verify that ‖(A+ I)X‖2→∞ =

‖µ‖∞
(
n(1− p)2 + 1

4n(p− q)
2Γ 2 − (p− q)(1− p)Γ 2

)1/2
, which indicates that,

for dense graphs (p, q � 1
n ), the quantity ‖SX‖2→∞ should typically increase

if the latent structure of graph and features are more aligned. This intuition
is made precise in the following result that bounds the TRC, in expectation,
assuming X ∼ 2GMM and A ∼ 2SBM.
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Theorem 2 (Expected TRC for GNNs under SBM) Let c1, c2 and c3 as
defined in Theorem 1 and Γ , |y>z|. Let c6 , (1+o(1)), c7 , (1+ko(1)), c8 ,

(1 + Ko(1)). Assuming p, q � (lnn)2

n we can bound the expected TRC for A
as defined in (7) and X as defined in (6) as follows: Degree normalized:
S = Snor

E
X∼2GMM
A∼2SBM

[
Rm,n(Hφ,β,ωG )

]
≤ c1n

2

m(n−m)

(
K−1∑
k=0

c7c
k
2

(
p

q

) k
2

)
+ c8c3c

K
2

(
p

q

)K
2 √

ln(n) ×

(
c6 ‖µ‖∞

1 +
(
p−q
2

)2
Γ 2(

p+q
2

)2 + c6

√
ln(n)

q
‖µ‖∞ + c6

√
σ(1 + 2 ln(d))

q

)
(8)

For space reasons we provide exact formulation of the self loop: S = Sloop case
in the appendix.

We note that although the above bounds are stated in expectation, they can
be translated into high probability bounds. Furthermore the non-triviality of
the proof of Theorem 2 stems from bounds on the expectations of matrix norms,
which is more complex than the computation above on ‖(A+ I)X‖2→∞. Theo-
rem 2 can be also translated into bounds on the generalisation gap Lu(h)−L̂m(h).
By considering a planted model we can now further extend the observations of
Section 2.2 and 2.3.

Role of normalisation. In the following, we can show that by normalising,
the generalisation gap grows slower with increasing graph size. First we compare
E
[
‖Sloop‖k∞

]
= c7(np)

k with E
[
‖Snor‖k∞

]
= c7 (p/q)

k/2 and observe that by
normalising we lose the n term. In addition we can consider E [‖SX‖2→∞] which
is bound by the second line in (8). Again in the first, deterministic, term we
observe that the self loop version contains an additional dependency on n. For
the two noise terms we can characterize the behaviour in terms of the density
of the graph. Let ρ = O(p), O(q) and ρ� 1

n then we can characterise the dense

setting as ρ � Ω(1) and the sparse setting as ρ � O
(

ln(n)
n

)
and observe that in

both case the normalised case grows slower with n:

Dense: E
[
‖SloopX‖2→∞

]
= O(n) & E [‖SnorX‖2→∞] = O(

√
ln(n)) (9)

Sparse: E
[
‖SloopX‖2→∞

]
= O(

√
n ln(n)) & E [‖SnorX‖2→∞] = O(

√
n) (10)

Influence of the graph information. We consider the idea from Sec-
tion 2.2, to analyse the influence of graph information by comparing the TRC be-
tween the case where no graph information is considered, S = I and Snor. We de-
fine the corresponding hypothesis classes as Hφ,β,ωI and Hφ,β,ωnor . Considering the
deterministic case (S = S,X = X ) we can observeRm,n(Hφ,β,ωI ) > Rm,n(Hφ,β,ωnor )

if Γ > O
(

n√
nρ+n

)
. Therefore the random graph setting allows us to more pre-

cisely characterize under what conditions adding graph information helps.
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Fig. 1. Top row shows experiments for SBM and bottom row for Cora. (left) Change
in the alignment of the features and adjacency matrix. (middle) Change of the graph
size n. (right) Change number of observed points m.

3.2 Experimental Results

While we focus on the theoretical analysis of GNNs, in this section we illustrate
that the empirical generalization error follows the trends given by the bounds
described in Theorem 2. The bounds in Section 3.1 are derived for binary SBMs
so we therefore focus on this setting but in addition also show that those ob-
servations extend to real world, multi-class data on the example of the Cora
dataset (Rossi et al. 2015). The results are presented in Figure 1. For the SBM
we consider a graph with n = 500,m = 100 as default. We plot the mean over 5
random initialisation and over several epochs. Note that the range for Cora ex-
ceeds (0, 1) as the dataset is multi class and we consider a negative log likelihood
loss. For plotting the theoretical bound we can only plot the trend of the bound
as the absolute value is out of the (0, 1) range. While this does not allow us to
numerically show how tight the bound is in practice, we can still make state-
ments about the influence of the change of parameters, where the experiments
validate the constancy between theory and empirical observations 5.

We can first look at the feature and graph alignment as characterised through
Γ 2 in the TRC based bound (8) and observe that with an increase in the latent
structure the generalisation error increases. While this seems to be counterin-
tuitive a possible explanation could be that reduced alignment helps to prevent
overfitting and we observe that the slope matches the empirical results. In ad-
5 Generalisation error bounds, even for simple machine learning models, can exceed
1 due to absolute constants that cannot be precisely estimated. Hence, the point of
interest is the dependence of key parameters; for instance, in a supervised setting,
the bounds are O(1/

√
m) and typically exceeds 1 for moderate m. This problem is

inherent to the bound given in El-Yaniv et al. (2009) that we base our TRC bounds
on, as the slack terms can already exceeds 1 and therefore further research on general
TRC generalisation gaps is necessary to characterise the absolute gap between theory
and experiments.
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dition we note that the VC dimension bound (3) does not allow us to model
this dependency. For Cora we do not have access to the ground truth for the
alignment and therefore can not verify this trend directly. Therefore we simulate
a change in the feature structure by adding noise to the feature vector as X + ε
where εi· is i.i.d. distributed N (0, σ2

FeatI) and again observe a similar behaviour
to the SBM. To be able to apply the bound to arbitrary graphs an important
property is that the bound does not increase drastically with growing graph size.
We theoretically showed this in the previous section, especially through (9)–(10)
and illustrate it in Figure 1 (middle). Empirically for both, SBM and Cora, the
generalisation error stays mostly consistent over varying n. Finally for the num-
ber of observed points we consider a realistic setting of m � n − m where we
see a sharp decline in the setting of few observed points but then the generalisa-
tion error converges which corresponds to the influence of m as described in (8).
Practically such an observation can be useful as labeling data can be expensive
and such results could be useful to determine a necessary and sufficient number
of labeled data to obtain a given level of accuracy.

4 Conclusion

Statistical learning theory has proven to be a successful tool for a complete and
rigours analysis of learning algorithms. At the same time research suggests that
applied to deep learning models these methods become non-informative. How-
ever on the example of GNNs, we demonstrate that classical statistical learning
theory can be used under consideration of the right complexity measure and
distributional assumptions on the data to provide insight into trends of deep
models. Our analysis provides first fundamental results on the influence of dif-
ferent parameters on generalization and opens up different lines of follow up
work. As it is not the focus of this paper we consider the bounds on the norms
of trainable parameters, ω, β, fixed. However loosening this assumption would
allow us to analyse the behaviour of the generalisation error during training and
under different optimization approaches. Finally while our analysis focuses on
generalisation we suggest that the idea of analysing GNNs under planted models
can be extended to other learning-theoretical measures such as stability or model
selection as well as the supervised (graph-classification) setting.
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Appendix

In the appendix we provide the following additional information and proofs.
A: Notation
B: Influence of Depth and Residual Connections on the Generalisation Error
C: Proof Proposition 1 — Generalisation error bound for GNNs using VC-
Dimension
D: Proof Theorem 1 — Generalization error bound for GNNs using TRC
E: Proof Theorem 3 — TRC for Residual GNNs
F: Proof Theorem 2 — Expected TRC for GNNs under SBM
G: Experimental Details
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A Notation

Let [n] := 1, 2, . . . n. We represent a graph G by its adjacency matrix A, and
use I to denote an identity matrix. For any vertex i, i ∼ j := {j | Aij = 1} is
the set indices adjacent to i. We use ‖ · ‖p to denote the p-norm for vectors
and induced p-norm for matrices. We consider standard matrix norms, such
as ‖ · ‖∞ (maximum absolute row sum) and the ‘entrywise’ norm, ‖ · ‖2→∞
(maximum 2-norm of any column). Function classes are denoted as H or F ,
indexed depending on parameters that are included in the hypothesis class. We
define the fully connected graph as G =: KG , the empty graph (without any
edges) as G =: ∅. Note that if we consider a graph with only self loops (G := ∅)
the GNN becomes equivalent to a fully connected neural network. We consider
point wise activation functions φ(·) : R → R. In this context we define the
rectified linear unit as ReLU(x) := max{0, x}.
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B Influence of Depth and Residual Connections on the
Generalisation Error

While for standard neural networks increasing the depth is a common approach
for increasing the performance, this idea becomes more complex in the context
of GNNs as each layer contains a left multiplication of the diffusion operator
and we can therefore observe an over-smoothing effect (Li et al. 2018) — the
repeated multiplication of the diffusion operator in each layer spreads the feature
information such that it converges to be constant over all nodes. To overcome
this problem, empirical works suggest the use of residual connections (Kipf et al.
2017; Chen et al. 2020), such that by adding connections from previous layers
the network retains some feature information. In this section we investigate this
approach in the TRC setting. In Section B.1 we provide the TRC bound for
GNN with skip connections and show that it improves the generalisation error
compared to vanilla GNNs. In Section B.2 we illustrate this bounds empirically.

