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Abstract

Although CLIPScore is a powerful generic met-001
ric that captures the similarity between a text002
and an image, it fails to distinguish between003
a caption that is meant to complement the in-004
formation in an image and a description that005
is meant to replace an image entirely, e.g., for006
accessibility. We address this shortcoming by007
updating the CLIP model with the Concadia008
dataset to assign higher scores to descriptions009
than captions using parameter efficient fine-010
tuning and a loss objective derived from work011
on causal interpretability. This model correlates012
with the judgements of blind and low-vision013
people while preserving transfer capabilities014
and has interpretable structure that sheds light015
on the caption–description distinction.016

1 Introduction017

The texts that accompany images online are written018

with a variety of distinct purposes: to add commen-019

tary, to identify entities, to enable search, and oth-020

ers. One of the most important purposes is (alt-text)021

description to help make the image non-visually022

accessible, which is especially important for people023

who are blind or low-vision (BLV) (Bigham et al.,024

2006; Morris et al., 2016; Gleason et al., 2020).025

The ability to automatically evaluate descriptions026

of images would mark a significant step towards027

making the Web accessible for everyone.028

Unfortunately, present-day metrics for image-029

text similarity tend to be insensitive to the text’s pur-030

pose (Kreiss et al., 2022b), as they don’t distinguish031

between accessibility descriptions that are intended032

to replace the image from captions, which supple-033

ment them (see Figure 1). Thus current metrics fall034

short when it comes to making genuine progress035

towards accessibility (Kreiss et al., 2022a).036

The Contrastive Language-Image Pre-training037

(CLIP) model of Radford et al. (2021) is an im-038

portant case in point. CLIP is trained to embed039

images and texts with the objective of maximizing040

Figure 1: Visualization of a single training step on Con-
cadia, updating CLIP to prefer descriptions to captions.
Though both objectives update CLIP to be sensitive to
the description–caption distinction, IIT-DAS localizes
this distinction to a subspace of CLIP’s activations.

the similarity of related image–text pairs and min- 041

imizing the similarity of unrelated pairs, without 042

reference to the purpose that the text accompanying 043

an image plays. The CLIPScore metric of (Hes- 044

sel et al., 2021) inherits this limitation; CLIPScore 045

is referenceless in that it makes no use of human- 046

generated, ground-truth texts, but rather depends 047

only on image–text pairs, and so it too is not sen- 048

sitive to the purpose of the text. Indeed, Kreiss 049

et al. (2022a) find that CLIPScores correlate with 050

neither sighted nor BLV user evaluations of image 051

alt-descriptions. Thus, despite high performance on 052

many image–text classification tasks, CLIPScore 053

is unsuitable for alt-text evaluation. 054

The goal of this paper is to update CLIP to assign 055

higher scores to descriptions than captions when 056

they are both relevant to an image, while preserv- 057

ing the model’s ability to select the most relevant 058

text for a particular image. To this end, we fine- 059

tune CLIP on the Concadia dataset (Kreiss et al., 060

2022b), which consists of 96,918 images with cor- 061

responding descriptions, captions, and surrounding 062
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context.063

