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ABSTRACT

Shannon Information theory has achieved great success in not only communication
technology where it was originally developed for but also many other science and
engineering fields such as machine learning and artificial intelligence. Inspired by
the famous weighting scheme TF-IDF, we discovered that Shannon information
entropy actually has a natural dual. To complement the classical Shannon infor-
mation entropy which measures the uncertainty we propose a novel information
quantity, namely troenpy. Troenpy measures the certainty and commonness of
the underlying distribution. So entropy and troenpy form an information twin.
To demonstrate its usefulness, we propose a conditional troenpy based weighting
scheme for document with class labels, namely positive class frequency (PCF). On
a collection of public datasets we show the PCF based weighting scheme outper-
forms the classical TF-IDF and a popular Optimal Transport based word moving
distance algorithm in a kNN setting with respectively more than 22.9% and 26.5%
classification error reduction while the corresponding entropy based approach com-
pletely fails. We further developed a new odds-ratio type feature, namely Expected
Class Information Bias(ECIB), which can be regarded as the expected odds ratio
of the information twin across different classes. In the experiments we observe
that including the new ECIB features and simple binary term features in a simple
logistic regression model can further significantly improve the performance. The
proposed simple new weighting scheme and ECIB features are very effective and
can be computed with linear time complexity.

1 INTRODUCTION

The classical information theory was originally proposed by Shannon (1948) to solve the message
coding problem in telecommunication. It turned out that it has far more profound impact beyond
communication theory, and it has shaped all aspects of our science, engineering and social science
by now. The core concept entropy was coined to measure the expected rareness or surprise of a
random variable X across its distribution. In the literature entropy is usually taken for granted as
the information in many people’s mind. The mutual information (MI) between two variables is the
difference of the entropy of a variable from its conditional entropy given the other variable. MI
maximization principle also has been studied and used widely in machine learning. Recently MI has
also been employed as part of the objective function for optimization in neural network models based
representation learning(Belghazi et al., 2018; Hjelm et al., 2019).

Along another line, weighting scheme has been used extensively in information retrieval tasks.
Term Frequency-Inverse Document Frequency(TF-IDF), a simple statistic heuristic proposed by
Sparck Jones (1972) has been widely used as a weighting method over half a century in information
retrieval and natural language processing. It weighs down a term if its document frequency increases
in the corpus, as it becomes less effective to distinguish from others when it gets popular and its
appearance brings less surprise in the sense of Shannon self-information. This simple but effective
algorithm has achieved great success as a robust weighting scheme. Even today many search engines
and digital database systems still employ TF-IDF as an important default algorithm for ranking.

In the past decades a few researchers have intensively investigated on it for a better theoretical
understanding of the underlying mechanism rather than a heuristic and intuition argument. Robertson
(2004) justified it as an approximate measure of naive Bayes based probability relevance model in
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information retrieval. Some researchers tried to explain from the information theory point view.
Aizawa (2003) interpreted it as some probability weighted amount of information. Siegler & Witbrock
(1999) interpreted IDF for a term exactly as the mutual information between a random variable
representing a term sampling and a random variable representing a document sampling from a
corpus. Many other variants of the term frequency have been proposed in the literature. For example,
BM25(Robertson, 2009) based on probabilistic retrieval framework was further proposed and it has
been widely used by search engines to estimate the relevance of documents to a given search query. In
general the derived applications go far beyond text processing and information retrieval community.

The connection between TF-IDF and information theory mentioned above is quite motivating. This
makes us wonder if there are other simple and effective weighting schemes that can be established
from information theory. In order to achieve this goal, it turns out that we first developed a new
metric of information quantity for certainty, namely troenpy, a natural dual to entropy, and then used
it to derive a new type of weighting scheme which works very well in the extensive experiments as
we hoped.

In the following we will first introduce troenpy and its basic properties, and share some insights we
have for this innovation. Then for the classical task of supervised document classification, we will
develop a troenpy based weighting scheme for document representation. This weighting scheme
makes use of the documents class label distribution and helps improving the model performance very
significantly. Employing both entropy and troenpy, we will also define some new odds-ratio based
class bias features leveraging the document class label distribution. Finally evaluating under the
simple KNN and logistic regression settings, we show that the proposed new weighting scheme and
new features are very effective and achieved substantial error reduction compared with the TF-IDF
and a popular optimal transport based document classification algorithm on a collection of widely
used benchmark data sets.

