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Abstract

Large Language Models (LLMs), already shown to ace various unstructured text compre-
hension tasks, have also remarkably been shown to tackle table (structured) comprehension
tasks without specific training. Building on earlier studies of LLMs for tabular tasks, we
probe how in-context learning (ICL), model scale, instruction tuning, and domain bias
affect Tabular QA (TQA) robustness by testing LLMs, under diverse augmentations and
perturbations, on diverse domains: Wikipedia-based WTQ, financial TAT-QA, and sci-
entific SCITAB. Although instruction tuning and larger, newer LLMs deliver stronger,
more robust TQA performance, data contamination and reliability issues, especially on
WTQ, remain unresolved. Through an in-depth attention analysis, we reveal a strong
correlation between perturbation-induced shifts in attention dispersion and the drops in
performance, with sensitivity peaking in the model’s middle layers. We highlight the need
for improved interpretable methodologies to develop more reliable LLMs for table compre-
hension. Through an in-depth attention analysis, we reveal a strong correlation between
perturbation-induced shifts in attention dispersion and performance drops, with sensitivity
peaking in the model’s middle layers. Based on these findings, we argue for the development
of structure-aware self-attention mechanisms and domain-adaptive processing techniques to
improve the transparency, generalization, and real-world reliability of LLMs on tabular data.

1 Introduction

LLMs, despite being primarily trained on unstructured text, have demonstrated notable capabilities in
structured data tasks, such as Tabular Question Answering (TQA). TQA requires models to interpret data
presented in tables, demanding strong structural reasoning. TQA specifically challenges models to discern
relationships and hierarchies implicit within tabular data, making it an ideal benchmark for structural
reasoning capabilities. Assessing how LLMs navigate structured comprehension challenges can provide
valuable insights into their robustness and reasoning capabilities (Borisov et al., 2023; Fang et al., 2024).

Recent studies emphasize the importance of robustness evaluations in understanding LLM behavior on
structured tasks (Zhou et al., 2024). Specifically, perturbations in tabular structure and content significantly
impact model performance, highlighting vulnerabilities that limit the practical reliability of models (Wang
et al., 2022; Zhao et al., 2023). Furthermore, Liu et al. (2023) argues that LLMs inherently struggle with
structural manipulations, advocating for an integrated approach combining symbolic reasoning to enhance
model robustness.

Although these studies identify vulnerabilities and suggest potential improvements, there remains limited
understanding of how internal model mechanisms respond to perturbations in structured data. Attention
mechanisms form the core of transformer-based LLMs, governing how models distribute focus across input
elements during processing (Clark et al., 2019). Prior work analyzing attention patterns in natural language
tasks revealed that specific layers and attention heads critically influence model performance and robustness
(Zhao et al., 2024; Barbero et al., 2025). These attention heads often serve specialized functions such as
syntactic parsing or semantic alignment, highlighting the complexity of internal transformer mechanisms.
However, detailed attention-level analyses for structured tasks, such as TQA, remain scarce.
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Figure 1: (a) An example of the different possible table augmentation methods.(b) Scatter plot between
change in attention entropy and EM score across perturbation types for Llama-8B-Instruct on WTQ.

To address this gap, we systematically investigate LLM robustness for TQA tasks across multiple dimensions,
including in-context learning, model scale, instruction tuning, domain biases, value perturbations, and model
size. Our experiments evaluate different perturbation types, highlighting how value-based alterations influence
reasoning fidelity and faithfulness (Table 1). We also compare performance across diverse datasets to assess
domain biases and generalizability.

Extending beyond surface-level performance metrics, we quantify changes in attention entropy across
different attention heads and layers under various perturbations, analyzing how these changes correlate
with performance degradation. Attention entropy effectively quantifies the dispersion in a model’s attention
distribution, providing a nuanced metric for understanding internal decision-making processes. With this,
we aim to determine which attention heads are most sensitive to perturbations, leading to more substantial
changes, and thus more distinct performance degradation.

Our study leverages diverse datasets: Wikipedia-based WTQ (Pasupat & Liang, 2015), financial report-based
TAT-QA (Zhu et al., 2021), and scientific claims-based SCITAB (Lu et al., 2023). Each of these datasets
provides a unique context and complexity, allowing us to assess the generalizability and domain-specific
sensitivities of LLMs robustly. Through these diverse domains, our findings give insights into the sensitivity
and reliability of LLMs on TQA, highlighting the broader challenge of understanding how LLMs reason over
structured

2 Various Perturbation Categories

Each perturbation is designed to manipulate the table structure or content while preserving the inherent
relational meaning of the table, thereby measuring robustness to table comprehension, as illustrated in Fig. 1.

2.1 Structural Perturbation (SP):

SP involves rearranging the columns and rows of the table to generate new examples. These perturbations
simulate realistic scenarios where data presentation varies significantly, testing the model’s ability to com-
prehend tabular structure. This ensures flexibility in understanding tabular data without distorting the
semantics of the table. SP involves column swap, row swap, transpose, transpose column swap, and transpose
row swap. These provide diverse perspectives on table comprehension, allowing for a thorough evaluation of
the LLMs’ ability to handle structural variations.
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2.2 Value Perturbation (ValP):

ValP focuses on modifying the actual data values within tables, ensuring that the model accurately reflects
the data. Value perturbations specifically challenge the semantic fidelity of the model by altering critical
data points that directly affect the answer. We explore these types of ValP:

Data Type Preserving Perturbation (DVP): DVP involves altering the answer to the question
and, respectively, the cell values within the table while maintaining their original data types. For
instance, in Fig 9, given a question, “What was the first venue for the Asian games?”, we
modify the correct answer, “Bangkok, Thailand", to “Beijing”. These counterfactual entities test
the faithfulness of the LLM to the tabular data. 1. We utilize an automated counterfactual answer
generation method that prompts GPT-3.5, ensuring the type correctness of the altered answer. Using
a large language model, such fake answer generation makes it possible to generate fake answers that
adhere to the data type and make the table semantically correct. Examples of prompts and details
of DVP dataset generation are present in the Appendix A and B.

