
Under review as a conference paper at ICLR 2023

PROVABLE SHARPNESS-AWARE MINIMIZATION
WITH ADAPTIVE LEARNING RATE

Anonymous authors
Paper under double-blind review

ABSTRACT

Sharpness aware minimization (SAM) optimizer has been extensively explored as
it can converge fast and train deep neural networks efficiently via introducing extra
perturbation steps to flatten the landscape of deep learning models. A combination
of SAM with adaptive learning rate (AdaSAM) has also been explored to train
large-scale deep neural networks without theoretical guarantee due to the dual
difficulties in analyzing the perturbation step and the coupled adaptive learning rate.
In this paper, we try to analyze the convergence rate of AdaSAM in the stochastic
non-convex setting. We theoretically show that AdaSAM admit a O(1/

√
bT)

convergence rate and show linear speedup property with respect to mini-batch
size b. To the best of our knowledge, we are the first to provide the non-trivial
convergence rate of SAM with an adaptive learning rate. To decouple the two
stochastic gradient steps with the adaptive learning rate, we introduce the delayed
second-order momentum term in the convergence to decompose them to make
them independent while taking an expectation. Then we bound them by showing
the adaptive learning rate has a limited range, which makes our analysis feasible.
At last, we conduct experiments on several NLP tasks and they show that AdaSAM
could achieve superior performance compared with SGD, AMSGrad, and SAM
optimizer.

1 INTRODUCTION

Sharpness-aware minimization (SAM) Foret et al. (2021) is a powerful optimizer for training large-
scale deep learning models by minimizing the gap between the training performance and general-
ization performance. It has achieved remarkable results on various deep neural networks, such as
ResNet He et al. (2016), vision transformer Dosovitskiy et al. (2021); Xu et al. (2021), language
models Devlin et al. (2018); He et al. (2020), on extensive benchmarks.

However, SAM-type methods suffer from several issues during training the deep neural network,
especially for huge computation costs and heavily hyper-parameter tuning procedure. It needs double
gradients computation compared with classic optimizers, like SGD, AdamKingma & Ba (2015),
AMSGrad Reddi et al. (2018), due to the extra perturbation step. Hence, SAM requires to forward
and back propagate twice for one parameter update, resulting in one more computation cost than
the classic optimizers. Moreover, as there are two steps during the training process, it needs double
hyper-parameters, which makes the learning rate tuning unbearable and costly.

Adaptive learning rate optimization methods scale the gradients based on the history gradient in-
formation to accelerate convergence. These methods, such as Adagrad Duchi et al. (2011), Adam,
and AMSGrad, have been studied for solving the NLP tasks Zhang et al. (2020). However, it might
converge to a local minima which leads to poor generalization performance. Many studies have
investigated how to improve the generalization ability of the adaptive learning rate methods. Recently,
several work has tried to ease the learning rate tuning in SAM by combining SAM with adaptive
learning rate. For example, Zhuang et al. (2022) trains ViT models with an adaptive method and
Kwon et al. (2021) training a NLP model. Although remarkable performance has been achieved, their
convergence is still unknown since the adaptive learning rate is used in SAM. Directly analyzing the
convergence of this method is difficult due to the two steps of optimization, especially the adaptive
learning rate adopted in the second optimization step.

1

Under review as a conference paper at ICLR 2023

In this paper, we analyze the convergence rate of SAM with an adaptive learning rate in the non-
convex stochastic setting, dubbed AdaSAM. To circumvent the difficulty in the analysis, we develop
technique to decouple the two-step training of SAM and the adaptive learning rate. The analysis
procedure is mainly divided into two parts. The first part is to analyze the procedure of the SAM.
Then we analyze the second step that adopts the adaptive learning rate method. We introduce a
second-order momentum term from the previous iteration, which is related to the adaptive learning
rate and independent of SAM while taking an expectation. Then we can bound the term composed by
the SAM and the previous second-order momentum due to the limited adaptive learning rate. We
prove that AdaSAM enjoys the property of linear speedup with respect to the batch size. Furthermore,
we apply AdaSAM to train RoBERTa model on the GLUE benchmark. We show that AdaSAM
achieves the best performance in experiments, where it wins 6 tasks of 8 tasks, and the linear speedup
can be clearly observed.

In the end, we summarize our contributions as follows:

• We present the first convergence guarantee of the adaptive SAM method under the non-
convex setting. Our results suggest that a large mini-batch can help convergence due to the
linear speedup with respect to batch size.

• We conduct a series of experiments on various tasks. The results show that AdaSAM
outperforms the most of state-of-art optimizers and the linear speedup is verified.

2 PRELIMINARY

2.1 PROBLEM SETUP

In this work, we focus on the following stochastic nonconvex optimization
min
x∈Rd

f(x) := Eξ∼Dfξ(x), (1)

where d is dimension of variable x, D is the unknown distribution of the data samples, fξ(x)
is a smooth and possibly non-convex function, and fξi(x) denotes the objective function at the
sampled data point ξi according to data distribution D. In machine learning, it covers empirical risk
minimization as a special case and f is the loss function. When the dataset D cover N data points,
i.e., D = {ξi, i = 1, 2, . . . , N}. Problem 1 reduces to the following finite-sum problem:

min
x∈Rd

f(x) :=
1

N

∑
i

fξi(x). (2)

Without additional declaration, we represent fi(x) as fξi(x) for simplification.

Notations. fi(x) is the i-th loss function while x ∈ Rd is the model parameter and d is the
parameter dimension. We denote the l2 norm as ∥ · ∥2. A Hadamard product is denoted as a⊙ b where
a,b are two vectors. For a vector a ∈ Rd,

√
a is denoted as a vector that the j-th value, (

√
a)(j), is

equal to the square root of aj

2.2 RELATED WORK

Sharpness-aware minimization Previous work shows that sharp minima may lead to poor gen-
eralization whereas flat minima perform betterJiang et al. (2020); Keskar et al. (2017); He et al.
(2019). Therefore, it is popular to consider sharpness to be closely related to the generalization.
Sharpness-aware minimization is proposed in Foret et al. (2021), which targets to find flat minimizers
by minimizing the training loss uniformly in entire neighborhood. Specifically, Foret et al. (2021)
aims to solve the following minimax saddle point problem:

min
x

max
∥δ∥≤ρ

f(x+ δ) + λ∥x∥22, (3)

where ρ ≥ 0 and λ ≥ 0 are two hyperparameters. That is, the perturbed loss function of f(x) in a
neighborhood is minimized instead of the original loss function f(x). By using Taylor expansion of
f(x+ δ) with respect to δ, the inner max problem is approximately solved via

δ∗(x) = argmax
∥δ∥≤ρ

f(x+ δ) ≈ argmax
∥δ∥≤ρ

f(x) + δ⊤∇f(x) = argmax
∥δ∥≤ρ

δ⊤∇f(x) = ρ
∇f(x)

∥∇f(x)∥
.

2

Under review as a conference paper at ICLR 2023

Dropping the quadratic term, (3) is simplified as the following minimization problem

min
x

f

(
x+ ρ

∇f(x)

∥∇f(x)∥

)
. (4)

The stochastic gradient of f
(
x+ ρ ∇f(x)

∥∇f(x)∥

)
on a batch data b includes the Hessian-vector product,

SAM further approximates the gradient by

∇xfb

(
x+ ρ

∇fb(x)

∥∇fb(x)∥

)
≈ ∇xfb(x)|x+ρ

∇fb(x)

∥∇fb(x)∥
.

Then, along the negative direction −∇xfb(x)|x+ρ
∇fb(x)

∥∇fb(x)∥
, SGD is applied to solve minimization

problem (4). It is easy to see that SAM requires twice gradient back-propagation, i.e., ∇fb(x) and
∇xfb(x)|x+ρ

∇fb(x)

∥∇fb(x)∥
. Due to the existence of hyperparameter ρ, one needs to carefully tune both ρ

and learning rate in SAM. In practice, ρ is predefined to control the radius of the neighborhood.

Some variants of SAM are proposed to improve its performance. Recently, several works Zhuang
et al. (2022); Kwon et al. (2021) have empirically incorporated adaptive learning rate with SAM and
shown impressive generalization accuracy, while their convergence analysis has never been studied.
ESAM Du et al. (2022) proposes an efficient method by sparsifying the gradients will alleviate the
double computation cost of backpropagation. ASAM Kwon et al. (2021) modifies SAM by adaptively
scaling the neighborhood so that the sharpness is invariant to parameters re-scaling. GSAM Zhuang
et al. (2022) simultaneously minimizes the perturbed function and a new defined surrogate gap
function to further improve the flatness of minimizers. Liu et al. Liu et al. (2022) also studies SAM
in large-batch training scenario and periodically update the perturbed gradient. On the other hand,
there are some works analyzing the convergence of the SAM such as Andriushchenko & Flammarion
(2022), where it does not consider a normalization step, i.e., the normalization in ∇fb(x)

∥∇fb(x)∥ .

Adaptive optimizer The adaptive learning rate method can automatically adjust the learning rate
based on the history gradients methods. The first adaptive method is Adagrad Duchi et al. (2011), and
it can achieve a better result than other first-order methods under the convex setting. While training
the deep neural network, Adagrad will decrease the learning rate rapidly and the result is not good.
Adadelta Zeiler (2012) is proposed to change this situation and introduces a learning rate based on
the exponential average history gradients. Adam Kingma & Ba (2015) adds momentum, and it shows
great performance in many tasks. However, Reddi et al Reddi et al. (2018) give an example that it
cannot converge even when the objective function is convex. They propose a new method called
AMSGrad that can solve this method. Many papers also analyze the convergence of the adaptive
methods Zhou et al. (2018); Chen et al. (2019); Zaheer et al. (2018); Ward et al. (2019); Défossez
et al. (2020); Zou et al. (2019); Chen et al. (2021).

