
Under review as a conference paper at ICLR 2024

FAST NEURAL ARCHITECTURE SEARCH
WITH RANDOM NEURAL TANGENT KERNEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural architecture search (NAS) is very useful for automating the design of DNN
architectures. In recent years, a number of methods for training-free NAS have
been proposed, and reducing search cost has raised expectations for real-world
applications. In a state-of-the-art (SOTA) training-free NAS based on theoretical
background, i.e., NASI, however, the proxy for estimating the test performance
of candidate architectures is based on the training error, not the generalization
error. In this research, we propose a NAS based on a proxy theoretically de-
rived from the bias-variance decomposition of the normalized generalization er-
ror, called NAS-NGE. Specifically, we propose a surrogate of the normalized 2nd
order moment of Neural Tangent Kernel (NTK) and use it together with the nor-
malized bias to construct NAS-NGE. We use NAS Benchmarks to demonstrate
the effectiveness of the proposed method by comparing it to SOTA training-free
NAS in a short search time.

1 INTRODUCTION

Deep neural networks (DNNs) continue to produce impressive results in real-world applications
such as machine translation and object detection (Pouyanfar et al., 2018). For each task, researchers
have developed DNNs with suitable architecture (He et al., 2016; Xie et al., 2017; Huang et al.,
2017; Chen et al., 2017). With the practical application of DNNs, various research efforts are also
underway to theoretically elucidate the overwhelming performance of DNNs (Allen-Zhu et al., 2019;
Lu et al., 2020). One promising research result is Neural Tangent Kernel (NTK) defined from
the inner product of the gradient for the DNN, which can be used to analyze generalization and
convergence performance in the infinite-width limit of DNNs (Jacot et al., 2018; Lee et al., 2019).
NTKs for various architectures have also been derived analytically, and the theoretical understanding
of DNNs is advancing (Huang et al., 2020; Arora et al., 2019; Alemohammad et al., 2021; Yang,
2020). For any given architecture, as with feed forward network, it has also been confirmed that
the NTK is kept unchanged during the learning process in the infinite-width limit (Yang & Littwin,
2021). However, actual DNNs have finite width, and state-of-the-art DNNs are often finite-width,
deep-layered DNNs, and research is actively underway to bridge the gap between infinite-width
DNNs and finite-width DNNs (Hanin & Nica, 2020a; Littwin et al., 2021; Hu & Huang, 2021; Li
et al., 2021; Seleznova & Kutyniok, 2022b; Littwin et al., 2020; Huang & Yau, 2020). NTKs of DNN
in finite width have randomness, and fluctuations in NTKs are tied to generalization performance
(Geiger et al., 2020; Littwin et al., 2021).

On the other hand, the overwhelming performance of DNNs requires the effort of manually de-
signing DNN architectures for each task. Neural Architecture Search (NAS) has been proposed to
reduce the effort (Elsken et al., 2021). Although training-based NAS (Liu et al., 2019) performs
well on a variety of tasks, the computational cost is considerably high because the DNN needs to
be trained during the search. Therefore, a training-free NAS using a zero-cost proxy was proposed
(Abdelfattah et al., 2021). This reduced the computational cost by far. However, this method is not
based on theoretical understanding. Shu et al. (2022a) proposed a training-free NAS (NAS at Ini-
tialization; NASI) based on the NTK trace norm. However, NASI is based on a measure of training
performance, not the generalization performance of the DNN architecture. Therefore, it is desirable
to find a zero-cost proxy, with a theoretical background, that predicts the generalization performance
of any DNN architecture.

1

Under review as a conference paper at ICLR 2024

To meet the above needs, we proposed a new training-free NAS method based on generalization
performance. The generalization performance can be decomposed into bias and variance. We con-
sider the generalization performance normalized by the power of the expected value of the output to
remove the scale effect of output for each architecture. Besides, the normalization has another effect
on stabilizing computation concerning NAS. Specificaly, we construct a training-free NAS based on
normalized variance to estimate the performance of candidate architectures, by using normalized
NTK moment as a proxy of normalized variance. In addition, we construct a training-free NAS that
uses both normalized variance and normalized bias to estimate the performance of candidate archi-
tectures, by using normalized NTK moment and trace norm as a proxy of normalized variance and
bias. Next, using benchmark for studying NAS (Zela et al., 2020), we demonstrate the effectiveness
of the proposed training-free NAS by comparing it to a conventional NAS in a short search time.

The main contributions are summarized as follows:

• We theoretically analysed DNN generalization with bias-variance decomposition and NTK.
• We proposed a computationally efficient training-free NAS based on the results of analysis.
• In the short search time, the proposed NAS outperforms state-of-the-art training-free NAS.

In the remainder of the paper, we introduce some related studies in Section 2. Section 3 describes the
proposed method. Section 4 describes numerical experiments. Section 5 describes the conclusion of
our research.

2 RELATED WORK

There have been many attempts to devise or tune DNN architectures to improve generalization
performance in natural language processing (Vaswani et al., 2017), image recognition (Liu et al.,
2021), and sound event detection (Wakayama & Saito, 2022). A wide range of applications of DNN
pushes an effort toward NAS (Ren et al., 2021). As shown in Shu et al. (2022a), architectures found
in NAS are even surpassing the performance of manually designed architectures. NAS consists of
three components (Elsken et al., 2021). The first is the design of a search space containing candidate
architectures. The second is a method for predicting the test performance of candidate architectures.
The third is a method for determining the optimal architecture from the search space using predictive
metrics. Our research focuses mainly on the second factor and proposes a computationally efficient
NAS method.