2 DUAL OF SHANNON ENTROPY

We fix the notations first. Here we let X indicate a discrete random variables with probability
mass function pX(x). The Shannon entropy (sometimes also called self-information) measures
the uncertainty of the underlying variable, or the level of surprise of an outcome in literature. To
understand this, note when the event is rare, that is the probability pX(x) is small, the measure
−log(pX(x)) is large; when the event is not rare, that is the probability pX(x) is not small, the
measure −log(pX(x)) is not big. Therefore in this sense of Shannon, the measure −log(pX(x))
does represent the rareness or surprise degree of an event. In this work we purposely call it Negative
Information(NI) for showing the duality nature later. That is,

NI(x) := −log(pX(x)) = log
1

pX(x)
. (1)

Now since Shannon information measures surprise, can we measure the certainty or commonness
instead? This is exactly the contrary to the Shannon information, the dual of Negative Information
Entropy. This motivates our definition below.
Definition 2.1. We define Positive Information (PI) of an outcome x as

PI(x) := −log(1− pX(x)) = log
1

1− pX(x)
. (2)

To understand why PI measures the certainty of an event, note when the event is rare, that is the
probability pX(x) is small and the certainty is small, the measurement −log(1 − pX(x)) is very
small; when the event is not rare, that is the probability pX(x) is large and the certainty of the event
is large, the measurement −log(1− pX(x)) is also large. So the PI can measure the certainty of an
event faithfully in the same sense of Shannon.

For discrete random variables with probabilities pi, where i ∈ {1, . . . ,K}, the value PI=log( 1
1−pi

)

is the measure of non-surprise or commonness. Note from the definition, PI has the same value
range [0,∞) as NI. A conventional way to avoid the infinity value ranges numerically is to add a
small value epsilon to the denominator, and one can choose the epsilon value according to desired
resolution. Note if we denote x̄ the complement of outcome x, then PI(x) = NI(x̄).
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Naturally by taking expectation across the distribution, we propose a dual quantity of entropy, namely
troenpy, to measure the certainty of X . Troenpy is simply the expected positive information, while
entropy is the expected Negative Information (NI). Troenpy reflects the level of reliability of the X
outcomes that the data conceals.

Definition 2.2. The troenpy of a discrete random variable X is defined as the expectation of the PIs,

T (X) := −
∑
x

pX(x)log(1− pX(x)). (3)

For continuous random variable X with density function f(x), the differential troenpy is formally
defined by first dividing the range of X into bins of length ∆, and the integral within each bin can be
represented as pi = f(xi)∆ by the Mean Value Theorem for some xi in the bin, and taking the limit
by letting ∆ → 0 if the limit is finite. It turns out that the integral is zero.

T (f) : = −
∫

f(x)log(1− f(x))dx

=
∑

f(xi)∆log(1− f(xi))

(4)

Note the following fact about troenpy can be observed. For a discrete random variable with prob-
abilities pi, where i ∈ {1, . . . ,K}, troenpy achieves the maximum value infinity when an event is
completely certain with corresponding probability pi = 1. Note this is different from entropy, whose
value is bounded and ranges from zero to the maximum logK.

Theorem 2.3. Troenpy achieves the minimum value log( K
K−1 ) when the underlying discrete distribu-

tion is uniform with each pi =
1
K for all i, while entropy achieves its maximum value logK.

Proof. To see why troenpy achieves such minimum value, note that the sum
∑K

i=1(1 − pi) =
K−(p1+ . . . , pK) = K−1. If we let qi = (1−pi)/(K−1), then q = (q1, . . . , qK) is a probability
distribution. According to the Gibbs inequality (MacKay, 2003), the cross entropy −

∑K
i=1 pilogqi

achieves minimum value when pi = qi, which immediately gives pi = 1/K. It is also obvious that
the troenpy can be treated as the above cross entropy minus the constant log(K − 1).

Note conceptually we can regard troenpy as a complimentary metric of information in a distribution
in the sense of reliability. It measures how much confidence about the outcomes in a distribution.
If the certainty increases, it means some outcomes gain more confidence and the uncertainty of the
outcomes decreases correspondingly. Because of the intrinsic nature of troenpy, it naturally serves
as a weighting scheme measuring the reliability of a random variable. More certainty means more
predictability. If a random variable has very low certainty, this just means it has a high entropy and
is very noisy. Thus it is not a good feature for prediction purposes and should be correspondingly
down-weighted.