3 ADASAM: SAM WITH ADAPTIVE LEARNING RATE

In this section, we introduce SAM with the adaptive learning rate (AdaSAM) from the AMSGrad
optimizer. Then, we will present the convergence results of AdaSAM. At last, we give the proof
sketch for main theorem.

AdaSAM is described as in Algorithm 1. In each iteration, a mini-batch gradient estimation gt at
point x+ ϵ(x) with batchsize b is computed, i.e.,

gt = ∇xfb(x)|xt+ϵ(xt) =
1

b

∑
i∈B

∇fξi(xt + δ(xt)).

Here, δ(xt) is the extra perturbed gradient step in SAM that is given as follows

δ(xt) = ρ
st
∥st∥

, where st = ∇xfb(x)|xt =
1

b

∑
i∈B

∇fξi(xt).

Then, exponential averaging of gt and the second-order term [gt]
2 are accumulatively computed as

mt and vt, respectively. AdaSAM then updates iterate along −mt with the adaptive learning rate
γηt.

3

Under review as a conference paper at ICLR 2023

Algorithm 1: AdaSAM: SAM with adaptive learning rate
Input: Initial parameters x0, m−1 = 0, v̂−1 = ϵ2(a small positive scalar to avoid the denominator

diminishing), base learning rate γ, neighborhood size ρ and momentum parameters β1, β2.
Output: Optimized parameter xT+1

1 for iteration t ∈ {0, 1, 2, ..., T − 1} do
2 Sample mini-batch B = {ξt1 , ξt2 , ..., ξt|B|};
3 Compute gradient st = ∇xfB(x)|xt = 1

b

∑
i∈B ∇fti(xt);

4 Compute δ(xt) = ρt
st

∥st∥ ;
5 Compute SAM gradient gt = ∇xfB(x)|xt+δ(xt);
6 mt = β1mt−1 + (1− β1)gt;
7 vt = β2vt−1 + (1− β2)[gt]

2;
8 v̂t = max(v̂t−1, vt);
9 ηt = 1/

√
v̂t;

10 xt+1 = xt − γmt ⊙ ηt;
11 end

Remark 3.1. Below, we give several comments on AdaSAM:

• When β2 = 1, the adaptive learning rate reduce to the diminishing one as SGD. Then,
AdaSAM recovers the classic SAM optimizer.

• If we drop out the 8-th line v̂t = max(v̂t−1, vt), then our algorithm becomes the variant of
Adam. The counterexample that Adam does not converge in the Reddi et al. (2018) also
holds for the SAM variant, while AdaSAM can converge.

3.1 CONVERGENCE ANALYSIS

Before stating our convergence analysis, we first introduce some useful assumptions.
Assumption 3.2. L-smooth. fi and f is differentiable with gradient Lipschitz property:

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥, ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥,∀x, y ∈ Rd, i = 1, 2, ..., N,

which also implies the descent inequality, i.e., fi(y) ≤ fi(x) + ⟨∇fi(x), y − x⟩+ L
2 ∥y − x∥2.

Assumption 3.3. Bounded variance. The estimator of the gradient is unbiased and the variance of
the stochastic gradient is bounded:

E∇fi(x) = ∇f(x), E∥∇fi(x)−∇f(x)∥2 ≤ σ2.

When the mini-batch size b is used, we have E∥∇fb(x)−∇f(x)∥2 ≤ σ2

b .

Assumption 3.4. Bounded stochastic gradients. The stochastic gradient is uniformly bounded, i.e.,

∥∇fi(x)∥∞ ≤ G, for any i = 1, . . . , N.

Remark 3.5. The above assumptions are commonly used in the proof of the convergence for adaptive
stochastic gradient methods such as Cutkosky & Orabona (2019); Huang et al. (2021); Zhou et al.
(2018); Chen et al. (2019).

Note that AdaSAM is the combination of AMSGrad and SAM. We briefly explain the main idea of
analysis in AMSGradReddi et al. (2018) and SAMAndriushchenko & Flammarion (2022).

We firstly notice that the main step in AMSGrad analysis is to estimate the expectation
E[xt+1 − xt] = −Emt ⊙ ηt = −E(1 − β1)gt ⊙ ηt − Eβ1mt−1 ⊙ ηt, which is conditioned on
the filtration σ(xt). First, we consider the situation that β1 = 0 which does not include the momen-
tum. Some works Zaheer et al. (2018); Savarese et al. (2021) apply delay technology to split the
dependence between gt and ηt, that is

Egt ⊙ ηt = E[gt ⊙ ηt−1] + E[gt ⊙ (ηt − ηt−1)] = ∇f(xt)⊙ ηt−1 + E[gt ⊙ (ηt − ηt−1)].

The second term E[gt ⊙ (ηt − ηt−1)] is dominated by the first term ∇f(xt)⊙ ηt−1. Then, it is not
difficult to get the convergence result of AMSGrad. When we apply the same strategy to AdaSAM, we

4

Under review as a conference paper at ICLR 2023

find that Egt⊙ηt−1 cannot be handled similarly because Egt = E∇xfb

(
x+ ρ ∇fb(x)

∥∇fb(x)∥

)
̸= ∇f(xt).

Inspired by (Andriushchenko & Flammarion, 2022, Lemma 16), our key observation is that

E∇xfb

(
x+ ρ

∇fb(x)

∥∇fb(x)∥

)
≈ E∇xfb

(
x+ ρ

∇f(x)

∥∇f(x)∥

)
= ∇xf

(
x+ ρ

∇f(x)

∥∇f(x)∥

)
and we prove the other terms such as E

(
∇xfb

(
x+ ρ ∇fb(x)

∥∇fb(x)∥

)
−∇xfb

(
x+ ρ ∇f(x)

∥∇f(x)∥

))
⊙ ηt−1

have small values that do not dominate the convergence rate.

Then, when we apply the momentum method, we find that the term Emt−1 ⊙ ηt cannot be ig-
nored. By introducing an auxiliary sequence zt = xt +

β1

1−β1
(xt − xt−1), we have E[zt+1 − zt] =

−E[β1

1−β1
γmt−1 ⊙ (ηt−1 − ηt)− γgt ⊙ ηt]. The first term contains the momentum term which has

a small value and we can remove it without hurting the convergence rate.
Theorem 3.6. Under the assumptions 3.2,3.3,3.4, and γ is a fixed number that satisfies that γ ≤ ϵ

16L ,
for the sequence {xt} generated by Algorithm 1, we have the following convergence rate

1

T

T−1∑
t=0

E∥∇f(xt)∥22 ≤ 2G(f(x0)− f∗)

γT
+

8GγL

ϵ

σ2

bϵ
+Φ (5)

where

Φ =
45GL2ρ2t

ϵ
+

2G3

(1− β1)T
d(

1

ϵ
− 1

G
) +

8GγL

ϵ

Lρ2t
ϵ

+
2(4 + (β1

1−β1
)2)γLG3

T
d(ϵ−2 −G−2) +

6γ2L2β2
1

(1− β1)2
dG3

ϵ3
. (6)

Corollary 3.7 (mini-batch linear speedup). Under the same conditions of Theorem 3.6. Furthermore,

when we choose the learning rate γ = O(
√

b
T) and neighborhood size ρ = O(

√
1
bT) , we have

1

T

T−1∑
t=0

E∥∇f(xt)∥22 = O

(
1√
bT

)
+O

(
1

bT

)
+O

(
1

T

)
+O

(
1

b
1
2T

3
2

)
+O

(
b

1
2

T
3
2

)
+O

(
b

T

)
.

When T is sufficiently large, we achieve the linear speedup convergence rate with respect to mini-batch
size b, i.e.,

1

T

T−1∑
t=0

E∥∇f(xt)∥22 = O

(
1√
bT

)
. (7)

Remark 3.8. To reach a O(δ) stationary point, when the batch size is 1, it needs T = O(1
δ2) iterations.

When the batch size is b, we need to run T = O(1
bδ2) steps. The method with batch size b is b times

faster than batch size of 1.

3.2 PROOF SKETCH

In this part, we will give the proof sketch of the Theorem 3.6. For the complete proof, please see
Appendix. We first introduce an auxiliary sequence zt = xt +

β1

1−β1
(xt − xt−1). By applying

L-smooth condition, we have

f(zt+1) ≤ f(zt) + ⟨∇f(zt), zt+1 − zt⟩+
L

2
∥zt+1 − zt∥2. (8)

Applying it to the sequence {zt} and using the delay strategy yield

f(zt+1)− f(zt) ≤ ⟨∇f(zt),
γβ1

1− β1
mt−1 ⊙ (ηt−1 − ηt)⟩+

L

2
∥zt+1 − zt∥2

+ ⟨∇f(zt),
γ

b

∑
i∈B

∇fi(xt + ρt
st

∥st∥
)⊙ (ηt−1 − ηt)⟩

5

Under review as a conference paper at ICLR 2023

+ ⟨∇f(zt)−∇f(xt),−
γ

b

∑
i∈B

∇fi(xt + ρt
st

∥st∥
)⊙ ηt−1⟩

+ ⟨∇f(xt),
γ

b

∑
i∈B

∇fi(xt + ρt
∇f(xt)

∥∇f(xt)∥
)⊙ ηt−1 −

γ

b

∑
i∈B

∇fi(xt + ρt
st

∥st∥
)⊙ ηt−1⟩

+ ⟨∇f(xt),−
γ

b

∑
i∈B

∇fi(xt + ρt
∇f(xt)

∥∇f(xt)∥
)⊙ ηt−1⟩. (9)

From the Lemma B.5, Lemma B.6, Lemma B.7 in appendix, we can bound the above terms in (9) as
follows