Our core goal in fine-tuning is to teach the model064

to prefer descriptions over captions. To this end,065

we use a contrastive loss objective, which updates066

CLIP to produce a higher score for the description067

than the caption of an image in Concadia. In ad-068

dition, we propose an extension of this objective069

that seeks to amplify the core distinction and create070

more interpretable models. The guiding idea here071

is to use Concadia to approximate the counterfac-072

tual: What if the text for this image were a descrip-073

tion instead of a caption (or vice versa)? These074

counterfactuals enable us to use a novel combina-075

tion of two recent ideas from causal interpretability076

research: interchange intervention training (IIT;077

Geiger et al. 2022) with a distributed alignment078

search (DAS; Geiger et al. 2023b) to localize the079

description–caption concept to an activation vector.080

Our experiments lead to a few key findings that081

have implications beyond the accessibility use case.082

First, we find that LoRA (Hu et al., 2021) is su-083

perior to standard fine-tuning at raising the CLIP-084

Score assigned to descriptions compared to cap-085

tions while preserving the original capabilities of086

CLIP. Second, our analysis shows that improved087

performance on Concadia results in stronger cor-088

relations with BLV user judgements, affirming the089

value of our update. Third, we find that the IIT-090

DAS objective results in a more stable fine-tuning091

process. Fourth, the IIT-DAS objective produces a092

more interpretable model; to show this, we use me-093

diated integrated gradients (Sundararajan et al.,094

2017; Wu et al., 2023) to characterize how the095

description–caption distinction is computed in our096

fine-tuned models. The key role of the IIT-DAS097

objective in these results illustrates one way that098

interpretability research can lead directly to more099

performant and understandable models.100

2 Related Work101

Image Accessibility When images can’t be seen,102

visual descriptions of those images make them ac-103

cessible. For images online, these descriptions can104

be provided in the HTML’s alt tag, which are then105

visually displayed if the image cannot be loaded106

or are read out by a screen reader to, for instance,107

users who are blind or low-vision (BLV). However,108

alt descriptions online remain rare (Gleason et al.,109

2019; Kreiss et al., 2022b).110

Image captioning models provide an opportu-111

nity to generate such accessibility descriptions at112

scale, which would promote equal access (Glea- 113

son et al., 2020). But the resulting models have 114

remained largely unsuccessful in practice (Mor- 115

ris et al., 2016; MacLeod et al., 2017; Gleason 116

et al., 2019). Kreiss et al. (2022b) argue that this 117

is partly due to the general approach of treating all 118

image-based text generation problems as the same 119

underlying task, and instead highlight the need for 120

a distinction between accessibility descriptions and 121

contextualizing captions. Descriptions are needed 122

to replace images, while the purpose of a caption is 123

to provide supplemental information. Kreiss et al. 124

(2022b) find that the language used in descriptions 125

and captions categorically differs and that sighted 126

participants tend to learn more from captions but 127

can visualize the image better from descriptions. 128

Referenceless Text-Image Evaluation Metrics 129

We focus on referenceless evaluation metrics (Fein- 130

glass and Yang, 2021; Hessel et al., 2021; Lee et al., 131

2021) for text–image models. These can be applied 132

in diverse contexts and require no human annota- 133

tions, which makes them valuable tools for rapid 134

system assessment. Crucially, such referenceless 135

metrics are context-free. This brings the advantage 136

that they can be applied in a variety of multimodal 137

settings (e.g. image synthesis, description genera- 138

tion, zero-shot image classification). The downside 139

is that they are generally insensitive to variation in 140

context and purpose. Kreiss et al. (2022a, 2023) 141

report progress in incorporating context into these 142

metrics; our work can be seen as complementing 143

those efforts by focusing on textual purpose. 144

3 Methods 145

Our goal is to fine-tune a CLIP model Cθ to prefer 146

a description over a caption when the two texts are 147

relevant to an image, while preserving Cθ’s abil- 148

ity to select the most relevant text for a particular 149

image. To this end, we use Concadia, a dataset 150

that consists of (ximage, xdescription, xcaption) triplets. 151

We consider two different contrastive learning ob- 152

jectives and two common fine-tuning methods that 153

minimally update Cθ’s sensitivity to the description– 154

caption distinction. 155

Behavioral Objective For each triplet 156

(xim, xdes, xcap), we run Cθ on the image–caption 157

pair (xim, xcap) and on the image–description pair 158

(xim, xdes), and update Cθ to produce a higher 159

score for the latter by minimizing: 160

L = CE
(
[Cθ(xim, xcap), Cθ(xim, xdes)], [0, 1]

)
161
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Fine- Desc > Cap Transfer tasks BLV user eval
Objective tuning Concadia Food101 ImageNet CIFAR100 Overall Imaginability

None None 49.4% 76.4% 53.6% 61.5% 0.08 0.10

Behavioral
Full 90.1% ± 0.73 27.8% ± 24.96 14.6% ± 13.47 30.9% ± 24.97 0.29 ± 0.17 0.31 ± 0.19
LoRA 90.3% ± 0.72 64.4% ± 8.32 42.2% ± 6.98 55.6% ± 2.53 0.36 ± 0.10 0.38 ± 0.12

IIT-DAS
Full 88.9% ± 0.80 35.1% ± 16.35 19.5% ± 6.77 42.8% ± 9.85 0.24 ± 0.14 0.32 ± 0.17
LoRA 86.6% ± 0.84 73.6% ± 3.22 45.1% ± 3.96 53.7% ± 3.80 0.19 ± 0.15 0.27 ± 0.15

Table 1: The proportion of Concadia examples where descriptions are scored higher than captions (column 3),
transfer learning results (columns 4-6), and correlation between BLV human preferences (Kreiss et al., 2022a) and
model similarity scores (columns 7, 8). The error bounds are 95% confidence intervals from runs with 5 random
seeds. Fine-tuning on Concadia produces models that better correlate with BLV preferences, LoRA is essential for
preserving transfer learning, and IIT-DAS sacrifices a modest amount on Desc > Cap for better transfer learning.