Random Value Perturbation (RVP): RVP(an example is shown in Fig. 10) relaxes DVP where
instead of a counterfactual entity, we have a fixed string, e.g., “r@nD0m v@1u3”. Performance on this
perturbation correlates with whether the injection of random data into the table affects the accuracy.
The comparison of random and data type-preserving perturbation also highlights whether models are
influenced by the injection of abstract values for table comprehension.

Null Value Perturbation (NVP): NVP removes the correct answer from the table completely.
Evaluating the performance on NVP highlights the influence of Wikipedia content on solving the
WTQ table question-answering task. LLMs that struggle more with the null value perturbation are
likely to show consistent performance on TQA across different tabular datasets.

No Table (NT): To understand the extent of bias in WTQ, we evaluate LLMs on the no-table
baseline. This approach further emphasizes the reliance of LLMs on Wikipedia content. By analyzing
the performance of LLMs in the absence of the table, we can better understand the extent of
dependence on the particular tabular data. This method helps to reveal the intrinsic capabilities of
LLMs for TQA and their generalizability across different tabular datasets.

Collectively, these structural and value-based perturbations enable a comprehensive analysis of the model’s
ability to reason over table structure and content. By introducing such constrained and adversarial transfor-
mations, we can more precisely isolate the underlying factors that drive the performance in TQA.

3 Evaluation Metrics

Given the definition of different perturbations, we employ these three metrics to evaluate model performance
under various perturbations in TQA tasks.

Exact Match Accuracy (EM): This metric calculates the proportion of instances for which the
predicted answer exactly matches the ground truth answer. Formally, if N is the total number of
instances, and correct(i) is an indicator function that is 1 if the prediction for instance i is correct
and 0 otherwise, then:

EM =
∑N

i=1 correct(i)
N

.

Exact Match Difference (Emd)(Zhao et al., 2023; Zhou et al., 2024): Let EMorig be the EM on
the original (unperturbed) dataset, and EMperturbed be the EM after applying a perturbation. The
Emd quantifies the change in EM due to perturbations:

Emd = EMperturbed − EMorig.

1We filter out the subset of data points where the table does not contain the answer, e.g., “How many people stayed at least
3 years in office?”
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Negative values indicate performance degradation, while values close to zero imply robustness against
perturbations.

Variation Percentage (VP)(Yang et al., 2022; Zhou et al., 2024): This metric measures the extent
to which predictions change after applying perturbations. Given that, C2W is the count of correct
before perturbation and wrong after, and W2C is the count of wrong before perturbation and correct
after. Given N as the total number of instances, the variation percentage is:

VP = C2W + W2C

N
.

A higher VP indicates greater sensitivity of predictions to perturbations, while a lower VP signifies
more stable predictions.

In addition to performance-based metrics, we also examine internal model behavior through the analysis of
attention patterns.

Attention Entropy: We analyze attention entropy to capture the dispersion of attention within
different attention heads. Entropy serves as a measure for structural awareness, where high entropy
indicates more evenly distributed attention, while low entropy reflects concentrated focus on a few
tokens.

Hi = −
∑

j

Aij log(Aij)

where Aij is the attention weight to the j-th token.

4 Evaluation Performance

Operation WTQ Dataset TAT-QA Dataset SCITAB Dataset

Large Model Small Model Large Model Small Model Large Model Small Model
EM VP Emd EM VP Emd EM VP Emd EM VP Emd EM VP Emd EM VP Emd

Original 0.39 - - 0.29 - - 0.36 - - 0.23 - - 0.117 - - 0.138 - -

Column 0.38 0.15 -0.01 0.28 0.15 -0.01 0.33 0.09 -0.03 0.19 0.10 -0.04 0.084 0.089 -0.032 0.137 0.093 -0.002
Row 0.32 0.18 -0.07 0.24 0.19 -0.05 0.32 0.11 -0.04 0.20 0.10 -0.03 0.098 0.083 -0.019 0.138 0.092 0.001
Transpose 0.37 0.17 -0.03 0.24 0.19 -0.05 0.34 0.09 -0.02 0.21 0.10 -0.02 0.094 0.087 -0.023 0.140 0.096 0.003
Transpose Row 0.35 0.19 -0.04 0.23 0.19 -0.06 0.29 0.13 -0.07 0.17 0.12 -0.06 0.103 0.088 -0.014 0.139 0.096 0.001
Transpose Col 0.27 0.23 -0.13 0.18 0.21 -0.11 0.31 0.11 -0.05 0.19 0.11 -0.04 0.099 0.087 -0.017 0.135 0.095 -0.002

NT 0.06 0.39 -0.33 0.02 0.29 -0.28 0.01 0.35 -0.34 0.00 0.23 -0.23 0.000 0.145 -0.145 0.000 0.138 -0.138
DVP 0.24 0.42 -0.14 0.17 0.36 -0.11 - - - - - - - - - - - -
RVP 0.17 0.42 -0.21 0.13 0.35 -0.15 - - - - - - - - - - - -
NVP 0.07 0.39 -0.31 0.03 0.29 -0.26 - - - - - - - - - - - -

Table 1: The average EM, VP, and Emd of small and large LLMs on all perturbation operations. Large and
Small LLMs are defined on Table 3.

