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ABSTRACT

Following the widespread application of Deep Reinforcement Learning (DRL) in
robotics and other domains, adversarial attacks and robustness in DRL have also
been widely studied in various threat models. However, most of them assume
runtime access of the victim, which limits the feasibility of the attacks. To eval-
uate the robustness more practically, in this paper, we propose a threat model in
which the attacker can only inflict static environmental perturbations on the initial
state. By designing a preliminary non-targeted attack method and performing a
case study on policy-based DRL agents, we show that the agents are still assail-
able in our threat model even though the capability of attackers has been severely
limited due to the feasibility consideration. We also propose a defense frame-
work, named Boosted Adversarial Training (BAT), which incorporates a super-
vised kick-starting stage before adversarial training to avoid failure. Extensive ex-
perimental results demonstrate that our BAT framework can significantly enhance
the robustness of agents in all situations while the existing robust reinforcement
learning algorithms may not be suitable.

1 INTRODUCTION

The safety and robustness of Deep Reinforcement Learning (DRL) have been receiving increasing
attention and have been studied in various domains, such as perturbation on the observation (Zhang
et al., 2020; Oikarinen et al., 2021) or the action (Lee et al., 2020), data poisoning (Gunn et al., 2022;
Panagiota et al., 2020), adversarial policies (Gleave et al., 2020), and multi-agent reinforcement
learning (Lin et al., 2020; Guo et al., 2022).

Although effective, most of the existing threat models assume the strong capabilities of the adver-
sary, resulting in limited practicability. For example, perturbing the observation or the action re-
quires real-time write permission of the agent, and the poisoning attack needs access to the training
data. Towards studying more practical attacks, we consider a new threat model where the adversary
can not interfere with the agent but only tampers with the environment. As the example shown in
Figure 1, we aim to confuse the agent by merely environmental perturbation, such as manipulating
the positions of some irrelevant objects. Unlike adversarial policies (Pinto et al., 2017), environ-
mental perturbation could be done beforehand instead of conducted by another agent at runtime.

Our threat model generally falls in the category of attacking the state space, whereas it is character-
ized by limiting the adversary in three aspects for better practicability. First, the state is resolved into
the environmental state and the agent state, only the environmental state can be perturbed. Besides,
the perturbations must be static and thus can only be exerted on the initial state. Finally, different
from previous environment-related attacks (Schott et al., 2022; Chen et al., 2018), we restrict the
perturbed state to be reachable from the standard initial state. The limitations ensure the alignment
between our threat model and application scenarios in reality, where no runtime access to the target
agent is required and the perturbation is promised to be realizable.

To measure the potential of environmental perturbations, we further design a white-box attack al-
gorithm, which performs a non-targeted attack that impels the victim agent apart from its original
actions to attack policy-based agents. The threat model and corresponding attack are validated in
a cooking game, Overcooked (Carroll et al., 2019), where the agent controls two characters, and
characters are allowed to put various objects on counters for coordination, which provides abundant
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Figure 1: We show a representative case in a cooking game (Carroll et al., 2019), where the DRL
agent can be incapacitated by deliberately placed objects as the environmental perturbation. The
perturbations, which are marked in red square, are viable in the standard environment. A detailed
introduction to the environment can be found in Section 4.

space for environmental perturbation. Experimental results show that our attack can significantly re-
duce the rewards of mainstream DRL agents, which substantiates that environmental perturbations
on the initial states can incapacitate the agents trained in the vanilla environment. Even randomly
inflicting perturbations on initial states can also evidently reduce the rewards. Such results reveal
the vulnerability of DRL agents under environmental perturbation and indicate the existing room for
improving the robustness.

While studying the attack problem to measure the risk, we also seek methods to defend and improve
the existing DRL algorithms. As no existing robust reinforcement learning algorithm aims to defend
the environmental perturbation, we propose a two-phase defense framework, which first kick-starts
the agent via elaborated supervised learning and then fine-tunes the policy in the environment with
generated adversarial initial states, namely Boosted Adversarial Training (BAT). Comprehensive
experiment results show that our BAT can greatly improve the robustness of DRL agents against
environmental perturbation and even boost their performance in unperturbed environments while
existing methods are not suitable in our setting.

