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Abstract

The objective of generative model inversion is to identify a size-n latent vector that1

produces a generative model output that closely matches a given target. This opera-2

tion is a core computational primitive in numerous modern applications involving3

computer vision and NLP. However, the problem is known to be computationally4

challenging and NP-hard in the worst case. This paper aims to provide a fine-5

grained view of the landscape of computational hardness for this problem. We6

establish several new hardness lower bounds for both exact and approximate model7

inversion. In exact inversion, the goal is to determine whether a target is contained8

within the range of a given generative model. Under the strong exponential time9

hypothesis (SETH), we demonstrate that the computational complexity of exact10

inversion is lower bounded by Ω(2n) via a reduction from k-SAT; this is a strength-11

ening of known results. For the more practically relevant problem of approximate12

inversion, the goal is to determine whether a point in the model range is close13

to a given target with respect to the ℓp-norm. When p is a positive odd integer,14

under SETH, we provide an Ω(2n) complexity lower bound via a reduction from15

the closest vectors problem (CVP). Finally, when p is even, under the exponential16

time hypothesis (ETH), we provide a lower bound of 2Ω(n) via a reduction from17

Half-Clique and Vertex-Cover.18

1 Introduction19

1.1 Generative model Inversion20

In the last 30 years, recovery of latent vectors generating a target has gained attention. The focus has21

shifted away from “linear” generative models such as sparse models (1; 2; 3) and towards nonlinear22

generative models such as convolutional neural networks (4; 5), pre-trained generative priors (6),23

or untrained deep image priors (7; 8; 9). While there has been significant practical progress in24

compressed sensing with generative models, theoretical progress has been more modest. The seminal25

work of (6) established the first statistical upper bounds for this field, and (10) showed these bounds26

are nearly optimal, but only restrictive cases have provable algorithmic upper bounds for generative27

inversion. The paper (11) proves the convergence of projected gradient descent for compressed28

sensing with generative priors, but only under the assumption that the range of the generative model29

admits a polynomial-time projection oracle.30

Several works establish upper bounds. The paper (12) proves the convergence of gradient descent for31

shallow generative priors whose weights obey a distributional assumption. (13) shows the correctness32

of a layer-wise inversion algorithm for sufficiently expansive networks, and establishes NP-hardness33

lower bounds for exact calculation. (14) and (15) show that under certain structural assumptions34

on G, some methods converge to a neighborhood of true solution. However, these assumptions are35

somewhat hard to verify in practice. Recent work has proposed using invertible generative models36
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for image sampling (16; 17), using non-volume preserving transformations and being compared to37

a different approach proposed by (18). Our focus is on more general families of generative neural38

networks with ReLU activations, which are not necessarily invertible.39

Problem Statement. A 1-layer ReLU network G1 : Rn → Rm1 can be defined as G1(z) =40

ReLU(W1z + b1) with weight matrix W1 ∈ Rm1×n and bias b1 ∈ Rm1 , where m1 is the number of41

hidden neurons. An L-layer neural network G := GL can be expressed with the following recurrence42

relation: Gl(z) = ReLU(WlGl−1(z) + bl) for l ∈ Z+, l = 2, 3, . . . , L, where Wl ∈ Rml×ml−143

are the layer-wise weight matrices, and bl ∈ Rml are layer-wise bias vectors. We assume that the44

network width, maxl ml, is bounded as O(n) unless otherwise specified.45

In the generative inversion problem, we are given a ReLU network G and an observation x. Then, the46

purpose is to determine the closest point of the range of the neural network to the input x. In other47

words, we want to find z∗ that satisfies the following under a given norm: z∗ = argminz ∥G(z)−x∥.48

Stated as a decision problem, the goal of exact recovery is to distinguish between two cases: either49

there exists a z∗ such that G(z∗) = x, or for all z we have G(z) ̸= x. On the other hand, in many50

practical cases finding a close enough point suffices. Therefore, we investigate the hardness of the51

decision problem where the goal is to distinguish between the two cases for a parameter δ > 0: there52

exists a point z∗ such that ∥G(z∗)− x∥ < δ, or for all z we have ∥G(z)− x∥ ≥ δ. We prove several53

new hardness results when ∥ · ∥ corresponds to ℓp-norm depending on the parity of p.54