Next we define conditional troenpy which will motivate and lead to the weighting scheme in next
section. Let p(x, y) denote the joint distribution of the discrete random variables X and Y , and
lowercase letters denote the random variable values.

Definition 2.4. We define the Conditional Troenpy of X given Y, denoted as T (X|Y ), to be the
following T (X|Y ) =

∑
y p(y)T (X|Y = y).

It can further be reduced to the following

T (X|Y ) = −
∑
y,x

[p(y)p(x|y)log(1− p(x|y))]

= −
∑
x,y

p(x, y)log(1− p(x|y))

Definition 2.5. We define the Pure Positive Information of X from knowing Y , denoted as
PPI(X;Y ), to be the troenpy gain T (X|Y )− T (X) =

∑
x,y p(x, y)log 1−p(x)

1−p(x|y) .
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Note PPI(X;Y ) is the analogue of the classical mutual information. It measures the troenpy change
due to the presence of another random variable. Thus this PPI can serve as a candidate for weighting
scheme. Note in general PPI(X;Y ) ̸= PPI(Y ;X). This is very different from the mutual information
MI(X;Y ) of two random variables X and Y in the literature, where MI(X;Y ) = MI(Y ;X). In
order for them to be equal, this requires (1− p(x))/(1− p(x|y)) = (1− p(y))/(1− p(y|x)), which
is equivalent to p(x)− p(x|y) = p(y)− p(y|x). However, this last equation does not hold in general.

Figure 1: Errors of document classification for 7 Datasets with TF-IDF and TF-PI

3 WEIGHTING SCHEME FOR SUPERVISED DOCUMENTS CLASSIFICATION

In this section we first briefly review the information theoretic interpretation of TF-IDF, then naturally
we define a new weighting scheme using the newly proposed troenpy as an analogue.

3.1 REVIEW OF IDF

Here we follow the information theoretic view mentioned above (Aizawa, 2003). We consider the
classical text documents classification task in the routine supervised learning setting. The typical
scenario is that given a corpus collection of documents D1, . . . , Dn, where n denotes the total number
of documents. Each document Di has a class label yi from a finite class label set Y = {1, 2, . . . ,K},
where K is the total number of classes. For a given word w, let d denote the number of documents
where w appears. Then the IDF is simply given by the following:

IDF(w) = 1 + log
n

1 + d
(5)

It can be interpreted as the self (negative) information in information theory, which measures the
surprise of the word w. The idea follows as below: Fix a word w with document frequency d in a
collection of n documents, then the probability of w appearing in a document D can be approximated
by Prob(w ∈ D) = d

n . Then the negative-information NI(w) = −logProb(w ∈ D) = logn
d . To

smooth out the case when d = 0, adding 1 to the denominator gives NI(x) ≈ log n
d+1 . Also, the

summation of all TF-IDFs, each of which represents bits of information weighted by the probability
of a word, also recovers the mutual information between words and documents.

3.2 POSITIVE CLASS FREQUENCY

In this section we will make use of the document class distribution and define a new term weighting
method, which can be applied later for the classification task. First for all the n documents in the
corpus, we collect the counts of documents for each class. We denote the class label distribution
as C = {C1, . . . , CK}, where Ci is the count of the ith class label. Normalizing by dividing the
total number of documents n gives the probability distribution −→c = {c1, . . . , cK}, where ci =

Ci

n .
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This vector −→c contains the global distribution information and we can define two intrinsic quantities
measuring the certainty and uncertainty.
Definition 3.1. We define Positive Class Frequency(PCF) for C as the troenpy of −→c . Similarly,
Negative (or Inverse) Class Frequency(NCF or ICF) as the entropy of −→c .