The main contributions of this paper are:

• We propose a new threat model in which the saboteur can only perturb the initial environ-
mental state in a reachable set regarding the environment and the standard initial state.

• We formulate the attack problem and design an effective attack method that performs non-
targeted attacks on policy-based agents.

• We design the BAT framework which includes a supervised kick-starting stage and a fine-
tuning stage to enhance the robustness of agents to environmental perturbations.

• We conduct comprehensive experiments for both attack and defense. The attack results
show that the current DRL agents are vulnerable to environmental perturbations and their
capabilities can be significantly decreased by our attack. The defense results show that our
defense framework can effectively improve the resistance of the agents and outperform the
baselines by a large margin.

In summary, our work establishes a foundation to study environmental perturbations and may en-
lighten future DRL research.

2 RELATED WORK

2.1 ADVERSARIAL ATTACKS IN DRL

As a hot research topic, the adversarial vulnerability of DRL has been widely discussed. Inspired
by the success of adversarial examples in Deep Neural Networks (Szegedy et al., 2014; Su et al.,
2019), researchers find that DRL is also vulnerable to little perturbations on inputs (Huang et al.,
2017). Behzadan & Munir (2017) proposed a black box attack to Deep Q-networks (DQN) and
validated the transferability of such an attack. By exploiting the characteristic of DRL, Lin et al.
(2017) further proposed a strategically-timed attack to attack the agent at critical moments and an
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enchanting attack to induce the agent to a certain state. Weng et al. (2020) proposed a model-based
attack and extended the attacks into continuous domains. Universal adversarial perturbations that
are static and agnostic to states are also studied to be powerful and efficient (Tekgul et al., 2022).
Buddareddygari et al. (2022) noticed the importance of the physical availability of the attack and
presented an algorithm to generate a static perturbation that can perform targeted attacks. Besides
attacking the observations, Schott et al. (2022) successfully attacked the agents by disturbing the
dynamics of the environment. Pan et al. (2022) studied various methods to improve the feasibility of
attacks for application in reality and applied adversarial attacks to physical robots. Lin et al. (2020)
performed adversarial attacks in cooperative multi-agent reinforcement learning (c-MARL) with a
two-step attack that carefully deals with the characteristics of c-MARL. Similarly, Guo et al. (2022)
comprehensively tested the robustness of c-MARL agents by attacking the state, action, and reward.
Beyond defeating the agent, adversarial methods can also be used for evaluating the agents as a way
to find the worst case (Uesato et al., 2019).

However, most existing attacks carried on the threat model that perturbs the observation of the victim
agent and constrains the perturbation by the Lp-norm, which requires real-time access to the agent.
Although previous works have shown the effectiveness of perturbing the environment (Schott et al.,
2022) and the initial state (Panda & Vorobeychik, 2018), they do not aim to feasible environmental
attacks. Starting from feasibility, our threat model restricts the environmental perturbations to be
static and reachable in the original environment, which also makes the attack perceptually covert.
Besides, the perturbations may also appear unintentionally due to the gap between the training en-
vironment and the production environment, thus the attacks can also be regarded as an evaluation of
the robustness of agents.