2.1 NEURAL ARCHITECTURE SEARCH

An overview of NAS research will be presented. NAS is a technology that automatically designs
DNN architectures. The first NAS by reinforcement learning, evolutionary algorithm, random
search, and bayesian optimization, required full training of the parameters of candidate architec-
tures to predict test performance. The technology used so many computational resources that it
could only be used by a limited number of companies with access to a large number of computers
equipped with GPUs (Ren et al., 2021; Elsken et al., 2021). Therefore, one-shot NAS, in which the
parameters of candidate architectures need only be learned once, has been developed (Pham et al.,
2018; Dong & Yang, 2019; Xie et al., 2019; Liu et al., 2019; Wang et al., 2023). Here, the technique
shares weights among candidate architectures. One-shot NAS such as SNAS (Xie et al., 2019) and
DARTS (Liu et al., 2019) probabilistically explore architectures, and DARTS possesses a cell-based
search space (Shu et al., 2020; Wan et al., 2022). In addition, NAS-Bench-1Shot1 is maintained
to improve reproducibility and efficiency of experiments using cell-based search space (Zela et al.,
2020; Ying et al., 2019). Furthermore, Ye et al. (2022) proposes a β-DARTS to regularize the search
process in DARTS. One-shot NAS is still computationally intensive for easy use, and a technique
that can predict the test performance of candidate architectures in a simpler way is desired.

A new technique called zero-shot NAS, or training-free NAS, has been proposed to reduce the time
required to training the model parameters in a one-shot NAS. Training-free NAS is used to evaluate
candidate architectures with zero-cost proxies. The proxies, such as Grad, SNIP, GraSP, synflow,
fisher and jacob cov, use gradient information and are combined with pruning and random search
algorithms to construct a NAS that requires less computation time than a one-shot NAS (Abdelfattah
et al., 2021). On the other hand, a limited number of proxies, such as NNGP-NAS (Park et al., 2020),
NASWOT (Mellor et al., 2021), TE-NAS (Chen et al., 2021), KNAS (Xu et al., 2021), GradSign

2

Under review as a conference paper at ICLR 2024

(Zhang & Jia, 2022), ZiCo (Li et al., 2023) and NASI (Shu et al., 2022a), have also been proposed
with a theoretical insight.

Park et al. (2020) proposed a NAS using NNGP-kernel as a zero-cost proxy. The NNGP-NAS
mimics the behavior of reservoir computing rather than DNN itself, since NNGP-kernel assumes
that DNNs are infinite width and consists only of the derivatives of the final layer. NASWOT (Mellor
et al., 2021) predicts test performance using a proxy based on the overlap in activity between data
in the initialized DNN. In addition, training-free NAS is achieved through random search. TE-NAS
(Chen et al., 2021) uses the number of linear regions in the input space (Xiong et al., 2020) as a
measure of expressivity and the condition number (ratio of the largest eigenvalue to the smallest
eigenvalue) of NTK (Jacot et al., 2018) as a measure of trainability. The combination of the two
measures is used to predict the test performance, and training-free NAS is achieved through search
by a pruning. KNAS (Xu et al., 2021) is a method that uses as a proxy the average of all the elements
of the NTK calculated using the parameters at initialization. Here, the search space is a randomly
generated candidate architecture. GradSign (Zhang & Jia, 2022) is designed based on an analysis of
the landscapes in the sample-wise optimization. ZiCo (Li et al., 2023) is a zero-cost proxy based on
a theoretical analysis of gradient properties across different samples.

Although above six methods, i.e. NNGP-NAS, NASWOT, TE-NAS, KNAS, GradSign, and ZiCo,
are proxies devised inspired by theory, the predictive performance of NAS has only been shown
experimentally, and a NAS method based on a rigorous theoretical background has been desired.

NASI (Shu et al., 2022a) has been proposed that uses NTK theory to construct a zero-cost proxy
and select an architecture that minimizes training errors by using the differentiable search method
used in one-shot NAS. In other words, NASI is a NAS with a solid theoretical background that
effectively combines zero-cost proxies and efficient search methods. Therefore, compared to a NAS
based on empirical proxy (Abdelfattah et al., 2021), and a NAS by pruning (Chen et al., 2021),
etc., NASI is very promising as a baseline among training-free NAS. Specifically, NASI is based on
the representation of training errors such as MSE in terms of eigenvalues and eigenvectors of NTKs.
NASI is attributed to the problem of minimizing the function of the mean value of eigenvalues, which
is the upper bound of training errors, i.e., maximizing the trace norm of NTK (Shu et al., 2022a).
The next section details the NTK theory used as a zero-cost proxy for NASI and the proposed
training-free NAS.

2.2 NEURAL TANGENT KERNEL

In architectures used for real-world tasks such as CNNs, a DNN with a wide width corresponding
to the infinite width limit of NTK performs better than typical DNNs with finite width and deep
layers, when there is only a small amount of data (Arora et al., 2020). However, it has been found
empirically that a general DNN with a finite width and deep layers performs better when there is a
large amount of data (Lee et al., 2020).

There are a number of ongoing works to fill the gap between the generalization and convergence
performance of infinite-width DNNs expressed by the NTK, and finite-width DNNs used in practice.
Hanin & Nica (2020a) is the first study to analyze the properties of finite width NTKs corresponding
to feedforward networks. The study points to the exponential increase in the normalized second-
order moment of NTK elements with the ratio of depth to width. Subsequently, Littwin et al. (2021)
derived an analytical expression of the upper and lower bounds of the normalized second-order
moments of the elements of NTK corresponding to ResNet (He et al., 2016) and DenseNet (Huang
et al., 2017). In addition, Littwin et al. (2020) numerically calculated the normalized second-order
moments of the elements of NTK corresponding to ResNeXt (Xie et al., 2017). Furthermore, Hu
& Huang (2021) analytically calculated the upper bounds of the normalized any-order moments of
the elements of NTK corresponding to feedforward networks and residual networks. Geiger et al.
(2020) mention that the difference between the NTK at initialization and the infinite width limit
NTK is larger than the difference between the NTK at initialization and the NTK after training.

As Geiger et al. (2020) theoretically stated, the fluctuation of the random NTKs at initialization for
finite-width DNNs affects the generalization error of DNN. On the other hand, the analysis in Hu
& Huang (2021) indicates that the variance of NTK can be considerably large. Therefore, we use
the normalized moment of NTK to stabilize the estimation and computation for statistics related to
NAS.