IIT-DAS Objective To better maintain CLIP’s162

original capabilities, we propose a novel objective163

called IIT-DAS, which localizes the description–164

caption distinction in a linear subspace Z of an165

activation vector in Cθ. For each triplet, we run166

Cθ on the image-caption pair (xim, xcap), run Cθ on167

the image-caption pair again while fixing Z to the168

value it takes when Cθ is run on the image descrip-169

tion pair (xim, xdes), and update Cθ to produce a170

higher score for the latter by minimizing:171
172

LIIT = CE
(
[Cθ(xim, xcap),173

DII(Cθ, ρθ, (xim, xcap), (xim, xdes),Z)], [0, 1]
)

174

where ρθ is a randomly initialized orthogonal ma-175

trix used to learn the linear subspace Z. This176

pushes CLIP to assign a higher score to a descrip-177

tion than to a description with an intervention from178

a caption. Likewise, we also train on the objec-179

tive where descriptions and captions are swapped180

(prefer a caption with an intervention from a de-181

scription over the caption on its own):182
183

LIIT = CE
(
[Cθ(xim, xdes),184

DII(Cθ, ρθ, (xim, xdes), (xim, xcap),Z)], [1, 0]
)

185

See Appendix A for the formal definition of DII.186

Fine-tuning We consider two common fine-tuning187

methods that update CLIP in accordance with the188

selected objective. The first is full fine-tuning189

where all the parameters of CLIP are trained with190

gradient descent. The second is Low-Rank Adap-191

tation (LoRA), a state-of-the-art fine-tuning tech-192

nique for transfer learning (Hu et al., 2021). LoRA193

training freezes every linear layer W in a model194

and learns a low-rank matrix W ′ that is used in195

unison with the original weights (i.e. for a residual196

representation x, LoRA computes Wx+W ′x).197

4 Experiments 198

4.1 Concadia and Transfer Evaluations 199

We use Concadia to quantify the extent to which 200

an image–text model is sensitive to the description– 201

caption distinction. The metric is simply the propor- 202

tion of images in Concadia where the description is 203

assigned a higher score than the caption. In the pre- 204

trained CLIP model, this is the case for ≈50% of 205

the triplets in Concadia (see Table 1). This means 206

the model assigns higher scores to descriptions only 207

at chance and so is not well suited for the purposes 208

of accessibility. However, we also need to evaluate 209

to what extent each fine-tuning method preserves 210

the original transfer capabilities of CLIP. The ideal 211

method will maintain high performance on the im- 212

age classification transfer tasks, while preferring 213

descriptions over captions. 214

We evaluate our fine-tuned models on Concadia 215

and three image classification tasks in disparate 216

domains, selected from CLIP’s original evaluation 217

suite (Radford et al., 2021) (see Appendix C). 218

Results and Discussion Table 1 shows the perfor- 219

mance of each CLIP model on the Concadia and 220

transfer evaluations. Full fine-tuning is not viable 221

due to its poor performance on the transfer learning 222

tasks. LoRA helps preserve much of the original 223

model’s capabilities (dropping ≈10% on Food101 224

and Imagenet, and ≈6% on CIFAR). 225

The models trained on the behavioral objec- 226

tive are more sensitive to the description–caption 227

distinction (≈90%) than IIT-DAS with LoRA 228

(≈87%). In contrast, models trained on the IIT- 229

DAS objective with LoRA achieve the best perfor- 230

mance on transfer tasks (preserving CLIP’s origi- 231

nal Food101 accuracy within its 95% confidence 232

interval), though sacrificing some sensitivity to the 233
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Example Mediation Attribution

Desc.
✗

a black and white photograph of jimi hendrix

playing a fender strato caster electric guitar

✓
a black and white photograph of jimi hendrix

playing a fender strato caster electric guitar

Caption
✗ jimi hendrix , fillmore east , may 1 0 , 1 9 6 8

✓ jimi hendrix , fillmore east , may 1 0 , 1 9 6 8

Figure 2: Integrated gradient attributions for the IIT-
DAS model run on an image and its corresponding de-
scription and caption from the Concadia dataset. A
positive token attribution indicates a positive impact on
CLIPScore (green), and negative token attribution indi-
cates a negative impact (magenta).