2.2 ROBUST DRL

Since the vulnerability of DRL has become a wide concern, studying and improving the robustness
of DRL has become another spotlight topic. Pinto et al. (2017) proposed RARL, which redefines
the task as a zero-sum minimax problem and jointly trains a protagonist and an adversary. Similarly,
training with an adversary embedded in environments has also been proven useful (Pattanaik et al.,
2018). Methods that optimize the agent against adversarial perturbations at the training stage have
also been shown effective, such as SA-MDP (Zhang et al., 2020), RADIAL (Oikarinen et al., 2021),
and WocaR (Liang et al., 2022). Another perspective is detecting attacks and defending actively
(Tekgul et al., 2022). Besides, Wu & Vorobeychik (2022) introduced an adversarial curriculum
learning framework to boost the robustness of agents. Other than perturbations on observations,
Schott et al. (2022) shows that training in environments with adversarial dynamics can also benefit
the agent. RS-DQN (Fischer et al., 2019) utilizes distillation to train a student DQN along with
a standard DQN thereby improving the robustness of the DQN. There are also works aiming to
provide a guarantee or certification that the policy would not fail catastrophically when attacked by
little perturbations (Lütjens et al., 2020; Everett et al., 2021). However, all the mentioned algorithms
are designed under different threat models from ours, thus making it hard to resist our attack. To the
best of our knowledge, no existing robust reinforcement learning algorithm is targeted to defend the
environmental perturbations on the initial states.

3 METHODOLOGY

3.1 PRELIMINARIES

A typical Markov Decision Process (MDP) is defined as a tuple < S,A, P,R, s0 >, where S is a
finite set of states, A is the finite set of available actions, P : S × A × S 7→ [0, 1] is the transition
probability, R : S × A × S 7→ R is a real-valued reward function, and s0 ∈ S is the initial state.
To concentrate on the environmental perturbations, we decouple the conventional state space S into
S = SE × SA, where SE stands for the environmental state space and SA stands for the agent
state space. Similarly, the initial state s0 can be represented as s0 = (sE0 , s

A
0 ), where sE0 ∈ SE and

sA0 ∈ SA are the initial environmental state and the initial agent state, respectively.

As a case study, we concentrate on the policy-based DRL, which is one of the mainstreams. Specif-
ically, each agent is associated with a policy π that outputs a probability distribution over the action
space given a state. Typically, we can note π(a|s) ∼ [0, 1] as the probability that the policy π taking
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action a ∈ A at state s ∈ S . Alternatively, we use π(s) ∈ R|A| to denote the probabilities of all
actions. For convenience, we also denote πopt(s) = maxa∈A π(a|s) as the action with the highest
possibility that π will choose. During the reinforcement learning process, a policy π is trained to
maximize the expected reward ρ(π, sE0 , s

A
0 ) = ρ(π, s0) = Eτ∼P (τ |π,s0)

∑
t R(st, at), where τ is

the trajectory, t stands for the time step, and s0 is the initial state. For MDPs with infinite horizons,
we can import a discount factor γ to the objective to make it finite.

For attack, we aim to find out an initial environmental state ŝE0 that minimizes the expected reward

ρ(π, ŝE0 , s
A
0 ) of a given policy π. The restriction is D(sE0 , ŝ

E
0 ) ≤ ϵ, in which D is a function to

measure the distance between states and ϵ is the threshold. It is noteworthy that D may not be a
conventional distance metric on the observation space such as Lp-norm, but a semantic metric that
is specified by the experiment domain instead. Also, we would like to limit the adversarial initial
environmental state to a feasible set ŜE to make the attack viable. In this paper, the feasible set
is defined as all the possible environmental states that could be reached from the standard initial
state s0. Similarly, the defense problem can be defined as training a policy that is robust against the
environmental perturbations on the initial state, which is a corresponding max-min problem.

However, the reward ρ under an adversarial initial state is hard to estimate, simulating in the en-
vironment to get the reward is time-consuming and thus not applicable. Therefore, we design an
attack algorithm in consideration of time efficiency. In this paper, we aim to attack and improve
differentiable policies that generate a probability distribution over action spaces. By default, we
assume the policies will follow the common practice in deep learning that first outputs a vector with
|A| elements and then convert it to a probability distribution via the Softmax function. Nevertheless,
our algorithms have the potential to be generalized to any agent.