1.2 Fine-grained complexity.55

Classical complexity theory has attempted to delineate the boundary between problems that admit56

efficient (polynomial-time) algorithms and problems that do not. A fine(r) grained picture of the57

landscape of polynomial-time has begun to emerge over the last decade. In particular, the focus58

has shifted towards pinning down the exponent, c, of a problem that can be solved in polynomial59

time Õ(nc). Most of these newer results are conditional and rely on reductions from popular (but60

plausible) conjectures such as the Strong Exponential Time Hypothesis (SETH) (19), (20). See the61

relevant surveys (21), (22), (23), and (24) for comprehensive overviews of this emerging area. This62

approach provides conditional lower bounds on well-known problems such as edit distance (25),63

Frechet distance (26), dynamic time warping (27), longest common subsequence (LCS) (28), and64

string matching (29). In the context of machine learning, reductions from SETH applied to clustering65

(30), kernel PCA (31), sparse linear regression (32), Gaussian kernel density estimation (33), and66

approximate nearest neighbors (34) problems. In recent work, this approach has also been shown to67

imply an Ω(n2)-lower bound for transformer models with input size n (35).68

(Strong) Exponential Time Hypothesis and k-SAT. The k-SAT problem involves a given SAT69

formula on n variables, with each clause of size k, and requires us to determine whether the formula70

is satisfiable or not. Despite decades of effort, no one has invented a faster-than-exponential (O(2n))71

time algorithm for this problem. Unless P = NP , no polynomial-time algorithm exists. The Strong72

Exponential Time Hypothesis (SETH) is a strengthening of this statement (19): for every ε > 0, there73

is no algorithm that solves k-SAT in 2(1−ε)n time. The Exponential Time Hypothesis (ETH) is a74

(slightly) weaker conjecture: there exists δ > 0 such that 3-SAT cannot be solved in time 2δn.75

Closest Vector Problem. We leverage SETH-hardness of the closest vector problem (CVP), defined76

as follows: Consider a lattice L = L(B) = {Bz | z ∈ Zn}, where B = (v1,v2, . . . ,vn) and77

all the vectors vi ∈ Rd. Given a target vector t, define distp(L, t) = minx∈L(B) ∥x − t∥p. The78

goal of the CVPp problem is to distinguish between two cases: YES (distp(L, t) ≤ r) and NO79

(distp(L, t) > r). A result of (36) states that assuming SETH, then CVPp cannot be solved in80

O(2(1−ϵ)n) time for odd integers p ≥ 1, p ̸= 2Z. As follow-up work, (37) proved the same hardness81

for the so-called (0,1)-CVPp problem: for any 1 ≤ p ≤ ∞, distinguish between the two cases: YES82

(∥By∗ − t∥ ≤ r for some y∗ ∈ {0, 1}n) and NO (∥By − t∥ > r for all y ∈ Z).83

Half-Clique and Vertex Cover. We also consider two graph optimization problems: Vertex Cover84

and Half-Clique. The goal of Vertex Cover is to find a set of vertices of the minimum size that85

touch every edge in a given graph; the decision version is to decide whether or not a vertex cover86

of a given size exists. The Half-Clique problem is a special case of the k-CLIQUE problem (for87

k = n/2), where the goal is to decide whether or not there exists a clique with k-vertices. Both88

decision problems are classical, NP-complete, and ETH-hard (22).89
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2 Hardness Results90

The constructions of the reductions from the problems whose hardness is known under some hypothe-91

ses are given in this part. For the sake of brevity, we leave the analysis to the full version.92

2.1 Hardness of Exact Inversion93

The work (13) shows the NP-hardness of the exact inversion problem. We strengthen this to show94

SETH-hardness below in 1. First, we provide hardness results when z ∈ {1,−1}n, and we generalize95

these results for z ∈ Rn.96

Theorem 1. Suppose SETH holds. Then for any ϵ > 0 there is a 2-layer, O(n)-width ReLU network,97

