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Abstract

We have been investigating the causal analysis of industrial
plant process data and its various applications, such as mate-
rial quantity optimization utilizing intervention effects. How-
ever, process data often comes with various problems such
as non-stationary characteristics including distribution shifts,
which make such applications difficult. When combined with
the idea of continual learning, causal models may be able to
solve these problems. We present the potential and prospects
for industrial applications of continual causality, showing pre-
vious work. We also briefly introduce our causal discovery
method utilizing a continual framework.

Our Position and Purpose

We have been researching business applications for indus-
trial plants in which predictive models are created from data
and the results are used for later actions to achieve specific
objectives. Our findings have shown that the concepts of
continual learning and causality are important for achieving
these goals. Here, we present the challenges we have faced
so far in terms of the combination of continual learning and
causality (continual causality) and discuss potential solu-
tions. We also briefly discuss a new causal discovery method
to deal with non-stationarity and non-linearity by continual
learning.

Discussion
Causality in Industrial Applications

In many industrial applications of Al, the purpose of a pre-
diction is often to stabilize or maximize a specific variable
using the predicted value, e.g., optimizing the output prod-
uct for material input in an industrial plant. Since a simple
prediction model may not accurately capture the data gen-
eration process, it can be difficult to estimate intervention
effects, such as how much the production rate will increase
when the material input is increased. Therefore, causal anal-
ysis is important for such applications. Causality is also
useful from the viewpoint of interpretability because plants
have a high risk of accidents and potential damage, which
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makes it important to understand the basis and reasons for
various types of predictions.

While causality is useful, the complete picture of causal
relationships is rarely available in plant process data. This
is because plant processes often include feedback loops and
material reuse, and there may be time-delayed effects among
processes, resulting in causal relationships and directions
that are often nontrivial. It is therefore vital to identify un-
known causal relationships as well as to estimate interven-
tion effects. However, it is difficult to conduct experiments
such as Randomized Controlled Trials (RCTs) to identify
causal relationships in non-operating conditions because of
the risk of accidents, potential damage, and the various busi-
ness factors in a given plant. This makes the framework of
causal discovery, which identifies causal relationships and
directions only from data, quite important.

Potential of Continual Learning

To begin, in this paper, we broadly define Continual Learn-
ing as a framework in which new knowledge in machine
learning should be learned in such a way that it reuses
knowledge already learned and acquired, and can be learned
continuously, hierarchically, and additionally. (Refer to this
paper (Ring et al. 1994).) Note that our definition treats Con-
tinual Learning as something that is not necessarily strongly
associated with reinforcement learning.

Modeling plant process data also runs into difficulties in
terms of maintenance over time. For example, the average
plant will exhibit many non-stationary characteristics, such
as instability at start-up, distribution shifts due to changes
in the quantity or type of products, trends related to equip-
ment aging, and seasonality issues stemming from outdoor
temperature changes (Kadlec, Gabrys, and Strandt 2009).
By utilizing the concept of continual learning, the system
can continuously train models and adapt to changes in sys-
tem conditions. We have integrated this concept into a new
method called JIT-LiINGAM (Fujiwara et al. submitted) (dis-
cussed later).

It may also be possible to reconsider the aforementioned
tasks of stabilizing and maximizing plant process variables
in the context of not only system control or causality but also
reinforcement learning and continual learning (future work).
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Figure 1: Flow of vinyl acetate production plant simulator
(Luyben and Tyréus 1998).

Figure 2: Results of applying VAR-LiINGAM to plant sim-
ulator data. Edges represent linear causality coefficients.
Nodes x7-x10 denote process variables, e.g., X7(t-1) means
the value of x7 one step before at time t.

Past Efforts and Future Prospects

In this paper, we discuss the below challenges, describe the
efforts of ourselves and other researchers to address them,
and briefly mention future prospects.

Causal Discovery

Causal discovery is a framework for identifying unknown
causal relationships and directions only from data. As men-
tioned above, this framework is important because causal re-
lationships are often unknown in plant process data. Discov-
ered causal relationships are utilized for later intervention
effect estimation and optimization, as well as for variable
selection and model interpretation. LINGAM (Shimizu et al.
2006) is a representative linear causal discovery method, and
it has been extended with partial prior knowledge (Shimizu
et al. 2011) and with latent variables (Hoyer et al. 2008).
Several non-linear methods are also known (Peters et al.
2014; Zheng et al. 2020; Uemura et al. 2022).