⟨∇f(zt),
γ

b

∑
i∈B

∇fi(xt + ρt
st

∥st∥
)⊙ (ηt−1 − ηt)⟩ ≤ γG2∥ηt−1 − ηt∥1 (10)

⟨∇f(zt),
γβ1

1− β1
mt−1 ⊙ (ηt−1 − ηt)⟩ ≤

γβ1

1− β1
G2∥ηt−1 − ηt∥1 (11)

⟨∇f(xt),
γ

b

∑
i∈B

∇fi(xt + ρt
∇f(xt)

∥∇f(xt)∥
)⊙ ηt−1 −

γ

b

∑
i∈B

∇fi(xt + ρt
st

∥st∥
)⊙ ηt−1⟩

≤ γ

2µ2
∥∇f(xt)⊙

√
ηt−1∥2 +

2µ2γL2ρ2t
ϵ

. (12)

Then we substitute them into the (9), and take the conditional expectation to get

Ef(zt+1)− f(zt) ≤ E⟨∇f(xt),−
γ

b

∑
i∈B

∇fi(xt + ρt
∇f(xt)

∥∇f(xt)∥
)⊙ ηt−1⟩+

L

2
E∥zt+1 − zt∥2

+
γ

2µ2
∥∇f(xt)⊙

√
ηt−1∥2 +

2µ2γL2ρ2t
ϵ

+
γ

1− β1
G2∥ηt−1 − ηt∥1

+ E⟨∇f(zt)−∇f(xt),−
γ

b

∑
i∈B

∇fi(xt + ρt
st

∥st∥
)⊙ ηt−1⟩, (13)

where µ > 0 is to be determined.

From the Lemma B.8, Lemma B.10 and Lemma B.9 in Appendix, we have

E⟨∇f(xt),−
γ

b

∑
i∈B

∇fi(xt + ρt
∇f(xt)

∥∇f(xt)∥
)⊙ ηt−1⟩

≤ −γ∥∇f(xt)⊙
√
ηt−1∥2 + E

γ

2α2
∥∇f(xt)⊙

√
ηt−1∥2 +

γα2L2ρ2t
2ϵ

(14)

L

2
E∥zt+1 − zt∥2 ≤ LG2γ2β2

1

(1− β1)2
E∥ηt − ηt−1∥2 + γ2L(3

1 + β

βϵ
(E∥∇f(xt)⊙

√
ηt−1∥2 +

Lρ2t
ϵ

+
σ2

bϵ
)

+ (1 + β)G2E∥ηt − ηt−1∥2) (15)

E⟨∇f(zt)−∇f(xt),−
γ

b

∑
i∈B

∇fi(xt + ρt
st

∥st∥
)⊙ ηt−1⟩

≤ γ3L2β2
1

2ϵ(1− β1)2
(
1

λ2
1

+
1

λ2
2

+
1

λ2
3

)
dG2

∞
ϵ2

+
γλ2

1

2
∥∇f(xt)⊙

√
ηt−1∥2 +

γL2ρ2t
2ϵ

(λ2
2 + 4λ2

3). (16)

Next, we substitute it into the (13). Taking the expectation over all history information yields

Ef(xt+1)− Ef(xt) ≤ −γ(1− 1

2µ2
− 1

2α2
− 3γL(1 + β)

βϵ
− λ2

1

2
)E∥∇f(xt)⊙

√
ηt−1∥2

+
2µ2γL2ρ2t

ϵ
+

γ

1− β1
G2E∥ηt−1 − ηt∥1 +

γ3L2β2
1

2ϵ(1− β1)2
(
1

λ2
1

+
1

λ2
2

+
1

λ2
3

)
dG2

∞
ϵ2

+
γL2ρ2t
2ϵ

(λ2
2 + 4λ2

3)

+
γα2L2ρ2

2ϵ
+

3γ2L(1 + β)

βϵ
(
Lρ2t
ϵ

+
σ2

bϵ
) + γ2LG2((

β1

1− β1
)2 + 1 + β)E∥ηt − ηt−1∥2. (17)

6

Under review as a conference paper at ICLR 2023

We set µ2 = α2 = 8, β = 3, λ2
1 = 1

4 , λ2
2 = λ2

3 = 1 and we choose 2γL
ϵ ≤ 1

8 . Note that ηt is bounded.
We have

γ

2G
E∥∇f(xt)∥2 ≤ γ

2
E∥∇f(xt)⊙

√
ηt−1∥2 (18)

≤ −Ef(xt+1) + Ef(xt) +
45γL2ρ2t

2ϵ
+

γ

1− β1
G2E∥ηt−1 − ηt∥1

+
4γ2L

ϵ
(
Lρ2t
ϵ

+
σ2

bϵ
) + (4 + (

β1

1− β1
)2)γ2LG2E∥ηt − ηt−1∥2 +

3γ3L2β2
1

(1− β1)2
dG2

∞
ϵ3

. (19)

Then, telescoping it from t = 0 to t = T − 1, and assuming γ is a constant, it follows that

1

T

T−1∑
t=0

E∥∇f(xt)∥2 ≤ 2G(f(x0)− f∗)

γT
+

8GγL

ϵ

σ2

bϵ
+

45GL2ρ2t
ϵ

+
2G3

(1− β1)T
d(

1

ϵ
− 1

G
)

+
8GγL

ϵ

Lρ2t
ϵ

+
2(4 + (β1

1−β1
)2)γLG3

T
d(ϵ−2 −G−2) +

6γ2L2β2
1

(1− β1)2
dG3

ϵ3
, (20)

which completes the proof.

4 EXPERIMENTS

In this section, we apply AdaSAM to training language models and compare it with SGD, AMSGrad,
and SAM to show the effectiveness of AdaSAM. Due to space limitations, more experimental results
visualization, task description, implementation details and ablation study are placed in the Appendix.

Table 1: Evaluating AMSGrad and AdaSAM on the GLUE benchmark with β1 = 0.9

Tasks Metric AMSGrad AdaSAM AdaSAM AdaSAM AdaSAM
rho=0.01 rho=0.005 rho=0.001 best

CoLA Mcc. 68 65.29 68.74 67.3 68.74

SST-2 Acc. 96.33 96.33 96.67 96.1 96.67

MRPC Acc. 90.2 91.18 90.93 90.2 91.18
F1 92.72 93.64 93.36 92.96 93.64

STS-B Pear.C. 91.72 90.13 91.64 91.9 91.9
Spea.C. 91.48 90.36 91.38 91.62 91.62

RTE Acc. 87.73 84.84 87.73 85.92 87.73

MNLI-m Acc. 90.67 90.97 90.88 90.45 90.97

MNLI-mm Acc. 90.41 90.42 90.4 90.4 90.42

QNLI Acc. 94.82 94.65 94.56 94.56 94.65

QQP F1 88.7 88.55 88.69 88.64 88.69
Acc. 91.41 91.23 91.33 91.27 91.33

Average Scores 89.52 88.97 89.69 89.28 89.8

relative improvements – -0.55 0.17 -0.24 0.28

4.1 EXPERIMENTAL SETUP

Tasks and Datasets. We evaluate the SAM with an adaptive learning rate on a popular benchmark, i.e. General
Language Understanding Evaluation (GLUE) Wang et al. (2018), which consists of several language understand-
ing tasks including sentiment analysis, question answering and textual entailment. For a fair comparison, we
report the results based on single-task, without multi-task or ensemble training. We evaluate the performance
with Accuracy (“Acc”) metric for most tasks, except the F1 scores for QQP and MRPC, the Pearson-Spearman
correlations (“Pcor/Scor”) for STS-B and the Matthew correlations (“Mcc”) for CoLA.

7

Under review as a conference paper at ICLR 2023

Table 2: Evaluating SGD and SAM on the GLUE benchmark with β1 = 0.9

Tasks Metric AMSGrad AdaSAM AdaSAM AdaSAM
rho=0.01 rho=0.005 best

CoLA Mcc. 9.25 4.64 66.76 66.76

SST-2 Acc. 50.92 95.87 95.76 95.87

MRPC Acc. 68.38 70.58 68.38 70.58
F1 81.22 81.98 81.22 81.98

STS-B Pear.C. 3.22 84.74 2 84.74
Spea.C. 1.9 85.57 2 85.57

RTE Acc. 55.6 52.71 52.71 52.71

MNLI-m Acc. 84.94 90.5 90.42 90.5

MNLI-mm Acc. 84.87 90.19 89.74 90.19

QNLI Acc. 63.61 94.44 94.6 94.6

QQP F1 85.6 84.7 86.72 86.72
Acc. 80.14 87.88 89.94 89.94

Average Scores 55.8 76.98 68.35 82.51

relative improvements – 21.18 12.55 26.71

Implementations. We conduct our experiments using a widely-used pretrained language model, RoBERTa-
large1 in the open-source toolkit fairseq2, with 24 transformer layers, a hidden size of 1024. For fine-tuning
on each task, we use different combinations of hyper-parameters, including the learning rate, the number of
epochs, the batch size, etc 3. In particular, for RTE, STS-B and MRPC of GLUE benchmark, we first fine-tune
the pre-trained RoBERTa-large model on the MNLI dataset and continue fine-tuning the RoBERTa-large-MNLI
model on the corresponding single-task corpus for better performance, as many prior works did Liu et al. (2019);
He et al. (2020). All models are trained on NVIDIA DGX SuperPOD cluster, in which each machine contains 8
x 40GB A100 GPUs.
Table 3: Evaluating AMSGrad and AdaSAM on the GLUE benchmark without momentum (β1 = 0)

Tasks Metric AMSGrad AdaSAM(rho=0.01) AdaSAM(rho=0.005) AdaSAM(best)
CoLA Mcc. 63.78 69.23 68.47 69.23
SST-2 Acc. 96.44 96.22 96.22 96.22

MRPC Acc. 89.71 89.96 89.96 89.96
F1 92.44 92.84 92.82 92.84

STS-B Pear.C. 89.98 88.83 91.59 91.59
Spea.C. 90.35 89.07 91.22 91.22

RTE Acc. 87.36 87 73.65 87
MNLI-m Acc. 90.65 90.83 90.75 90.83

MNLI-mm Acc. 90.35 90.41 90.42 90.42
QNLI Acc. 94.53 94.8 94.73 94.8

QQP F1 88.59 88.67 88.72 88.72
Acc. 91.27 91.38 91.46 91.46

Average Scores 88.79 89.1 88.33 89.52
relative improvements 0.32 -0.45 0.74

4.2 RESULTS ON GLUE BENCHMARK

We conduct the experiments on the SGD based method and adaptive learning rate method, respectively. Each
method contains SAM and the base optimizer. Table 1 shows the AMSGrad and SAM with adaptive learning
rate. For the SAM with an adaptive learning rate, we tune the neighborhood size from 0.01, 0.005, 0.001. The
result shows that SAM with an adaptive learning rate outperforms AMSGrad on 6 tasks of 8 tasks except for
QNLI and QQP. Overall, it improves the 0.28 than AMSGrad. Table 2 shows the result of SGD and SAM. We

1https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.tar.gz
2https://github.com/facebookresearch/fairseq
3Due to the space limitation, we show the details of the dataset and training setting in Appendix A.