4.1 Effects of ICL examples on TQA

Does instruction prompting assist LLM for better table comprehension for question-answering tasks? The heat
maps in Figure 2 and Table 1 illustrate the performance of various LLMs, demonstrating that models fine-tuned
for instructions or conversation exhibit improved performance. For instance, the Llama3-70B-Instruct model
significantly outperforms its original version across all table transformations, indicating that instruction-based
fine-tuning enhances the model’s ability to handle complex reasoning tasks. Similarly, conversation-focused
fine-tuning also yields better scores, albeit with a less pronounced improvement compared to instruction-
focused tuning. This suggests that fine-tuning models on specific tasks like following instructions or conversing
effectively enhances their capability to interpret and manipulate tabular data, making such approaches
valuable for improving performance in structured data tasks. Table 1 also distinctly indicates that LLMs
that have undergone instruction or conversation-based fine-tuning outperform their base counterparts in
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Figure 2: The average EM scores of the original models and instruction models(denoted by I) across various
table augmentation techniques for WTQ, TAT-QA and SCITAB dataset with three fewshot examples.
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Figure 3: Comparison of average EM scores across models under varying few-shot settings (0-shot, 1-shot,
2-shot, and 3-shot). Here, I denotes the Instruction variant of the model.

TQA tasks for SCITAB dataset. Although SCITAB is inherently a classification task presented in a TQA
format, using few-shot prompting provides valuable context, ultimately leading to more accurate and relevant
responses.

4.2 Effects of the Model Type on TQA

Do newer models have better TQA abilities? Figure 4 shows that Llama3 models generally outperform the
Mistral models across different configurations, indicating that newer architectures like Llama3 are more
effective at table reasoning tasks. The 70B versions of these models generally perform better than their 7B
variants, indicating that larger model sizes enhance reasoning capabilities. Overall, the advancements in
model architecture and increased model size significantly contribute to better TQA abilities. Larger models
(e.g., Llama3-70B, Mixtral-8x7B) generally show higher performance than smaller models (e.g., Llama3-8B,
Mistral-7B), as seen in both the bar plot (Figure4) and heat maps (Figure2). For instance, Llama3-70B and
Mixtral-8x7B have higher EM scores than Llama3-8B and Mistral-7B. This suggests that model size has a
significant impact on TQA performance.

How do performances vary with value perturbations? 2 Table 1 shows the performance of various LLMs, as
defined on Table 3, when subjected to different value-based perturbation on WTQ using different evaluation
metrics: Exact Match(EM), Variation percentage (VP), and Exact Match Difference (EMD). We observe
that LLMs experience a decline in EM scores across various operations compared to the original setup.
The performance with RVP results in a significant performance drop, more so than DVP. This suggests a

2More details are in Appendices E
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Figure 4: The average EM for different models across the WTQ dataset with 3-fewshot settings. The models
are categorized by their types (Llama3, Mistral) and separated by their sizes (7B, 70B, etc.)

sharp decrease in the model’s ability to process and comprehend tables when the insertion of arbitrary, non-
contextual values compromises the table comprehension ability of LLMs. Conversely, the DVP result indicates
that while the model struggles with content that deviates from the original data structure, maintaining
data type consistency helps. VP increases significantly across all perturbations, indicating considerable
changes in predictions due to the perturbations. EMD consistently shows negative values, with the most
substantial performance drops occurring in the NT and NVP scenarios. The observed discrepancies in
performance, particularly pronounced in DVP and RVP, underline a fundamental challenge: these models do
not consistently apply their tabular comprehension capabilities when faced with perturbed tables.

4.3 Effects of Domain Specificity on TQA

How biased are LLMs towards Wiki-tables? Table 1 shows that when no table is provided, LLMs show
a notable performance decline, emphasizing their dependence on tabular data to generate correct answers.
Interestingly, the models still manage to answer about ≈5% of queries correctly, indicating a potential bias in
Wiki-data. In the NVP scenario, where table values relevant to queries are nullified, there is a significant
drop in performance, yet less severe compared to the complete absence of a table. This suggests that the
models are biased by the contextual structured format cue even in the absence of relevant data.