description–caption distinction (≈86%). The IIT-234

DAS objective is comparable to the behavioral ob-235

jective; either one may be preferable depending on236

the desired balance between description–caption237

sensitivity and transfer capabilities.238

4.2 BLV and Sighted Human Evaluations239

A preference for descriptions over captions should240

align CLIPScore ratings better with the quality241

judgements of BLV and sighted individuals. To242

evaluate this, we use data from Kreiss et al.243

2022a. Kreiss et al. conducted an experiment where244

sighted and BLV participants were asked to judge a245

text describing an image in the context of an article.246

For our purposes, we ignore the context and isolate247

the benefit of descriptions compared to captions.248

Participants rated the quality of the image descrip-249

tions along four dimensions: the overall quality250

of the text for accessibility, the imaginability of251

the image just based on the text, and the degree of252

relevant and irrelevant details in the text.253

Results and Discussion For each model evalu-254

ated, we report correlations averaged across 5 runs.255

Table 1 shows the correlation between BLV indi-256

viduals’ preferences and model similarity scores257

for the overall and imaginability dimensions (see258

Appendix D for all dimensions and subject groups).259

Our results show clearly that fine-tuning CLIP260

on the Concadia dataset results in a CLIPScore that261

is better aligned with the judgments of BLV in-262

dividuals. This agrees with the finding that the263

description–caption distinction is important for264

BLV users (Kreiss et al., 2022a).265

A broad trend is that the more a model is able266

to distinguish between descriptions and captions267

the more it aligns with the judgements of BLV268

individuals. As such, the models trained on the269

behavioral objective have the highest correlations.270

4.3 Integrated Gradients 271

A key benefit of localizing the description–caption 272

distinction in CLIP with IIT-DAS is that we can 273

interpret CLIP’s representation of a text’s commu- 274

nicative purpose (description or caption) separately 275

from CLIP’s similarity score. In this section, we 276

conduct an analysis of how CLIP distinguishes be- 277

tween descriptions and captions using an attribu- 278

tion method called integrated gradients (IG; Sun- 279

dararajan et al. 2017) that evaluates the contribution 280

of each text token to the output CLIPScore. 281

We are particularly curious about how tokens im- 282

pact the representation of the description–caption 283

distinction. To answer this question, we mediate 284

the gradient computation through the linear sub- 285

space learned by IIT-DAS (Wu et al., 2023). We hy- 286

pothesize that, since the intervention site is trained 287

to represent the underlying purpose of a text (i.e. 288

description or caption), gradient attributions that 289

are mediated through the linear subspace learned 290

by IIT-DAS will pick out tokens that highlight the 291

description–caption distinction. 292

Figure 2 shows an example image from Con- 293

cadia and the IG attributions of its corresponding 294

description and caption on the IIT-DAS model. We 295

observe that although the overall attributions are 296

positive for the guitarist’s name (“Jimi Hendrix”), 297

the mediated attributions for these tokens are neg- 298

ative. While “Jimi Hendrix” is aligned with the 299

image (high overall), proper names are less likely 300

to appear in descriptions (low mediated). 301

We hypothesize that the interpretability afforded 302

by mediated IG attributions will align with the dis- 303

tinct purposes behind describing and captioning 304

images. Specifically, descriptions are easier to vi- 305

sualize than captions, since their goal is to supplant 306

the image’s visual components as opposed to sup- 307

plement them (Kreiss et al., 2022b). Hence, we 308

expect that words with higher attributions are eas- 309

ier to visualize. And, indeed, we find that medi- 310

ated IG attributions for CLIP trained with IIT-DAS 311

correlate with human ratings for imageability and 312

concreteness, whereas IG attributions for the origi- 313

nal CLIP model do not. See Appendix E for more 314

details on mediated IG as well as imageability and 315

concreteness correlations. 316

5 Conclusion 317

We update the CLIP model to prefer descriptions 318

over captions using Concadia and produce a useful, 319

accessible, and interpretable model. 320
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Limitations321

Our results serve as proof concept for using IIT-322

DAS to update CLIP with the Concadia dataset.323

This is one model and one dataset, so general con-324

clusions about the use of IIT-DAS for updating a325

pretrained model should not be drawn. We hope326

future work will shed further light on the value of327

IIT-DAS.328

The Concadia dataset provides textual context329

for each image-description-caption triple. We do330

not use the context in our experiments, but we are331

excited about future work that incorporates this332

data. Whereas our work focuses on the specific333

purposes of describing and captioning an image,334

the context of an image can illuminate many other335

purposes (e.g. search, geolocation, social commu-336

nication) and models that incorporate it can enrich337

our work.338

Ethics Statement339

We believe that modern AI is a transformative tech-340

nology that should benefit all of us and accessibility341

applications are an important part of this.342
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A Causal Models, Interchange 464