3

Under review as a conference paper at ICLR 2024

3 PROPOSED METHOD

In this section, we propose a new method for NAS, which uses the normalized generalization error
that takes bias and variance into account. Note that Neural Architecture Search (NAS), such as
NASI (Shu et al., 2022a), chooses an architecture that speeds up the decay of training error, meaning
that only bias is considered. On the other hand, our method considers both bias and variance under
the squared loss. To construct a training-free NAS, we approximate the dynamics of DNN learning
using the NTK. We show that the normalized generalization error of the trained DNN is expressed
using the normalized 2nd-order moment of NTK.

Let us define f(x; θ0) ∈ Rm as the neural network model for the input x ∈ Rm0 with the initial
weight parameter θ0. The collection of the data is denoted by D = (X ,Y), in which X is the
set of n input vectors, x1, . . . , xn, and Y is the set of n output vectors, y1, . . . , yn. Here, X and
Y are regarded as the concatenated column vectors of the data, i.e., X ∈ Rnm0 ,Y ∈ Rnm. Let
θt be the parameter at the t-th step of a learning algorithm such as the stochastic gradient descent
method. For the sake of simplicity, the same notation θt is used for a positive real number t when
the update formula of the learning algorithm is approximated by a differential equation having the
continuous parameter t. The output value of the model with θt at all the input data X is expressed
by f(X ; θt) ∈ Rnm. In the below, the notation ft(x) is also used for f(x; θt).

3.1 BIAS-VARIANCE DECOMPOSITION OF NORMALIZED GENERALIZATION ERROR

First of all, let us define the normalized 2nd order moment. For the m-dimensional random variable
X = (X1, . . . , Xm), let us define the normalized 2nd order moment Z(X) by

Z(X) :=
E[∥X∥2]
∥E[X]∥2

,

where ∥ · ∥ is the Euclidean norm. In the next subsection, we consider a surrogate of Z(ft(x)) using
the NTK. We show some property of Z(X). The normalized 2nd order moment is the scale-free
quantity, that is, Z(X) = Z(cX) for any non-zero constant c. For X = (X1, . . . , Xm), it holds that

Z(X) =
∑

i E[X
2
i]∑

i E[Xi]2
≤

∑
i

E[X2
i]

E[Xi]2
≤

∑
i Z(Xi). For one-dimensional random variable Xi, we have

Z(Xi) =
E[X2

i]
E[Xi]2

= Var[Xi]
E[Xi]2

+ 1, i.e., Z(Xi) is expressed by the ratio of the variance and the mean
square.

To assess the generalization performance of candidate architectures regardless of the output scale,
we use the bias-variance decomposition of the normalized generalization error. The trained DNN
ft depends on the initial parameter θ0 and the data D. Suppose that the initial parameter θ0 of the
model f0 is randomly determined. The expected squared error of the trained model ft on a test data
x is defined by

R(x) := Eθ0,D[∥ft(x)− ytrue(x)∥2],
where ytrue(x) ∈ Rm is the true output function. For the classification problems, ytrue(x) stands
for the one-hot-vector. The expectation is taken for θ0 and D. Let us define

Bias(ft(x))
2 = ∥Eθ0,D[ft(x)]− ytrue(x)∥2,

Var(ft(x)) = Eθ0,D[∥ft(x)− Eθ0,D[ft(x)]∥2] = Eθ0,D[∥ft(x)∥2]− ∥Eθ0,D[ft(x)]∥2.
To remove the effect of the scale of ft(x), we consider a normalized R(x). Then, the bias-variance
decomposition of the normalized R(x) is written as

R(x)

∥Eθ0,D[ft]∥2
=

Bias(ft(x))
2

∥Eθ0,D[ft]∥2
+

Var(ft(x))

∥Eθ0,D[ft]∥2
=

Bias(ft(x))
2

∥Eθ0,D[ft]∥2
+ Z(ft(x))− 1.

Note that normalization reduces the apparent value of variance and thus stabilizes the calculation.
As shown in the next section, NTKs are available to analyze the normalized generalization error.

3.2 A SURROGATE OF NORMALIZED 2ND ORDER MOMENT

We propose a surrogate quantity of Z(ft(x)). For that purpose, we derive an approximation f̃t for
ft. Then, we consider a computationally tractable upper bound of Z(f̃t) for NAS.

4

Under review as a conference paper at ICLR 2024

As shown in (Jacot et al., 2018), the NTK is defined by Θt(X ,X) := ∇θf(X ; θt)∇θf(X ; θt)
T ∈

Rnm×nm. The DNN dynamics is expressed by

dft(X)

dt
= −ηΘt(X ,X)∇ft(X)L,

where η is a learning rate, and ∇ft(X)L ∈ Rnm is the gradient of the loss function L at ft(X) with
respect to the model output. See Lee et al. (2019) for details.

In the below, we derive f̃t. The equality ft(x) = f0(x) +
∑t

j=1 ∆fj(x) holds for ∆fj(x) =

fj(x)− fj−1(x). Using the NTK, ∆fj(x) is approximated by

∆fj(x) = −η
∑
i

Θj(x, xi)∇fj(xi)L

= −η
∑
i

Θ0(x, xi)∇fj(xi)L − η
∑
i

(Θj(x, xi)−Θ0(x, xi))∇fj(xi)L (1)

where ∇fj(xi)L ∈ Rm and Θj(x, xi) ∈ Rm×m is the NTK defined from fj . As shown in Lee
et al. (2019), the change of the NTK, Θj − Θ0, goes to zero as the width of the DNN model tends
to infinity. Thus, we ignore Θj − Θ0. Here, x in the NTK is a test input, which is not available
in practice. The training data is substituted instead of the test input x. As Littwin et al. (2021)
numerically confirmed, the diagonal value Θ0(x, x) is asymptotically the same as the off-diagonal
value Θ0(x, x

′) for x ̸= x′ as the width of the neural network model tends to infinity. Though this
finding has not been rigorously proved, we apply this approximation. In the below, we assume i)
1
nt

∑
i,j ∇fj(xi)L is a constant vector, say g ∈ Rm, and ii) the condition number of Eθ0,D[Θ0] is

bounded above by a constant κ0. As an approximation of ft, let us define f̃t(x) by

f̃t(x) = f0(x)− ηntΘ0(x
′, x′)g,

where x′ is a training data.