G2(z) and a target x for which no O(2(1−ϵ)n) time algorithm can demonstrate the existence of98

z ∈ {1,−1}n that satisfies G2(z) = x.99

Reduction.The reduction is from k-SAT, with m-clauses, n-literals. Let z = [z1, z2, . . . , zn]
T ∈100

{1,−1}n where zi represents the assignment of ith literal, 1 for TRUE and −1 for FALSE. We101

construct the first-layer weight matrix W1 ∈ Rm×n as, if ith literal appears positively or negatively102

(or does not appear) in jth clause then (W1)ji = −1 or 1(or 0). Also, the first layer bias vector103

b1 ∈ Rm is constructed that all entries are −(k − 1). For the second layer, W2 ∈ R1×m is all 1104

matrix, while b2 = 0. Lastly, the given observation x ∈ R is 0. It can be shown that determining105

whether there is a z for which G2(z) = x can be reduced from k-SAT by this construction.106

Theorem 2. Suppose SETH holds. Then for any ϵ > 0, there is a 4-layer, O(n)-width ReLU network107

G4 and an observation x such that there is no O(2(1−ϵ)n) time algorithm to determine whether there108

exists z ∈ Rn satisfying G4(z) = x.109

Reduction.The reduction from k-SAT. The input is z = [z1, z2, . . . , zn]
T ∈ Rn. The first 2 layers110

are used to map all the values into [−1, 1]. The first layer output is max{zi,−1} for all i ∈ [n],111

and the second layer output is v ∈ Rn such that vi = min{max{zi,−1}, 1} for all i ∈ [n]. The112

third layer output is u ∈ Rm+2 where first m nodes will be defined as the first layer of Theorem 1113

with same weight and bias, and we will add 2 more nodes um+1 =
∑n

i=1 max{vi, 0} and um+2 =114 ∑n
i=1 −min{vi, 0}. The last layer has 2 output nodes, the first output node G4(z)1 =

∑n
i=1 ui, and115

the second output node G4(z)2 = um+1 + um+2. Also, the given observation x = [0, n]T ∈ R2.116

2.2 Hardness of Approximate Inversion117

We first lower bound the complexity of the inverse generative model under the ℓp-norm for positive118

odd numbers p by reducing it from CVPp. This gives a lower bound of O(2n) by assuming SETH.119

For positive even numbers p, we reduce from the Half-Clique and Vertex Cover Problems. This gives120

a lower bound of 2Ω(n) by assuming ETH.121

2.2.1 Reduction from CVP122

In Theorem 3, we present hardness results on the input z ∈ {0, 1}n, which are derived by applying123

a reduction from (0, 1)-CVPp. Our results are inspired by the proofs of the hardness of the sparse124

linear regression problem established in (32). We further extend our findings by proving that the125

results also hold for z ∈ Rn in Theorem 4, with a reduction from the binary case.126

Theorem 3. Assume SETH. Then for any ϵ > 0, there is a 1-layer, O(n)-width ReLU network G1127

and an observation x such that there is no O(2(1−ϵ)n) time algorithm to determine whether there128

exists z ∈ {0, 1}n that satisfies ∥G1(z)−x∥p < δ for a given δ > 0 and any positive odd number p.129

Reduction. The reduction is from (0, 1)-CVPp. The first layer weight and bias are constructed as130

W1 =
[

W1

−W1

]
and b1 =

[
b1
−b1

]
where for some positive real number α > δ = r,131

W 1 =

v1 0⃗ v2 0⃗ ... vn 0⃗
α α 0 0 ... 0 0
0 0 α α ... 0 0
0 0 0 0 ... α α

 , b1 =

−t
−α
−α
−α


Also, the given observation x is the all-zeros vector.132

3



Theorem 4. Assume SETH. Then for any ϵ > 0, there is a 5-layer ReLU network G5 and an133

observation x such that there is no O(2(1−ϵ)n) time algorithm to determine whether there exists134

z ∈ Rn that satisfies ∥G5(z)− x∥p < δ for a given δ > 0 and any positive odd number p.135