B.1 Model and bounds on TRC for GNN with Residual connections

While there is a wide range of residual connections, introduced in recent years
we follow the idea presented in Chen et al. (2020) where a GNN as defined in
(2) is extended by an interpolation over parameter α with the features. This
setup is especially interesting as it captures the idea of preserving the influence
of the feature information more than residual definition that only connect to the
previous layer. Formally we can now write the layer wise propagation rule as

gk+1 , φ ((1− α) (bk + Sgk (H)Wk) + αg0 (H)) , with α ∈ (0, 1). (11)

We can now derive a generalization error bound similar to Theorem 1 for the
Residual network.

Theorem 3 (TRC for Residual GNNs) Consider a Residual network as de-
fined in (11) and Hφ,β,ωG ⊂ HφG such that the trainable parameters satisfy ‖bk‖1 ≤
β and ‖Wk‖∞ ≤ ω for every k ∈ [K]. Then with α ∈ (0, 1) and c1 , 2Lφβ,
c2 , 2Lφω, c3 , Lφω

√
2/d the TRC of the restricted class or Residual GNNs is

bounded as

Rm,n(Hφ,β,ωG ) ≤
((1− α)c1 + α2Lφ ‖X‖∞)n2

m(n−m)

(
K−1∑
k=0

(1− α)ck2 ‖S‖
k
∞

)
+ α2Lφ ‖X‖∞ + (1− α)c3cK2 ‖S‖

K
∞ ‖SX‖2→∞

√
log(n)

(12)

However observing the bound isolated does not provide new insights beyond
Theorem 2 into the behaviour of the generalisation error and therefore we focus
on the comparison between GNNs with and without residual connections.

For readability assume β = ‖X‖∞. Under this setup we can note that the
generalisation error-bound increases with decreased alpha and in extension it
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Fig. 2. (left) Theoretical bounds corresponding to Theorem 3. (middle) Influence of
depth K under SBM. (right) Influence of depth K for Cora.

follows that the generalisation error-bound for a GNN with skip connection is
lower then the one without. This implication is in line with the general notion
that residual connections improve the performance of networks (Chen et al.
2020; Kipf et al. 2017). Our general intuition behind this behavior is that with
increasing α, the network architecture is closer to the one of an one hidden layer
network. Having good performance in shallow networks is something that is
observed in our experiments as well as in previous work (e.g., (Kipf et al. 2017)).
Therefore it appears that using the skip connection to obtain a deep network
that resembles a shallow one leads to the performance increase.

B.2 Experiments on depth and Residual networks

The above observation suggests that including residual connections is beneficial
with increasing depth which is consistent with the initial reason of introducing
residual connections (Chen et al. 2020; Kipf et al. 2017). We further illustrate this
in the context of the trend in (12). Similar to Section 3.2 we start by considering
the vanilla GNN version and focus on the influence of depth where Figure 2 (left)
illustrates Theorem 2, more specifically an exponential increase of K as shown in
(8)–(??) (similar to Liao et al. (2021)). Empirically from Figure 2, (middle, right)
we note that with increasing depth the generalisation error indeed increases for
the first three layers significantly but then we observe a deviation from the
theoretical bound. The rate of growth decreases, which is to be expected as
the absolute values of Lu,Lm are bound by construction. Future work with a
focus on depth is necessary to refine this component of the bound. Extending the
analysis of depth we now consider the residual connections as defined in (11). By
(12) we can still observe the exponential dependency on K and therefore focus
on two main aspects: i) Theoretically the generalisation error for the Resnet is
upper bound by GNN, which empirically is observed for both the SBM as well
as for Cora. ii) Focusing on the Resnets, Theorem 3 predicts an ordering in the
generalisation error given by α which is again observed for both the SBM as
well as for Cora. Therefore while there seems to be deviation in the exponential
behaviour of K as given in Theorem 3, the ordering of the generalisation error-
bound described by α is observed empirically. While this does not give us a
complete picture we can note that the remarks on oversmoothing suggest that
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shallower networks are preferable and we again note that the VC dimension
bound (3) does not provide any useful insights to the influence of depth.
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C Proof Proposition 1 — Generalisation error bound for
GNNs using VC-Dimension

Definition 2 (VC-Dimension) Following Vapnik et al. (1971). Let H ⊆ {±1}X
be a binary function class and h ∈ H a function in this class. We define C =
(x1, · · ·xm) ∈ Xm and say that C is shattered by h if for all assignments of labels
to points in C there exists a parameterization of h such that h predicts all points
in C without error. From there we define the VC-dimension of a non-empty
hypothesis class H as the cardinality of the largest possible subset of X that can
be shattered by H. If H can shatter arbitrarily large sets, then VCdim(H) =∞.

C.1 Generalization using VC-Dimension under specific graph
assumptions

For the hypothesis class over all linear GNNs, that is φ(x) := x, with binary
outputs, the VC Dimension is given by

VCdim
(
sign ◦Hlinear

G
)
= min

{
d, rank

(
S
)
, min
k∈[K−1]

{dk}
}
.

Similarly, the VC Dimension for the hypothesis class of GNNs with ReLU non-
linearities and binary outputs, can be bounded as VCdim

(
sign ◦HReLU

G
)
≤

min {rank(S), dK−1}.
Using the above bounds, it follows that, for any δ ∈ (0, 1), the generalisation

error for any h ∈ sign ◦HG satisfies, with probability 1− δ,

Ln(h)− L̂m(h) ≤

√
8

m

(
min {rank(S), dK−1} · ln(em) + ln

(
4

δ

))
.

Proof. For this proof we will need the following know result on the VC-
dimension of linearly independent points:

Theorem 4 (Burges (1998)) Consider some set of m points in Rn. Choose
any one of the points as origin. Then the m points can be shattered by oriented
hyperplanes if and only if the position vectors of the remaining points are linearly
independent.

For deriving VCdim
(
sign ◦Hlinear

G
)
we start with the VC-dimension of the final

layer: VCdim(Hsign
B ) with

Hsign
B =

{
hsignB (x) := sign (Bw) : w ∈ Rm

}
over an arbitrary matrix B ∈ Rn×m, where B is later substituted for the linear
network. Let rank(B) = r then we show that there is c ⊂ [n], |c| = r s.t. ∀ b ∈
{±1}r and hsignB (c) = {±1}c. Using SVD we decompose B = UΛV > and define
z>1 , · · · , z>m ∈ Rk as the rows of U . Using this we rewrite:

Bw =

z
>
1
...
z>d

ΛV >w︸ ︷︷ ︸
=a∈Rd

=

z
>
1 a
...

z>d a


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Rewrite Hsign
B as F sign =

{
ha(z) = sign(a>z)

}
. Since F sign lies in the class of

all homogenious linear classifiers in r dimensions and from orthonormal con-
dition on z it follows that span ({z1, · · · zn}) = Rr. Using this observation as
well as results on the VC-dimension of linear independent pointsets Burges
(1998) it follows that VCdim(Hsign

B ) = VCdim(F sign) = r. Substituting B with
the linear network and using that for two matrixes B′ and B: rank(B′B) =
min(rank(B′), rank(B)) gives

rank
(
B
)
:= rank

(
SH(p)