8

https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.tar.gz
https://github.com/facebookresearch/fairseq

Under review as a conference paper at ICLR 2023

Table 4: Evaluating SGD and SAM on the GLUE benchmark β1 = 0

Tasks Metric SGD SAM(rho=0.01) SAM(rho=0.005) SAM(best)
CoLA Mcc. 0 41.91 58.79 58.79
SST-2 Acc. 51.72 95.3 81.54 95.3

MRPC Acc. 68.38 68.38 68.38 68.38
F1 81.22 81.22 81.22 81.22

STS-B Pear.C. 5.55 9.21 13.52 13.52
Spea.C. 7.2 10.38 16.6 16.6

RTE Acc. 51.27 53.07 53.79 53.79
MNLI-m Acc. 32.51 87.99 88.42 88.42

MNLI-mm Acc. 32.42 87.8 88.15 88.15
QNLI Acc. 53.32 51.24 92.95 92.95

QQP F1 0 83.44 83.84 83.84
Acc. 63.18 87.27 87.7 87.7

Average Scores 37.23 63.1 67.91 69.06
relative improvements - 25.87 30.68 31.82

tune the neighborhood size from 0.01, 0.005 for SAM. The results show that SAM is better than SGD on 7 tasks
of 8 tasks except for RTE. And SAM can significantly improve the performance.

Comparing the results of Table 1 and Table 2, we can find that the adaptive learning rate method is better than
SGD based method. SAM with an adaptive learning rate achieves the best metric on 6 tasks. In general, SAM
with an adaptive learning rate is better than the other methods.

In addition, we conduct the experiments the momentum is set to 0 to evaluate the influence of the adaptive
learning rate. Table 3 shows that SAM with adaptive learning rate outperforms AMSGrad on 6 tasks of 8
tasks except for SST-2 and RTE. In Table 4, we compare SGD and SAM, and without the momentum, SAM
outperforms SGD on all tasks. Under this situation, SAM with an adaptive learning rate method is better than
the other methods.

When comparing the result of Table 1 and Table 3, adaptive learning rate method is more important than the
momentum. When there is no momentum term, SAM with adaptive learning rate improves 0.74 than AMSGrad.
With a momentum term, SAM with adaptive learning rate improves only 0.28.

4.3 MINI-BATCH SPEEDUP

In this part, we test the performance with different batch sizes to validate the linear speedup property. The
experiments are conducted on the MRPC, RTE, and CoLA tasks. The batch size is set as 4, 8, 16, 32, respectively.
We scale the learning rate as

√
N , which is similar as Li et al. (2021). N is the batch size. The results show that

the training loss decreases faster as the batchsize increases, and the loss curve with the batch size of 32 achieves
nearly half iterations as the curve with the batch size of 16.

0 200 400 600 800 1000
Steps

0.125

0.250

0.375

0.500

0.625

0.750

0.875

1.000

1.125

T
ra

in
in

g
lo

ss

4

8

16

32

(a) MRPC

0 200 400 600 800 1000 1200
Steps

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15

T
ra

in
in

g
lo

ss

4

8

16

32

(b) RTE

0 250 500 750 1000 1250 1500 1750 2000
Steps

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15

T
ra

in
in

g
lo

ss

4

8

16

32

(c) CoLA

Figure 1: The linear speedup of SAM-AMSGrad with the number of batch size of 4, 8, 16, 32.

5 CONCLUSION

In this work, we study the convergence rate of Sharpness aware minimization (SAM) optimizer with adaptive
learning rate from AMSGrad in the stochastic non-convex setting. To the best of our knowledge, we are the first
to provide the non-trivial O(1/

√
bT) convergence rate of SAM with an adaptive learning rate, which achieves a

linear speedup property with respect to mini-batch size b. We have conducted extensive experiments on several
NLP tasks, which verifies that AdaSAM could achieve superior performance compared with AMSGrad and
SAM optimizers. Future works include extending AdaSAM to the distributed setting and reducing the twice
gradient back-propagation cost.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware minimization. In
International Conference on Machine Learning, pp. 639–668. PMLR, 2022.

Congliang Chen, Li Shen, Fangyu Zou, and Wei Liu. Towards practical adam: Non-convexity, convergence
theory, and mini-batch acceleration. arXiv preprint arXiv:2101.05471, 2021.

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of adam-type algorithms
for non-convex optimization. In International Conference on Learning Representations, 2019.

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex sgd. Advances in
neural information processing systems, 32, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An
image is worth 16x16 words: Transformers for image recognition at scale. In International Conference on
Learning Representations, 2021.

Jiawei Du, Hanshu Yan, Jiashi Feng, Joey Tianyi Zhou, Liangli Zhen, Rick Siow Mong Goh, and Vincent Tan.
Efficient sharpness-aware minimization for improved training of neural networks. In International Conference
on Learning Representations, 2022.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of machine learning research, 12(7), 2011.

Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas Usunier. On the convergence of adam and adagrad.
CoRR, abs/2003.02395, 2020. URL https://arxiv.org/abs/2003.02395.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization for
efficiently improving generalization. In International Conference on Learning Representations, 2021.

Haowei He, Gao Huang, and Yang Yuan. Asymmetric valleys: Beyond sharp and flat local minima. Advances in
neural information processing systems, 32, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert with
disentangled attention. In ICLR, 2020.

Feihu Huang, Junyi Li, and Heng Huang. Super-adam: faster and universal framework of adaptive gradients.
Advances in Neural Information Processing Systems, 34, 2021.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic generalization
measures and where to find them. In International Conference on Learning Representations, 2020.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang. On
large-batch training for deep learning: Generalization gap and sharp minima. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR (Poster), 2015. URL
http://arxiv.org/abs/1412.6980.

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-aware minimiza-
tion for scale-invariant learning of deep neural networks. In International Conference on Machine Learning,
pp. 5905–5914. PMLR, 2021.

Xiaoyun Li, Belhal Karimi, and Ping Li. On distributed adaptive optimization with gradient compression. In
International Conference on Learning Representations, 2021.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv, 2019.

10

https://arxiv.org/abs/2003.02395
http://arxiv.org/abs/1412.6980

Under review as a conference paper at ICLR 2023

Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and scalable sharpness-
aware minimization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 12360–12370, June 2022.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In International
Conference on Learning Representations, 2018.

Pedro Savarese, David McAllester, Sudarshan Babu, and Michael Maire. Domain-independent dominance of
adaptive methods. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual,
June 19-25, 2021, pp. 16286–16295. Computer Vision Foundation / IEEE, 2021. doi: 10.1109/CVPR46437.
2021.01602.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. Glue: A multi-task
benchmark and analysis platform for natural language understanding. In EMNLP, 2018.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex landscapes.
In International Conference on Machine Learning, pp. 6677–6686. PMLR, 2019.

Yufei Xu, Qiming Zhang, Jing Zhang, and Dacheng Tao. Vitae: Vision transformer advanced by exploring
intrinsic inductive bias. Advances in Neural Information Processing Systems, 34, 2021.

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive methods for
nonconvex optimization. Advances in neural information processing systems, 31, 2018.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv Kumar, and
Suvrit Sra. Why are adaptive methods good for attention models? Advances in Neural Information Processing
Systems, 33:15383–15393, 2020.

Dongruo Zhou, Jinghui Chen, Yuan Cao, Yiqi Tang, Ziyan Yang, and Quanquan Gu. On the convergence of
adaptive gradient methods for nonconvex optimization. arXiv preprint arXiv:1808.05671, 2018.

Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha C Dvornek, sekhar tatikonda,
James s Duncan, and Ting Liu. Surrogate gap minimization improves sharpness-aware training. In Interna-
tional Conference on Learning Representations, 2022.

Fangyu Zou, Li Shen, Zequn Jie, Weizhong Zhang, and Wei Liu. A sufficient condition for convergences of adam
and rmsprop. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
11127–11135, 2019.

11

Under review as a conference paper at ICLR 2023

A EXPERIMENTAL SETTINGS

Table 5: Experimental settings and data divisions upon different downstream tasks. Notably, for each
tasks in GLUE benchmark, we provide the number of classes (“classes"), the learning rate (“lr"), the
batch size (“bsz"), the total number of updates (“total"), the number of warmup updates (“warmup")
and the number of GPUs (“GPUs") during fine-tuning, respectively.

MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B
experimental settings upon different downstream tasks

–classes 3 2 2 2 2 2 2 1
–lr 1e-5 1e-5 1e-5 2e-5 1e-5 1e-5 1e-5 2e-5

–bsz 256 128 256 32 64 32 32 32
–total 15,484 8,278 14,453 1,018 10,467 1,148 2,668 1,799

–warmup 929 496 867 61 628 68 160 107
–GPUs 4 4 8 2 2 2 2 2

data divisions for each dataset
train 392,720 104,743 363,870 2,491 67,350 5,801 8,551 5,749
dev 9,815 5,463 40,431 277 873 4,076 1,043 1,500
test 9,796 5,461 390,956 3,000 1,821 1,725 1,063 1,379

The GLUE benchmark contains 8 tasks, they are RTE, STS-B, CoLA, SST-2, MNLI, MRPC, QNLI and QQP.
CoLA is a single sentence task. Each sentence has a label 1 and -1. 1 represents that it is a grammatical sentence,
while -1 represents that it is illegal. Matthews correlation coefficient, dubbed mcc is used as our evaluation
metric. STS-B is a similarity and paraphrase task. Each sample has a pair of a paragraph. People annotated the
sample from 1 to 5 based on the similarity between the two paragraphs. The metric is Pearson and Spearman,
dubbed p/s correlation coefficients. RTE is an inference task. Each sample has two sentences. If two sentences
have a relation of entailment, we view them as a positive sample. If not, they compose of a negative sample. In
the RTE task, the metric is the accuracy, dubbed acc. SST-2 is a single sentence task and its metric is the accuracy.
MNLI is a sentence-level task that has 3 classes. They are entailment, contradiction and neutral. MRPC is a task
to classify whether the sentences in the pair are equivalent. QNLI is a question-answering task. If the sentence
contains the answer to the question, then it is a positive sample. QQP is a social question-answering task that
consists of question pairs from Quora. It determines whether the questions are equivalent. The metric of MNLI,
MRPC, QNLI, QQP is accuracy.

B PROOF

We set zt = xt +
β1

1−β1
(xt − xt−1) for t ≥ 0 and we assume x−1 = 0 and m−1 = 0.

We have that

zt+1 − zt = xt+1 +
β1

1− β1
(xt+1 − xt)− xt −

β1

1− β1
(xt − xt−1) (21)

=
1

1− β1
(xt+1 − xt)−

β1

1− β1
(xt − xt−1) (22)

= − 1

1− β1
γmt ⊙ ηt +

β1

1− β1
(xt − xt−1)γmt−1 ⊙ ηt−1 (23)

= − 1

1− β1
γ(β1mt−1 + (1− β1)gt)⊙ ηt +

β1

1− β1
(xt − xt−1)γmt−1 ⊙ ηt−1 (24)

=
β1

1− β1
γmt−1 ⊙ (ηt−1 − ηt)− γgt ⊙ ηt (25)

By applying L-smooth, we have

f(zt+1) ≤ f(zt) + ⟨∇f(zt), zt+1 − zt⟩+
L

2
∥zt+1 − zt∥2 (26)

We re-organize it, and we have

f(zt+1)− f(zt)

≤ ⟨∇f(zt), zt+1 − zt⟩+
L

2
∥zt+1 − zt∥2 (27)

12

Under review as a conference paper at ICLR 2023

= ⟨∇f(zt),
γβ1

1− β1
mt−1 ⊙ (ηt−1 − ηt)⟩+ ⟨∇f(zt),−γgt ⊙ ηt⟩+

L

2
∥zt+1 − zt∥2 (28)

= ⟨∇f(zt),
γβ1

1− β1
mt−1 ⊙ (ηt−1 − ηt)⟩+

L

2
∥zt+1 − zt∥2

+ ⟨∇f(zt),
γt
b

∑
i∈B

∇fi(xt + ρt
st

∥st∥
)⊙ (ηt−1 − ηt)⟩

+ ⟨∇f(zt),−
γt
b

∑
i∈B

∇fi(xt + ρt
st

∥st∥
)⊙ ηt−1⟩ (29)

= ⟨∇f(zt),
γβ1

1− β1
mt−1 ⊙ (ηt−1 − ηt)⟩+

L

2
∥zt+1 − zt∥2

+ ⟨∇f(zt),
γt
b

∑
i∈B

∇fi(xt + ρt
st

∥st∥
)⊙ (ηt−1 − ηt)⟩

+ ⟨∇f(zt)−∇f(xt),−
γt
b

∑
i∈B

∇fi(xt + ρt
st

∥st∥
)⊙ ηt−1⟩

+ ⟨∇f(xt),−
γt
b

∑
i∈B

∇fi(xt + ρt
st

∥st∥
)⊙ ηt−1⟩ (30)

= ⟨∇f(zt),
γβ1

1− β1
mt−1 ⊙ (ηt−1 − ηt)⟩+

L

2
∥zt+1 − zt∥2

+ ⟨∇f(zt),
γt
b

∑
i∈B

∇fi(xt + ρt
st

∥st∥
)⊙ (ηt−1 − ηt)⟩

+ ⟨∇f(zt)−∇f(xt),−
γt
b

∑
i∈B

∇fi(xt + ρt

∑
∇fi(xt)

∥
∑

∇fi(xt)∥
)⊙ ηt−1⟩

+ ⟨∇f(xt),
γt
b

∑
i∈B

∇fi(xt + ρt
∇f(xt)

∥∇f(xt)∥
)⊙ ηt−1 −

γt
b

∑
i∈B

∇fi(xt + ρt
st

∥st∥
)⊙ ηt−1⟩

+ ⟨∇f(xt),−
γt
b

∑
i∈B

∇fi(xt + ρt
∇f(xt)

∥∇f(xt)∥
)⊙ ηt−1⟩. (31)

From the Lemma B.5, Lemma B.6, Lemma B.7, we have

⟨∇f(zt),
γt
b

∑
i∈B

∇fi(xt + ρt
st

∥st∥
)⊙ (ηt−1 − ηt)⟩ ≤ γtG

2∥ηt−1 − ηt∥1, (32)

⟨∇f(zt),
γβ1

1− β1
mt−1 ⊙ (ηt−1 − ηt)⟩ ≤

γβ1

1− β1
G2∥ηt−1 − ηt∥1, (33)

⟨∇f(xt),
ηt
b

∑
i∈B

∇fi(xt + ρt
∇f(xt)

∥∇f(xt)∥
)⊙ ηt−1 −

γt
b

∑
i∈B

∇fi(xt + ρt
st

∥st∥
)⊙ ηt−1⟩

≤ γt
2µ2

∥∇f(xt)⊙
√
ηt−1∥2 +

2µ2γtL
2ρ2t

ϵ
. (34)

Taking conditional expectation, we have

Ef(zt+1)− f(zt) (35)

≤ E⟨∇f(xt),−
γt
b

∑
i∈B

∇fi(xt + ρt
∇f(xt)

∥∇f(xt)∥
)⊙ ηt−1⟩+

L

2
E∥zt+1 − zt∥2

+
γt
2µ2

∥∇f(xt)⊙
√
ηt−1∥2 +

2µ2γtL
2ρ2t

ϵ
+

γ

1− β1
G2∥ηt−1 − ηt∥1

+ E⟨∇f(zt)−∇f(xt),−
γt
b

∑
i∈B

∇fi(xt + ρt
st

∥st∥
)⊙ ηt−1⟩ (36)

where µ > 0 is to be determined.

For the term

E⟨∇f(xt),−
γt
b

∑
i∈B

∇fi(xt + ρt
∇f(xt)

∥∇f(xt)∥
)⊙ ηt−1⟩, (37)

13

Under review as a conference paper at ICLR 2023

the term
L

2
E∥zt+1 − zt∥2, (38)

and the term
E⟨∇f(zt)−∇f(xt),−

γt
b

∑
i∈B

∇fi(xt + ρt
st

∥st∥
)⊙ ηt−1⟩, (39)

we introduce the Lemma B.8, the Lemma B.10 and the Lemma B.9. We take the expectation over the whole
processing and we have
Ef(zt+1)− Ef(zt)

≤ γt
2µ2

E∥∇f(xt)⊙
√
ηt−1∥2 +

2µ2γtL
2ρ2t

ϵ
+

γ

1− β1
G2E∥ηt−1 − ηt∥1

− γtE∥∇f(xt)⊙
√
ηt−1∥2 + E γt

2α2
E∥∇f(xt)⊙

√
ηt−1∥2 +

γtα
2L2ρ2

2ϵ
+

LG2γ2β2
1

(1− β1)2
E∥ηt − ηt−1∥2

+ γ2
tL(3

1 + β

βϵ
(E∥∇f(xt)⊙

√
ηt−1∥2 +

Lρ2t
ϵ

+
σ2

bϵ
) + (1 + β)G2E∥ηt − ηt−1∥2)

+
γ3L2β2

1

2ϵ(1− β1)2
(
1

λ2
1

+
1

λ2
2

+
1

λ2
3

)
dG2

∞

ϵ2
+

γλ2
1

2
∥∇f(xt)⊙

√
ηt−1∥2 +

γL2ρ2t
2ϵ

(λ2
2 + 4λ2

3) (40)

= −γt(1−
1

2µ2
− 1

2α2
− 3γL(1 + β)

βϵ
− λ2

1

2
)E∥∇f(xt)⊙

√
ηt−1∥2 +

2µ2γtL
2ρ2t

ϵ
+

γ

1− β1
G2E∥ηt−1 − ηt∥1

+
γtα

2L2ρ2

2ϵ
+

3γ2
tL(1 + β)

βϵ
(
Lρ2t
ϵ

+
σ2

bϵ
) + γ2

tLG
2((

β1

1− β1
)2 + 1 + β)E∥ηt − ηt−1∥2

+
γ3L2β2

1

2ϵ(1− β1)2
(
1

λ2
1

+
1

λ2
2

+
1

λ2
3

)
dG2

∞

ϵ2
+

γL2ρ2t
2ϵ

(λ2
2 + 4λ2

3). (41)