3.2 ATTACKS

Similar to previous works, we generate adversarial examples against trajectories collected from the
original environment, which keeps the computational efficiency while acquiescing to ignore the
possible chain reaction caused by the perturbations. In practice, we observe that environmental
perturbations would cause more capability generalization failure rather than goal misgeneralization
introduced by Di Langosco et al. (2022). We also observe that out-of-distribution perturbations
seldom interfere with the original trajectories of agents. From such observations, we further assume
that environmental perturbations have a limited influence on optimal actions. Therefore, we aim to
perform a non-targeted attack that induces the agent to deviate from its original actions. In this way,
the objective of our attack algorithm is defined as:

max
ŝE0 ∈ŜE

Eτ∼P (τ |π,s0)[π(at|st)− π(at|ŝt)], (1)

s.t.D(sE0 , ŝ
E
0 ) ≤ ϵ, at = πopt(st).

where τ denotes the trajectory, ŝt is the estimated state after perturbations, and ϵ is the limitation
of the distance. Stick to the insight that out-of-distribution perturbations incapacitate agents, we
filter out the perturbations that are observed in regular trajectories over a frequency threshold pfreq .
Considering the static nature of environmental perturbations, we assume the perturbations as time-
invariant, which makes it simple to estimate the perturbed states ŝt for st. Under such an assumption,
we use ŝt = ŝE0 − sE0 + st as a sketchy estimation. Although the assumption may not always hold,
our method empirically shows enough ability to attack.

To further reduce the computational cost and make the algorithm scalable to Deep Neural Network-
based policies with heavy computing, we take advantage of the differentiability of neural networks
and approximately compute the significance of perturbation first-orderly to avoid tremendous calls
of the policy network by:

π(at|st)− π(at|ŝt) ≈
∂π(at|st)

∂st
∆s, (2)

where ∆s = st − ŝt = ŝE0 − sE0 is the estimated difference between the original state and the
perturbed state, which is assuming invariant. Then, with collected trajectories τ , we have a compu-
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Figure 2: An illustration of the entire procedure of our BAT framework, which utilizes adversarial
perturbations to adaptive defense.

tationally acceptable function to estimate the attack effectiveness given an adversarial state ŝE0 :

J(ŝE0 ) =
∑

(st,a∗
t )∈τ

[
∂π(a∗t |st)

∂st
(sE0 − ŝE0 )

]
. (3)

Where a∗t = πopt(st) denotes the optimal action suggested by π.

The optimization of Equation (3) highly depends on the environment. For environments with dis-
crete state space, gradient-based optimization may not be applicable. Generally, the problem can be
solved via generic algorithms by taking the J(ŝE0 ) in Equation (3) as the fitness function and let SE

be the search space, while the solution may be further simplified regarding the characteristics of the
environment as specified in Section 4.1.

3.3 DEFENSES

As the results will be discussed later in Section 4, the existing DRL agents expose their vulnera-
bility under our attack algorithm. Therefore, we also seek methods to defend against attacks. A
straightforward idea is the conventional adversarial training, i.e., to fine-tune the DRL agents on
the adversarial initial states. However, this may not practically work when the agents are severely
disabled by the attacks, since the reinforcement learning process requires learning from trajectories
with rewards, while the agent may fail to get any rewards in such cases and consequently fail the ad-
versarial training. To solve such a problem, we introduce our BAT framework as shown in Figure 2,
which first utilizes supervised learning to improve the capability of the agent in a teacher-forcing
way as a kick-starting and then fine-tune the agent in the environment. The main insight is that
the adversarial environmental perturbations have limited influence on the optimal behavior of the
agent, which implies ignoring the disturbance may be still reasonable most of the time (although it
is unlikely optimal).

In the first stage, our purpose is to prevent the agent from complete incapacity in the perturbed states
with minimal effect on its capability. Here we conduct a case study on the actor-critic policy, which
is a relatively complicated case and the method can be generalized to value-based or policy-based
algorithms. Typically, in the case of actor-critic, there is a policy π that computes the actions and
a critic V : S 7→ R that estimates the value of states, while they may share some parameters. As
a basic requirement, we hope the new policy π∗ can keep its capability in the pristine environment.
From this aspect, we constraint the agent close to its original version by using the following loss
functions:

Lo = Es∼τ [KL(π(s)||π∗(s)] + |V (s)− V ∗(s)|, (4)

where KL stands for the Kullback–Leibler divergence, V ∗ is the new value function.