PCF(C) : = Troenpy(−→c )
NCF(C) : = Entropy(−→c )

(6)

For the whole document collection (abbreviated as DC∗), the PCF of the normalized label vector−→c , denoted as PCF∗ is a constant for each term indicating the certainty level of the whole label
distribution at the collection population level. Restricting to the documents with the term w present
(abbreviated as DC1), the corresponding conditional PCF is denoted as PCF1. Similarly, PCF−1

denotes the PCF for documents without the term w (abbreviated as DC−1). We propose using the
difference PCF1 − PCF∗ between PCF1 and PCF∗ as a term weighting reflecting the certainty gain
due to the presence of the term w. Note this is the same as the PPI introduced in last section, i.e,
the conditional troenpy gain condition on the knowledge of the presence or absence of the term
w. Without abuse of notation, we simply keep using PCF to denote this new weighting scheme.
Note in the classical TF-IDF setting and general machine learning literature, such label distribution
information is usually used in some supervised ways (Ghosh & Desarkar, 2018). It has not been
made use of in such a simple and principled way before.

To combine the IDF and PCF weightings, we propose using their multiplication PCF·IDF, abbreviated
as PIDF, as the weighting. Note the IDF computation uses only the term document frequency
information across the corpus while the PCF leverages the documents label information via the
conditional troenpy. So the simple product model make use of both corpus information about
document frequencies as well as the document label information. Hence multiplying with the
term frequency gives the name TF-PIDF. So in our setting each document can be represented
as a vector of word term frequencies multiplied with selected weighting method applied such as
doci = [tf1PIDF1, . . . , tfmPIDFm], where tfi denotes the term frequency for the ith token in
literature and m is the number of unique selected terms in a document.

On the other hand, the entropy based weighting NCF · IDF is correspondingly abbreviated as NIDF
and multiplying the term frequency gives TF-NIDF. Note the NCF is not suitable for weighting
as they are the negative information measuring the uncertainty. The rationale behind this is that
when a mathematical model predicts things, it relies on the learned certainty from the data, not the
uncertainty. This intrinsic nature of certainty determines troenpy is the right candidate. To support
this view, we will illustrate TF-NIDF is ineffective in the experiment session.

Next we will give another two measures which are easy for researchers to come up as candidates
for the quantification of certainty. To clear the curiosity and doubts from readers, we include these
measures in the experiment for performance comparison.
Definition 3.2. We define Reciprocal Negative Class Frequency(RNCF) for C to be the reciprocal of
NCF(C).

RNCF(C) : =
1

NCF(C)
(7)

The corresponding weighting RNCF · IDF is denoted as RNIDF and multiplying term frequency
gives TF-RNIDF. The motivation for this definition is that intuitively some people may think that
the RNCF reverses the changing direction of entropy, so it can be used to denote the certainty.

Instead of taking the reciprocal of entropy, another similar idea that is easy to come up is by subtracting
the entropy from the maximum possible entropy of the underlying distribution. When the random
variable X is discrete with K total number of classes, the maximum possible entropy value equals
logK; when X is a continuous random variable, the maximum possible entropy value equals the
corresponding Gaussian entropy with the same mean and standard variance (Thomas & Joy, 2006).
This measure Negentropy first appeared in a book by Erwin (1944), and then it was further studied
by Leon (1953).
Definition 3.3. We define Negative Entropy Class Frequency(NEGECF) for C to be the difference
between the maximum entropy of C and NCF(C).

NEGECF(C) : = logK − NCF(C) (8)

5
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The corresponding weighting NEGECF·IDF is denoted as NEGEIDF and multiplying term frequency
gives TF-NEGEIDF.

Negentropy measures the remaining uncertainty for the underlying distribution. Similarly as the
reciprocal of entropy, it also reverses the changing direction of entropy. So both RNCF and NEGECF
qualitatively align well with the direction of certainty in general. One problem of using the Negentropy
as the measure for certainty is that when the discrete distribution C is evenly distributed across all K
classes, the Negentropy gives zero while each class still has 1

K probability and the corresponding
certainty value should be nonzero though it could be small. In this case troenpy gives log K

K−1 . So
the Negentropy is essentially a measure of deviation from the even distribution for discrete random
variables by definition. One can also define a measure by subtracting the entropy from other selected
constants. For example, Wang et al. (2021) defined a similar weighting measure by setting the
constant to be 1 and the entropy log base to be the number of classes, so the measure lies in [0, 1].
However, these types of measures have the same issue.

Numerically the amount of certainty measured by troenpy cannot be expressed as an analytic function
of entropy. We will derive the transcendental relationship between entropy and troenpy elsewhere. In
the experiment session we will show that all NCF, RNCF and BEGECF are not effective as weighting
schemes. This justifies the necessity of introducing the troenpy as a corresponding measure of
certainty.

