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Abstract

Reconstructing particle properties from raw signals measured in particle physics
detectors is a challenging task due to the complex shapes of the showers, variety in
density and sparsity. Classical particle reconstruction algorithms in current detec-
tors use a multi-step pipeline, but the increase in data complexity of future detectors
will reduce their performance. We consider a geometric graph representation due
to the sparsity and difference in density of particle showers. We introduce a dataset
for particle level reconstruction at the Future Circular Collider and benchmark the
performance of state-of-the-art GNN architectures on this dataset. We show that
our pipeline performs with high efficiency and response and discuss how this type
of data can further drive the development of novel geometric GNN approaches.

1 Introduction

The Future Circular Collider (FCC) (2) will push the energy and intensity frontiers in the search for
new physics. For each collision, the final state consists of a number of stable particles which interact
with the detector sensors in their path producing detectable hits. The pattern left by each particle is
unique and has general properties depending on its momentum and its species. Figure 1 shows the
produced hits in an event. In order to analyse the event generated by a given particle collision and
have access to higher information data, the final state particles properties - relativistic 4-momentum,
production vertex and type - need to be reconstructed from the observed hits. All physics studies then,
take the produced list of output particles to perform a higher level processing. Therefore, having
highly accurate reconstruction algorithms that properly map the detector outputs to a list of particles
is of high relevance to maximise the the physics potential of the new generation of colliders.

Current reconstruction algorithms often start by identifying a set of seeds, and then proceed to add the
remaining hits using hypothesis and clustering techniques. Although proficient, these algorithms have
begun to show their limitations, in particular as the scale and complexity of data grow exponentially.
In this context the lessons and advancements offered from point cloud object detection and GNNs offer
fresh perspectives. While there is a foundational similarity in the data to point clouds, the nuances of
particle physics call for more specialized tools. For example, the measured hits include energy and
the information about the type of detector subsystem sensor as well as the coordinates. Pioneering
developments, such as GravNet (17) and Object Condensation (13), heed this call. GravNet offers an
innovative approach to node clustering and particle classification, by learning a rewiring of the graph
during training based on a learnt embedding space, and considering a potential function on this space
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as weights for message passing. Furthermore, it scales to complex events with up to 300 000 hits with
low resource requirements on a single GPU (16). Concurrently, Object Condensation proposes an
object reconstruction pipeline that is independent of object size or density by making use of attractive
and repulsive potentials. These approaches largely differ from classical GNN approaches due to the
nature of the task of particle reconstruction, and represent a bridge between approaches for geometric
graphs and point clouds.

However, the tools and the sequence needed to simulate collision (matrix element generation (5), par-
ton shower and hadronisation (20), detector simulation (11; 4), digitisation and post-processing (10))
events and making them Al ready need enhanced domain understanding, increasing the barrier for
the Al community to meaningfully contribute to these problems and limiting the application of GNNs
to scientific research.

This paper presents a dataset created by simulating events on future colliders using the CLD detector
concept (6), one of the proposed detectors for the FCC-ee. Additionally, we present the SOTA
end-to-end methodology for reconstructing PF candidates. Further, we discuss how this task may
lead to new applications of GNNs in large scale geometric graphs.

Yoke

Figure 1: Left: example event from the training set. The plot contains the hits in detector coordinates,
the size represents the energy deposit in the calorimeter and the color of each shower the particle
id. Right: vertical cross-section of the CLD detector showing the different types of sensor (HCAL,
ECAL) as in (6).

2 Related work

GNNs has been extensively applied to solve computationally challenging experimental particle
physics-related problems such as jet tagging (18; 8; 1), track reconstruction (14), and data generation
(12). Approaches such as machine-learned particle-flow reconstruction (MLPF) (13; 15) have been
used to combine calorimeter clusters and tracks to generate a set of particles. Despite the effectiveness
of the approach when applied to preprocessed calorimeter clusters as input, the approach in (15)
cannot be directly applied to more granular shower shapes produced by the higher-granularity
calorimeters.

For the use in the CMS High-Granularity Calorimeter (HGCAL), object condensation was proposed
for particle reconstruction (13; 16; 9). Drawing from a physics-based learning objective, it has been
successfully applied to generic problems and demonstrates potential for application to more diverse
graph segmentation or similar tasks (13).

3 Dataset

The dataset consists of particle collision events with an arbitrary number (between 10 and 15) of
high-energy (0.5 < E < 50 GeV) stable final state hadrons (protons, neutrons, K1, 7). These
hadrons interact with the CLD detector calorimeter (7), giving rise to detectable hits. When a hadron



enters the calorimeter, it initiates a hadronic shower through nuclear interactions with the absorber
material. The secondary particles produced in the shower are detected by the active elements, and
their energies are measured to determine the energy of the incoming hadron. Events are simulated
using the KEY4HEP turnkey software stack (22) and GEANT4 detector simulation (4).