Next, we hope the behaviors of the agent on perturbed states could be similar to those on original
states as a decent start for fine-tuning. However, the outputs are not necessarily exactly the same,
which may make the agent simply ignore the environmental changes. Intuitively, we expect the
policy to act similarly as in the original states but with lower confidence. Inspired by the Knowledge
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Distillation (Hinton et al., 2015; Papernot et al., 2016), we set a higher temperature T for the Softmax
function of the policy to acquire such labels for supervised learning. The policy with temperature T
is defined as:

π(s, T ) =

[
ezi/T∑|A|−1

j=0 ezj/T

]
i=0,...,|A|−1

, (5)

where z ∈ R|A| is the output of the last layer. The original policy is a special case where T = 1.
Similarly, the values of disturbed states should be close to the original ones while not forced to be the
same. Therefore we loosen the L1 loss of value function to achieve this purpose. The loss function
on the disturbed data can be written as:

Lp = Es∼τ [KL(π(s, T )||π∗(ŝ)) +max(|V (s)− V ∗(ŝ)| − α|V (s)|, 0)] , (6)

where ŝ denotes the estimated perturbed state, α is a hyper-parameter that controls the bound of
proximity between the original values and disturbed ones. The loss terms above are then combined
as L = Lo + βLp, where β is a hyper-parameter that controls the weights of each part. In our prac-
tice, the perturbed initial states include adversarial initial states generated by the attack algorithm
and random states in the feasible set. Different from the popular practice in knowledge distillation
and student networks, our fine-tuning starts from the trained policy. It is worth emphasizing that the
supervised learning phase does not immediately lead to a robust policy since it is designed to induce
the policy to a good start of consequent fine-tuning, which will be done via regular reinforcement
learning in the environment with a distribution of initial states S0. Typically, the initial state distri-
bution S0 consists of the original initial state and the perturbed initial states used in kick-starting.
It is noteworthy that although our defense method requires extra training, the fine-tuning process
usually takes less time than training a standard DRL agent, thus our method does not bring excess
computational burden.

4 EXPERIMENTS

4.1 TESTING ENVIRONMENT

Though environmental perturbations may be ubiquitous in the real world, it is hard to model in
simulations or games. The mainstream benchmarks for RL may not explicitly incorporate the in-
teraction between agents and the environment, e.g., Mujoco (Todorov et al., 2012) and ProcGen
(Cobbe et al., 2020). Therefore, we test DRL algorithms and all our methods in the Overcooked en-
vironment (Carroll et al., 2019), which has an interaction mechanism and was originally developed
as a cooperative environment for studying multi-agent learning and human-AI collaboration. To fit
the general DRL setting where there is only one agent, we use the environment in self-play mode,
i.e., the two characters are controlled by the same agent. Agents are trained to cook soup and serve
it to certain locations. Typically, the agent needs to: put onions into a pot to make soup; dish out
the soup once it is ready; and deliver it to a serving location. The action space of each character
includes 6 actions: wait, move{up, down, left, right}, and interact. The agent can interact with
environments, such as putting or taking objects to or from counters. Our experiments cover 6 var-
ious layouts as shown in the first line of Figure 3. The layouts have various difficulties so that the
effectiveness of algorithms can be comprehensively tested.

Although Overcooked provides rich environmental states, our attack space is restricted by the stan-
dard initial states. Since all the counters are empty in the standard initial state, the removal of an
object is not applicable in our experiments, leaving the following possible categories of unit pertur-
bation: (1) Putting an onion on a reachable empty counter; (2) Putting a dish on a reachable empty
counter; (3) Putting any onions in an empty pot. The perceptive distance between two states D(s, ŝ)
is defined as the minimal number of unit perturbations to transform s into ŝ.