We set µ2 = α2 = 8, β = 3, λ2
1 = 1

4
, λ2

2 = λ2
3 = 1 and we choose 2γtL

ϵ
≤ 1

8
. So we have

Ef(xt+1)− Ef(xt)

≤ −γt
2
E∥∇f(xt)⊙

√
ηt−1∥2 +

16γtL
2ρ2t

ϵ
+

γ

1− β1
G2E∥ηt−1 − ηt∥1

+
4γtL

2ρ2

ϵ
+

4γ2
tL

ϵ
(
Lρ2t
ϵ

+
σ2

bϵ
) + (4 + (

β1

1− β1
)2)γ2

tLG
2E∥ηt − ηt−1∥2

+
3γ3L2β2

1

ϵ(1− β1)2
dG2

∞

ϵ2
+

5γL2ρ2t
2ϵ

(42)

We re-arrange it and ηt is bounded. We have
γt
2G

E∥∇f(xt)∥2 ≤ γt
2
E∥∇f(xt)⊙

√
ηt−1∥2 (43)

≤ −Ef(xt+1) + Ef(xt) +
45γtL

2ρ2t
2ϵ

+
γ

1− β1
G2E∥ηt−1 − ηt∥1

+
4γ2

tL

ϵ
(
Lρ2t
ϵ

+
σ2

bϵ
) + (4 + (

β1

1− β1
)2)γ2

tLG
2E∥ηt − ηt−1∥2 +

3γ3L2β2
1

(1− β1)2
dG2

∞

ϵ3
. (44)

We summary it from t = 0 to t = T − 1, and we assume γt is a constant, and we have

1

T

T−1∑
t=0

E∥∇f(xt)∥2 ≤ 2G
Ef(x0)− Ef(xt+1)

γtT
+

45GL2ρ2t
ϵ

+
2G3

(1− β1)T
E

T−1∑
t=0

∥ηt−1 − ηt∥1

+
8GγtL

ϵ
(
Lρ2t
ϵ

+
σ2

bϵ
) +

2(4 + (β1
1−β1

)2)γtLG
3

T
E

T−1∑
t=0

∥ηt − ηt−1∥2 +
6γ2L2β2

1

(1− β1)2
dG3

ϵ3
(45)

≤ 2G(f(x0)− f∗)

γtT
+

45GL2ρ2t
ϵ

+
2G3

(1− β1)T
d(

1

ϵ
− 1

G
) +

8GγtL

ϵ
(
Lρ2t
ϵ

+
σ2

bϵ
)

+
2(4 + (β1

1−β1
)2)γtLG

3

T
d(ϵ−2 −G−2) +

6γ2L2β2
1

(1− β1)2
dG3

ϵ3
(46)

=
2G(f(x0)− f∗)

γtT
+

8GγtL

ϵ

σ2

bϵ
+

45GL2ρ2t
ϵ

+
2G3

(1− β1)T
d(

1

ϵ
− 1

G
) +

8GγtL

ϵ

Lρ2t
ϵ

+
2(4 + (β1

1−β1
)2)γtLG

3

T
d(ϵ−2 −G−2) +

6γ2L2β2
1

(1− β1)2
dG3

ϵ3
. (47)

14

Under review as a conference paper at ICLR 2023

B.1 TECHNICAL LEMMA

Lemma B.1. Given two vectors a, b ∈ Rd, we have ⟨a, b⟩ ≤ λ2

2
∥a∥2 + 1

2λ2 ∥b∥2 for parameter λ, ∀λ ∈
(1,+∞).

Proof.

RHS =
λ2

2

d∑
j=1

(a)2j +
1

2λ2

d∑
j=1

(b)2j ≥
d∑

j=1

2

√
λ2

2
(a)2j ×

1

2λ2
(b)2j =

d∑
j=1

|(a)j | × |(b)j | ≥ LHS. (48)

Lemma B.2. For any vector x,y ∈ Rd, we have

∥x⊙ y∥2 ≤ ∥x∥2 × ∥y∥2∞ ≤ ∥x∥2 × ∥y∥2. (49)

Proof. The first inequality can be derived from that
∑d

i=1(x
2
i y

2
i) ≤

∑d
i=1(x

2
i ∥y∥2∞). The second inequality

follows from that ∥y∥2∞ ≤ ∥y∥2.

Lemma B.3. η is bounded, i.e., 1
G∞

≤ (ηt)j ≤ 1
ϵ

.

Proof. As the gradient is bounded by G and (ηt)j = 1√
(v̂t)j

. Follow the update rule, we have 1
G∞

≤ (ηt)j ≤
1
ϵ

.

Lemma B.4. For the term defined in the algorithm, we have

1

T
E

T−1∑
t=0

∥ηt−1 − ηt∥1 ≤ d

T
(
1

ϵ
− 1

G
) (50)

Proof. (ηt)i, the i-th dimension of ηt deceases as t increases. So we have

1

T
E

T−1∑
t=0

∥ηt−1 − ηt∥1 = E 1

T

d∑
i=1

T−1∑
t=0

|(ηt−1)i − (ηt)i|

≤ E 1

T

d∑
i=1

((η−1)i − (ηT−1)i) ≤ E 1

T

d∑
i=1

(
1

ϵ
− 1

G
) =

d

T
(
1

ϵ
− 1

G
) (51)

Lemma B.5. For the term defined in the algorithm, we have

⟨∇f(zt),
γt
b

∑
i∈B

∇fi(xt + ρt
st

∥st∥
)⊙ (ηt−1 − ηt)⟩ ≤ γtG

2∥ηt−1 − ηt∥1 (52)

Proof.

⟨∇f(zt),
γt
b

∑
i∈B

∇fi(xt + ρt
st

∥st∥
)⊙ (ηt−1 − ηt)⟩

≤ γt

d∑
j=1

|(∇f(zt))(j)| × |(1
b

∑
i∈B

∇fi(xt + ρt

∑
∇fi(xt)

∥
∑

∇fi(xt)∥
)⊙ (ηt−1 − ηt))(j)| (53)

≤ γtG

d∑
j=1

|((1
b

∑
i∈B

∇fi(xt + ρt

∑
∇fi(xt)

∥
∑

∇fi(xt)∥
)⊙ (ηt−1 − ηt))(j)| (54)

≤ γtG

b

d∑
j=1

∑
i∈B

|((∇fi(xt + ρt

∑
∇fi(xt)

∥
∑

∇fi(xt)∥
)⊙ (ηt−1 − ηt))(j)| (55)

=
γtG

b

d∑
j=1

∑
i∈B

|(∇fi(xt + ρt

∑
∇fi(xt)

∥
∑

∇fi(xt)∥
)(j) × (ηt−1 − ηt)(j)| (56)

15

Under review as a conference paper at ICLR 2023

≤ γtG
2

b

d∑
j=1

∑
i∈B

|(ηt−1 − ηt)(j)| (57)

= γtG
2∥ηt−1 − ηt∥1 (58)

Lemma B.6. For the term defined in the algorithm, we have

⟨∇f(zt),
γβ1

1− β1
mt−1 ⊙ (ηt−1 − ηt)⟩ ≤

γβ1

1− β1
G2∥ηt−1 − ηt∥1 (59)

Proof.

⟨∇f(zt),
γβ1

1− β1
mt−1 ⊙ (ηt−1 − ηt)⟩

≤ γβ1

1− β1

d∑
j=1

|(∇f(zt))(j)| × |(mt−1 ⊙ (ηt−1 − ηt))(j)| (60)

≤ γβ1

1− β1
G

d∑
j=1

|(mt−1 ⊙ (ηt−1 − ηt))(j)| (61)

=
γβ1

1− β1

d∑
j=1

|(mt−1)(j) × (ηt−1 − ηt)(j)| (62)

≤ γβ1

1− β1
G2

d∑
j=1

|(ηt−1 − ηt)(j)| (63)

=
γβ1

1− β1
G2∥ηt−1 − ηt∥1 (64)

Lemma B.7. For the term defined in the algorithm, we have

⟨∇f(xt),
γt
b

∑
i∈B

∇fi(xt + ρt
∇f(xt)

∥∇f(xt)∥
)⊙ ηt−1 −

γt
b

∑
i∈B

∇fi(xt + ρt
st

∥st∥
)⊙ ηt−1⟩

≤ γt
2µ2

∥∇f(xt)⊙
√
ηt−1∥2 +

2µ2γtL
2ρ2t

ϵ
. (65)

Proof.