)
= rank

(
S · · ·SXW (1) · · ·W (p−1))

as the final result.
For extending to the non-linear setting we first note that we can not make a

general statement on the rank of a matrix after applying a non-linearity. That is
for some matrixM and non-linearity ReLU(·) we have no order relation between
rank(M) and rank(ReLU(M)). This can be checked by a simple counterexam-
ple. Therefore the above presented proof does not extend to the hidden layer
size but since the last layer is linear the dependency on S persists. We define the
hypothesis class over all linear GNNs where all but the last activation function
are linear φk(x) := x ∀k ∈ [K − 1] and φp(x) := sign(x) as:

Hsign,I
G =

{
hsign,IG (X)

}
and recall that layer k has dimension dk. Then the VC-Dimension is given by
the minimum of the rank of the adjacency matrix, the dimension of the features
and the minimum hidden layer size, that is,

VCdim
(
Hsign,I
G

)
= min

{
d, rank

(
S
)
, min
k∈[K−1]

{dk}
}
. (13)

Therefore consider the hypothesis class GNNs with of non-linearities φk(x) :=
ReLU(x) ∀k ∈ [K − 1] and φp(x) := sign(x):

Hsign,ReLU
G =

{
hsign,ReLU
G (X)

}
and again compute the VC-Dimension, similar to the proof shown above, we can
note that we lose information on the hidden layers (and therefore also on d) and
the bound becomes

VCdim
(
Hsign,ReLU
G

)
≤ min {rank(S), dp−1} , (14)

that is, it still depends on the rank of S but only on the last hidden layer
dimension.

Following defined we use the a standard result for generalisation e.g. in
Shalev-Shwartz et al. (2014). For δ ∈ (0, 1) any h ∈ HG satisfies

Ln(h)− L̂m(h) ≤

√√√√8
(
VCdim (HG) ln

(
em

VCdim(HG)

)
+ ln

(
4
δ

) )
m

(15)

with probability 1− δ.
Applying (13) and (14) to (15) gives the final bound. �
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C.2 Additional notes on the remarks related to Proposition 1

Expected Rank of Erdös-Rényi graphs From Costello et al. (2008) we know
the following result: Let c be a constant larger then 1

2 , then for any c lnn
n ≤ p ≤ 1

2
for a random G graph sampled from a Erdös-Rényi graph has rank(A) ≤ n−i(G)
with probability 1−O

(
(ln lnn)−

1
4

)
, where i(G) denotes the number of isolated

vertices in G.
In the same line we can additionally note that we get similar results (of the

form that in expectation rank(A) = n) for more complex models like stochastic
block models which we will discuss in further detail later, as for any matrix
A ∈ Rn×n there are invertible matrices arbitrarily close to A, under any norm
for the n× n matrices. Motivated by those first findings we consider a different
complexity measure, less reliant on combinatorial arguments, to get more insight
into the role of graph information.
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D Proof Theorem 1 — Generalization error bound for
GNNs using TRC

Recall the definition of TRC as defined in El-Yaniv et al. (2009)6: Let V ⊆ Rn,
p ∈ [0, 0.5] and m the number of labeled points. Let σ = (σ1, . . . , σn)

T be a
vector of independent and identically distributed random variables, where σi
takes value +1 or −1, each with probability p, and 0 with probability 1 − 2p.
The transductive Rademacher complexity (TRC) of V is defined as

Rm,n(V) ,
(

1

m
+

1

n−m

)
· E
σ

[
sup
v∈V

σ>v

]
.

For this section we introduce the following notation: Q ,
(

1
m + 1

n−m

)
, which

we later again substitute in the final expression.
To derive the TRC we start with the following propositions describing the

recursive TRC for a GNN neuron that is applied K−1 times for all but the first
layer.

Proposition 2 (Recursive TRC of one GNN neuron) Consider gk+1 , φ (bk + Sgk (H)Wk),
k ∈ {1, · · · ,K}. Now we define the function class over one neuron as

HφG ,

{
hφG(H) = φ

(
bi +

dk∑
l

Wlj

n∑
t

Sitg(H)lj

) ∣∣∣∣∣ g ∈ F , ‖bi‖1 ≤ β
}

where F is the class of Rn×dk → R, including the zero function. Then with
W·j , [W1j , · · · ,Wdkj ]

>:

Rm,n(HφG) ≤ 2Lφ
(
βQ(n) + ‖S‖∞ ‖W·j‖1 Rm,n(F)

)
Proof. See section D.2 �

After the recursive application we end up with a formulation of all layers and
a dependency on the TRC of the first layer. Therefore we then use the following
proposition to finish the proof.

Proposition 3 (Bound on TRC, first layer) Define the hypothesis class over
the function of the first layer g0 as:

HφG ,
{
hφG(X) = φ (b+ SXW1)

∣∣∣ ‖b‖1 ≤ β}
then the TRC is give by

Rm,n(HφG) ≤ Lφ

(
βQ(n)2 +Q ‖W1‖∞ ‖SX‖2→∞

√
2 log(n)

d

)
6 Note that El-Yaniv et al. (2009) considered TRC in terms of u and m which we
change to rewriting u = n−m such that the expression is only in terms of the total
number of nodes and the number of marked nodes.
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Proof. See section D.3 �
Then by combining the above results we obtain Theorem 1 as follows: Con-

sider Hφ,β,ωG ⊆ HφG such that the trainable parameters satisfy ‖bk‖1 ≤ β and
‖Wk‖∞ ≤ ω for every k ∈ [K]. The transductive Randemacher complexity
(TRC) of the restricted hypothesis class is bounded as

Rm,n(Hφ,β,ωG ) ≤ c1n
2

m(n−m)

(
K−1∑
k=0

ck2 ‖S‖
k
∞

)
+ c3c

K
2 ‖S‖

K
∞ ‖SX‖2→∞

√
log(n) ,

where c1 , 2Lφβ, c2 , 2Lφω, c3 , Lφω
√
2/d and Lφ is Lipschitz constant for

activation φ.

D.1 TRC calculus

In the following we proof some preliminary lemmas for TRC that we will use in
the later steps.

Lemma 1 (Scalar multiplication) Let A ⊆ Rn, a scalar c ∈ R and a vector
a0 ∈ Rn then

Rm,n ({ca+ a0 : a ∈ A}) ≤ |c|Rm,n(A)

Proof. Directly by construction. �

Lemma 2 (Addition) Let A ⊆ Rn, B ⊆ Rn then

Rm,n(A+B) = Rm,n(A) +Rm,n(B)

Proof. By construction and linearity of expectation. �

Lemma 3 (Convex hull) Let A ⊆ Rn

and A′ =
{∑N

j=1 αja
(j)
∣∣∣ N ∈ N, ∀j, a(j) ∈ A,αj ≥ 0, ‖α‖1 = 1

}
then

Rm,n(A) = Rm,n(A
′).

Proof. The proof follows similar to the one for inductive Rademacher com-
plexity (e.g. Shalev-Shwartz et al. (2014)). We first note that for any vector v
the following holds:

sup
α≥0:‖α‖1=1

N∑
j=1

αjvj = max
j
vj
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Then:

Rm,n(A
′) = QE

σ

 sup
α≥0:‖α‖1=1

sup
{a(i)}Ni=1

n∑
i=1

σi

N∑
j=1

αja
(j)
i


= QE

σ

 sup
α≥0:‖α‖1=1

N∑
j=1

αj sup
a(j)

n∑
i=1

σia
(j)
i


= QE

σ

[
sup
a∈A

n∑
i=1

σiai

]
= Rm,n(A)

which concludes the proof. �

Lemma 4 (Contraction El-Yaniv et al. (2009)) Let A ⊆ Rn be a set of
vectors. Let f( · ) and g( · ) be real-value functions. Let σ = {σi}ni=1 be
Rademacher variables as defined in Definition 1. If for all 1 ≤ i ≤ n and any
a,a′ ∈ A, |f (ai)− f (a′i)| ≤ |g (ai)− g (a′i)| then

E
σ

[
n∑
i=1

σif(ai)

]
≤ E
σ

[
n∑
i=1

σig(ai)

]

Extending this to Lipschitz continues functions. Let v( · ) be a Lv-Lipschitz
continues function such that |v(f (ai))− v(f (a′i))| ≤ 1

Lv
|f (ai)− f (a′i)|. Now

let the corresponding hypothesis classes be F , {f(·)},V , {v(f(·))} then

Rm,n(V) ≤
1

Lv
Rm,n(H) (16)

Lemma 5 (Cardinality of finite sets) Let A = {a1, · · · ,an} be a finite set
of vectors in Rd and let a = 1

n

∑n
i=1 ai then

Rm,n(A) ≤ max
a∈A
‖a− a‖2

√
2 log(n)

d

Proof. The proof follows the general idea of the proof for Massarts Lemma (see
e.g. Shalev-Shwartz et al. (2014)).
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From Lemma 3 wlog. let a = 0. Let λ > 0 and A′ = {λa1, · · · , λan}.
Therefore

1

Q
Rm,n(A

′) = E
σ

[
max
a∈A′

〈σ,a〉
]

= E
σ

[
log

(
max
a∈A′

exp (〈σ,a〉)
)]

≤ E
σ

[
log

(∑
a∈A′

exp (〈σ,a〉)

)]
Jensen inequality

≤ log

(
E
σ

[∑
a∈A′

exp (〈σ,a〉)

])
σi is i.i.d.