Let us compute Z(f̃t(x)). In the below, λmax(A) and λmin(A) are the maximum and minimum
eigenvalues of the matrix A. The diagonal sum of the square matrix A is denoted by TrA. Since
often the initialization of the network parameters θ0 is chosen by the centered Gaussian, we can
assume that Eθ0 [f0(x)] = 0 ∈ Rm. Indeed, the expectation of the weight parameters in the last
layer vanishes under the centered Gaussian initialization. Hence, we have

Z(f̃t(x)) =
Eθ0,D[∥f0(x)− ηntΘ0(x

′, x′)g∥2]
∥Eθ0,D[f0(x)− ηntΘ0(x′, x′)g]∥2

≤ 2Eθ0,D[∥f0(x)∥2]
η2n2t2∥Eθ0,D[Θ0(x′, x′)g]∥2

+
2Eθ0,D[∥Θ0(x

′, x′)g∥2]
∥Eθ0,D[Θ0(x′, x′)g]∥2

.

One can ignore the first term for a large n and t. Using the assumption that the condition number of
Eθ0,D[Θ0(x

′, x′)] is bounded above by κ0, we derive an upper bound of the second term as follows,

Eθ0,D[∥Θ0(x
′, x′)g∥2]

∥Eθ0,D[Θ0(x′, x′)g]∥2
≤ κ2

0m
2Z(TrΘ0(x

′, x′)). (2)

The derivation is shown in Appendix D. We use Z(TrΘ0(x
′, x′)) as a surrogate quantity of Z(ft(x))

up to a constant factor.

In the same way as Liu et al. (2019), we introduce the distribution pα(A) parameterized by α over
candidate architectures. The optimal distribution over candidate architectures is expected to attain
the minimum value of the expected normalized 2nd order moment. Since the width of practical
DNNs is finite, the NTK with an extremely small variance should be excluded. For this reason, let
us introduce a constraint [ν − Z(TrΘ0(x

′, x′;A))]+ to our objective function. Also, this constraint
has the role of avoiding over-reliance on training data to search for DNN architectures. Eventually,
we want to minimize the expected performance of architectures sampled from pα(A):

EA∼pα

[
Z(TrΘ0(x

′, x′;A)) + µ[ν − Z(TrΘ0(x
′, x′;A))]+

]
, (3)

where Θ0(x
′, x′;A) is the NTK Θ0(x

′, x′) ∈ Rm×m at the training data x′ with the architecture A
and [a]+ = max{a, 0}. The training data x′ is randomly selected for each step in the minimization.

5

Under review as a conference paper at ICLR 2024

Remark 1. As shown in Yang & Littwin (2021), the NTK approximation applies to a wide range
of DNNs. In the binary classification problem, Zhu et al. (2022) study generalization properties of
NAS for DNNs with skip connections and pseudo-Lipschitz activation functions.

3.3 EVALUATION OF NORMALIZED BIAS

In addition to the normalized variance, we consider the normalized bias as another performance
measure.

For the MSE loss, Lee et al. (2019) derived
ft(x) = Θ0(x,X)Θ0(X ,X)−1Y + f0(x)−Θ0(x,X)Θ0(X ,X)−1f0(X).

In the infinite width limit, Θ0 converge to Θ∗, which is a deterministic NTK. Then, the approximate
expectation is given by

Eθ0 [ft(x)] = Θ∗(x,X)Θ∗(X ,X)−1Y,
because Y and Θ∗ do not depend on θ0 (Seleznova & Kutyniok, 2022a). The normalized bias is

Bias(ft(x))
2

∥Eθ0,D[ft(x)]∥2
=

∥Eθ0,D[ft(x)]− ytrue(x)∥2

∥Θ∗(x,X)Θ∗(X ,X)−1Y∥2
.

In addition, a randomly selected training data xi is utilized as a substitute for test data x. The average
of the denominator is given by

1

n

n∑
i=1

∥Θ∗(xi,X)Θ∗(X ,X)−1Y∥2 =
1

n
YTY.

By replacing the denominator ∥Θ∗(x,X)Θ∗(X ,X)−1Y∥2 with its mean over the training data,
the normalized bias is approximated by n(YTY)−1∥Eθ0,D[ft(xi)]− ytrue(xi)∥2. The approximate
normalized bias corresponds to the loss function of NASI (Shu et al., 2022a), i.e., −TrΘ0(X ,X ;A),
where Θ0(X ,X ;A) ∈ Rnm×nm is the NTK for the training data X with the architecture A.

3.4 NAS BASED ON NORMALIZED GENERALIZATION ERROR

As shown in the previous sections, the surrogate of the normalized bias is given by
−TrΘ0(X ,X ;A), which is used in NASI. The regularization [TrΘ0(X ,X ;A)− ν′]+ is introduced
to mitigate the overfitting (Shu et al., 2022a). Furthermore, the expected normalized 2nd order mo-
ment Z(ft(x)) over candidate architectures is replaced with Eq. 3. Eventually, our formulation is
given by the following optimization problem for the architecture distribution pα(A),

min
α

EA∼pα

[
− TrΘ0(X ,X ;A) + µ′[TrΘ0(X ,X ;A)− ν′]+

]
+ γEA∼pα

[
Z(TrΘ0(x

′, x′;A)) + µ[ν − Z(TrΘ0(x
′, x′;A))]+

]
, (4)

where the scaling factor n(YTY)−1 of the normalized bias is absorbed in the hyper-parameter γ.

To perform the optimization in Eq. 3 or Eq. 4 of the proposed method, we use a continuous approx-
imation of search algorithm similar to NASI. Using Gumbel-Softmax that approximates categorical
distributions by continuous distribution, we convert the architecture search into a continuous opti-
mization problem.