In the case of exact inversion, the transition from {0, 1}n to Rn was accomplished by adding two136

extra layers. When we try the same trick in the approximate case, instead of having exact binary137

values {0, 1}, we result in points clustered in a small interval around 0 or around 1. To overcome this138

issue, we introduce two additional layers that map the points around 0 to 0 and those around 1 to 1.139

The following construction is for δ < 1/4. It can be done with slight changes for any δ > 0 .140

Reduction. The first 2 layers are designed to make the entries z in [0, 1], so zi is mapped to141

vi = min{max{zi, 0}, 1} for all i ∈ [n]. In the 3rd layer, the first n nodes are defined by u[n] =142

ReLU(W3v + b3) where W3 = −In and b3 = 1
2 · 1⃗ ∈ Rn. Also, introduce 2 more nodes that143

un+1 =
∑n

i=1 max{vi, 1/2} and un+2 =
∑n

i=1 −min{vi, 1/2}. In the 4th layer, the first n nodes144

are defined by t[n] = ReLU(W4u[n] + b4) where W4 = −4 · In, and b4 = 1⃗ ∈ Rn. Also, we add145

another node tn+1 = un+1 + un+2 =
∑n

i=1 max{vi, 1/2} +
∑n

i=1 −min{vi, 1/2}. In the last146

layer, construction is similar to Theorem 3 with an addition of one more node given by sm+1 = tn+1147

so that the output is s ∈ Rm+1. And, the given output x is x = [⃗0, n/2] ∈ Rm+1.148

2.2.2 Reduction from Half-Clique149

To handle the case of even p, we cannot reduce from CVP in (37). Instead, we achieve this through150

two reductions: to the binary case from the Half-Clique and from the Vertex Cover problem. To151

transition from binary to real numbers, the same approach used in Theorem 4 can be followed. Both152

of these approaches enable us to show ETH hardness (22). We demonstrate a 2Ω(n) lower bound for153

binary inputs via a reduction from Half-Clique and Vertex Cover.154

Theorem 5. Assume ETH. There is a 1-layer, O(n2)-width ReLU network G1 and an observation x155

such that computational complexity to determine whether there exists a z ∈ {0, 1}n with ∥G1(z)−156

x∥p ≤ δ is 2Ω(n) for a given δ > 0 and any positive even number p.157

Reduction. The reduction is from the Half-Clique problem on a positive edge-weighted graph158

G(V,E) where |V | = n. The Half-Clique problem is to determine if a half-clique with a total159

weight less than M exists. We use the same trick G1(z) = ReLU(W1z + b1) where W1 =
[

W
−W

]
160

and b1 =
[

b
−b

]
. And, we consider the problem definition to be ∥Wz + b∥p ≤ δ when the target161

is x = 0⃗. Firstly, label the vertices by 1, . . . , n. Construct the matrix C ∈ R(
n
2)×n and the vector162

c ∈ R(
n
2) as follows. For an edge e(i, j) ∈ E with edge weight we, Cek = 2 p

√
we if k ∈ {i, j},163

Cek = 0 otherwise, and ce = − p
√
we. For a non-edge e(i, j) /∈ E, Cek = 2α if k ∈ {i, j}, Cek = 0164

otherwise, and ce = −α, here α is a large constant. The matrix W ∈ R((n2)+1)×n is constructed165

as the concatenation of C and β · 1⃗ ∈ R1×n, and vector b ∈ Rn+1 is defined by b[n] = c and166

bn+1 = −(n/2)β, here β is a large constant. Let Z be the number of non-edges, and the given value167

δ = p
√∑

e∈E we + αpZ + (3p − 1)M .168

2.2.3 Reduction from Vertex Cover169

Here, we give the following construction for Theorem 5 by reduction from Vertex Cover.170

Reduction. The Vertex Cover problem asks if G(V,E) has a vertex cover of size q. Let Z denote171

the number of edges. Construct a matrix C ∈ R(
n
2)×n and a vector c ∈ R(

n
2) as follows: For172

an edge e(i, j) ∈ E, Cei = Cej = 2α, and ce = −α. All the other entries are 0 in C. Matrix173