How do out-of-box LLMs perform on specialized domains: TAT-QA and SCITAB? As shown in Table 1,
LLMs exhibit moderate performance across various table augmentations on the TAT-QA dataset and
SCITAB dataset. For TAT-QA, large models consistently outperform smaller models, underscoring their
superior TQA abilities, but for SCITAB, the small models have better performance in comparison to larger
models. The overall inconsistent scores still denote significant challenges inherent in niche domains, but
instruction-tuned models are better here. From Table 1, the comparison among WTQ, TAT-QA, and
SCITAB datasets reveals an interesting accuracy-robustness tradeoff : while models with higher EM on
WTQ suffer larger EMD and higher VP, indicating higher sensitivity to perturbations, their relatively smaller
EMD and lower VP on both TAT-QA and SCITAB reflect greater robustness, despite SCITAB ’s overall
lower baseline EM. Also notable is the sharp contrast in the NT performance, where on TAT-QA and
SCITAB datasets, models have approximately 0% accuracy, a contrast from the WTQ performance. This
suggests that performance on WTQ might be inflated due to biases favoring familiarity with Wikipedia,
compared to niche domains like TAT-QA and SCITAB. This highlights the need for better benchmark
design for tabular understanding. We also observe trends consistent with prior work: performance improves
with few-shot prompting, instruction-tuned models generally outperform their base counterparts, and larger
models tend to exhibit stronger TQA (Wei et al., 2022; Fang et al., 2024).
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5 Attention Analysis

Understanding how structural perturbations in tabular inputs affect a model is critical for assessing robustness
and diagnosing potential failure modes in TQA. As attention mechanisms regulate how language models
allocate focus across table elements, examining their sensitivity to perturbations provides insights into
representational stability. Here, we analyze this sensitivity by quantifying how perturbation-induced changes
in attention dispersion correlate with performance degradation.

5.1 Effect of Perturbations on Attention Maps

We examine how varying severities of structural perturbations influence attention weights using the
Llama3-8B-Instruct model on the WTQ dataset. For each attention head across all layers, we mea-
sure the change in attention entropy between the original and perturbed table inputs. In parallel, we
compute the corresponding change in Exact Match (EM) scores, capturing the performance impact of each
perturbation.

Attention entropy captures the distribution uniformity of attention across tokens; higher entropy indicates
diffuse attention, while lower entropy signifies focused attention. Thus, significant entropy changes reflect
considerable shifts in the model’s internal attentional focus due to perturbations.

Our analysis (Figure 1) reveals a significant positive correlation (Spearman ρ = 0.90, p = 0.037) between
changes in attention entropy and EM degradation across perturbation types. This shows that more severe
perturbations significantly disrupt the model’s attention distribution, consequently diminishing its ability for
TQA.

These findings highlight the sensitivity of attention mechanisms to structural integrity within tabular inputs.
Perturbations affecting relational semantics induce greater attention dispersion and misalignment, directly
impairing model accuracy. Thus, attention dispersion is a crucial indicator linking input perturbations with
performance.

5.2 Analysis of Individual Attention Head Sensitivity to Perturbations

a) b) c)

WTQ TAT-QA SCITAB

Figure 5: Heatmap showing Spearman correlation between changes in attention entropy and EM difference
across all attention heads and layers in the Llama3-8B-Instruct model on the a) WTQ, b) TAT-QA, and
c) SCITAB dataset

While averaging attention metrics across heads provides a general understanding of model behavior, prior
research emphasizes that individual attention heads and specific layers, particularly the middle layers,
significantly contribute to encoding task-relevant information (Barbero et al., 2025; Zhao et al., 2024). To
investigate this at a finer granularity, we perform a layer-wise analysis of how perturbation-induced changes
in attention entropy correlate with EM score degradation.

Specifically, we use the Llama3-8B-Instruct model on the WTQ dataset to compute the Spearman correlation
between entropy changes (original vs. perturbed inputs) and corresponding EM differences for each attention
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head across all layers. Figure 5(a) demonstrates that correlations peak predominantly in the middle layers
and remain consistently elevated through these central layers. This indicates that perturbation-induced shifts
in attention distribution within middle layers are strongly predictive of performance degradation. The sharp
correlation peak in WTQ suggests that the model relies heavily on mid-layer representations to align tabular
structures with natural language queries, particularly when interpreting entity references and table schema.
Distinct, though narrower, spikes at the input layer (0) and the output layers (30–31) further reveal that
both the earliest token-encoding stage and the final representational consolidation phase are also vulnerable
to structural perturbations.

Figure 5(b) and 5(c) extend the analysis to TAT-QA and SCITAB, respectively. The results reveal distinct
patterns tied to domain characteristics. For TAT-QA, correlations are elevated not only in the middle layers
but also extend into the upper layers of the model. In contrast, SCITAB exhibits a more sharply localized
pattern, with peak correlations tightly concentrated within the middle layers. Although we observe a high
correlation in these middle layers, the contrastive negative correlations are primarily due to the significantly
poor EM performance on the SCITAB dataset. These findings reinforce the centrality of middle-layer
attention mechanisms in tabular reasoning tasks, while also highlighting domain-specific variations in the
vertical distribution of sensitivity. Additional experiments are included within the Appendix F for other
models(Llama3-8B, Mistral-7B, and Mistral-7B-Instruct).

5.3 Correlation within Individual Attention

a) b) c)

Figure 6: (a) Heatmap showing Spearman correlation between changes in attention entropy and EM difference
across all attention heads and layers in the Llama-8B-Instruct model on the WTQ dataset, unsorted to
depict actual correlation over each attention head. (b-c) Scatter plot showing the correlation between changes
in attention entropy and EM scores across five structural perturbations for the WTQ dataset. (b) The
plot highlights a strong positive correlation for Layer 0, Head 10, indicating high sensitivity of this head to
structural perturbations. (c) In contrast, Layer 19, Head 23 shows the least correlation.