⟨∇f(xt),
γt
b

∑
i∈B

∇fi(xt + ρt
∇f(xt)

∥∇f(xt)∥
)⊙ ηt−1 −

γt
b

∑
i∈B

∇fi(xt + ρt
st

∥st∥
)⊙ ηt−1⟩

= ⟨∇f(xt)⊙
√
ηt−1,

γt
b

∑
i∈B

(∇fi(xt + ρt
∇f(xt)

∥∇f(xt)∥
)−∇fi(xt + ρt

∑
i∈B ∇fi(xt)

∥
∑

i∈B ∇fi(xt)∥
))⊙√

ηt−1⟩

(66)

≤ µ2γt
2b2

∥
∑

(∇fi(xt + ρt
∇f(xt)

∥∇f(xt)∥
)−∇fi(xt + ρt

∑
i∈B ∇fi(xt)

∥
∑

i∈B ∇fi(xt)∥
))⊙√

ηt−1∥2

+
γt
2µ2

∥∇f(xt)⊙
√
ηt−1∥2 (67)

≤ +
µ2γt
2b

∑
∥∇fi(xt + ρt

∇f(xt)

∥∇f(xt)∥
)−∇fi(xt + ρt

∑
i∈B ∇fi(xt)

∥
∑

i∈B ∇fi(xt)∥
)⊙√

ηt−1∥2

+
γt
2µ2

∥∇f(xt)⊙
√
ηt−1∥2 (68)

≤ +
µ2γt
2b

∑
∥∇fi(xt + ρt

∇f(xt)

∥∇f(xt)∥
)−∇fi(xt + ρt

∑
i∈B ∇fi(xt)

∥
∑

i∈B ∇fi(xt)∥
)∥2 × ∥√ηt−1∥2∞

+
γt
2µ2

∥∇f(xt)⊙
√
ηt−1∥2 (69)

16

Under review as a conference paper at ICLR 2023

≤ γt
2µ2

∥∇f(xt)⊙
√
ηt−1∥2 +

µ2γtL
2ρ2t

2bϵ

∑
∥ ∇f(xt)

∥∇f(xt)∥
−

∑
i∈B ∇fi(xt)

∥
∑

i∈B ∇fi(xt)∥
∥2 (70)

≤ γt
2µ2

∥∇f(xt)⊙
√
ηt−1∥2 +

2µ2γtL
2ρ2t

ϵ
. (71)

Lemma B.8. For the term defined in the algorithm, we have

E⟨∇f(xt),−
γt
b

∑
i∈B

∇fi(xt + ρt
∇f(xt)

∥∇f(xt)∥
)⊙ ηt−1⟩

≤ −γt∥∇f(xt)⊙
√
ηt−1∥2 + E γt

2α2
∥∇f(xt)⊙

√
ηt−1∥2 +

γtα
2L2ρ2t
2ϵ

(72)

Proof.

E⟨∇f(xt),−
γt
b

∑
i∈B

∇fi(xt + ρt
∇f(xt)

∥∇f(xt)∥
)⊙ ηt−1⟩

= −γt∥∇f(xt)⊙
√
ηt−1∥2 + E⟨∇f(xt),

γt
b

∑
i∈B

(∇f(xt)−∇fi(xt + ρt
∇f(xt)

∥∇f(xt)∥
))⊙ ηt−1⟩ (73)

= −γt∥∇f(xt)⊙
√
ηt−1∥2 + E⟨∇f(xt),

γt
b

∑
i∈B

(∇fi(xt)−∇fi(xt + ρt
∇f(xt)

∥∇f(xt)∥
))⊙ ηt−1⟩ (74)

≤ −γt∥∇f(xt)⊙
√
ηt−1∥2 + E γt

2α2
∥∇f(xt)⊙

√
ηt−1∥2

+
γtα

2

2
E∥1

b

∑
i∈B

(∇fi(xt)−∇fi(xt + ρt
∇f(xt)

∥∇f(xt)∥
))⊙√

ηt−1∥2 (75)

≤ −γt∥∇f(xt)⊙
√
ηt−1∥2 + E γt

2α2
∥∇f(xt)⊙

√
ηt−1∥2

+
γtα

2

2ϵ
E∥1

b

∑
i∈B

(∇fi(xt)−∇fi(xt + ρt
∇f(xt)

∥∇f(xt)∥
))∥2 (76)

≤ −γt∥∇f(xt)⊙
√
ηt−1∥2 + E γt

2α2
∥∇f(xt)⊙

√
ηt−1∥2

+
γtα

2

2bϵ
E
∑
i∈B

∥(∇fi(xt)−∇fi(xt + ρt
∇f(xt)

∥∇f(xt)∥
))∥2 (77)

≤ −γt∥∇f(xt)⊙
√
ηt−1∥2 + E γt

2α2
∥∇f(xt)⊙

√
ηt−1∥2 +

γtα
2L2ρ2t
2bϵ

E
∑
i∈B

∥ ∇f(xt)

∥∇f(xt)∥
∥2 (78)

= −γt∥∇f(xt)⊙
√
ηt−1∥2 + E γt

2α2
∥∇f(xt)⊙

√
ηt−1∥2 +

γtα
2L2ρ2t
2ϵ

(79)

Lemma B.9. For the term defined in the algorithm, we have

E⟨∇f(zt)−∇f(xt),−
γt
b

∑
i∈B

∇fi(xt + ρt
st

∥st∥
)⊙ ηt−1⟩

≤ γ3L2β2
1

2ϵ(1− β1)2
(
1

λ2
1

+
1

λ2
2

+
1

λ2
3

)
dG2

∞

ϵ2
+

γλ2
1

2
∥∇f(xt)⊙

√
ηt−1∥2 +

γL2ρ2t
2ϵ

(λ2
2 + 4λ2

3). (80)

Proof.

E⟨∇f(zt)−∇f(xt),−
γt
b

∑
i∈B

∇fi(xt + ρt
st

∥st∥
)⊙ ηt−1⟩ (81)

= γE⟨(∇f(xt)−∇f(zt))⊙
√
ηt−1,

1

b

∑
i∈B

∇fi(xt + ρt

∑
i∈B ∇fi(xt)

∥
∑

i∈B ∇fi(xt)∥
)⊙√

ηt−1⟩ (82)

= γE⟨(∇f(xt)−∇f(zt))⊙
√
ηt−1,∇f(xt)⊙

√
ηt−1⟩

+ γE⟨(∇f(xt)−∇f(zt))⊙
√
ηt−1,

1

b

∑
i∈B

(∇fi(xt + ρt
∇f(xt)

∥∇f(xt)∥
)−∇fi(xt))⊙

√
ηt−1⟩

17

Under review as a conference paper at ICLR 2023

+ γE⟨(∇f(xt)−∇f(zt))⊙
√
ηt−1,

1

b

∑
i∈B

(∇fi(xt + ρt

∑
i∈B ∇fi(xt)

∥
∑

i∈B ∇fi(xt)∥
)−∇fi(xt + ρt

∇f(xt)

∥∇f(xt)∥
)⊙√

ηt−1⟩

(83)

≤ γ

2
(
1

λ2
1

+
1

λ2
2

+
1

λ2
3

)E∥(∇f(xt)−∇f(zt))⊙
√
ηt−1∥2 +

γλ2
1

2
∥∇f(xt)⊙

√
ηt−1∥2

+
γλ2

2

2
E∥1

b

∑
i∈B

(∇fi(xt + ρt
∇f(xt)

∥∇f(xt)∥
)−∇fi(xt))⊙

√
ηt−1∥2

+
γλ2

3

2
E∥1

b

∑
i∈B

(∇fi(xt + ρt

∑
i∈B ∇fi(xt)

∥
∑

i∈B ∇fi(xt)∥
)−∇fi(xt + ρt

∇f(xt)

∥∇f(xt)∥
)⊙√

ηt−1∥2 (84)

≤ γ

2
(
1

λ2
1

+
1

λ2
2

+
1

λ2
3

)E∥(∇f(xt)−∇f(zt))⊙
√
ηt−1∥2 +

γλ2
1

2
∥∇f(xt)⊙

√
ηt−1∥2

+
γλ2

2L
2ρ2t

2ϵ
+

2λ2
3γL

2ρ2t
ϵ

(85)

≤ γL2

2ϵ
(
1

λ2
1

+
1

λ2
2

+
1

λ2
3

)E∥zt − xt∥2 +
γλ2

1

2
∥∇f(xt)⊙

√
ηt−1∥2

+
γλ2

2L
2ρ2t

2ϵ
+

2λ2
3γL

2ρ2t
ϵ

(86)

=
γ3L2β2

1

2ϵ(1− β1)2
(
1

λ2
1

+
1

λ2
2

+
1

λ2
3

)∥mt−1 ⊙ ηt− 1∥2 + γλ2
1

2
∥∇f(xt)⊙

√
ηt−1∥2

+
γλ2

2L
2ρ2t

2ϵ
+

2λ2
3γL

2ρ2t
ϵ

(87)

≤ γ3L2β2
1

2ϵ(1− β1)2
(
1

λ2
1

+
1

λ2
2

+
1

λ2
3

)
dG2

∞

ϵ2
+

γλ2
1

2
∥∇f(xt)⊙

√
ηt−1∥2 +

γL2ρ2t
2ϵ

(λ2
2 + 4λ2

3). (88)

Lemma B.10. For the term defined in the algorithm, we have

L

2
E∥zt+1 − zt∥2 ≤ LG2γ2β2

1

(1− β1)2
E∥ηt − ηt−1∥2

+ γ2
tL(3

1 + β

βϵ
(E∥∇f(xt)⊙

√
ηt−1∥2 +

Lρ2t
ϵ

+
σ2

bϵ
) + (1 + β)G2E∥ηt − ηt−1∥2) (89)

Proof.