W ∈ R((n2)+1)×n is constructed as the concatenation of C and β · 1⃗ ∈ R1×n, and vector b ∈ Rn+1174

is defined by b[n] = c ∈ Rn and bn+1 = −(n− q)β, here β is a large constant. Let the given value175

δ =
p√
Zαp.176

4



References177

[1] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis pursuit,” SIAM review, vol. 43,178

no. 1, pp. 129–159, 2001.179

[2] D. Needell and J. Tropp, “Cosamp: Iterative signal recovery from incomplete and inaccurate samples,”180

Applied and Computational Harmonic Analysis, vol. 26, no. 3, pp. 301–321, 2009.181

[3] R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde, “Model-based compressive sensing,” IEEE Transactions182

on Information Theory, vol. 56, pp. 1982–2001, 2010.183

[4] J. Chang, C. Li, B. Póczos, B. Kumar, and A. Sankaranarayanan, “One network to solve them all—solving184

linear inverse problems using deep projection models,” in International Conference on Computer Vision185

(ICCV). IEEE, 2017, pp. 5889–5898.186

[5] A. Mousavi and R. Baraniuk, “Learning to invert: Signal recovery via deep convolutional networks,” in187

International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017, pp. 2272–2276.188

[6] A. Bora, A. Jalal, E. Price, and A. Dimakis, “Compressed sensing using generative models,” in International189

Conference on Machine Learning (ICML), 2017, pp. 537–546.190

[7] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” in IEEE Conference on Computer Vision191

and Pattern Recognition (CVPR), 2018, pp. 9446–9454.192

[8] G. Jagatap and C. Hegde, “Algorithmic guarantees for inverse imaging with untrained network priors,” in193

Neural Information Processing Systems (NeurIPS), 2019.194

[9] T. L. Y. Wu, M. Rosca, “Deep compressed sensing,” in International Conference on Machine Learning195

(ICML), 2019.196

[10] Z. Liu and J. Scarlett, “Information-theoretic lower bounds for compressive sensing with generative models,”197

IEEE Journal on Selected Areas in Information Theory, 2020.198

[11] V. Shah and C. Hegde, “Solving linear inverse problems using gan priors: An algorithm with provable199

guarantees,” in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).200

IEEE, 2018, pp. 4609–4613.201

[12] P. Hand and V. Voroninski, “Global guarantees for enforcing deep generative priors by empirical risk,”202

IEEE Transactions on Information Theory, vol. 66, no. 1, pp. 401–418, 2019.203

[13] Q. Lei, A. Jalal, I. S. Dhillon, and A. G. Dimakis, “Inverting deep generative models, one layer at a time,”204

in Advances in Neural Information Processing Systems, 2019, pp. 13 910–13 919.205

[14] F. Latorre, A. Eftekhari, and V. Cevher, “Fast and provable admm for learning with generative priors,” in206

Advances in Neural Information Processing Systems, 2019, pp. 12 004–12 016.207

[15] T. Nguyen, G. Jagatap, and C. Hegde, “Provable compressed sensing with generative priors via langevin208

dynamics,” ArXiv preprint arXiv:2102.12643, 2021.209

[16] J. Whang, Q. Lei, and A. Dimakis, “Compressed sensing with invertible generative models and dependent210

noise,” arXiv preprint arXiv:2003.08089, 2020.211

[17] M. Asim, A. Ahmed, and P. Hand, “Invertible generative models for inverse problems: mitigating represen-212

tation error and dataset bias,” in International Conference on Machine Learning (ICML), 2020.213

[18] E. M. Lindgren, J. Whang, and A. G. Dimakis, “Conditional sampling from invertible generative models214

with applications to inverse problems,” arXiv preprint arXiv:2002.11743, 2020.215

[19] R. Impagliazzo and R. Paturi, “On the complexity of k-sat,” Journal of Computer and System Sciences,216

vol. 62, no. 2, pp. 367–375, 2001.217

[20] R. Impagliazzo, R. Paturi, and F. Zane, “Which problems have strongly exponential complexity?” Journal218

of Computer and System Sciences, vol. 63, no. 4, p. 512–530, 2001.219

[21] P. Indyk, “Beyond p vs. np: quadratic-time hardness for big data problems,” in Proceedings of the 29th220