Nodes In each event, there are O(600) hits per particle (Figure 3). For every detector hit, the
energy (e), position (x,vy, z), and type in the detector are stored. The hit type is stored in the
form of a boolean (is) and tracks whether the corresponding detector element is part of the ECAL
(electromagnetic calorimeter) or the HCAL (hadronic calorimeter) subdetector, respectively. As
the ground truth information, for every hit, we keep track of the corresponding truth particle(s)
responsible for generating the energy deposit. This information is obtained by using the history of the
particle that generated the hit to link it back to the stable particle that produced it. The 4-momenta
(P, Py, D=, €) and particle type (neutron or proton) (id) or the corresponding ground-truth particles is
stored. The hadronic calorimeter hits store, on average, more energy than the electromagnetic hits,
highlighting the heterogeneousness of the systems, as shown in Figure 2.
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Figure 2: Distributions of the per event energies deposited in the ECAL and HCAL sub-detectors
(left). Fraction of the number of ECAL hits vs. the fraction of the energy stored in the ECAL hits per
event (right).
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Figure 3: From left to right: Distribution of the numbers of hits (nodes) per event, number of hits
(nodes) per particle, numbers of HCAL and ECAL hits for neutrons for different energy ranges,
energies left by the HCAL and ECAL hits for neutrons for different energy ranges.

Graph The set of hits is then converted into a graph. The hits are the nodes in the graph and the
edges are obtained by running a custom scalable KNN on the detector coordinates of the hits. The
graph is dynamically updated by the network as discussed in the next section.

4 Particle reconstruction with GNNs

Task The learning task consists of reconstructing an unknown number of particles using the hits in
a given event. The task is supervised and each hit has a link to one particle. This task is similar to a
point cloud object instantiation. Although showers (collection of hits generated by one particle) could
be well separated in space, particle flow algorithms (19; 21) aim to improve the separability of nearby
showers, to minimise the error on the measured momenta and the mis-indentification probability of
the ancestor particle species by optimally combining all the available sub-detector information.



Baseline We present the SOTA framework for this problem: a GravNet architecture wrapped in
Object condensation framework (13; 16), which defines the the types of outputs and the loss function.
Object condensation (13; 16) has been recently proposed to reconstruct multiple objects and their
properties from a variable number of nodes (hits). The approach trains a model first to predict
coordinates in an abstract space termed clustering space.' In the clustering space, *central’ hits of
each cluster termed condensation points are additionally predicted, and the model is trained such
that there is one condensation point (hit) per particle and the hits belonging to that particle are close
to it. In addition to the clustering space coordinates, a scalar value is outputted by the model that
constitutes a measure of how likely the given point is to be a condensation point (beta value; 3;). The
B, of the condensation point («) is enforced to be close to 1 while being close to 0 for the other points.
Additionally, the 3 values additionally provide for weights g; of the nodes ¢; = arctanh?8; + ¢yin.
Such structure of clustering space is achieved by jointly optimizing multiple losses, (1), (2), and (3).
We use ¢,;n = 3 unless otherwise specified. The set of condensation points is termed o and the set
of hits that are not alphas is termed . The losses used to optimize the model are defined in Equations
(1), (2) and (3). The first term in (1) is added to keep the beta values of the hits belonging to e close
to zero, (2) and (3) represent the repulsive and attractive potential to the condensation points. The
losses are standardized per truth particle: «; belongs to event j and hits belonging to event j that are
not alphas are termed g/
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GravNet (17) is a message passing MP graph neural network that dynamically updates the graph
structure at each layer using a KNN over a set of coordinates obtained from the features. The
message passing functions use the distances in the embedding space as a weight to aggregate the
features of neighbouring nodes. We consider the architecture presented in (17) with 4 layers and
k = [16,64, 16, 64] as the number of neighbours for each layer.

Figure 4 shows the outputs for a single event at different steps of training, where the coordinates are
the outputted coordinates of the model in the embedding space, the size of the points represents 5 and
each colour represents a true particle id. It can be observed in this figure that as training advances,
the model pulls the hits belonging to a single particle closer together and in some cases, like the red
and green shower it can separate the showers but leaves some residual hits that are pulled by both
condensation points.

For the inference, the Object Condensation framework selects a threshold for the 3 outputs per node
to be considered a condensation point, and proceeds to assign to each condensation points all hits
with predicted coordinates inside a radius 7.