L

2
E∥zt+1 − zt∥2

=
L

2
E∥ γβ1

1− β1
mt−1 ⊙ (ηt − ηt−1)− γgt ⊙ ηt∥2 (90)

≤ Lγ2β2
1

(1− β1)2
E∥mt−1 ⊙ (ηt − ηt−1)∥2 + LE∥γt

b

∑
(∇fi(xt + ρt

st
∥st∥

))⊙ ηt∥2 (91)

≤ LG2γ2β2
1

(1− β1)2
E∥ηt − ηt−1∥2 + LE∥γt

b

∑
(∇fi(xt + ρt

st
∥st∥

))⊙ ηt∥2 (92)

= γ2
tLE∥

1

b

∑
(∇fi(xt + ρt

st
∥st∥

))⊙ ηt−1 +
1

b

∑
(∇fi(xt + ρt

st
∥st∥

))⊙ (ηt − ηt−1)∥2

+
LG2γ2β2

1

(1− β1)2
E∥ηt − ηt−1∥2 (93)

≤ LG2γ2β2
1

(1− β1)2
E∥ηt − ηt−1∥2 + γ2

tL((1 +
1

β
)E∥1

b

∑
(∇fi(xt + ρt

st
∥st∥

))⊙ ηt−1∥2

+ (1 + β)E∥1
b

∑
(∇fi(xt + ρt

st
∥st∥

))⊙ (ηt − ηt−1)∥2) (94)

≤ γ2
tL((1 +

1

β
)E∥1

b

∑
(∇fi(xt + ρt

st
∥st∥

))⊙ ηt−1∥2 + (1 + β)G2E∥ηt − ηt−1∥2)

+
LG2γ2β2

1

(1− β1)2
E∥ηt − ηt−1∥2 (95)

18

Under review as a conference paper at ICLR 2023

≤ γ2
tL((1 +

1

β
)E∥1

b

∑
(∇fi(xt + ρt

st
∥st∥

))⊙√
ηt−1∥2 × ∥√ηt−1∥2∞

+ (1 + β)G2E∥ηt − ηt−1∥2) +
LG2γ2β2

1

(1− β1)2
E∥ηt − ηt−1∥2 (96)

≤ γ2
tL(

1 + β

βϵ
E∥1

b

∑
(∇fi(xt + ρt

st
∥st∥

))⊙√
ηt−1∥2 + (1 + β)G2E∥ηt − ηt−1∥2)

+
LG2γ2β2

1

(1− β1)2
E∥ηt − ηt−1∥2 (97)

≤ γ2
tL(3

1 + β

βϵ
E(∥∇f(xt)⊙

√
ηt−1∥2 + ∥(1

b

∑
∇fi(xt)−∇f(xt))⊙

√
ηt−1∥2

+ ∥1
b

∑
(∇fi(xt + ρt

∑
i∈B ∇fi(xt)

∥
∑

i∈B ∇fi(xt)∥
)−∇fi(xt))⊙

√
ηt−1∥2) + (1 + β)G2E∥ηt − ηt−1∥2)

+
LG2γ2β2

1

(1− β1)2
E∥ηt − ηt−1∥2 (98)

≤ γ2
tL(3

1 + β

βϵ
(E∥∇f(xt)⊙

√
ηt−1∥2 + E∥1

b

∑
(∇fi(xt + ρt

∑
i∈B ∇fi(xt)

∥
∑

i∈B ∇fi(xt)∥
)−∇fi(xt))⊙

√
ηt−1∥2

+
σ2

bϵ
) + (1 + β)G2E∥ηt − ηt−1∥2) +

LG2γ2β2
1

(1− β1)2
E∥ηt − ηt−1∥2 (99)

≤ γ2
tL(3

1 + β

βϵ
(E∥∇f(xt)⊙

√
ηt−1∥2 +

1

ϵ
E∥1

b

∑
(∇fi(xt + ρt

∑
i∈B ∇fi(xt)

∥
∑

i∈B ∇fi(xt)∥
)−∇fi(xt))∥2

+
σ2

bϵ
) + (1 + β)G2E∥ηt − ηt−1∥2) +

LG2γ2β2
1

(1− β1)2
E∥ηt − ηt−1∥2 (100)

≤ γ2
tL(3

1 + β

βϵ
(E∥∇f(xt)⊙

√
ηt−1∥2 +

1

ϵb
E
∑

∥∇fi(xt + ρt

∑
i∈B ∇fi(xt)

∥
∑

i∈B ∇fi(xt)∥
)−∇fi(xt)∥2

+
σ2

bϵ
) + (1 + β)G2E∥ηt − ηt−1∥2) +

LG2γ2β2
1

(1− β1)2
E∥ηt − ηt−1∥2 (101)

≤ γ2
tL(3

1 + β

βϵ
(E∥∇f(xt)⊙

√
ηt−1∥2 +

Lρ2t
ϵ

+
σ2

bϵ
) + (1 + β)G2E∥ηt − ηt−1∥2)

+
LG2γ2β2

1

(1− β1)2
E∥ηt − ηt−1∥2. (102)

C ADDITIONAL EXPERIMENT ILLUSTRATIONS

C.1 EXPERIMENT ILLUSTRATIONS

We conduct the experiments on the GLUE benchmark with AdaSAM, AMSGrad, SAM and SGD, respectively.
The optimizers do not have the momentum part (β1 = 0). As a supplement to Table 3 and Table 4, Figure 2 and
Figure 3 show the detailed loss and evaluation metrics versus number of steps curves during training. The loss
curve of AdaSAM decreases faster than SAM and SGD in all tasks, and it has a similar decreasing speed as the
AMSGrad. The metric curve of AdaSAM and AMSGrad show that the adaptive learning rate method is better
than SGD and SAM. And AdaSAM decrease as faster as the AMSGrad in all tasks.

C.2 ABLATION STUDY

In this section, we conduct experiments to evaluate the impact of momentum (β1 = 0.9) on different optimizers.
We show the experiment results in Figure 4 and Figure 5, respectively. The results are also illustrated in Table 1
and Table 2. SAM with adaptive learning rate (AdaSAM with ρ = 0.9) converges as fast as AMSGrad. Both
AdaSAM and AMSGrad are faster than SGD with momentum and SAM with momentum. The generalization
ability of AdaSAM with momentum is much better than SAM with momentum in all tasks. Besides, AdaSAM is
also better than AMSGrad in GLUE benchmark except for QNLI and QQP tasks.

19

Under review as a conference paper at ICLR 2023

0 100 200 300 400 500 600
Steps

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(a) MRPC

0 100 200 300 400 500 600
Steps

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(b) RTE

0 200 400 600 800 1000 1200 1400
Steps

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(c) CoLA

0 100 200 300 400 500 600
Steps

40

45

50

55

60

65

70

75

80

85

a
cc

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(d) MRPC

0 100 200 300 400 500
Steps

40

45

50

55

60

65

70

75

80

85

a
cc

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(e) RTE

0 200 400 600 800 1000 1200 1400
Steps

65

70

75

80

85

90

m
cc

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(f) CoLA

0 1000 2000 3000 4000 5000
Steps

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(g) SST-2

0 200 400 600 800 1000
Steps

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(h) STS-B

0 2500 5000 75001000012500150001750020000
Steps

0.10
0.25
0.40
0.55
0.70
0.85
1.00
1.15

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(i) MNLI

0 1000 2000 3000 4000 5000
Steps

80

84

88

92

96

a
cc

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(j) SST-2

0 200 400 600 800
Steps

0.00

0.05

0.10

0.15

0.20

0.25

T
e
st

L
o
ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(k) STS-B

0 5000 10000 15000 20000
Steps

80

82

84

86

88

90

a
cc

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(l) MNLI

Figure 2: The loss and evaluation metric v.s. steps on MRPC, RTE, CoLA, SST-2, STS-B and
MNLI.(β1 = 0)

20

Under review as a conference paper at ICLR 2023

0 2000 4000 6000 8000 10000
Steps

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(a) QQP

0 1000 2000 3000 4000 5000 6000
Steps

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(b) QNLI

0 2000 4000 6000 8000 10000
Steps

80

82

84

86

88

90

a
cc

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(c) QQP

0 1000 2000 3000 4000 5000 6000
Steps

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

(d) QNLI

Figure 3: The loss and evaluation metric v.s. steps on QQP and QNLI.(β1 = 0)

21

Under review as a conference paper at ICLR 2023

0 100 200 300 400 500 600
Steps

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(a) MRPC

0 100 200 300 400 500 600
Steps

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(b) RTE

0 200 400 600 800 1000 1200 1400
Steps

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(c) CoLA

0 100 200 300 400 500 600
Steps

65

70

75

80

85

90

95

a
cc SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(d) MRPC

0 100 200 300 400 500
Steps

40

45

50

55

60

65

70

75

80

85

a
cc SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(e) RTE

0 200 400 600 800 1000 1200 1400
Steps

65

70

75

80

85

90

m
cc SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(f) CoLA

0 1000 2000 3000 4000 5000
Steps

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(g) SST-2

0 200 400 600 800 1000
Steps

0.00

0.05

0.10

0.15

0.20

0.25

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(h) STS-B

0 2500 5000 75001000012500150001750020000
Steps

0.10
0.25
0.40
0.55
0.70
0.85
1.00
1.15

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(i) MNLI

0 1000 2000 3000 4000 5000
Steps

80

84

88

92

96

a
cc SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(j) SST-2

0 200 400 600 800
Steps

0.00

0.05

0.10

0.15

0.20

0.25

T
e
st

L
o
ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(k) STS-B

0 5000 10000 15000 20000
Steps

80

82

84

86

88

90

a
cc SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(l) MNLI

Figure 4: The loss and evaluation metric v.s. steps on MRPC, RTE, CoLA, SST-2, STS-B,
MNLI.(β1 = 0.9)

22

Under review as a conference paper at ICLR 2023

0 2000 4000 6000 8000 10000
Steps

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(a) QQP

0 1000 2000 3000 4000 5000 6000
Steps

0.10

0.25

0.40

0.55

0.70

0.85

1.00

1.15

T
ra

in
in

g
lo

ss

SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(b) QNLI

0 2000 4000 6000 8000 10000
Steps

80

82

84

86

88

90

a
cc SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(c) QQP

0 1000 2000 3000 4000 5000 6000
Steps

80

84

88

92

96

a
cc SGD

SAM(0.01)

SAM(0.005)

AMSGrad

AdaSAM(0.01)

AdaSAM(0.005)

AdaSAM(0.001)

(d) QNLI

Figure 5: The loss and evaluation metric v.s. steps on QQP, QNLI.(β1 = 0.9)

23

	Introduction
	Preliminary
	Problem setup
	Related work

	AdaSAM: SAM with adaptive learning rate
	Convergence analysis
	Proof Sketch

	Experiments
	Experimental setup
	Results on GLUE Benchmark
	Mini-batch Speedup

	Conclusion
	Experimental Settings
	Proof
	Technical Lemma

	Additional Experiment Illustrations
	Experiment Illustrations
	Ablation study