We find that structural perturbations in tabular inputs affect the internal attention dynamics of LLMs,
specifically the Llama3-8B-Instruct model on WTQ, and that these dynamics are differentially expressed
across the attention heads and layers. Figure 6(a) presents an unsorted Spearman correlation heatmap between
per-head changes in attention entropy and the corresponding EM score differences, revealing substantial
heterogeneity across all 32 layers and 32 heads. The heatmap captures a wide range of correlation strengths,
from near-zero to values approaching ρ = 0.9, illustrating that not all attention mechanisms contribute
equally to robustness. In particular, the concentration of high-correlation values in lower layers suggests that
early-stage attention heads may play a foundational role in establishing reliable structural interpretations.

To unpack this variability, Figures 6(b) and 6(c) zoom in on two extreme heads identified from the heatmap.
Layer 0, Head 10 (Figure 6(b)) exhibits a strong positive relationship: higher shifts in attention entropy
due to structural perturbations reliably predict larger drops in EM scores. This implies that this head is
critical for encoding spatial consistency or row-column alignment in tabular inputs, and disruptions to this
alignment directly degrade model accuracy. The correlation is visually evident as a tight clustering of points
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around a positively sloped trend line across all five structural perturbation types (Row Swap, Column Swap,
Transpose, Transpose Row Swap, and Transpose Column Swap).

In contrast, Layer 19, Head 23 (Figure 6(c)) demonstrates minimal correlation between entropy change
and EM variation. This indicates a form of functional redundancy or robustness in this head’s role; it
either performs a task unrelated to structural parsing or maintains stable attention regardless of structural
distortions. This wide range in sensitivity reinforces the notion that attention heads are functionally diverse
and that only a subset contributes significantly to robustness under tabular perturbation.

Altogether, these findings suggest the possibility of identifying and selectively reinforcing robustness-critical
attention heads through architectural tuning or fine-tuning objectives. By mapping correlation strengths
across the entire model, we can isolate those mechanisms most affected by structural shifts and potentially
develop strategies, such as attention regularization or selective re-weighting, that mitigate their susceptibility
to disruption. This also opens avenues for pruning or interpretability studies focused on attention heads with
minimal impact, offering insights into model compression or simplification without significant performance
loss.

5.4 Cross-Model and Dataset Analysis of Perturbation Sensitivity

Llama3-8B Llama3-8B
Instruct Mistral-7B Mistral-7B

Instruct

Figure 7: Spearman correlation between perturbation-induced attention-entropy change and EM degradation
across 18 model–dataset pairs.

To evaluate the generality of our findings beyond the Llama3-8B-Instruct model on WTQ, we extend our
correlation analysis between attention entropy change and EM performance degradation across a diverse set
of model-dataset combinations. These include all the small models defined in 3, for which each models are
tested on the WTQ, TAT-QA, and SCITAB datasets. For each configuration, we compute the Spearman
correlation between the perturbation-induced changes in attention entropy and the corresponding drop in
EM scores.

As shown in Figure 7, the positive correlation trend persists across nearly all settings. In particular,
Instruct and chat variants of the models consistently show the strongest correlation values across datasets,
reinforcing their heightened sensitivity to attention dispersion caused by structural perturbations. Notably,
even non-instruct variants like Mistral-7B exhibit moderate to strong correlations, although the magnitude
tends to be lower and more variable. We also find that SCITAB dataset results in most variation in the
correlation, mainly due to the performance of the model, with the original table itself having a significantly
low performance.

9



Under review as submission to TMLR

These consistent patterns across models and datasets confirm the robustness of our main claim: the severity
of perturbation that induces greater shifts in attention entropy is reliably associated with a decline in model
performance. This suggests that the change in attention entropy serves as a broadly applicable proxy for
evaluating robustness in table-based QA models.

Moreover, this analysis demonstrates that the observed dynamics are not specific to any single dataset
or model architecture. Instead, they reflect a more general representational vulnerability within current
attention-based architectures when handling perturbed structured inputs.

6 Conclusion

Our study provides a comprehensive and robust analysis of LLMs under various perturbations for TQA.
While larger, instruction-tuned models show improved performance, they remain highly sensitive to structural
and value-based disruption. These disruptions notably manifest as perturbations such as random row swaps,
column swaps, and transpositions, highlighting vulnerabilities in their structural reasoning capabilities. We
also uncover domain biases, where models perform well on WTQ without tables but struggle on more
specialized datasets, such as TAT-QA and SCITAB. Specifically, the performance on WTQ even in the
absence of tables indicates reliance on memorized textual patterns from pretraining, rather than genuine
tabular reasoning. In contrast, specialized domains such as financial and scientific tables pose more significant
challenges due to their complexity and unique domain specificity.

We demonstrate that shifts in attention entropy, particularly in middle layers, are correlated with performance
degradation. This observation was supported by detailed attention-level analyses, which revealed that
attention heads in middle layers are particularly critical in encoding structural information, and their
instability directly contributes to errors in comprehension. Furthermore, layer-wise attention analysis reveals
that certain attention heads exhibit greater sensitivity, suggesting that targeted improvements in these areas
could enhance robustness.

Our findings underline the critical need for improving both the interpretability and robustness of LLMs in TQA.
Building on these insights, future research should focus on developing fine-grained attention-interpretability
methods and domain-adaptive processing strategies to enhance transparency, cross-domain generalization,
and reliability in practical applications.