In order to thoroughly evaluate results, each reconstructed shower needs to be matched to a truth
shower or discarded as a fake. We quantify the similarity between two showers as an energy-weighted
intersection over union (EIOU) as proposed in (16). The predicted showers are matched to the truth
showers by maximizing the sum of EIOU as in (16).

The architectures and models described in this section are implemented in TensorFlow (3).

5 Results

The performance of the reconstruction algorithm is evaluated on 5000 events that were generated
with the same number of particles and energy range as the training set. In order to measure the

! Additionally, other features such as particle energy and momentum can be predicted.
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Figure 4: Clustering space evolution with training for a sample event shown on the left. The size of
the points in clustering space represents the 3 value predicted by the model, whereas the size of the
ground truth hits is proportional to their energy.

performance of our algorithms we define multiple metrics that are used in the High Energy Physics
community to evaluate the performance of a particle flow algorithm:

Efficiency: the fraction of particles that are reconstructed and matched to one of the true showers
with respect to the total number of true showers.

Fake rate: the fraction of particles that are reconstructed without matching to a true shower with
respect to the total number of true showers.

Energy response quantities: the mean, termed response, and the mean-corrected standard deviation,
termed resolution, of the distribution of reconstructed predicted energy divided by the energy of the
particle for matched particles. This metric can be considered for both the true and reconstructed
energy of the particle. The response would peak at 1 in a perfect reconstruction for the reconstructed
energy. The reconstructed energy is the energy that can be reconstructed from the hits of a particle. It
can be smaller than the true energy.

Per shower metrics: for each matched shower the containment is the percentage of energy the

. . . Mn.iEn 1
predicted shower contains of the matched true particle, calculated as ElEi, where M,, ; is

a mask that is 1 if hit n belongs to particle ¢ and zero otherwise. The purity of the shower is the

percentage energy from the true particle that belongs to the reconstructed particle, which is calculated
My,i En

as ZnEpred,i ’

The results are presented in Figure 5. The efficiency calculated for each energy bin is shown in
Figure 5a. The efficiency increases with the increase in pr and reaches values close to 1 for pr > 30.
We hope that by adding track information to the dataset the efficiency at lower pr increases, since
only one track would correspond to each shower (for charged particles). The fake rate as a function
of the reconstructed particles energies is presented in Figure Sb. There is a large number of fake
particles produced around 1 GeV and the percentage of fake particles sharply decreases for higher
pr. Fake particles appear as a result of learning a bad distribution for the [, as it assigns a high
B to hits that already have a condensation point. We aim to reduce this effect by improving the 3
term in the loss function to more accurately reflect the optimal distribution. For the matched true
showers we evaluate the response and resolution as function of the reco pr and show the results
for each energy bin in Figures 5c and 5d. The response shows that the clustering correctly assigns
a high fraction of energy to the matched reconstructed particles and the resolution shows that the
distribution is peaked. In both, we observe that the performance is worse at lower energies. As a next
step, the model should also regress the true energy of the particle, which as explained in the metrics
is different to the reco energy (that can be observed in the event). This could be achieved by training
a sub-block of the model that considers each sub-graph resulting from the condensation and regresses
particle level features, such as mass, energy and coordinates. Finally, containment and purity metrics
as a function of the reconstructed energy for matched showers are shown in Figures 5e and 5f. The
error vars represent the standard deviation of the metrics for the showers inside the energy bin. These
are excellent metrics to evaluate if the model is mixing hits from different showers. Both containing
and purity are high and there is a increasing trend in both for increasing pr. We can also observe this
in the clustering space in Figure 4, where most of the clusters are well separated but some remain
close to each other and have particles that are pulled by multiple condensation points.
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Figure 5: Reconstruction performance on evaluation dataset. (a) Efficiency as function of true energy.
(b) Fake rates as a function of the reco particle’s energy.(c) Response as a function of reco energy of
matched showers. (d) Resolution as a function of reco energy of matched showers.

6 Conclusion

We introduce a new dataset with a high energy physics driven task, particle level reconstruction
at future colliders. We show how SOTA GNN architectures perform and present metrics relevant
for the community. However, in order to bring GNNs to the performance required for the FCC-ee
studies, several items are missing. The clustering performance has to be improved at low energies
E < 2 GeV where particle multiplicities are the largest. In addition tracking information has to
be included, and tracks have to be part of the input for the clustering. Finally the identification
of the particle species, in conjunction with all the various sub-detector components (not only the
calorimeters) has to be demonstrated. We hope that this complex problem is of interest to the GNN



community. With this public dataset, we open the door to new challenges and research directions that
could benefit both the high energy physics and the ML communities.
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