We have applied these methods to actual plant process
data but faced the common problem that the “true causal re-
lationships™ are unknown, which makes it difficult to evalu-
ate the results. However, there is a possibility that the causal
model can be continuously evaluated indirectly on the ba-
sis of the results of later interventional actions and then up-
dated accordingly. This should be considered in future work
related to continual causality.

Time-series Extension

It is necessary to introduce time-series models to account for
time-lagged variables in causal discovery, as this enables us
to construct causal models without contradiction by expand-
ing feedback loops along the time direction. Specific meth-
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Figure 3: Overview of JIT-LINGAM.

ods in this vein include VAR-LINGAM (Hyvérinen et al.
2010). We have conducted numerical experiments in which
VAR-LiINGAM is applied to the simulation data of vinyl
acetate plants (Luyben and Tyréus 1998), with the results
briefly presented in Figs. 1 and 2.

Optimal Intervention

After constructing a complete causal model, the optimal
amount of intervention to an operable variable can be cal-
culated backward such that a certain variable has a specific
value (Pearl, Glymour, and Jewell 2016). There are vari-
ous extensions of this approach, including methods that uti-
lize predictive models (Blobaum and Shimizu 2017) or that
estimate the optimal individual-level intervention (Kiritoshi
et al. 2021).

Continual Causal Discovery : JIT-LINGAM

We proposed a causal discovery method for non-stationarity
(e.g., distribution shift and non-linear causal relationships)
called JIT-LINGAM (Fujiwara et al. submitted), in which
LiNGAM is combined with Just-In-Time Modeling (JIT)
(Stenman, Gustafsson, and Ljung 1996; Bontempi, Birat-
tari, and Bersini 1999). JIT is a method conventionally used
for soft sensors (pseudo-sensors in plants for difficult-to-
measure locations using regression models, etc.), where lo-
cal linear models are trained continually by extracting neigh-
boring samples of the current input sample from a database.
On the basis of Taylor’s theorem, non-linear phenomena in
plants can be approximated by local linear models, and by
utilizing neighboring samples for the modeling, we can fol-
low continual changes in plants. The database can also be
updated by adding samples online; however, due to limita-
tions of memory and computational complexity, efficient use
of data is vital. Future work should examine the optimal way
of using data and consider the inclusion of other develop-
ments, such as the use of influence functions or of continual
learning methods combined with reinforcement learning.

Extensions to time-delayed causality (as described above)
and optimal intervention are also possible. In addition, since
this approach enables us to capture snapshots of non-linear,
non-stationary, and dynamically changing causal relation-
ships, we may even be able to deal with cases where causal
directions are being reversed. This is a potential solution to
the plant feedback loop problem described above.



Conclusion

We presented our positions in the causal analysis research
area relevant to continual learning problems. We are cur-
rently working on each introduced theme independently, but
in the future we will need to integrate them. In particular,
we plan to extend JIT-LINGAM in various ways. Continual
causality is still a very much unexplored area, and extensive
research will thus be conducted in the future.

Appendix:JIT-LiNGAM Algorithm

We present the details of JIT-LINGAM in Algorithm 1. Ad-
ditional details are included in our submitted paper (Fuji-
wara et al. submitted).

Algorithm 1: JIT Algorithm for Time-Series Causal Discov-
ery (JIT-LINGAM)

Inputs:
stored dataD = {x® |t =1,...,T — 1},
query point zo = «(™), distance function d(-, -), num-
ber of neighbors K.

Outputs:

weighted adjacency matrix J(z(7)): representing the

causality defined in the neighborhood for query point
(T)

).

Procedure 1

Extract K-data of z(® from D, on the basis of
d(z®), xq), which is the distance from the query point
xq. (The details of how to extract K-data are described
in the paper (Fujiwara et al. submitted)) The resulting
K-data subset Q(xq; d, K) is:

O(zo;d, K) = {x<0<k>> k=1,.. .,K} ,

where o(k) is a function that returns the k-th nearest
time index ¢ in Q(zq; d, K).

Procedure 2 ~

Centralize Q(zq; d, K') and get Q(xq; d, K), where the
mean is subtracted from each element of Q(xq;d, K)
along each dimension of x.

Procedure 3 -
Train LINGAM using Q(zq;d, K) and get resulting
weighted adjacency matrix J (x(™)).
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