7 Limitation

Although we provide extensive evaluation of LLMs on WTQ, TAT-QA, and SCITAB datasets, it is
possible to include a broader range of datasets for a more comprehensive comparison that would highlight
the generalizability of our method for both domain-specific datasets and Wikipedia-based datasets. While
we anticipate that similar performance could be achieved with other tasks, such as table summarization,
future work should include extensive analysis across various tasks and datasets to validate the assumption.
Moreover, our study did not involve any structurally aware or fine-tuned models for tabular datasets. It is
plausible that fine-tuning and structurally enhanced models could significantly impact the performance of
different models. Additionally, our evaluation relied on exact match accuracy for assessing the text generation
model’s performance. This metric, while useful, limits the scope of evaluation for the question answering task.
Future studies should employ more nuanced evaluation metrics to better assess the robustness of the models
in TQA tasks. Moreover, we only conduct a case study of attention analysis with small models because of
computation cost.
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A Example Prompt

Example of the prompts:

Based on the information shown in the Table, answer the following Test 
Question. 

Ensure the final answer format is only 'Final Answer: AnswerName1, 
AnswerName2...' form, no other form. 
Test: 

Table 
| Year | Competition         | Venue                  | Position | Notes  | 
| 1996 | Olympic Games       | Atlanta, United States | 36th (q) | 5.55 m | 
| 1998 | Asian Games         | Bangkok, Thailand      | 8th      | 6.07 m | 
| 1999 | World Championships | Seville, Spain         | 23rd (q) | 6.40 m | 
| 2000 | Olympic Games       | Sydney, Australia      | 14th (q) | 6.57 m | 
| 2001 | World Championships | Edmonton, Canada       | 13th (q) | 6.46 m | 
| 2002 | Asian Championships | Colombo, Sri Lanka     | 1st      | 6.61 m | 
| 2002 | Asian Games         | Busan, South Korea     | 3rd      | 6.30 m | 
| 2003 | World Championships | Paris, France          | 23rd (q) | 6.13 m | 
| 2003 | Asian Championships | Manila, Philippines    | 6th      | 6.23 m | 
| 2004 | Olympic Games       | Athens, Greece         | 11th     | 6.53 m | 

Question: What was the first venue for the Asian Games? 

Final Answer: Bangkok, Thailand

Figure 8: Example of a prompt with answer for WTQ dataset without Few Shot Prompt

B Generating Data Type Preserving Perturbation Dataset

We utilize ChatGPT-3.5 to generate type-preserving counterfactual answers using the prompt illustrated
in Fig. 12. The prompt is designed to ensure that any generated answer aligns with the data type of the
original answer while deliberately introducing a perturbation. For instance, given a question like "What was
the first venue for the Asian games?" with the correct answer "Bangkok, Thailand," the model is prompted to
output a different but type-consistent response, such as "Beijing." Similarly, for numerical data, a value like
"42" might be replaced with another plausible number, such as "50," ensuring that the altered answer retains
the original datatype constraints. This is achieved by explicitly defining the model’s role as a generator of
"fake" answers that preserve the data type of the original value. To ensure the validity of value perturbations,
we select only tables that contain the exact answer to the given question. These constraints guarantee that
data type preserving perturbations are applied exclusively to table-question-answer triples where the table
explicitly contains the correct answer required to solve the question.
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Based on the information shown in the Table, answer the following Test 
Question. 

Ensure the final answer format is only 'Final Answer: AnswerName1, 
AnswerName2...' form, no other form. 
Test: 

Table 
| Year | Competition         | Venue                  | Position | Notes  | 
| 1996 | Olympic Games       | Atlanta, United States | 36th (q) | 5.55 m | 
| 1998 | Asian Games         | Beijing                | 8th      | 6.07 m | 
| 1999 | World Championships | Seville, Spain         | 23rd (q) | 6.40 m | 
| 2000 | Olympic Games       | Sydney, Australia      | 14th (q) | 6.57 m | 
| 2001 | World Championships | Edmonton, Canada       | 13th (q) | 6.46 m | 
| 2002 | Asian Championships | Colombo, Sri Lanka     | 1st      | 6.61 m | 
| 2002 | Asian Games         | Busan, South Korea     | 3rd      | 6.30 m | 
| 2003 | World Championships | Paris, France          | 23rd (q) | 6.13 m | 
| 2003 | Asian Championships | Manila, Philippines    | 6th      | 6.23 m | 
| 2004 | Olympic Games       | Athens, Greece         | 11th     | 6.53 m | 

Question: What was the first venue for the Asian Games? 

Final Answer: Beijing

Figure 9: Example of a prompt with answer for WTQ dataset for Data Type Preserving Perturbation. In
comparison to Fig. 8, we replace the correct answer(Bangkok, Thailand) with a fake answer(Beijing).

Based on the information shown in the Table, answer the following Test 
Question. 

Ensure the final answer format is only 'Final Answer: AnswerName1, 
AnswerName2...' form, no other form. 
Test: 

Table 
| Year | Competition         | Venue                  | Position | Notes  | 
| 1996 | Olympic Games       | Atlanta, United States | 36th (q) | 5.55 m | 
| 1998 | Asian Games         | r@nD0m v@1u3           | 8th      | 6.07 m | 
| 1999 | World Championships | Seville, Spain         | 23rd (q) | 6.40 m | 
| 2000 | Olympic Games       | Sydney, Australia      | 14th (q) | 6.57 m | 
| 2001 | World Championships | Edmonton, Canada       | 13th (q) | 6.46 m | 
| 2002 | Asian Championships | Colombo, Sri Lanka     | 1st      | 6.61 m | 
| 2002 | Asian Games         | Busan, South Korea     | 3rd      | 6.30 m | 
| 2003 | World Championships | Paris, France          | 23rd (q) | 6.13 m | 
| 2003 | Asian Championships | Manila, Philippines    | 6th      | 6.23 m | 
| 2004 | Olympic Games       | Athens, Greece         | 11th     | 6.53 m | 

Question: What was the first venue for the Asian Games? 