The Overcooked simulator provides a lossless input in the space R26∗w∗h corresponding to the state,
where w and h are the width and height of the layout. Fortunately, each unit perturbation listed
above exerts an independent influence on the observation. Let P1 and P2 be two compatible sets of
unit perturbations, and ∆s1 and ∆s2 be their perturbations on the observation, P3 = P1 ∪ P2 will
lead to permission ∆s3 = ∆s1 +∆s2 on the observation. Therefore, instead of heuristic searching,
we can simply select the unit perturbations with the highest negative impact and combine them.
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Figure 3: Visualization of the layouts used in experiments.

Figure 4: The mean scores and standard error across agents for SP and FCP.

4.2 ATTACK

4.2.1 EXPERIMENTAL SETUP

We conduct attack experiments on two popular DRL agents, Self-Play (SP) and Fictitious Co-play
(FCP) (Strouse et al., 2021). In SP, the policy controls the two agents at the same time and is
optimized with the joint trajectories. FCP is a strong algorithm designed for zero-shot coordination
and human-AI collaboration, which trains the agent with a diversified group of pre-trained partners.
For FCP, we train 4 partners with different seeds to form the partner pool and select 3 checkpoints
with different levels of abilities for each partner. All agents are trained with the PPO algorithm
(Schulman et al., 2017) for 1e7 environment steps and have the same network architecture as in
(Carroll et al., 2019). For both DRL algorithms, we train 5 independent agents.

To comprehensively evaluate our attack algorithm, we take the following methods into comparison
as baselines:

• Random. The adversarial initial states are randomly selected from the feasible set.
• RandomF . Randomly selected adversarial initial states after filtering out the perturbations

that have appeared in the collected trajectories over a certain frequency. The setting of
pfreq is the same as our attack algorithm.

• Attack with transfer. To evaluate the transferability of our attack, we test the performance
of agents with perturbations generated by attacking other agents.

For all attacks, the perturbation limitation ϵ is set to 3. The number of outputs adversarial initial
states k of our attack algorithm is set to 10. To reduce the randomness, the k of the random base-
lines was set to 40. For the evaluation of transferability, we use all the 40 adversarial initial states
generated by attacking the other 4 agents. For each adversarial initial state, we run 100 games with
800 environment steps per game. We report the average score across all adversarial initial states and
all 5 agents for each category. The evaluation settings remain the same throughout the experiment.

4.2.2 ATTACK RESULTS

The effectiveness of attacks on initial states can be revealed by the decrease in the average rewards.
As the results are shown in Figure 4, our attack significantly reduces the rewards of both agents in
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all layouts and clearly outperforms the random baselines. In some cases, the rewards even go down
to near zero, such as SP in Double Counters and Matrix, indicating completely incapacitated agents.
Such results demonstrate the effectiveness of our attack algorithm. Although the transferred attack
shows less effectiveness than the white-box attack, it still consistently outperforms the random base-
lines, which indicates the decent transferability of our attack. We also notice that the RandomF is
slightly stronger than the Random, which somehow testifies to our insight that out-of-distribution
states may incur failures of the agent. Furthermore, we find that even random perturbations can con-
siderably decrease the rewards on all layouts, although they can be unintentional and are agnostic to
the DRL agent. The result exposes that the mainstream DRL algorithms lack robustness to environ-
mental perturbations. Even without a malicious adversary, the agent may fail due to an unexpected
misalignment between the training environment and the testing environment.

Comparing the two DRL algorithms, the FCP agents show significantly better performance in resist-
ing the attacks, although they may have lower scores in the vanilla environment. Recall that the FCP
agents are trained with a set of diversified partners and have explored more states in their training
data, this result fits the common perspective that the robustness of agents benefits from training with
more diverse data. Moreover, when comparing across layouts, we find the attack is less effective
in simpler layouts such as Coordination Ring, whereas the attack effect is much more significant
in complex layouts. Such a phenomenon suggests that the success of attacks comes from unknown
and unreasonable behaviors when the agents encounter out-of-distribution observations, and natu-
rally leads to an insight that agents may benefit from training in more diversified environments and
adversarial training.