Intervention Training, and Distributed 465

Alignment Search 466

This section follows Geiger et al. 2023a,b. 467

Causal Models can represent a variety of pro- 468

cesses, including deep learning models and sym- 469

bolic algorithms. A causal model M consist of 470

variables V, and, for each variable X ∈ V, a 471

set of values Val(X), and a structural equation 472

FX : Val(V) → Val(X), which is a function 473

that takes in a setting of all the variables and out- 474

puts a value for X . The solutions of a model 475

M = (V, Val, F ) are settings for all variables 476

v ∈ Val(V) such that the output of the causal 477

mechanism FX(v) is the same value that v assigns 478

to X , for each X ∈ V. 479

We only consider structural causal models with 480

a single solution that induces a directed acyclic 481

graphical structure such that the value for a variable 482

X depends only on the set of variables that point to 483

it, denoted as its parents PAX . Because of this, we 484

treat each causal mechanism FX as a function from 485

parent values in Val(PAX) to a value in Val(X). 486

We denote the set of variables with no parents as 487

Vin and those with no children Vout. 488

Given input ∈ Val(Vin) and variables X ⊆ V, 489

we define GET(M, input,X) ∈ Val(X) to be the 490

setting of X determined by the given input and 491

model M. For example, X could correspond to 492

a hidden activation layer in a neural network, and 493

GET(M, input,X) then denotes the particular val- 494

ues that X takes on when the model M processes 495

input. 496

Interventions simulate counterfactual states in 497

causal models. For a set of variables X and a set- 498

ting for those variables x ∈ VAL(X), we define 499

MX←x to be the causal model identical to M, ex- 500

cept that the structural equations for X are set to 501

constant values x. In the case of neural networks, 502

we overwrite the activations with x in-place so that 503

gradients can back-propagate through x. 504

Distributed interventions also simulate coun- 505

terfactual states in causal models, but do so by 506

editing the causal mechanisms rather than over- 507

writing them to be a constant. Given variables X 508

and an invertible function ρ : VAL(X) → VAL(Y) 509

mapping X into a new variable space Y, define 510

ρ(M) to be the model where the variables X are 511

replaced with the variables Y. For a setting of the 512

new variable space y ∈ VAL(Y), it follows that 513

ρ−1(ρ(M)Y←y) is the causal model identical to 514
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M, except that the causal mechanisms for X are515