= log

(∑
a∈A′

∏
i=1

E
σi

[exp(σiai)]

)

Bound E
σi

[exp(σiai)]:

E
σi

[exp(σiai)] = p exp(1ai) + (1− 2p) exp(0ai) + p exp(−1ai)

by definition of σi

= (1− 2p) + p

∞∑
i=0

(−a)i + ai

i!

≤ 1

2

∞∑
i=0

(−a)i + ai

i!
as p ≤ 1

2 . Equality for p = 1
2 .

=
exp(ai) + exp(−ai)

2

≤ exp

(
a2
i

2

)

Because

exp(a) + exp(−a)
2

=

∞∑
n=0

a2n

(2n)!
≤
∞∑

2nn!

=
a2n

2nn!
exp

(
a2

2

)
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and (2n)! ≥ 2nn! ∀n ≥ 0. Going back we now get:

1

Q
Rm,n(A

′) ≤ log

(∑
a∈A′

∏
i=1

E
σi

[exp(σiai)]

)

≤ log

(∑
a∈A′

∏
i=1

exp

(
a2
i

2

))

= log

(∑
a∈A′

exp

(
‖a‖2

2

))

≤ log

(
|A′|max

a∈A′
exp

(
‖a‖2

2

))

= log (|A′|) + max
a∈A′

(
‖a‖2

2

)

By constructionRm,n(A) =
1
λRm,n(A

′) and thereforeRm,n ≤ 1
λd

(
log(|A|) + λ2 maxa∈A′

(
‖a‖2
2

))
.

By setting λ =
√

2 log(|A|)
maxa∈A′‖a‖2

and rearranging:

Rm,n(A) ≤ max
a∈A
‖a− a‖2

√
2 log(n)

d

which concludes the proof. �

D.2 Recursive bound on the TRC of single neurons

We start from the general GNN setup as defined as follows: Consider a class of
GNNs defined over K layers, with dimension of layer k ∈ [K] being dk and S ∈
Rn×n the diffusion operator. Let φ, ψ be Lφ, Lψ-Lipschitz pointwise functions.
Define:

gk+1 , φ (bk + Sgk (H)Wk) ,

g0 ,X

and the hypothesis class over all such functions as

Hφ,ψG ,
{
hφ,ψG (X) = ψ (gK ◦ · · · ◦ g0)

}
.

From there we derive a recursive TRC bound depending on the previous layer.
Consider gk+1 , φ (bk + Sgk (H)Wk), k ∈ {1, · · · ,K}. Now we define the

function class over one neuron as

HφG ,

{
hφG(H) = φ

(
bi +

dk∑
l

Wlj

n∑
t

Sitg(H)lj

) ∣∣∣∣∣ g ∈ F , ‖b‖1 ≤ β
}
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where F is the class of Rn×dk → R, including the zero function. Then with
W·j , [W1j , · · · ,Wdkj ]

>:

Rm,n(HφG) ≤ 2Lφ
(
βQ(n) + ‖S‖∞ ‖W·j‖1 Rm,n(F)

)
Proof.
By Lemma 4 and Lemma 2 we get

Rm,n(HφG) ≤ Lφ (Rm,n(Hlin) +Rm,n(Hbias))

where

Hlin ,

{
hlin(H) =

dk∑
l

Wlj

n∑
t

Sitg(H)lj

∣∣∣∣∣ g ∈ F , ‖W·j‖1 ≤ ω
}

Hbias , {hbias(H) = b | |b| ≤ β}

with W·j , [W1j , · · · ,Wdkj ]
>. Bounding terms individually.

Bound Rm,n(Hlin)

We start by rewriting the linear term. For readability glj := g(H)lj

Hij =

dk∑
l

Wlj

n∑
t

Sitglj

=W1jSi1g1j + · · ·+W1jSing1j︸ ︷︷ ︸
W1jg1j(

∑n
t Sit)

+W2jSi1g2j + · · ·+W2jSing2j︸ ︷︷ ︸
W2jg2j(

∑n
t Sit)

+ · · ·

with
n∑
t

Sit ≤ ‖S‖∞

≤‖S‖∞

(
dk∑
l

W1jg1j

)

Now we define

H̃lin ,

{
hlin(H) =

dk∑
l

Wljg(H)lj

∣∣∣∣∣ g ∈ F , ‖W·j‖1 ≤ ω
}

H̃′lin ,

{
hlin(H) =

dk∑
l

Wljg(H)lj

∣∣∣∣∣ g ∈ F , ‖W·j‖1 = ω

}

and since ‖S‖∞ is constant we get by Lemma 1

Rm,n(Hlin) ≤ ‖S‖∞Rm,n(H̃lin).
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To further bound Rm,n(H̃lin) we can a similar process then for standard deep
neural networks with slight deviation on the indexing of the weight matrix.

Let Hull (·) be a convex hull. In the first step we show that

Rm,n(H̃lin) = ωRm,n(Hull (F − F))

where F −F , {f − f ′, f ∈ F , f ′ ∈ F}. Note that the maximum over all func-
tion over Wil with constraint ‖W·j‖1 ≤ ω is achieved for ‖W·j‖1 = ω then

Rm,n(H̃lin) = Rm,n(H̃′lin)

Let 0 be the zero function. Then for ‖W·j‖1 = 1:

∑
l

Wljglj =
∑

l:Wlj≥0

Wlj(glj − 0) +
∑

l:Wlj<0

|Wlj |(0− glj)

which is Hull (F − F). Combining the above results we get:

Rm,n(Hlin) ≤ ‖S‖∞ ωRm,n

(
H̃lin

)
= ‖S‖∞ ωRm,n (Hull (F − F))
= ‖S‖∞ ωRm,n (F − F)
= ‖S‖∞ ω (Rm,n (F) +Rm,n (−F)) Lemma 2
= 2 ‖S‖∞ ωRm,n (F) Lemma 1

which concludes this part of the proof.

Bound Rm,n(Hbias)
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Start by writing out Rm,n(·)

Rm,n(Hbias) = QE
σ

[
sup
b:|b|≤β

b

n∑
i=1

σi

]

≤ QE
σ

[
sup
b:|b|≤β

|b|

∣∣∣∣∣
n∑
i=1

σi]

∣∣∣∣∣
]

= βQE
σ

[∣∣∣∣∣
n∑
i=1

σi

∣∣∣∣∣
]

≤ βQE
σ

[
n∑
i=1

|σi|

]

≤ βQ
n∑
i=1

E
σ
[|σi|]

≤ βQ
n∑
i=1

2p

≤ βQ(n)2p

≤ βQ(n)2

which concludes this part of the proof. Combining the two bounds gives:

Rm,n(HφG) ≤ 2Lφ
(
βQ(n) + ‖S‖∞ ‖W·j‖1 Rm,n(F)

)
concluding the proof of Proposition 2. �

D.3 Bound on the TRC for the first layer

Define the hypothesis class over the function of the first layer g0 as:

HφG ,
{
hφG(X) = φ (b+ SXW1)

}
then the TRC is give by

Rm,n(HφG) ≤ Lφ

(
‖b‖1Q(n)2 +Q ‖W1‖∞ ‖SX‖2→∞

√
2 log(n)

d

)
Proof. Frist similar to Proposition 2 we use Lemma 2 and Lemma 4

Rm,n(HφG) ≤ Lφ (Rm,n(Hlin) +Rm,n(Hbias))

As before Rm,n(Hbias) ≤ βQ(n)2p. In this case we define the linear term as

Hlin , {hlin(X) = SXW } .
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Bounding the TRC of Hlin

Rm,n(Hlin) = QE
σ

[
sup

W :‖W ‖∞≤ω
σ>SXW

]
≤ Q ‖W ‖∞ E

σ

[∥∥σ>SX∥∥∞]

To bound E
σ

[∥∥σ>SX∥∥∞] we define ti = (x1j , . . . , xnj)
> and T = {t1, . . . , tn}, T− =

{−t1, . . . ,−tn}. Therefore

E
σ

[∥∥σ>SX∥∥∞] ≤ E
σ

[
max
t∈T
|σ>St|

]
= E
σ

[
max

t∈T∪T−
σ>St

]
≤ max
t∈T∪T−

‖St‖2

√
2 log(n)

d
Lemma 5

= ‖St‖2→∞

√
2 log(n)

d

Combining with the above results gives

Rm,n(Hlin) ≤ Q ‖W ‖∞ ‖St‖2→∞

√
2 log(n)

d
.