4.3 DEFENSE

4.3.1 EXPERIMENTAL SETUP

For the adversarial initial states, we empirically select the top 5 outputs of our attack algorithm and
sample 5 random initial states to form the set of perturbed initial states. The fine-tuning stage uses
similar hyper-parameters but with only 8e6 time steps, keeping the total computational cost of de-
fense close to the original training process. More training details can be found in the supplementary.
To comprehensively study the effectiveness of our proposed defense method, we employ several
baselines for comparison, which are listed as follows:

• RADIAL(Oikarinen et al., 2021), a robust DRL framework that introduces an adversarial
loss in optimization, which aims to resist adversarial perturbation restricted by the Lp-
norm. Since no previous work targets environmental perturbations, we regard RADIAL as
a representation of the existing robust DRL algorithm. We use RADIAL-PPO to train the
self-play agents as a baseline. The perturbation bound ϵ is set to smoothly increase from 0
to 1/255.

• Extra Training. To eliminate the influence of the difference in experimental settings be-
tween the original training and the fine-tuning, we additionally train the DRL agents for
more time steps with the same setting as BAT without any defense method.

• Diversified Start. A natural and widely adopted way to improve the robustness of agents is
to train from a distribution of initial states (Yang et al., 2022; Zhang et al., 2018), which
is also applicable to defend against environmental perturbations. For this Baseline, the
distribution of initial states is the same as the one used in BAT.

4.3.2 DEFENSE RESULTS

We present the mean scores of models under various attacks and corresponding standard errors in
Table 1, where the best scores are in bold. Specifically, the scores achieved in the standard envi-
ronments measure the capability of the agents, the random perturbations that have no pertinence to
the agents measure their anti-interference performance, and the performance under attacks evalu-
ates the resistance of agents. Generally, for both SP and FCP, our BAT can significantly improve
their performance across all situations and preserve considerable capabilities under attack, which
strongly demonstrates the effectiveness of our framework. It is surprising that BAT also signifi-
cantly improves the performance even in the standard environment. Such a result indicates that the
improvement of our framework comes from the improvement in the capabilities of agents, instead
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Table 1: Quantitative Defense results (average scores with standard errors)

Method Attack Coord. Ring Cross Doub. Rings Doub. Coun. Matrix Clear Div.

Extra SP
No attack 341.8 ± 16.2 399.5 ± 11.6 325.2 ± 7.8 304.7 ± 7.3 320.6 ± 13.2 549.5 ± 41.1
Random 88.4 ± 12.8 36.1 ± 8.2 54.1 ± 8.4 29.8 ± 6.6 46.9 ± 8.2 23.5 ± 6.2

Our attack 36.8 ± 6.3 5.0 ± 1.2 39.4 ± 6.3 9.3 ± 2.6 10.8 ± 2.9 4.9 ± 1.0

Extra FCP
No attack 365.6 ± 4.2 399.2 ± 7.4 327.6 ± 14.6 324.4 ± 12.1 307.6 ± 8.0 631.0 ± 12.9
Random 234.7 ± 13.9 75.8 ± 11.0 44.5 ± 6.9 37.8 ± 6.6 16.8 ± 4.8 45.6 ± 12.7

Our attack 121.3 ± 12.9 19.4 ± 2.8 37.7 ± 9.6 6.6 ± 1.8 1.0 ± 0.3 5.1 ± 1.2

RADIAL
No attack 273.6 ± 9.6 287.6 ± 7.1 204.6 ± 6.7 218.4 ± 8.2 202.2 ± 8.7 303.5 ± 13.1
Random 138.8 ± 10.1 47.9 ± 10.4 43.9 ± 7.3 75.3 ± 9.3 40.4 ± 7.5 39.7 ± 8.7

Our attack 103.1 ± 9.1 51.1 ± 7.2 15.1 ± 2.8 53.3 ± 7.3 14.7 ± 3.7 25.3 ± 5.6

Div. Start
No attack 311.7 ± 20.4 391.7 ± 9.7 304.1 ± 23.0 330.8 ± 16.0 330.9 ± 8.4 540.4 ± 33.1
Random 240.2 ± 8.9 173.3 ± 13.8 176.2 ± 13.1 151.2 ± 11.6 172.8 ± 11.2 242.7 ± 20.1