edited to fix the value of Y to y. If ρ is differen-516

tiable, then gradients back-propagate through y.517

A distributed interchange intervention fixes518

variables to the values they would have taken if a519

different input were provided. Consider a causal520

model M, an invertible function ρ : VAL(X) →521

VAL(Y), source and base inputs s,b ∈ Val(Vin),522

and a set of intermediate variables X ⊂ V. A523

distributed interchange intervention computes the524

value Vout when run on b, intervening on the (dis-525

tributed) intermediate variables Y to be the value526

they take on when run on s. Formally, we define527

528

DII(M, ρ,b, s,Y) =529

GET(ρ−1(ρ(M)Y←GET(ρ(M),s,Y)),b,Vout)530

High-Level Models Define a class ∆ to con-531

tain only causal models that consist of the fol-532

lowing three variables. The input variable X533

takes on the value of some image-text pair in534

Concadia (ximage, xtext); the intermediate vari-535

able P (i.e. purpose) takes on a value from536

{“describe”, “caption”} depending on the Conca-537

dia label for X; and the output variable Y takes on538

a real value that represents the similarity between539

ximage and xtext. The causal mechanism of Y must540

be such that for every image, the description text is541

assigned a higher CLIPScore than the caption text.542

If a CLIP model implements any algorithm in ∆,543

then it will assign descriptions higher scores than544

captions.545

B Training Details546

In this paper, we propose a novel combination of547

LoRA fine-tuning with the IIT-DAS objective. We548

apply DAS to the representation after LoRA is ap-549

plied (i.e., Wx + W ′x, where W is the original550

matrix weight and W ′ is the low-rank adaptation),551

and fine-tune the LoRA parameters W ′ and the552

rotation matrix ρθ.553

We fine-tune the CLIP ViT-B/32 Transformer554

model released by OpenAI1, which consists of 12555

transformer layers with a hidden dimension of 512,556

constituting ∼150M overall parameters. For all557

fine-tuning runs, we use Adam optimization with558

default parameters (Kingma and Ba, 2014) and a559

batch size of 12.560

1https://huggingface.co/openai/
clip-vit-base-patch32

Behavioral Objective We fine-tune CLIP on the 561

training split of the Concadia dataset (77,534 562

datapoints) with early-stopping validation on the 563

Concadia validation split (9,693 datapoints). We 564

conduct a hyperparameter grid search over a 565

learning rate lr ∈ {10−3, 0.5 · 10−3, 10−4, 0.5 · 566

10−4, . . . , 10−6, 0.5 · 10−6}, an L2 normalization 567

factor l2 ∈ {0, 0.1, 0.01, 0.001}. We select the con- 568

figuration with the highest accuracy on the Conca- 569

dia validation split within 5 epochs (lr = 0.5 ·10−6, 570

l2 = 0). A training run takes around 3 hours on an 571

RTX A6000 NVIDIA GPU. 572

IIT-DAS Objective We fine-tune CLIP on 573

100,000 triplets sampled from the train split of the 574

Concadia dataset (out of 77, 534 × 77, 534 pos- 575

sible caption–description pairs). We conduct a 576

hyperparameter grid search over a learning rate 577

lr ∈ {10−5, 5−6, 10−6}, as well as over the in- 578

tervention site: the layer layer ∈ {6, 8, 10}, 579

the intervention site size intervention-size ∈ 580

{32, 64, 128, 256}. We select the configuration 581

with the highest accuracy on the Concadia vali- 582

dation split within 5 epochs (lr = 10−5, layer = 583

10, intervention-size = 256). A training run takes 584

around 6 hours on an RTX A6000 NVIDIA GPU. 585

LoRA Fine-Tuning We perform an additional hy- 586

perparameter search for low-rank fine-tuning of 587

CLIP for both the behavioral and IIT-DAS ob- 588

jective. We take the best configuration for full- 589

finetuning, and then perform a search over the 590

LoRA rank rank ∈ {8, 16, 32, 64, 128}, the LoRA 591

dropout dropout ∈ {0, 0.1, 0.01}, and whether 592

to apply LoRA to all linear layers, all attention 593

weights, or only the query and value projection 594

matrices within attention weights. We select the 595

configuration with the highest accuracy on the Con- 596

cadia validation split with 5 epochs. For the be- 597

havioral objective, the configuration is rank = 64, 598

dropout = 0, with LoRA applied to all attention 599

weights. For the IIT-DAS objective, the configura- 600

tion is the same but with rank = 128. 601

Joint Objective We note that the behavioral objec-
tive and IIT-DAS objective can complement each
other – the former teaches the model to prefer de-
scriptions to captions, and the latter teaches the
model to localize this distinction in a particular rep-
resentation. Hence, we consider a joint objective,
where we train the model to minimize

LJoint = αLIIT + (1− α)LBehavioral
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Figure 3: Accuracy on the Concadia test set, and
the three transfer tasks selected for transfer evaluation
(CIFAR-100, Food101, and ImageNet).

We search over an interpolation factor α ∈602

{0.2, 0.3, 0.5, 0.7, 0.8}. However, we find that the603

joint objective neither improves upon the behav-604

ioral objective nor the IIT-DAS objective.605

C Transfer Evaluations606

We evaluate our fine-tuned CLIP models on tasks607

selected from the original suite of zero-shot eval-608

uations performed on CLIP (Radford et al., 2021).609

Specifically, we choose three zero-shot image clas-610

sification tasks in which CLIP has strong perfor-611

mance, described briefly below.612

CIFAR-100 Images from 100 different categories613

(Krizhevsky et al., 2009).614

Food101 Food images labeled from 101 categories615

(Bossard et al., 2014).616

ImageNet Image-text pairs for each synonym set617

in the WordNet hierarchy (Russakovsky et al.,618

2015; Miller, 1995).619

Pre-trained CLIP varies greatly in its ability to620

generalize to each of these tasks, but it does out-621

perform a supervised linear classifier trained on622

ResNet-50 features (Radford et al., 2021). We re-623

port the macro-averaged F1 score on zero-shot clas-624

sification for each of the transfer tasks listed above,625

averaged across 5 randomly seeded training runs.626

During evaluation, we prefix “An image of ___” to627

each label in order to improve zero-shot generaliza-628

tion.629

Figure 3 shows model accuracy throughout train-630

ing for the 5 randomly seeded training runs of631

each training objective and fine-tuning method. Al-632

though the training converges quickly on the Con-633

cadia dataset, training for longer seems to allow634

Figure 4: Transfer score (averaged recovery percentage
over all transfer tasks) over accuracy on the Concadia
test set. A point on a seeded run yields a trade-off
between sensitivity to the caption–description distinc-
tion and preserving the capabilities of CLIP. The joint
objective refers to a training run minimizing both the
behavioral and the IIT-DAS objective (see Appendix B).

the model to recover performance on the evalu- 635

ated transfer tasks when using LoRA fine-tuning. 636

Hence, for the evaluation scores reported in Ta- 637

ble 1, we train models well past convergence for 638

10 epochs, and then select a model to balance the 639

trade-off between Concadia accuracy and transfer 640

capabilities: 641

• Compute a recovery percentage: divide the 642

model’s accuracy on the transfer task by the 643

accuracy of pre-trained CLIP on that task (see 644

Table 1). 645

• Compute a transfer score: average the recov- 646

ery percentage across the three transfer tasks. 647

• Compute accuracy–transfer trade-off score: 648

compute α· (Concadia accuracy) +(1 − α)· 649

(transfer score). 650

• For each seeded run, select the training step 651

with the highest accuracy–transfer trade-off 652

score. 653

We manually pick a trade-off of α = 0.9, mean- 654

ing we weigh the trade-off as 90% Concadia ac- 655

curacy and 10% transfer accuracy; we find that 656

trade-offs with a lower α result in poor Concadia 657

accuracy. 658

We visualize other possible trade-off in Figure 659

4. We find that the strongest trade-off for IIT-DAS 660

with LoRA fine-tuning is ≈ 86% accuracy on the 661
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Concadia test set and ≈ 82% transfer score. Mean-662