In the next section, we numerically confirm the effectiveness of the proposed training-free NAS
method.

4 EXPERIMENTS

We proposed a new training-free method using zero-cost proxy based on generalization performance
to achieve a very fast NAS. In a very short search time, we validate the search effectiveness of the
proposed method in the three search spaces of NAS-Bench-1Shot1 (Zela et al., 2020) on CIFAR-10,
and in the search space and three datasets of NAS-Bench-201 (Dong & Yang, 2020). First of all,
we describe the details of the conditions and results of the experiments using the proposed method
derived in the previous section, a conventional method, i.e., NASI (Shu et al., 2022a), and a Hybrid
NAS, i.e., HNAS (Shu et al., 2022b). HNAS is also NAS based on generalization performance
similar to the proposed method, but it is a hybrid NAS combining a zero-cost proxy and validation
performance for Bayesian optimization (Snoek et al., 2012) unlike the proposed training-free NAS.

6

Under review as a conference paper at ICLR 2024

Table 1: Information of search spaces in NAS-Bench-1Shot1 (Zela et al., 2020). The sum of the
parents number of all nodes in space is chosen to be 9. Three types of search spaces were proposed
by varying the determination of the number of parents each selected block has. A loose end is node
whose output does not contribute to the discrete cell output.

NUMBER OF PARENTS NUMBER OF ARCHITECTURES

NODE 1 2 3 4 5 OUTPUT W/O LOOSE ENDS W/ LOOSE ENDS

SEARCH SPACE 1 1 2 2 2 − 2 6, 240 2, 487
SEARCH SPACE 2 1 1 2 2 − 3 29, 160 3, 609
SEARCH SPACE 3 1 1 1 2 2 2 363, 648 24, 066

Table 2: Experimental results of NAS based on normalized 2nd order moment (NAS-NOM). The
test error is reported along with the mean and standard error after querying results of 3 independent
training on each 5 independently searched architecture, using NAS-Bench-1Shot1. In two search
spaces, NAS-NOM outperforms the conventional method, i.e., NASI (Shu et al., 2022a). The run-
ning time (in second), including calculation for proxy such as NTK, is evaluated on a single Tesla
V100S and reported, in all of the following experiments.

NASI PROPOSED

STEP 40 20

TIME 33.0± 3.71 [S] 28.1± 2.96 [S]

SEARCH SPACE 1 0.096± 0.054 0.085± 0.011
SEARCH SPACE 2 0.077± 0.008 0.087± 0.016
SEARCH SPACE 3 0.099± 0.039 0.070± 0.009

4.1 EXPERIMENTS ON NAS-BENCH-1SHOT1

Experiments in the NAS are computationally very expensive and it is virtually impossible to perform
a proper scientific evaluation with many repeated runs to draw statistically robust conclusions (Ren
et al., 2021; Elsken et al., 2021). Therefore, NAS-Bench-101 (Ying et al., 2019) was introduced to
simulate an arbitrary number of runs of NAS methods inexpensively. NAS-Bench-101 is a large tab-
ular benchmark with a unique 423k cell architecture. NAS-Bench-1Shot1 reuses NAS-Bench-101
to inexpensively benchmark NAS methods. Table 1 shows the characteristics of each search space.

We have conducted experiments using the two proposed methods and describe the experimental con-
ditions and results in detail. The proposed method was implemented based on the code published
as the supplemental materials 1 of a conventional method, i.e., NASI (Shu et al., 2022a). We com-
pared the effectiveness between the proposed method using Eq. 3, i.e., NAS based on normalized
2nd order moment (NAS-NOM), with 20 search steps and NASI with 40 search steps. We also com-
pared the effectiveness between the proposed method using Eq. 4, i.e., NAS based on normalized
generalization error (NAS-NGE), with 20 search steps and NASI with 40 search steps. In all experi-
ments, the search budget is comparable and very short, specifically about 30 seconds. Here, the test
error for each method is reported along with the mean and standard error after querying results of 3
independent training on each 5 independently searched architecture, using NAS-Bench-1Shot1.

Proposed : NAS based on normalized 2nd order moment (NAS-NOM)

The number of initialized models used to calculate the normalized 2nd order moment of NTK was 4
in NAS-NOM. In addition, one data for calculating the NTK moment is randomly sampled at each
step from the training data on CIFAR-10, in all of the following experiments. In all of the following
experiments, the parameters of each model for calculating the NTK moment were independently
initialized with Kaiming Norm Initialization (He et al., 2015). The values of the hyperparameters in
Eq. 3 are as µ = 2.0 and ν = 1.5 for the loss of the NTK normalized 2nd order moment.

Table 2 shows that in two of these three search spaces, the proposed method, i.e., NAS-NOM,
outperforms the conventional method, i.e., NASI, i.e., it usually selects neural architectures with
better generalization performance.

1https://openreview.net/attachment?id=v-v1cpNNK v&name=supplementary material

7

Under review as a conference paper at ICLR 2024

Table 3: Experimental results of NAS based on normalized generalization error (NAS-NGE). The
test error is reported along with the mean and standard error similar way to Table 2. In all three
search spaces, NAS-NGE outperforms the conventional method, i.e., NASI, and the Hybrid NAS
method, i.e., HNAS (Shu et al., 2022b).