Our attack 221.1 ± 11.2 90.8 ± 7.8 153.7 ± 14.0 88.4 ± 6.6 106.1 ± 8.2 114.1 ± 16.2

BAT+SP
No attack 372.8 ± 9.8 459.7 ± 14.3 373.3 ± 24.5 352.8 ± 4.5 335.9 ± 23.4 612.2 ± 35.6
Random 269.6 ± 15.1 279.4 ± 14.7 190.2 ± 13.0 180.6 ± 13.8 209.3 ± 14.8 364.9 ± 18.3

Our attack 197.2 ± 10.9 196.3 ± 16.1 138.0 ± 14.7 98.5 ± 11.8 107.6 ± 12.3 247.8 ± 15.3

BAT+FCP
No attack 456.9 ± 27.3 460.4 ± 9.5 353.7 ± 12.8 340.9 ± 19.0 351.8 ± 15.5 759.0 ± 36.8
Random 389.8 ± 9.2 333.8 ± 11.8 219.2 ± 12.5 171.3 ± 11.5 178.6 ± 13.6 467.7 ± 24.2

Our attack 308.6 ± 12.3 206.3 ± 10.1 178.9 ± 12.3 120.7 ± 13.0 58.3 ± 9.3 289.4 ± 24.3

of increasing or decreasing the confidence of choices. We also notice that BAT + SP performs com-
parable to BAT + FCP, suggesting that our defense framework can produce diversified enough data
for defending against environmental attacks while substantiating that our BAT remains effective in
general tasks where no MARL algorithm is applicable.

Since the extra training is in self-play, it seems to bring the SP and FCP agents into convergence. The
performance in unperturbed environments of FCP agents is significantly improved and is compara-
ble to that of SP agents. Nevertheless, they are still vulnerable to environmental perturbations. In
contrast, RADIAL shows somewhat resistance to environmental perturbations. However, it has sig-
nificantly lower performance in standard environments, while the defense performance is still much
weaker than our BAT. We deem that existing robustness algorithms designed to resist perturbations
restricted by the Lp-norm are not suitable for defending against environmental perturbations. As
the strongest baseline, training with diversified initial states also shows considerable defense perfor-
mance, which is in line with our analysis that diversiform training data can improve the robustness
of agents. Nevertheless, our BAT remains outperforming it, especially doing much better in the stan-
dard environment. Besides, BAT is an entire post-processing that has no limitation on the primary
training, while training with diversified initial states may not be applicable for some algorithms, e.g.,
algorithms including imitation learning (Carroll et al., 2019).

Another noteworthy point is that our attack is still significantly more effective than random pertur-
bations. It confirms the ubiquitous power of our attack while implying that there is still room for
improving the defense algorithms. We also present an ablation study of the necessity of each stage
of BAT in the appendix.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel threat model in which the saboteur is only allowed to perturb
the initial environmental state within feasible choices. We further design an algorithm to perform
a non-targeted attack by generating adversarial initial states and propose the BAT framework to
enhance the capabilities and robustness of agents. Extensive experiment results demonstrate that
the mainstream DRL methods are vulnerable under our threat model and can be attacked by our
algorithm. Furthermore, our defense method shows significant effectiveness in resisting attacks and
even improves the capability of agents in the pristine environment and outstandingly outperforms
the baselines including a representative existing robust reinforcement learning algorithm.

We preliminarily validate the existence of environmental vulnerability of DRL agents in the Over-
cooked domain. Although we make a few assumptions and simplifications regarding the 2D game
nature of the Overcooked environment, our method is general and has the potential for further exten-
sion. Therefore, a natural direction of future work is to extend and study our proposed threat model
and methods in more complex tasks, such as embodied intelligence or robots in the real world.
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REPRODUCIBILITY

We provide code and instructions for reproducing all our results in the supplementary materials. The
modified version of the Overcooked environment is also included in the code.
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