while, the strongest trade-off for the behavioral663

objective with LoRA fine-tuning is skewed towards664

stronger Concadia performance, with ≈ 90% accu-665

racy on Concadia and ≈ 80% transfer score.666

Figure 4 also displays the transfer–accuracy667

trade-off for a joint objective that minimizes both668

the behavioral and the IIT-DAS objective (see Ap-669

pendix B for details). The joint objective seems to670

strike some balance between the trade-off curves of671

the behavioral and IIT-DAS objectives – maintain-672

ing higher transfer scores around ≈ 85% Conca-673

dia accuracy compared to the behavioral objective,674

and reaching higher Concadia accuracy (≈ 90%)675

compared to IIT-DAS. Nevertheless, for any given676

Concadia accuracy value, one of the behavioral or677

IIT-DAS objectives achieves at least as high a trans-678

fer score as the joint objective. We leave strategies679

to optimally combine the behavioral and IIT-DAS680

objectives for further study.681

D BLV and Sighted Evaluations682

Table 2 reports the correlation between fine-tuned683

CLIPScoresand human evaluations collected by684

Kreiss et al. (2022a). The evaluations are from685

BLV individuals, sighted individuals without ac-686

cess to the image the text describes, and sighted687

individuals with access to the image. The evalua-688

tion features are briefly summarized below.689

Overall The overall value of the description as an690

alt-text description of the image.691

Imaginability How well the participant can visual-692

ize the image given the text description. This isn’t693

evaluated for sighted individuals with the image,694

since they are able to see the reference image.695

Relevance Whether the description includes rele-696

vant details from the image, given the context in697

which the image appears (i.e., the preceding para-698

graph in a Wikipedia article).699

Irrelevance Whether the description avoids irrele-700

vant details from the image, given the context of in701

which the image appears.702

We find that fine-tuning CLIP on the Concadia703

dataset improves the model’s correlation with hu-704

man judgements of text descriptions. We note that705

fine-tuning CLIP does not significantly improve706

the model’s correlation with human judgements707

of irrelevant details in the text description. This708

makes sense, because our training scheme did not709

take into account to the context of the Concadia710

Group Objective Finetuning Overall Imaginability Relevance Irrelevance

BLV None None 0.08 0.10 0.09 0.09
Behavioral Full 0.24± 0.04 0.26± 0.03 0.21± 0.04 0.05± 0.09

LoRA 0.29± 0.03 0.29± 0.01 0.23± 0.02 -0.01± 0.03

IIT-DAS Full 0.29± 0.05 0.34± 0.05 0.30± 0.06 0.07± 0.05

LoRA 0.20± 0.09 0.28± 0.10 0.24± 0.07 0.01± 0.06

Sighted None None −0.01 0.06 0.00 −0.17
(no image) Behavioral Full 0.22± 0.04 0.13± 0.09 0.17± 0.03 -0.03± 0.03

LoRA 0.20± 0.02 0.20± 0.04 0.18± 0.02 -0.13± 0.05

IIT-DAS Full 0.18± 0.06 0.21± 0.03 0.12± 0.08 -0.14± 0.06

LoRA 0.13± 0.05 0.18± 0.04 0.11± 0.05 -0.09± 0.06

Sighted None None 0.14 0.11 −0.08
(with image) Behavioral Full 0.26± 0.05 0.22± 0.04 0.03± 0.05

LoRA 0.25± 0.02 0.19± 0.02 -0.04± 0.04

IIT-DAS Full 0.25± 0.06 0.17± 0.07 -0.04± 0.07

LoRA 0.22± 0.06 0.15± 0.05 0.02± 0.06

Table 2: Correlation between model similarity scores
and human preferences (Kreiss et al., 2022a).

image. 711

E Integrated Gradients 712

Given a model Cθ with input x and baseline x′, the 713

integrated gradient attributions of x along its ith 714

dimension are computed as follows. 715

716

IntegratedGradsi(x) = (xi − x′i)· 717∫ 1

α=0

∂Cθ(x′ + α(x− x′))