Final Answer: r@nD0m v@1u3

Figure 10: Example of a prompt with answer for WTQ dataset for Random Value Perturbation. Here, we
replace the correct answer(Bangkok, Thailand) with an abstract random value (r@nD0m v@1u3).
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Based on the information shown in the Table, answer the following Test 
Question. 

Ensure the final answer format is only 'Final Answer: AnswerName1, 
AnswerName2...' form, no other form. 
Test: 

Table 
| Year | Competition         | Venue                  | Position | Notes  | 
| 1996 | Olympic Games       | Atlanta, United States | 36th (q) | 5.55 m | 
| 1998 | Asian Games         |                        | 8th      | 6.07 m | 
| 1999 | World Championships | Seville, Spain         | 23rd (q) | 6.40 m | 
| 2000 | Olympic Games       | Sydney, Australia      | 14th (q) | 6.57 m | 
| 2001 | World Championships | Edmonton, Canada       | 13th (q) | 6.46 m | 
| 2002 | Asian Championships | Colombo, Sri Lanka     | 1st      | 6.61 m | 
| 2002 | Asian Games         | Busan, South Korea     | 3rd      | 6.30 m | 
| 2003 | World Championships | Paris, France          | 23rd (q) | 6.13 m | 
| 2003 | Asian Championships | Manila, Philippines    | 6th      | 6.23 m | 
| 2004 | Olympic Games       | Athens, Greece         | 11th     | 6.53 m | 

Question: What was the first venue for the Asian Games? 

Final Answer: Bangkok, Thailand

Figure 11: Example of a prompt with answer for WTQ dataset for Random Value Perturbation. We remove
the correct answer(Bangkok, Thailand).

Role [System]:  
You are a fake answer generator that outputs 
fake answer to a given question. You will only 
provide a one word answer but match the 
datatype.   

Role [User]: 
Provide a fake answer by matching the datatype, 
if it is a number provide a similar number, if 
it is a location provide a fake location, and 
if it a word then provide a different word. 
Given the Question: {Question} 
Provide a one word incorrect answer: 

Figure 12: Prompt designed for generating one-word, datatype-matching fake answers to questions from the
WTQ dataset.
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C Evaluation Dataset Size

Operation Number of Pairs
WTQ dataset

Row Swap 204
Column Swap 204
Transpose 204
Transpose Row Swap 204
Transpose Column Swap 204
Data Type Preserving 141
Random Value 141
Null Value 141
No Table 204

TAT-QA dataset
Row Swap 1668
Column Swap 1668
Transpose 1668
Transpose Row Swap 1668
Transpose Column Swap 1668
No Table 1668

SCITAB dataset
Row Swap 1225
Column Swap 1225
Transpose 1225
Transpose Row Swap 1225
Transpose Column Swap 1225
No Table 1225

Table 2: Size of the Evaluation datasize

We select three different datasets for comparison, WTQ, TAT-
QA, and SCITAB datasets, with different numbers of evalu-
ation datasets as described in Table 2. Each dataset provides
distinct characteristics, WTQ is composed of Wikipedia tables,
TAT-QA centers on financial reports, and SCITAB focuses
on scientific claims, which together enable a comprehensive and
robust assessment. For fair comparison, we limit the number of
cell elements (< 150) within the table for both datasets. This
constraint ensures that models are not disproportionately af-
fected by excessively large tables, which could skew performance
due to context window limitations. Moreover, keeping table
size bounded allows for more consistent measurement of the
effects of perturbations across datasets.

Similarly, for Value Perturbation, some queries relate to the
overall structure of the table. Hence, we filter only those ta-
bles that contain the answer value for the given query. This
filtering ensures semantic alignment between the question and
the modified table, avoiding misleading evaluations where no
correct answer exists in the perturbed version. In the case of
the WTQ dataset, for instance, not all table-question pairs
are amenable to value alterations, particularly when the table
structure is insufficiently informative or lacks direct answer
candidates. Altogether, this preprocessing pipeline yields a cu-
rated benchmark that is well-suited for analyzing perturbation
sensitivity while controlling for confounding factors related to
table size and answerability.

D Models

Model Size Date Released
Small Model(Less than 10B parameter)

Llama-2-7b-hf 6.74B July 2023
Llama-2-7b-chat-hf 6.74B July 2023
Mistral-7B-v0.1 7.24B Sept 2023
Mistral-7B-Instruct-v0.1 7.24B Sept 2023
Meta-Llama-3-8B 8.03B April 2024
Meta-Llama-3-8B-Instruct 8.03B April 2024

Large Model(Larger than 40B parameter)
Llama-2-70b-hf 69B July 2023
Llama-2-70b-chat-hf 69B July 2023
Mixtral-8x7B-v0.1 46.7B Dec 2023
Mixtral-8x7B-Instruct-v0.1 46.7B Dec 2023
Meta-Llama-3-70B 70.6B April 2024
Meta-Llama-3-70B-Instruct 70.6B April 2024

Table 3: All the models with their parameter
size and their date released. Large Models
are defined as models with parameters larger
than 40 billion parameters, and Small Mod-
els are models with parameters smaller than
10 billion parameters.