Taking the bound on the bias term into considerations gives the final bound and
concludes the proof of Proposition 3. �

D.4 Additional notes on the remarks related to Theorem 1

Influence of the graph information: Empty and fully-connected graph.
To be able to analyse the influence of the graph information we can note that
the graph information comes into play through ‖SX‖2→∞. We can rewrite this

expression as ‖SX‖2→∞ = maxj

√∑
i (SX)

2
ij and then by replacing S with

the empty (A = KG) and the complete graph (A = I) gives: ‖KGX‖2→∞ =

maxj
1√
n

√(∑
kXkj

)2
, and ‖IX‖2→∞ = maxj

√∑
kX

2
kj and since (

∑
kXkj)

2 ≤

n ‖X·j‖22 it follows that R(HφKG ) ≤ R(HφI ) which is consistent with the obser-
vation obtained from the VC-Dimension bound. In both cases the complexity
measure of the fully connected graph is lower then the if we would not consider
graph information.

Influence of the graph information: b-regular graph. Now consider
a setup that incorporates a larger number of graphs. Assume S := D−

1
2 (A +

I)D− 1
2 and that we only consider the graph information (e.g. X = I), then
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for a b-regular graph (a graph where every vertex has degree b) we can write
‖SI‖2→∞ = maxj ‖S·j‖2 =

√∑
i∼j

1
DiDj

= 1√
b
< 1. Therefore adding graph

information results in R(HφG) ≤ R(HφI ) and therefore the complexity resulting
in not using graph information upper bounds the complexity that results if we
consider graph information.
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E Proof Theorem 3 — TRC for Residual GNNs

Recall the setup for residual connections as defined in the main paper where we
can now write the layer wise propagation rule as

gk+1 , φ ((1− α) (bk + Sgk (H)Wk) + αg0 (H)) , with α ∈ (0, 1).

We can now derive a generalization error bound similar to the one given in
Theorem 1 for the Residual network. As most of the steps are the same we will
only remark the main changes. Recall that for the vanilla case we considered

Rm,n(HφG) ≤ Lφ (Rm,n(Hlin) +Rm,n(Hbias))

and by Lemma 2 and Lemma 1 we obtain a similar bound for the Residual
network as

Rm,n(HφG) ≤ Lφ ((1− α)Rm,n(Hlin) + (1− α)Rm,n(Hbias) + αRm,n(HX)) .

The bounds forRm,n(Hlin) andRm,n(Hbias) are as derived in section D.Rm,n(HX)
can be bound as

Rm,n(HX) ≤ 2Q ‖X‖∞ n

Where the proof follows analogous to the one for the bias term, Rm,n(Hbias.
Again with recursively applying the bounds for each layer and combining

it with the bound on the first layer results in the full TRC bound. Consider a
Residual network as defined in (11) and Hφ,β,ωG ⊂ HφG such that the trainable
parameters satisfy ‖bk‖1 ≤ β and ‖Wk‖∞ ≤ ω for every k ∈ [K]. Then with
α ∈ (0, 1) and c1 , 2Lφβ, c2 , 2Lφω, c3 , Lφω

√
2/d the TRC of the restricted

class or Residual GNNs is bounded as

Rm,n(Hφ,β,ωG ) ≤
((1− α)c1 + α2Lφ ‖X‖∞)n2

m(n−m)

(
K−1∑
k=0

(1− α)ck2 ‖S‖
k
∞

)
+ α2Lφ ‖X‖∞ + (1− α)c3cK2 ‖S‖

K
∞ ‖SX‖2→∞

√
log(n)
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F Proof Theorem 2 — Expected TRC for GNNs under
SBM

F.1 Setup (recap from the main paper)

We assume that the node features are sampled latent true classes, given a z =
(z1, . . . , zn) ∈ {±1}n. The node features are sampled from a Gaussian mixture
model (GMM), that is, feature for node-i is sampled as xi ∼ N (ziµ, σ

2I) for
some µ ∈ Rd and σ ∈ (0,∞). We express this in terms of X as

X = X + ε ∈ Rn×d, where X = zµ> and ε = (εij)i∈[n],j∈[d]
i.i.d.∼ N (0, σ2).

We refer to above as X ∼ 2GMM. On the other hand, we assume that graph
has two latent communities, characterised by y ∈ {±1}n. The graph is generated
from a stochastic block model with two classes (2SBM), where edges (i, j) are
added independently with probability p ∈ (0, 1] if yi = yj , and with probability
q < [0, p) if yi 6= yj . In other words, we define the random adjacency A ∼ 2SBM
as a symmetric binary matrix with Aii = 0, and (Aij)i<j indenpendent such
that

Aij ∼ Bernoulli(Aij), where A =
p+ q

2
11> +

p− q
2
yy> − pI.

The choice of two different latent classes z,y ∈ {±1}n allows study of the case
where the graph and feature information of do not align completely. We use
Γ = |y>z| ∈ [0, n] to quantify this alignment. Assuming y, z are both balanced,
that is,

∑
i yi =

∑
i zi = 0.

In addition the TRC is given by Theorem 1:
Consider Hφ,β,ωG ⊆ HφG such that the trainable parameters satisfy ‖bk‖1 ≤ β

and ‖Wk‖∞ ≤ ω for every k ∈ [K]. The transductive Randemacher complexity
(TRC) of the restricted hypothesis class is bounded as

Rm,n(Hφ,β,ωG ) ≤ c1n
2

m(n−m)

(
K−1∑
k=0

ck2 ‖S‖
k
∞

)
+ c3c

K
2 ‖S‖

K
∞ ‖SX‖2→∞

√
log(n) ,

where c1 , 2Lφβ, c2 , 2Lφω, c3 , Lφω
√
2/d and Lφ is Lipschitz constant for

activation φ.

F.2 Main Proof

From the above bound we can note that to derive the TRC in expectation we
have to compute E

[
‖S‖k∞

]
and E

[
‖S‖k∞ ‖SX‖2→∞

]
where we can decompose
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the latter as follows

E
[
‖S‖k∞ ‖SX‖2→∞

]
≤E

[
‖S‖k∞ ‖SX‖2→∞

]
+ E

[
‖S‖k∞ ‖(S − S)X‖2→∞

]
+ E

[
‖S‖k∞ ‖S(X −X )‖2→∞

]
≤‖SX‖2→∞ E

[
‖S‖k∞

]
+

√
E
[
‖S‖2k∞

]√
E
[
‖(S − S)X‖22→∞

]
+

√
E
[
‖S‖2k∞

]√
E
[
‖(X −X )S‖22→∞

]
where the second inequality follows from noting that ‖SX‖2→∞ is deterministic
and does not depend on the expectation and the decomposition of the last two
terms follows from using Cauchy-Schwarz inequality.