NASI PROPOSED HNAS

STEP 40 20 4

TIME 33.0± 3.71 [S] 35.2± 3.66 [S] 163.2± 17.96 [S]

SEARCH SPACE 1 0.096± 0.054 0.086± 0.024 0.090± 0.024
SEARCH SPACE 2 0.077± 0.008 0.074± 0.006 0.092± 0.021
SEARCH SPACE 3 0.099± 0.039 0.085± 0.014 0.087± 0.038

4 12 36 108
NASI 0.489 0.282 0.137 0.096
Proposed 0.595 0.368 0.120 0.086

0.0
0.2
0.4
0.6

Te
st

 e
rr

or

Training epoch

Search Space 1
NASI
Proposed

4 12 36 108
NASI 0.450 0.181 0.096 0.077
Proposed 0.583 0.235 0.097 0.074

0.0
0.2
0.4
0.6

Te
st

 e
rr

or

Training epoch

Search Space 2
NASI
Proposed

4 12 36 108
NASI 0.555 0.318 0.142 0.099
Proposed 0.665 0.387 0.125 0.085

0.0
0.2
0.4
0.6

Te
st

 e
rr

or

Training epoch

Search Space 3
NASI
Proposed

Figure 1: Results at different training epochs. The test error is reported similar way to Table 2.
Compared to NASI, NAS-NGE can predict test errors attained by DNNs trained with more epochs.
Proposed : NAS based on normalized generalization error (NAS-NGE)

The number of initialized models used to calculate the NTK normalized 2nd order moment was 3
in NAS-NGE. On the other hand, the number of models used to calculate the NTK trace norm was
1 in NAS-NGE. Here, 64 data for calculating the NTK trace norm is randomly sampled at each step
from the training data on CIFAR-10. The values of the hyperparameters in Eq. 4 are as µ = 2.0
and ν = 1.5 for the loss of the NTK normalized 2nd order moment. In addition, the values of the
hyperparameter for the loss of the NTK trace norm in Eq. 4 is µ′ = 1, and another hyperparameter
ν′ is determined adaptively in the same way as NASI (Shu et al., 2022a). Here, the initial value of ν′
is 1000. The hyperparameter γ in Eq. 4, which links the two losses, was set to 50 so that the scale of
the two losses is comparable. In Hybrid NAS, i.e. HNAS (Shu et al., 2022b), we used a combination
of NTK trace norm and condition number as the proxy, and queried NAS-Bench-1Shot1 (Zela et al.,
2020) for validation errors after 4 epochs of training the candidate architecture. The number of
iteration was set to 4. We used the publicly available implementation of HNAS 2.

Table 3 shows that the proposed method, i.e., NAS-NGE, outperforms the conventional method,
i.e., NASI, in all three search spaces, i.e., it consistently selects neural architectures with better
generalization performance. And, NAS-NGE also outperforms HNAS, although the search time of
NAS-NGE is much shorter than that of HNAS. Fig. 1 shows that NAS-NGE can accurately predict
test errors attained by DNNs trained with more epochs, compared to NASI. The high prediction
accuracy of DNN’s long-term training dynamics enables us to construct a computationally efficient
method for NAS. Table 4 shows that NAS-NGE attains a similar performance as NASI with about
three times higher computation efficiency.

4.2 EXPERIMENTS ON NAS-BENCH-201

In a very short search time, we also validate the search effectiveness of the proposed training-free
NAS, i.e., NAS-NGE, in the CIFAR-10 search space and three datasets, i.e., CIFAR-10, CIFAR-
100, and ImageNet-16-120 (Chrabaszcz et al., 2017)), of NAS-Bench-201 (Dong & Yang, 2020).
NAS-Bench-201 has provides a cell-based search space containing 15, 625 architectures and a
database containing test accuracy for each architectures. Here, the test accuracy is reported along
with the mean and standard error after querying results of each 5 independently searched architec-
ture, using NAS-Bench-201.

2https://github.com/shuyao95/HNAS

8

Under review as a conference paper at ICLR 2024

Table 4: Experimental results in an extended time. The test error is reported similar way to Table 2.

PROPOSED PROPOSED NASI

STEP 20 60 360

TIME 35.2± 3.66 [S] 104.7± 10.93 [S] 291.3± 30.48 [S]

SEARCH SPACE 1 0.086± 0.024 0.072± 0.013 0.068± 0.004
SEARCH SPACE 2 0.074± 0.006 0.074± 0.008 0.071± 0.003
SEARCH SPACE 3 0.085± 0.014 0.068± 0.006 0.074± 0.013

Table 5: Experimental results of the proposed training-free NAS, i.e., NAS-NGE. The test accu-
racy is reported along with the mean and standard error after querying results of 5 independently
searched architecture, using NAS-Bench-201. In all datasets, NAS-NGE outperforms other training-
free NAS, i.e., NASI, ZiCo (Li et al., 2023) and TE-NAS (Chen et al., 2021), and HNAS.

NASI PROPOSED ZICO TE-NAS HNAS

STEP 40 15 2 2 2

TIME 9.6± 0.49 [S] 9.2± 0.75 [S] 12.0± 0.63 [S] 24.6± 0.49 [S] 227.0± 30.17 [S]

CIFAR-10 90.84± 1.62 92.16± 1.13 89.92± 3.15 90.97± 2.43 90.34± 1.62
CIFAR-100 65.51± 3.27 67.92± 2.33 63.58± 5.17 65.82± 4.46 65.04± 2.39
IN-16-120 35.95± 3.67 39.21± 9.11 36.92± 6.12 37.84± 7.49 36.12± 3.39

We describe details of experimental conditions. We compared the effectiveness between NAS-NGE
with 15 search steps and a conventional training-free NAS, i.e. NASI, with 40 search steps. The
number of initialized models used to calculate the normalized 2nd order moment of NTK was 3, and
the number of models used to calculate the trace norm of NTK was 1, in NAS-NGE. The search
budget of NASI and NAS-NGE, is comparable and very short, specifically about 10 seconds. The
values of the hyperparameters in Eq. 4 are the same as in the previous experiments.

We also compared NAS-NGE to other training-free NAS, i.e., ZiCo (Li et al., 2023) and TE-NAS
(Chen et al., 2021), and HNAS. We used the publicly available implementation of ZiCo 3 and TE-
NAS 4. Purely to stabilize the calculation, we moved log function built into ZiCo on the outermost
side. And then, we used the same pruning for search in ZiCo as TE-NAS. The numbers of pruning
were set to 2. In HNAS, we queried NAS-Bench-201 for validation accuracies and training costs
after 12 epochs of training the candidate architecture. The number of iteration was set to 2. The
search budget of them is each about 10 seconds, twenty to thirty seconds, or a few minutes.