Figure 2: Errors rates of TF-IDF, TF-PIDF, TF-NIDF, TF-RNIDF and TF-NEGEIDF across seven
datasets in a KNN setting

4 CLASS INFORMATION BIAS FEATURES AND BINARY TERM FREQUENCY
FEATURES

In this section we introduce two types of features for document representation: the odds ratio based
features for class information distribution and a simple binary term frequency feature. For brevity,
we denote these two features as 2B features in the experiments.

4.1 ODDS-RATIO BASED CLASS INFORMATION BIAS FEATURES

The idea is that both the TF-IDF and TF-PIDF are obtained from a term frequency multiplied with
a weight information quantity measuring their rareness or certainty, instead we can weight these
term frequencies by how biased they are distributed across the classes. This idea was inspired by
an algorithm called Delta-IDF. In a simple two class sentiment classification setting, Martineau &
Fanin (2009) proposed first taking the difference of the IDFs between the documents of the positive
class and the documents of the negative class and then multiplying with the term frequency to give
their delta-TFIDF. That is, tfw[log P

Pw
− log N

Nw
], where P and N respectively stand for the total

numbers of positive documents and negative documents, and the Pw and Nw respectively stand for

6
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the total numbers of positive documents with the term w appearing and the total number of negative
documents with term w appearing. So the difference between the IDFs of the two collections of
documents are exactly the odds ratio of the documents counts for the two complementary collections
of documents, which can be rewritten as logPNw

PwN .

Motivated by the above, we can first compute the NCF and PCF difference for any class i, which
gives the Class Information Bias (CIB) features. And then we take the weighted average of such CIB
features across all K classes. We call these new features the Expected Class Information Bias (ECIB)
features. Specifically for a term w, we first use nw to denote the number of documents with w present
and niw to denote the number of documents with class label i and w present. Then the NCF based
CIB for class i is given as CIBi(w) = log Ci

1+niw
− log n−Ci

1+nw−niw
, as (n − Ci) stands for the total

documents not in class i and (nw − niw) stands for the total number of documents not in class i but
with w appears. Similarly, the PCF based CIB is given as log Ci

1+Ci−niw
− log n−Ci

1+n−Ci−nw+niw
.

Therefore for each term w, we can define two such distributed Class Information Bias features, one
using NCF and one using PCF. The expected CIB features are precisely given by the following.

CIB-NCF(w) :

=

K∑
i=1

Ci

n
(log

Ci

1 + niw
− log

n− Ci

1 + nw − niw
)

CIB-PCF(w) :=
K∑
i=1

Ci

n
(log

Ci

1 + Ci − niw

− log
n− Ci

1 + n− Ci − nw + niw
)

(9)

The effect for this ECIB feature is that words that are evenly distributed for their contribution of
the information quantities in a class and the rest of the class get little weight, while words that are
prominent in some class for their contribution of the information quantities get more weight. So the
terms characterizing specific classes are relatively better weighted as they are more representative.

4.2 BINARY TERM FREQUENCY

The binary term frequency (BTF) is simply a binary feature for each term w. BTF(w) is 1 if w is
present in a document and it is 0 if it is absent in a documentJain et al. (2020). BTF gives the most
naive representation of a document, regardless of frequency counts. We notice that BTF features
are actually quite informative and together with TF-IDF can significantly improve the classification
performance in the kNN setting. One can achieve this by simply summing the TF-IDF based pairwise
document distance and the BTF features based document pairwise distance as the final document
pairwise distance.

5 DATASETS AND EXPERIMENT

The goal of our experiments in this section is to validate our proposed weighting schemes and features
for the supervised document classification tasks, and compare with the baseline algorithms. To achieve
this we include seven text document datasets that are often used for the document classification tasks
in the literature. Three datasets already have a training dataset and a test dataset split while the rest
four have no such splits. The experiments of supervised document classification tasks have two
settings for the evaluation: a simple kNN setting and a logistic regression setting. The evaluation
metric is the error rates on the test datasets.