ACM Symposium on Parallelism in Algorithms and Architectures, 2017, pp. 1–1.221

[22] D. Lokshtanov, D. Marx, S. Saurabh et al., “Lower bounds based on the exponential time hypothesis,”222

Bulletin of EATCS, vol. 3, no. 105, 2013.223

5



[23] A. Rubinstein and V. V. Williams, “Seth vs approximation,” ACM SIGACT News, vol. 50, no. 4, pp. 57–76,224

2019.225

[24] K. Bringmann, “Fine-grained complexity theory: Conditional lower bounds for computational geometry,”226

in Conference on Computability in Europe. Springer, 2021, pp. 60–70.227

[25] A. Backurs and P. Indyk, “Edit distance cannot be computed in strongly subquadratic time (unless seth is228

false),” in Proceedings of the forty-seventh annual ACM symposium on Theory of computing, 2015, pp.229

51–58.230

[26] K. Bringmann, “Why walking the dog takes time: Frechet distance has no strongly subquadratic algorithms231

unless seth fails,” in 2014 IEEE 55th Annual Symposium on Foundations of Computer Science. IEEE,232

2014, pp. 661–670.233

[27] K. Bringmann and M. Künnemann, “Quadratic conditional lower bounds for string problems and dynamic234

time warping,” in 2015 IEEE 56th Annual Symposium on Foundations of Computer Science. IEEE, 2015,235

pp. 79–97.236

[28] A. Abboud, A. Backurs, and V. V. Williams, “Tight hardness results for lcs and other sequence similarity237

measures,” in 2015 IEEE 56th Annual Symposium on Foundations of Computer Science. IEEE, 2015, pp.238

59–78.239

[29] ——, “If the current clique algorithms are optimal, so is valiant’s parser,” SIAM Journal on Computing,240

vol. 47, no. 6, pp. 2527–2555, 2018.241

[30] A. Abboud, V. Cohen-Addad, and H. Houdrougé, “Subquadratic high-dimensional hierarchical clustering,”242

Advances in Neural Information Processing Systems, vol. 32, 2019.243

[31] A. Backurs, P. Indyk, and L. Schmidt, “On the fine-grained complexity of empirical risk minimization:244

Kernel methods and neural networks,” Advances in Neural Information Processing Systems, vol. 30, 2017.245

[32] A. Gupte and V. Vaikuntanathan, “The fine-grained hardness of sparse linear regression,” arXiv preprint246

arXiv:2106.03131, 2021.247

[33] A. Aggarwal and J. Alman, “Optimal-degree polynomial approximations for exponentials and gaussian248

kernel density estimation,” in Proceedings of the 37th Computational Complexity Conference, 2022, pp.249

1–23.250

[34] A. Rubinstein, “Hardness of approximate nearest neighbor search,” in Proceedings of the 50th annual251

ACM SIGACT symposium on theory of computing, 2018, pp. 1260–1268.252

[35] F. D. Keles, P. M. Wijewardena, and C. Hegde, “On the computational complexity of self-attention,” in253

International Conference on Algorithmic Learning Theory. PMLR, 2023, pp. 597–619.254

[36] H. Bennett, A. Golovnev, and N. Stephens-Davidowitz, “On the quantitative hardness of cvp,” in 2017255

IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2017, pp. 13–24.256

[37] D. Aggarwal, H. Bennett, A. Golovnev, and N. Stephens-Davidowitz, “Fine-grained hardness of cvp257

(p)—everything that we can prove (and nothing else),” in Proceedings of the 2021 ACM-SIAM Symposium258

on Discrete Algorithms (SODA). SIAM, 2021, pp. 1816–1835.259

6


	Introduction
	Generative model Inversion
	Fine-grained complexity.

	Hardness Results
	Hardness of Exact Inversion
	Hardness of Approximate Inversion
	Reduction from CVP
	Reduction from Half-Clique
	Reduction from Vertex Cover