Table F.2 gives an overview over the bounds on the different terms, where
the individual entries are derived in section F.3.
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tableOverview over different concentration bounds for self loop and degree
normalization. Let C = (1 + o(1))

Self Loop Degree Normalized

F.3: ‖SX‖2→∞ C ‖µ‖∞ n
(
1 +

(
p−q
2

)2
Γ 2
)
C ‖µ‖∞

(
1+( p−q

2 )
2
Γ 2
)

( p+q
2 )

F.3: E
[
‖(S − S)X‖22→∞

]
Cn2p ‖µ‖∞ C n ln(n)

1+(n−1)q ‖µ‖∞

F.3: E
[
‖(X −X )S‖22→∞

]
Cn2pσ2(1 + 2 ln d) C 1

q

F.3: E
[
‖S‖k∞

]
(Cnp)k

(
C p
q

) k
2

F.3 Concentration Bounds

Bound E [‖(S − S)X‖2→∞] We first note that:

‖(S − S)X‖2→∞ =
∥∥(S − S) zµ>∥∥

2→∞ by definition of X
= max

j

∥∥(S − S) zµ>j ∥∥2 by definition of ‖ · ‖2→∞

= ‖(S − S) z‖2 ‖µ‖∞ (17)

and we only have to compute the expectation of ‖(S − S) z‖2 as ‖µ‖∞ is deter-
ministic. Taking the expectation:

E [‖(S − S) z‖2] ≤
√
E
[
z> (S − S)> (S − S) z

]

=

∑
ij

zizj
∑
k

E
[
(S − S)ki (S − S)kj

] 1
2

(18)

where (18) follows from the fact that z is deterministic. From this expression
we can now consider the self loop and degree normalized case for the diffusion
operator.

Case 1: Self loop.∑
k E
[
(S − S)ki (S − S)kj

]
in (18) now becomes

∑
k E
[
(A−A)ki (A−A)kj

]
where we distinguish two cases:

i 6= j ⇒ Aki and Akj are independent⇒ E
[
(A−A)ki (A−A)kj

]
= 0

i = j ⇒ E [(A−A)ki (A−A)ki] = Var(Aki) = Aki(1−Aki)
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Therefore (18) becomes

E [‖(S − S) z‖2] ≤

(∑
i

z2i
∑
k

Aki(1−Aki)

) 1
2

=

(∑
ik

Aki(1−Aki)

) 1
2

∵ z2i = 1

≤

(∑
ik

Aki

) 1
2

≤
(
n2
p+ q

2

) 1
2

= n

√
p+ q

2

and giving us the final bound as using the above in (17):

E [‖(S − S)X‖2→∞] ≤ n
√
p+ q

2
‖µ‖∞

Case 2: Degree normalized.

Note that for this section we initially considered an extension of the degree
normalized model where the self loop is weighted by γ. For the final version
however we set γ = 1.

As before first note that:

‖(S − S)X‖2→∞ =
∥∥(S − S) zµ>∥∥

2→∞

= max
j

∥∥(S − S) zµ>j ∥∥2
= ‖(S − S) z‖2 ‖µ‖∞ (19)

and we only have to compute the expectation of ‖(S − S) z‖2 in (19). To bound
this term we start by defining:

S , (D + γI)−
1
2 (A+ γI)(D + γI)−

1
2

S , (D + γI)−
1
2 (A+ γI)(D + γI)−

1
2

S , (D + γI)−
1
2 (A+ γI)(D + γI)−

1
2

such that we can write:

‖(S − S) z‖2 ≤
∥∥(S − S) z∥∥

2
+
∥∥(S − S) z∥∥

2
(20)

and bound the two terms separately:
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Bound first term in (20):
∥∥(S − S) z∥∥

2

First we note that:∥∥(S − S) z∥∥
2
≤
∥∥∥(D + γI)−

1
2 (A−A)(D + γI)−

1
2 z
∥∥∥
2

and therefore

E
[∥∥(S − S) z∥∥

2

]
≤
(
E
[
z>(D + γI)−

1
2 (A−A)(D + γI)−1(A−A)(D + γI)−

1
2 z
])− 1

2

=

(∑
i,j

zizj√
(γ +Dii)(γ +Djj)

∑
k 6=i,j

E [(A−A)ki(A−A)kj ]

γ +Dkk︸ ︷︷ ︸
term 2

)− 1
2

(21)

≤

(∑
i

z2i
γ +Dii

· Dii
γ + (n− 1)q

)− 1
2

(22)

≤
(

n

γ + (n− 1)q

)− 1
2

∵ z2i = 1

Where the step form (21) to (22) follows by bounding (21), term 2 as follows.
For i 6= j the expression is zero. Otherwise for i = j:

∑
k 6=i,j

E [(A−A)ki(A−A)kj ]

γ +Dkk
=
∑
k 6=i

Var(Aki)

γ +Dkk

=
∑
k 6=i

Aki(1−Aki)
γ +Dkk

≤
∑
k 6=i

Aki
γ + (n− 1)q

∵ Dkk ≥ (n− 1)q

=
Dii

γ + (n− 1)q

Therefore

E
[∥∥(S − S) z∥∥

2

]
≤
√

n

γ + (n− 1)q

Bound second term in (20):
∥∥(S − S) z∥∥

2
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Let B , D + γI and C , D + γI. We first consider the following decompo-
sition:

B−
1
2AB−

1
2 −C− 1

2AC−
1
2

= B−
1
2AB−

1
2 −B− 1

2AB−
1
2B

1
2C−

1
2 +B−

1
2AB−

1
2B

1
2C−

1
2 −C− 1

2B
1
2B−

1
2AB−

1
2B

1
2C−

1
2︸ ︷︷ ︸

equal to C−
1
2AC−

1
2

= B−
1
2AB−

1
2︸ ︷︷ ︸

S

(
I−B 1

2C−
1
2

)
+
(
I−C− 1

2B
1
2

)
B−

1
2AB−

1
2︸ ︷︷ ︸

S

B
1
2C−

1
2 (23)

Using (23) we can bound the expectation of
∥∥(S − S) z∥∥

2
as:

E
[∥∥(S − S) z∥∥

2

]
=E

[(
(D + γI)−

1
2 (A+ γI)(D + γI)−

1
2 − (D + γI)−

1
2 (A+ γI)(D + γI)−

1
2

)
z
]

≤E
[∥∥∥S (I− (D + γI)

1
2 (D + γI)−

1
2

)
z
∥∥∥
2

]
(24)

+ E
[∥∥∥(I− (D + γI)

1
2 (D + γI)−

1
2

)
S(D + γI)

1
2 (D + γI)−

1
2 z
∥∥∥
2

]
(25)

Bound (24):

E
[∥∥∥S (I− (D + γI)

1
2 (D + γI)−

1
2

)
z
∥∥∥
2

]
≤ E

[
‖S‖2

∥∥∥(I− (D + γI)
1
2 (D + γI)−

1
2

)
z
∥∥∥
2

]

≤

√√√√√∑
i

E

(1−√Dii + γ

Dii + γ

)2

z2i


∵ ‖S‖2 ≤ 1

≤

√√√√√∑
i

E

(1−√Dii + γ

Dii + γ

)2

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we therefore now need to compute
∑
i E
[(

1−
√
Dii+γ
Dii+γ

)2]
. Note that for x ≥

0, |1−
√
x| ≤ |1− x|. Using this we write

∑
i

E

(1−√Dii + γ

Dii + γ

)2
 ≤∑

i

E

[(
1− Dii + γ

Dii + γ

)2
]

=
∑
i

1− 2 +
E
[
(Dii + γ)2

]
(Dii + γ)2

=
∑
i

−1 +
E
[
(γ +

∑
k 6=iAik)

2
]

(Dii + γ)2

= −n+
∑
i

(Dii + γ)2 +Dii +
∑
k 6=iA

2
ik

(Dii + γ)2

=
∑
i

∑
k 6=iAik(1−Aik)

(Dii + γ)2

≤
∑
i

1

Dii + γ

≤ n

γ + (n− 1)q
(26)

Bound (25):

E
[∥∥∥(I− (D + γI)

1
2 (D + γI)−

1
2

)
S(D + γI)

1
2 (D + γI)−

1
2 z
∥∥∥
2

]
≤E

[∥∥∥I− (D + γI)
1
2 (D + γI)−

1
2

∥∥∥
2
‖S‖2

∥∥∥(D + γI)
1
2 (D + γI)−

1
2 z
∥∥∥
2

]
≤E

[
max
i

(
1−

√
(D + γI)ii
(D + γI)ii

)∥∥∥(D + γI)
1
2 (D + γI)−

1
2 z
∥∥∥
2

]

≤

(
E

[
max
i

(
1−

√
Dii + γ

Dii + γ

)]
︸ ︷︷ ︸

term1

E
[∥∥∥(D + γI)

1
2 (D + γI)−

1
2 z
∥∥∥2]︸ ︷︷ ︸

term2

) 1
2

(27)

where (27) follows from applying the Cauchy-Schwarz inequality. Then for
(27) term 2 we get:

E
[∥∥∥(D + γI)

1
2 (D + γI)−

1
2 z
∥∥∥2] =∑

i

E
[
Dii + γ

Dii + γ
z2i

]

=
∑
i

E [Dii + γ]

Dii + γ︸ ︷︷ ︸
=1

= n
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(27) term 1 we again note that for x ≥ 0, |1 −
√
x| ≤ |1 − x|. Using this we

write:

E

max
i

(
1−

√
Dii + γ

Dii + γ

)2
 ≤ E

[
max
i

(
1− Dii + γ

Dii + γ

)2
]

≤ 1

s
ln

(
exp

(
E

[
smax

i

(
1− Dii + γ

Dii + γ

)2
]))

≤ 1

s
ln

(
E

[
exp

(
smax

i

(
1− Dii + γ

Dii + γ

)2
)])

=
1

s
ln

(
E

[
max
i

(
exp s

((
1− Dii + γ

Dii + γ

)2
))])

≤ 1

s
ln

(∑
i

E

[
exp

(
s

(
1− Dii + γ

Dii + γ

)2

︸ ︷︷ ︸
yi

)
︸ ︷︷ ︸

term1

]

︸ ︷︷ ︸
term2

)

(28)

Now to further bound (28) we first compute (28), term 1 as:

exp(syi) = 1 + syi +
∑
k≥2

(syi)
k

k!

= 1 + syi + (syi)
∑
k≥2

(syi)
k−1

k!

= 1 + syi + (syi)
∑
k≥0

(syi)
k

(k + 1)k!

≤ 1 + syi + (syi) exp(syi)

≤ 1 + (exp(s) + 1)syi

Taking the expectation over the previous line, using linearity of expectation and
the expression for

∑
i E [yi] from (26) it follows that for (28), term 2 we obtain

∑
i

E [exp(syi)] ≤ n+ (exp(s) + 1)s
∑
i

E [yi]

= n+ (exp(s) + 1)s
n

γ + (n− 1)q



Learning Theory Can (Sometimes) Explain Generalisation in GNNs 43

Going back to (28):

(28) ≤ 1

s
ln

(
n+ (exp(s) + 1)s

n

γ + (n− 1)q

)
∀s > 0

≤ 1

s
ln

(
n+ exp(2s)

n

γ + (n− 1)q

)
Note: s > 0⇒ ln s ≤ s− 1

⇒ (es + 1)s ≤ e2s

≤ ln(n)

s
+

1

s
ln

(
1 +

exp(2s)

γ + (n− 1)q

)
Let e2s ≥ γ + (n− 1)q

≤ ln(n)

s
+

1

s
ln

(
2 exp(2s)

γ + (n− 1)q

)
≤ ln(n)

s
+ 2 +

1

s
ln

(
2

γ + (n− 1)q

)
Take s := γ + (n− 1)q ≥ 2

≤ C ln(n)

γ + (n− 1)q

Finally combining the above results:

E
[∥∥(S − S)z∥∥

2

]
≤
√

n

γ + (n− 1)q
+

√
n

C ln(n)

γ + (n− 1)q

= C

√
n ln(n)

γ + (n− 1)q

and

E [‖(S − S)X‖2→∞] ≤ C

√
n lnn

γ + (n− 1)q
‖µ‖∞

This concludes he bound of E [‖(S − S)X‖2→∞]. �

Bound E [‖(X −X )S‖2→∞] We first note that

E [‖(X −X )S‖2→∞] = E
[
max
j∈[d]
‖Sε·j‖2

]
≤
(
E
[
max
j∈[d]
‖Sε·j‖22

]) 1
2
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Let z ∼ N (0, σ2I) then

‖Sz‖22 = z>S>Sz

= zV ΛV >z Eigendecompsition

=

n∑
i=1

λiz
′2
i where V >z = z′i ∼ N (0, σ2I)

=

n∑
i=1;λi>0

λiσ
2yi yi, · · · ,yd

iid∼ X 2

Where the first line follows from the eigendecomposition S>S = V ΛV >. There-
fore ‖Sz‖22 is distributed as a generalised X 2 with mean σTr(S>S) and variance
2
∑
λiσ

4 = 2σ4
∥∥S>S∥∥2

F
. Now define

MGFy(s) =
1

exp
(
1
2

∑
i:λi>0 log(1− 2sλi)

)
and consider s ∈

(
0, 1

2λmin

)
where λmin is the smallest non-zero eigenvalue of

S>S.

exp

(
sE
[
max
j
yj

])
≤ E [exp (smax(yj)])

= E [max exp (syj ])

≤
∑
j

E [exp (syj)]

= d ·MGFy(s)

= d exp

(
−1

2

∑
i:λi>0

log(1− 2sλi)

)

it follows that

E
[
max
j
yj

]
≤ ln d

s
− 1

2s

∑
i:λi>0

log(1− 2sλi)︸ ︷︷ ︸
≤−2sλi

≤ ln d

s
+
∑
i:λi>0

λi︸ ︷︷ ︸
Tr(S>S)

∵ log(1 + x) ≤ x ∀x > −1

≤ 2λmin ln d+Tr(S>S) ∵ s ∈
(
0, 1

2λmin

)
and min for s = 1

2λmin

Using σmin(S) ≤ ‖S‖2 and ‖S‖F ≤ k ‖S‖2 we can bound the last line as
‖S‖22 (k + 2 ln d) in the low-rank setting. However since we consider S to be
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random this is not applicable (also see the remarks in the VC Dimension section).
Therefore

2λmin ln d+Tr(S>S) = σ2
min(S) ln d+ ‖S‖

2
F

≤ ‖S‖2F (1 + 2 ln d)

and taking the square root gives us the final result:

E [‖(X −X )S‖2→∞] ≤ σ ‖S‖F
√
1 + 2 ln d

Bound E
[
‖S‖2F

]
.

Case 1: Self loop.

We first note that ‖S‖2F = n+ number of edges and therefore:

E
[
‖S‖2F

]
≤ n+ n2p

= (1 + o(1))n2p

Therefore

E
[
‖(X −X )S‖22→∞

]
≤ (1 + o(1))n2pσ2(1 + 2 ln d)
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Case 2: Degree normalized.

Note that we here overload the notation d such that we define the degree for
node i as di and similar dmin is the minimum degree.

E
[
‖S‖2F

]
=E

[
‖S‖2F

∣∣∣{dmin > np−
√
4cnp lnn

}]
P
(
dmin > np−

√
4cnp lnn

)
+ E

[
‖S‖2F

∣∣∣{dmin < np−
√

4cnp lnn
}]

P
(
dmin < np−

√
4cnp lnn

)
≤E

[
‖S‖2F

∣∣∣{dmin > np−
√
4cnp lnn

}]
P
(
dmin > np−

√
4cnp lnn

)
+ n2

1

nc︸ ︷︷ ︸
=o(1)

≤
∑
i,j

Aij + I{i = j}
(di + 1)(dj + 1)

≤ 1

dmin + 1

∑
i

∑
jAij + I{i = j}

di + 1︸ ︷︷ ︸
=1

≤ n

nq + 1−
√
4cnp lnn

=(1 + o(1))
1

q

Therefore

E
[
‖(X −X )S‖22→∞

]
≤ (1 + o(1))

σ2(1 + 2 ln d)

q

This concludes the bound of E
[
‖(X −X )S‖22→∞

]
. �

Bound E
[
‖S‖k∞

]
. In general we can note that ‖S‖k∞ = max1≤i≤n

(∑n
j=1 Sij

)k
Case 1: Self loop.

We first define the degree for node i as

di ∼ Bin
(n
2
− 1, p

)
+Bin

(n
2
, q
)
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then ‖S‖∞ = max1≤i≤n

(∑n
j=1 Sij

)
= 1 +maxi di and assume p > lnn

n and let

t =
√
4np lnn

P
(
di − E [di] > t

)
≤ exp

(
− t

2

2

np+ t
3

)
Bernstein inequality

≤ exp

(
−4cnp lnn

4np

)
=

1

n
c

and therefore

P
(
max
i
di ≥ np+

√
4cnp lnn

)
≤ 1

nc−1

P
(
(1 + max

i
di)

k ≥ (1 + np+
√
4cnp lnn)k

)
≤ 1

n
c

and

E
[
(1 + max

i
di)

k
]
≤ (1 + np+

√
4cnp lnn)k +

1

nc−i
nk

= (1 + np+
√

4cnp lnn)k + nk+1−c

For large n and p� (lnn)2

n take c = lnn:

E
[
‖S‖k∞

]
≤ ((1 + o(1))np)

k

Case 2: Degree normalized.