∂xi
∂α. (1) 718

Mediated Integrated Gradients Let H be the 719

activation of Cθ at the intervention site when run 720

on input x. Our mediated integrated gradient is 721

∂Cθ

∂xi
mediated by H =

∂Cθ

∂H
× ∂H

∂xi
. 722

Unlike ∂Cθ
∂xi

, which computes the gradient of the 723

model output with respect to the input xi, the me- 724

diated gradient only flows through the intervention 725

site H . We compute mediated integrated gradi- 726

ents by applying this gradient method within the 727

integral of the integrated gradients equation. 728

Figure 5 illustrates additional examples of inte- 729

grated gradients and mediated gradients on images 730

sampled from the Concadia dataset, run with the 731

IIT-DAS model. 732

Dataset We hypothesize that the interpretability 733

afforded by mediated integrated gradients will align 734

with the distinct purposes behind describing and 735

captioning images. Specifically, descriptions are 736

easier to visualize than captions, since their goal 737

is to supplant the image’s visual components as 738

opposed to supplement them (Kreiss et al., 2022b). 739

Hence, we expect that words with higher integrated 740

gradient attributions are easier to visualize. 741

We consult two collections of human ratings for 742

visualization-related concepts. The first dataset 743
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Example Mediation Score Attribution

Description
✗ +12.0 a cluster of pur p lish - red mushrooms on their sides showing the under side of their caps .

✓ +5.77 a cluster of pur p lish - red mushrooms on their sides showing the under side of their caps .

Caption
✗ -2.95 young fruit bodies are pru ino seas if covered with a fine white powder .

✓ -2.99 young fruit bodies are pru ino seas if covered with a fine white powder .

Example Mediation Score Attribution

Description
✗ +1.35 a block of flats behind a set of high security gates

✓ -1.38 a block of flats behind a set of high security gates

Caption
✗ -7.85 the exclusive block of flats in chelsea , london that were used as the exterior of mark ’s flat

✓ -9.15 the exclusive block of flats in chelsea , london that were used as the exterior of mark ’s flat

Figure 5: Integrated gradient attributions for sample images and their corresponding description and caption from
the Concadia dataset. A positive token attribution means that the token contributed positively to the outputted
CLIPScore (green), and negative token attribution means that it contributed negatively (magenta). The overall score
is the sum of the token attributions within the sentence.

consists of 5,500 words rated by imageability, or744

how well a word evokes a clear mental image in745

the reader’s mind (Scott et al., 2019). The second746

dataset consists of over 40,000 words rated by con-747

creteness, or how clearly a word corresponds to748

a perceptible entity (Brysbaert et al., 2014).2 We749

randomly sample 100 captions and 100 descrip-750

tions from the test split of the Concadia dataset751

that contain at least one word within both of our752

datasets, consisting of 420 unique tokens in total.753

We compute the integrated gradient attributions for754

all tokens in those sentences, and report their corre-755

lations with imageability and concreteness ratings.756

Results Table 3 displays the correlations between757

token-level attributions of the LoRA model output758

and human ratings for imageability and concrete-759

ness. All fine-tuning methods achieve a stronger760

correlation with imageability and concreteness rat-761

ings than the base CLIP model.762

Although all fine-tuning methods result in me-763

diated gradient attributions that correlate with im-764

ageability and concreteness, only the IIT and IIT-765

DAS attributions localize to the mediation site. The766

difference in mediating through vs. around the767

learned site is significant for the IIT-DAS model768

(0.23± 0.03 vs. 0.10± 0.09 for concreteness, and769

0.23± 0.03 vs. 0.03± 0.09 for imageability).770

Discussion Our results show that fine-tuning CLIP771

to prefer descriptions over captions with IIT or772

IIT-DAS results in models whose attributions corre-773

2Although imageability and concreteness are slightly dif-
ferent concepts, the imageability and concreteness ratings
have a correlation factor of 0.88 with each other.

Training Mediation Concreteness Imageability

None
None 0.20 0.16
Through 0.14 0.07
Around - -

Behavioral
None 0.26± 0.08 0.31± 0.08
Through 0.24± 0.08 0.24± 0.08
Around 0.24± 0.02 0.30± 0.03

IIT-DAS
None 0.26± 0.08 0.23± 0.08
Through 0.23± 0.03 0.23± 0.03
Around 0.10± 0.09 0.03± 0.09

Table 3: Correlation between integrated gradient attri-
butions and per-token human labels for concreteness
and imageability. The error bounds are 95% confidence
intervals from runs with five random seeds.

spond to the human-interpretable concept of image- 774

ability and concreteness. We also find that mediat- 775

ing integrated gradients through the representation 776

targetted by IIT preserves this correlation and al- 777

lows for an analysis of which tokens contribute to 778

distinguishing descriptions from captions. 779
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