Table 5 shows that the proposed NAS outperforms NASI, ZiCo, TE-NAS and HNAS, i.e., it consis-
tently selects neural architectures with better generalization performance.

5 CONCLUSION

Neural Architecture Search (NAS) can design automatically for DNN architecture (Elsken et al.,
2021). Training-free NAS is efficient and has high promise for real applications (Shu et al., 2022a).
But, it is based on not generalization error but training error to estimate the performance of candidate
architectures. Thus, we proposed a new training-free NAS based on the bias-variance decomposition
of the normalized generalization error (NAS-NGE). Specifically, we used the normalized 2nd order
moment of Neural Tangent Kernel (NTK) together with the normalized bias to construct NAS-NGE.
In a very short search time, the effectiveness of the proposed NAS method is demonstrated compared
with the conventional NAS, using NAS Benchmarks, i.e., NAS-Bench-1Shot and NAS-Bench-201.
In this study, the moment of NTKs are calculated numerically. By restricting the search space
to ResNet, etc., it will be possible to efficiently compute the moments of NTKs with analytical
approach such as Littwin et al. (2021); Hu & Huang (2021). Future works include applications of
the proposed NAS to a transformer search space (Chen et al., 2022; Chitty-Venkata et al., 2022) and
development of training-free NAS for Out-of-Distribution setting.

3https://github.com/SLDGroup/ZiCo/blob/main/ZeroShotProxy
4https://github.com/VITA-Group/TENAS

9

Under review as a conference paper at ICLR 2024

REFERENCES

Mohamed S Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak, and Nicholas Donald Lane. Zero-cost
proxies for lightweight nas. In Proc. ICLR, 2021.

Sina Alemohammad, Zichao Wang, Randall Balestriero, and Richard Baraniuk. The recurrent neural
tangent kernel. In Proc. ICLR, 2021.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In Proc. ICML, pp. 242–252, 2019.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. In Proc. NeurIPS, 2019.

Sanjeev Arora, Simon S. Du, Zhiyuan Li, Ruslan Salakhutdinov, Ruosong Wang, and Dingli Yu.
Harnessing the power of infinitely wide deep nets on small-data tasks. In Proc. ICLR, 2020.

Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture search on imagenet in four
gpu hours: A theoretically inspired perspective. In Proc. ICLR, 2021.

Wuyang Chen, Wei Huang, Xianzhi Du, Xiaodan Song, Zhangyang Wang, and Denny Zhou. Auto-
scaling vision transformers without training. In Proc. ICLR, 2022.

Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, and Jiashi Feng. Dual path
networks. In Proc. NeurIPS, 2017.

Krishna Teja Chitty-Venkata, Murali Emani, Venkatram Vishwanath, and Arun K. Somani. Neural
architecture search for transformers: A survey. IEEE Access, 10:108374–108412, 2022.

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A Downsampled Variant of ImageNet as an
Alternative to the CIFAR datasets. arXiv:1707.08819, 2017.

Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu hours. In Proc.
CVPR, 2019.

Xuanyi Dong and Yi Yang. NAS-Bench-201: Extending the Scope of Reproducible Neural Archi-
tecture Search. In Proc. ICLR, 2020.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. J.
Mach. Learn. Res., 20(1):1997–2017, mar 2021.

Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M Roy,
and Surya Ganguli. Deep learning versus kernel learning: an empirical study of loss landscape
geometry and the time evolution of the neural tangent kernel. In Proc. NeurIPS, 2020.

Mario Geiger, Arthur Jacot, Stefano Spigler, Franck Gabriel, Levent Sagun, Stéphane d’Ascoli,
Giulio Biroli, Clément Hongler, and Matthieu Wyart. Scaling description of generalization with
number of parameters in deep learning. Journal of Statistical Mechanics, 2020(2), Feb 2020.

Boris Hanin. Which neural net architectures give rise to exploding and vanishing gradients? In
Proc. NeurIPS, 2018.

Boris Hanin and Mihai Nica. Finite depth and width corrections to the neural tangent kernel. In
Proc. ICLR, 2020a.

Boris Hanin and Mihai Nica. Products of many large random matrices and gradients in deep neural
networks. Communications in Mathematical Physics, 376(1):287–322, 2020b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proc. ICCV, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proc. CVPR, 2016.

Zhengmian Hu and Heng Huang. On the random conjugate kernel and neural tangent kernel. In
Proc. ICML, pp. 4359–4368, 2021.

10

Under review as a conference paper at ICLR 2024

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. In Proc. CVPR, 2017.

Jiaoyang Huang and Horng-Tzer Yau. Dynamics of deep neural networks and neural tangent hier-
archy. In Proc. ICML, pp. 4542–4551, 2020.

Kaixuan Huang, Yuqing Wang, Molei Tao, and Tuo Zhao. Why do deep residual networks generalize
better than deep feedforward networks? — a neural tangent kernel perspective. In Proc. NeurIPS,
pp. 2698–2709, 2020.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. In Proc. NeurIPS, 2018.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. In Proc. NeurIPS, 2019.

Jaehoon Lee, Samuel Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman Novak,
and Jascha Sohl-Dickstein. Finite versus infinite neural networks: an empirical study. In Proc.
NeurIPS, 2020.

Guihong Li, Yuedong Yang, Kartikeya Bhardwaj, and Radu Marculescu. ZiCo: Zero-shot NAS via
inverse Coefficient of Variation on Gradients. In Proc. ICLR, 2023.

Mufan Li, Mihai Nica, and Dan Roy. The future is log-gaussian: Resnets and their infinite-depth-
and-width limit at initialization. In Proc. NeurIPS, 2021.

Etai Littwin, Ben Myara, Sima Sabah, Joshua Susskind, Shuangfei Zhai, and Oren Golan. Collegial
ensembles. In Proc. NeurIPS, pp. 18738–18748, 2020.

Etai Littwin, Tomer Galanti, and Lior Wolf. On random kernels of residual architectures. In Proc.
UAI, 2021.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
Proc. ICLR, 2019.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proc. ICCV, pp.
10012–10022, 2021.