5.1 DATASETS

Here we follow closely the setup of Yurochkin et al. (2019). We use the popular seven open source
datasets below for the study on kNN based classification tasks. Note these datasets have been

7
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Figure 3: Error rates of document classification using 2B features in logistic regression classifier

extensively used numerous times for the classification tasks. The datasets include BBC sports news
articles labeled into five sports categories (BBCsports); medical documents labeled into 10 classes of
cardiovascular disease types( Ohsumed); Amazon reviews labeled by three categories of Positive,
Neutral and Negative (Amazon); tweets labeled by sentiment categories (Twitter); newsgroup articles
labeled into 20 categories (20 News group); sentences from science articles labeled by different
publishers ( Classic) and Reuters news articles labeled by eight different topics (R8). The more
detailed information about the datasets can be found in the references mentioned above. For the
datasets with no explicit train and test splits, we use the common 80/20 train-test split and report the
performance result based on fifty repeats of random sampling.

To minimize the datasets version mismatch, in all the experiments we use the raw text documents
rather than some pre-processed intermediate formats such as some of the processed datasets provided
in Kusner et al. (2015).

Figure 4: t-SNE on R8 data

5.2 EXPERIMENT SETTINGS

Here we introduce the baseline algorithms and their settings in the experiments.

Baselines: For the evaluation of supervised documents classification on term frequencies and their
weighting, we include the classical TF-IDF document representation as a baseline. The pairwise
document distance in kNN setting is computed using the TF-IDF represented vectors. For comparison
purpose and reference, in the experiments we also include the result of a Word Moving Distance
(WMD) based algorithm, namely HOFTT proposed by Yurochkin et al. (2019). It is a hierarchical

8
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optimal transport distance in the topic spaces of documents. We follow closely the experiment setting
of HOFTT.

kNN based Classification: The features include term frequencies only. The goal is to validate the
TF-PIDF weighting and compare with TF-IDF. The data pre-processing starts with removing the
frequent English words in the stop word list, which can be found in the above references. To ease
the kNN evaluation part, we fix the number of closest neighborhoods k=7 rather than dynamically
selecting the optimal k. We compute the integrated weighting PIDF as the product of PCF and IDF,
and compare with the IDF weighting for each term frequency. Using the TF-PIDF and TF-IDF, we
obtain the bag-of-words vector representation of each document and take their L2 normalization,
and then compute the document pairwise distance following the standard kNN procedures. Again
our main goal here is to assess if the proposed PCF weighting is effective and can help improve the
classical TF-IDF method. Also we want to evaluate the entropy based approach and see if it fails as
we expected.

Logistic Regression based Classification: In this setting we simply replace the simple kNN
with a standard logistic regression model instead. In the experiments we use the Sklearn package
implementation with default settings. Here we have two goals to evaluate. First we need to evaluate
if the models have performance improvement when the 2B features are included, compared with
the models using only the TF-PIDF features. So we can assess if 2B features are effective for the
document classification task. Second we want to evaluate the PCF weighting effect on the ECIB and
BTF features both separately and jointly.

Here the data preprocessing is identical to the kNN classification settings above. We mainly consider
three types of features in the experiment, namely the TF-PIDF features, binary term features (BTF)
and the ECIB features.

6 RESULTS

kNN based Classification Experiments: In Figure 1 we can visually observe that the TF-PIDF
based kNN model uniformly outperformed the classical TF-IDF based kNN across all seven datasets
and the improvement is quite substantial for most cases with an average overall error reduction 22.9%.
Noticeably the R8 dataset achieves the most 53.4% error reduction. Compared with HOFFT, the
TF-PIDF achieves even more error reduction with the average of 26.5%. These uniform improvement
can be explained as the PCF weighting does effectively leverage the certainty and common similarity
of class label distributions across the corpus at a term level. For a term, the more PCF it has the
better prediction capacity it has. For example, the different news groups in Ng20 actually share many
non-stop words in common and some groups are very relevant. The learned similarity information
about one group is helpful at predicting a relevant group. We also observe only slight improvement
on the Twitter and BBC sport datasets which might be simply due to the small sample sizes. The
Twitter has 3115 samples and BBCsport has only 737 samples, which are quite small compared
with other datasets. Additionally, the Twitter sentiment dataset has three class labels consisting of
positive, neutral and negative. The extreme polarity of the classes is often consistent with the fact
that relatively less common description words are shared across the classes.