We selected recent open-source models that have been exten-
sively studied and analyzed. Table 3 lists all the models we
considered with their parameter size and their date of release.
We include both base and instruction-tuned variants, allowing
us to explore not only the effect of scale but also the impact
of task specialization on tabular reasoning. The models span
three major families: Llama-2, Llama-3, and Mistral, which
together represent some of the most widely adopted transformer
architectures in the open-source ecosystem. The inclusion of
instruction-tuned variants is particularly important, as these
models are optimized for following natural language instructions.
This ability has been shown to influence performance on tasks
that require a structured understanding significantly.

Moreover, by categorizing the models into ‘small’ and ‘large’
based on parameter count, we aim to systematically assess
how model scale interacts with robustness and accuracy under
various perturbation regimes. Recent models, such as Llama-3
and Mistral, demonstrate architectural innovations, including
improved token representations and mixture-of-experts routing,
which provide a richer set of inductive biases for our evaluation.
Such a comprehensive suite enables a detailed comparison of robustness across architecture, scale, and
fine-tuning strategies, thereby supporting more generalizable insights into LLM behavior on TQA tasks.
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E Performance over Table Complexity
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Figure 13: The average EM score for the different structural perturbations over the different sizes of tables
on WTQ, TAT-QA, and SCITAB datasets

Figure 13 presents average model performance across varying table sizes for three tabular question-answering
datasets—WTQ, TAT-QA, and SCITAB—under several table structure perturbations. Each plot compares
the original condition with different table augmentation operations, such as column swapping, row swapping,
and transpose-based modifications.

For WTQ, performance is low overall and highly variable across increasing table sizes, with no single condition
consistently outperforming others. In contrast, TAT-QA shows a generally higher and more stable baseline,
though still affected by growing table size and perturbations; performance tends to decline as tables grow
larger, suggesting sensitivity to complexity. SCITAB results are somewhat mixed, with fluctuations at
different size intervals, but the performance remains closer among the different conditions.

Across all three datasets, these results highlight that large language models, though capable, display uneven
robustness to structural manipulations of tables. Although instruction tuning and larger model scales
improve performance, structural changes continue to pose challenges, underscoring the need for more robust,
structure-aware approaches to ensure reliable table comprehension.

F Attention Matrix Analysis

F.1 Spearman Correlation within All Attention Heads

Across both the model families Llama3 and Mistral, the middle layers consistently exhibit the strongest positive
Spearman correlations between perturbation-induced changes in attention entropy and EM degradation.
This recurring ‘hot spot’ in the mid-layer shows a general architectural property; middle transformer blocks
appear to serve as critical junctions where structural perturbations most directly translate into downstream
performance loss. Such robustness vulnerabilities likely stem from these layers’ dual role in integrating lower-
level token interactions and preparing higher-level semantic abstractions, making them both information-rich
and sensitive to distributional shifts.

However, differences emerge when contrasting base versus chat- or instruction-tuned variants. In the base
models (Llama3-8B, Mistral-7B; Figure ( 14, and 15) subfigures a-c), the correlation patterns outside the
middle layers fluctuate markedly, with a mixture of weak or even negative correlation, especially apparent
on TAT-QA and SCITAB tasks. Specifically, for Figure 15(c),Mistral-7B does not correlate because for
all the questions EM was 0. These oscillations align with the base models’ generally lower EM scores on
these datasets, suggesting that noisy or unreliable predictions can obscure the coherent relationships between
entropy and performance.
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WTQ TAT-QA SCITAB
a) b) c)

d) e) f)

Llama3-8B

Llama3-8B
Instruct

Figure 14: Heatmap showing Spearman correlation between changes in attention entropy and EM difference
across all attention heads and layers in the Llama3-8B model(a, b and c) and Llama3-8B-instruct model(d,
e and f).

WTQ TAT-QA SCITAB
a) b) c)

d) e) f)

Mistral-7B

Mistral-7B
Instruct

Figure 15: Heatmap showing Spearman correlation between changes in attention entropy and EM difference
across all attention heads and layers in the Mistral-7B model(a, b and c) and Mistral-7B-instruct model(d,
e and f).

By contrast, the chat and instruct-adapted models (Llama3-8B-Instruct, Mistral-7B-Instruct; Figure (14
and 15) subfigures d-f) display stronger positive correlation, with some extending beyond the middle layers.
On WTQ in particular, both the initial encoding layers (layers 0−2) and the highest layers (uppermost 29−31
blocks) contribute positively to the entropy–EM relation, suggesting that conversational and instruction
tuning bolsters the model’s resilience to perturbations at both the token-embedding stage and the final
consolidation stage. This extended positive band likely reflects enhanced parameter alignment across the
architecture, enabling more stable information propagation even under input disruptions.
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In general, these results yield two primary implications. First, conversational and instruction-tuning
systematically extends the alignment between attention entropy instabilities and performance degradation
across a broader portion of the transformer hierarchy, thereby allowing perturbation robustness not only
in the mid layers but also at its boundaries. Second, task domain complexity governs which layers most
critically underpin model stability: general-domain benchmarks (e.g., WTQ) draw on a broad spectrum of
transformer depths, whereas specialized datasets remain predominantly reliant on central layers.
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