‖S‖∞ = max
i

∑
j

Sij

= max
i

∑
j

Aij√
di + 1

√
dj + 1

≤ max
i

1√
dmin + 1

∑
jAij√
di + 1

= max
i

√
di + 1

dmin + 1

≤
√
dmin+ 1

dmin + 1

Similar to above we can now note that:

P
(
max
i
di ≥ np+

√
4cnp lnn

)
≤ 1

nc

P
(
max
i
di ≤ np+

√
4cnp lnn

)
≤ 1

nc
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and it follows

P

(√
dmax + 1

dmin + 1
≥ np+

√
4cnp lnn+ 1

np−
√
4cnp lnn+ 1

)
≤ 2

nc

For large n and p, q � (lnn)2

n :

E
[
‖S‖k∞

]
≤ E

[(
dmax + 1

dmin + 1

) k
2

]

=

(
(1 + o(1))

p

q

) k
2

This concludes the bound of E
[
‖S‖k∞

]
. �

Bound ‖SX‖2→∞.
Case 1: Self loop.

SX = (1− p)zµ> − p− q
2
yy>zµ>

=

(
(1− p)z −

(
p− q
2
y>z

)
y

)
µ>

and

(SX )ij =

(
(1− p)zi −

(
p− q
2
y>z

)
︸ ︷︷ ︸

,δ

yi

)
µj

Now using this to compute the two-infinity norm:

‖SX‖2→∞ = ‖µ‖∞

√∑
i

((1− p)zi − δyi)2

= ‖µ‖∞

√∑
i

(1− p)2 + δ2 − 2δ(1− p)yizi

= ‖µ‖∞

(
n(1− p)2 + n(y>z)2

(
p− q
2

)2

− 2(y>z)2
p− q
2

(1− p)

)

= (1 + o(1)) ‖µ‖∞ n

(
1 +

(
p− q
2

)2

(y>z)2

)

Case 2: Degree normalized.
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We note that the expected degree is (1 + o(1))np+q2 and therefore similar to
above we obtain

‖SX‖2→∞ = (1 + o(1)) ‖µ‖∞

(
1 +

(
p−q
2

)2
(y>z)2

)
(
p+q
2

) .

This concludes the bound of ‖SX‖2→∞. �
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G Experimental Details

G.1 Data

SBM. For the SBM experiments we follow the description in the main paper:
assume that the node features are sampled latent true classes, given a z =
(z1, . . . , zn) ∈ {±1}n. The node features are sampled from a Gaussian mixture
model (GMM), that is, feature for node-i is sampled as xi ∼ N (ziµ, σ

2I) for
some µ ∈ Rd and σ ∈ (0,∞). We express this in terms of X as

X = X + ε ∈ Rn×d, where X = zµ> and ε = (εij)i∈[n],j∈[d]
i.i.d.∼ N (0, σ2).

We refer to above as X ∼ 2GMM. On the other hand, we assume that graph
has two latent communities, characterised by y ∈ {±1}n. The graph is generated
from a stochastic block model with two classes (2SBM), where edges (i, j) are
added independently with probability p ∈ (0, 1] if yi = yj , and with probability
q < [0, p) if yi 6= yj . In other words, we define the random adjacency A ∼ 2SBM
as a symmetric binary matrix with Aii = 0, and (Aij)i<j indenpendent such
that

Aij ∼ Bernoulli(Aij), where A =
p+ q

2
11> +

p− q
2
yy> − pI.

The choice of two different latent classes z,y ∈ {±1}n allows study of the case
where the graph and feature information of do not align completely.

Therefore for to characterise the model we need to define: p, q, n, z,y,µ, σ
Cora. For the real world experiments we use the cora dataset Rossi et al.

(2015)7. The dataset consists of 2708 machine learning papers and is split into
seven classes: Case_Based, Genetic_Algorithms, Neural_Networks, Probabilistic_Methods,
Reinforcement_Learning, Rule_Learning, Theory. The features are a bag of
words of size 1433.

G.2 Experiments Section 3.2

SBM Setup and Data. We consider the synthetic data to be generated as
defined in (6) and (7). We sample the SBM with the following parameters as
default: n = 500, d = 100, p = 0.2, q = 0.01, Γ = n,m = 100, u = 400. µ
is sampled uniformly. The GNN is by default a one layer model K = 1 with
hidden layer size d1 = 16, ReLu activation, φ(·) = ReLU(·) and squared loss.
Plotted is the error over the displayed change of parameters for epochs8 between
50 and 1000 (over 50 intervals). We plot the results averaged over five random
initialisation.
7 Using the import from https://github.com/tkipf/pygcn/tree/master/data/cora
8 A consideration of different epochs is important as the presented bounds do not take
the optimization explicitly into consideration. As stated previously a future way to
do so could be by analysing the behaviour of the the bounds on the parameters
during optimization.
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Change alignment. We consider the SBM9 setting as defined above while
now varying Γ ∈ (0, n) over 10 steps and for easier readability plot Γ

n . The GNN
is optimized using SGD with learning rate 0.001.

Change graph size. We consider the SBM setting as defined above with
setting again Γ

n = 1 while now varying the graph size n ∈ (200, 2000) over 10
steps while adjusting m

n accordingly. The GNN is optimized using SGD with
learning rate 0.01.

Change number of marked points. We consider the SBM setting as
defined above with Γ

n = 0.7, p = 0.2, q = 0.15 while now varying the number of
observe points such that m

n ∈ (0.01, 0.05) over 10 steps. The GNN is optimized
using SGD with learning rate 0.2.

Plot theoretical bound. Recall that for plotting the theoretical bound we
can only plot the trend of the bound as the absolute value is out of the (0, 1)
range. This problem is inherent to the bound given in El-Yaniv et al. (2009)
that we base our TRC bounds on, as the slack terms can already exceeds 1 and
therefore further research on general TRC generalisation gaps is necessary to
characterise the absolute gap between theory and experiments. More specifically
we scale SBM, change alignment and SBM, change graph size by a factor of 25
and SBM, change number of marked points by a factor of 30. Again as noted in
the main paper we fix the bounds on the on the learnable parameters for plotting
the theoretical bounds. From samples we observe that β, ω ≈ 0.1 and therefore
consider this for the plots. A more detailed analysis of this will be necessary
in future research to investigate how the change of those bounds changes the
generalisation error bound.

Cora Setup and Data. We now consider the Cora dataset with n = 2708 and
m
n = 0.1. The GNN follows the setup of the SBM with the difference that we
now consider a multi-class problem. Therefore a negative log likelihood loss is
considered. In addition we consider the Adam optimizer Kingma et al. (2015)
with learning rate 0.01.

Change alignment. We simulate a change in the feature structure by
adding noise to the feature vector asX+ε where εi· is i.i.d. distributedN (0, σ2

FeatI)
and again observe a similar behaviour to the SBM. We vary σFeat ∈ (0, 0.1) over
10 steps.

Cora, change graph size. To change the graph size we sample 10 sub-
graphs of size n ∈ (1354, 2708).

Change number of marked points. For varying the number of observe
points we consider m

n ∈ (0.05, 0.3) over 10 steps.

9 Remark on change in training and SBM setting: Since we are interested in upper
bounds we observe that under some settings the trends are more clear then in others.
For example for some learning rate the change might be less obvious then for the
reported one.
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G.3 Experiments Section B.2 (Residual connections)

Setup and Data. We consider the same general setup as above (section G.2).
We now change the parameter K. For implementing residual connections we
slightly deviate from (11) by considering the residual connection to be to the
first layer instead of the features directly. This change follows Chen et al. (2020)
where the residual connection was proposed as otherwise the size of the hidden
layer would be fixed to n. For the experiments we consider di = 16 ∀i ∈ [K].

Change depth. For both datasets we now changed the depth for K ∈ [4]
and two different residual connections with α ∈ {0.2, 0.5}.

G.4 Implementation

For the implementation of the GNN we use official code of Kipf et al. (2017)10
as a foundation that is provided under an MIT License.

Experiments are ran on a MacBook Pro (16-inch, 2019), processor 2,3 GHz
8-Core Intel Core i9, memory 32 GB 2667 MHz DDR4.

10 https://github.com/tkipf/pyGNN