PCF, NCF, RNCF and NEGECF Comparison: To compare the performance of TF-PIDF, TF-
NIDF, TF-RNIDF and TF-NEGEIDF with the baseline TF-IDF, we did another experiment, where
the datasets with no given train/test splits are resampled fifty times. The result is reported in Figure 2.
We observed that the TF-PIDF is consistently effective on reducing the errors compared with TF-IDF
while all TF-NIDF, TF-RNIDF and TF-NEGEIDF fail in reducing the errors as expected. Note the
TF-RNIDF performs badly on the BBC dataset, which suggests that RNCF could be very unstable
for some datasets. This clearly justifies that our proposal of Troenpy is necessary and troenpy cannot
be substituted by entropy or its reciprocal or difference from a constant for the weighting role.

t-SNE: We also use the popular t-SNE by van der Maaten & Hinton (2008) to visualize the TF-IDF
and TF-PIDF classification effect on the R8 dataset. In Figure 4, the TF-PIDF appears to cluster
relatively closer for each class labels and clusters are relatively separated from other cluster groups.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Word Moving Distance Methods: In the experiments a modern Optimal Transport (OT) based
Word Mover’s Distance (WMD) approach HOFTT performs poorly compared with the TF-PIDF
weighting on all dataset except on R8 dataset, on which it is also outperformed by TF-PIDF em-
ploying the additional 2B features. However we are also aware of another advanced WMD method
Wasserstein-Fisher-Rao(WFR) developed by Wang et al. (2020), which uses the Fisher-Rao metric for
the unbalanced optimal transport problem. The reported result of WFR is comparable to our proposed
methods across the datasets. Unfortunately there are some version mismatch for some datasets as
well as slightly different sampling procedure for datasets with no pre-specified train-test splits, so we
did not include the corresponding result in our figures. Note also that the general Sinkhorn based
algorithms for such OT optimization problems have relatively high computational complexity and so
they are quite expensive on computational cost. While the proposed weighting scheme and ECIB
features can be obtained in a single scan of the data and the time complexity is linear, they are fast
and a lot cheaper on computational cost.

Logistic Regression based Experiments: In Figure 1 we observed the following: (1) for the same
TF-PIDF feature set, the logistic regression model uniformly outperforms the kNN approach across
all datasets. This is not surprised as the logistic regression optimizes the term coefficients for optimal
fitting the data while the kNN is rigid as given. (2) adding the 2B features of binary term frequency
(BTF) and expected class information bias (ECIB) further significantly reduces the errors on most
datasets. Compared with TF-IDF, the average error reduction is 35%. Compared with HOFFT, the
error reduction reaches 43.4%. For the BBC dataset we observed a relatively large error increase,
and we hypothesize that this may be due to the very small test sample size of the dataset.

In Figure 3 we reported the results of using BTF and ECIB features in the logistic regression setting.
We observed the following. Both BTF and ECIB features are quite effective when used individually
alone. ECIB performs better than BTF on all datasets except on the dataset of 20 Newsgroup, where
they are relatively close. Simply combining the two features together not necessarily always improves
the performance, instead it leads to slightly more errors on a couple of the datasets. We also observe
that applying the PCF weighting helps on majority of the cases. Visually the left three bars of light
color represent 2B features without PCF weighting while the right three bars of darker color represent
corresponding features with PCF weighting applied.

7 DISCUSSION

The current work first proposed a new information measurement of certainty and an associated
weighting scheme leveraging the document label information, and further demonstrated its effective-
ness on several popular benchmark datasets of English text documents. We also gave a couple of
measures which are easy to come up as candidates for certainty. Unfortunately neither of them is
effective as a weighting scheme. Our troenpy is mathematically the canonical dual of entropy from
the definition. For documents without label information available, the current proposal cannot apply
directly. However, a few unsupervised tasks often can be reformulated into popular self-supervised
problems. The only difference from the above supervised setting is that the labels and features are
from the same space, and we can apply the developed methods to process without much difference.
In modern NLP community distributed representations of word tokens are widely used in language
models for various tasks. The proposed troenpy and the weighting schemes can actually be integrated
into neural network based large language models and can further lower the perplexities. For computer
vision, the corresponding methods can be suitably modified and then applied to vision language
models for downstream tasks. We will leave these as future work.

8 REPRODUCIBILITY STATEMENT

Data and codes for the experiments can be found in the supplemental material and all results can be
easily reproduced.
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