Yiping Lu, Chao Ma, Yulong Lu, Jianfeng Lu, and Lexing Ying. A mean field analysis of deep
ResNet and beyond: Towards provably optimization via overparameterization from depth. In
Proc. ICML, pp. 6426–6436, 2020.

Joe Mellor, Jack Turner, Amos Storkey, and Elliot J Crowley. Neural architecture search without
training. In Proc. ICML, pp. 7588–7598, 2021.

Jisoo Mok, Byunggook Na, Ji-Hoon Kim, Dongyoon Han, and Sungroh Yoon. Demystifying the
neural tangent kernel from a practical perspective: Can it be trusted for neural architecture search
without training? In Proc. CVPR, pp. 11861–11870, 2022.

Daniel S Park, Jaehoon Lee, Daiyi Peng, Yuan Cao, and Jascha Sohl-Dickstein. Towards nngp-
guided neural architecture search. arXiv:2011.06006, 2020.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search
via parameters sharing. In Proc. ICML, pp. 4095–4104, 2018.

Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao, Maria Presa Reyes, Mei-Ling
Shyu, Shu-Ching Chen, and S. S. Iyengar. A survey on deep learning: Algorithms, techniques,
and applications. ACM Comput. Surv., 51(5), sep 2018.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-yao Huang, Zhihui Li, Xiaojiang Chen, and Xin
Wang. A comprehensive survey of neural architecture search: Challenges and solutions. ACM
Comput. Surv., 54(4), may 2021.

11

Under review as a conference paper at ICLR 2024

Mariia Seleznova and Gitta Kutyniok. Analyzing finite neural networks: Can we trust neural tangent
kernel theory? In Proc. MSML, pp. 868–895, 2022a.

Mariia Seleznova and Gitta Kutyniok. Neural tangent kernel beyond the infinite-width limit: Effects
of depth and initialization. In Proc. ICML, pp. 19522–19560, 2022b.

Yao Shu, Wei Wang, and Shaofeng Cai. Understanding architectures learnt by cell-based neural
architecture search. In Proc. ICLR, 2020.

Yao Shu, Shaofeng Cai, Zhongxiang Dai, Beng Chin Ooi, and Bryan Kian Hsiang Low. NASI:
Label- and data-agnostic neural architecture search at initialization. In Proc. ICLR, 2022a.

Yao Shu, Zhongxiang Dai, Zhaoxuan Wu, and Bryan Kian Hsiang Low. Unifying and Boosting
Gradient-Based Training-Free Neural Architecture Search. In Proc. NeurIPS, volume 35, pp.
33001–33015, 2022b.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian Optimization of Machine
Learning Algorithms. In Proc. NeurIPS, 2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proc. NeurIPS, 2017.

Keigo Wakayama and Shoichiro Saito. Cnn-transformer with self-attention network for sound event
detection. In Proc. ICASSP, pp. 806–810, 2022.

Xingchen Wan, Binxin Ru, Pedro M Esperança, and Zhenguo Li. On redundancy and diversity in
cell-based neural architecture search. In Proc. ICLR, 2022.

Haibin Wang, Ce Ge, Hesen Chen, and Xiuyu Sun. PreNAS: Preferred One-Shot Learning Towards
Efficient Neural Architecture Search. In Proc. ICML, pp. 35642–35654, 2023.

Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In Proc. CVPR, 2017.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. SNAS: stochastic neural architecture search.
In Proc. ICLR, 2019.

Huan Xiong, Lei Huang, Mengyang Yu, Li Liu, Fan Zhu, and Ling Shao. On the number of linear
regions of convolutional neural networks. In Proc. ICML, 2020.

Jingjing Xu, Liang Zhao, Junyang Lin, Rundong Gao, Xu Sun, and Hongxia Yang. Knas: Green
neural architecture search. In Proc. ICML, pp. 11613–11625, 2021.

Greg Yang. Tensor programs ii: Neural tangent kernel for any architecture. arXiv:2006.14548,
2020.

Greg Yang and Etai Littwin. Tensor programs iib: Architectural universality of neural tangent kernel
training dynamics. In Proc. ICML, pp. 11762–11772, 2021.

Peng Ye, Baopu Li, Yikang Li, Tao Chen, Jiayuan Fan, and Wanli Ouyang. β-DARTS: Beta-decay
regularization for differentiable architecture search. In Proc. CVPR, 2022.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. NAS-
bench-101: Towards reproducible neural architecture search. In Proc. ICML, pp. 7105–7114,
2019.

Arber Zela, Julien Siems, and Frank Hutter. Nas-bench-1shot1: Benchmarking and dissecting one-
shot neural architecture search. In Proc. ICLR, 2020.

Zhihao Zhang and Zhihao Jia. GradSign: Model Performance Inference with Theoretical Insights.
In Proc. ICLR, 2022.

Zhenyu Zhu, Fanghui Liu, Grigorios Chrysos, and Volkan Cevher. Generalization properties of NAS
under activation and skip connection search. In Proc. NeurIPS, 2022.

12

Under review as a conference paper at ICLR 2024

Table 6: Experimental results of NAS based on normalized 2nd order moment (NAS-NOM) without
constraint calculated by 8 or 1 data. The test error is reported along with the mean and standard error
similar way to Table 2. Such a simplification does not significantly affect the statistical performance.

DATA 8 1

STEP 20 20

TIME 154.8± 16.22 [S] 29.5± 2.85 [S]

SEARCH SPACE 1 0.109± 0.033 0.115± 0.011
SEARCH SPACE 2 0.104± 0.018 0.099± 0.019
SEARCH SPACE 3 0.090± 0.017 0.081± 0.020

Table 7: Experimental results of NAS based on normalized 2nd order moment (NAS-NOM) without
or with constraint. The test error is reported along with the mean and standard error similar way to
Table 2. In all three search spaces, NAS-NOM w/ constraint outperforms NAS-NOM w/o constraint.

CONSTRAINT W/O W/

STEP 20 20

TIME 29.5± 2.85 [S] 28.1± 2.96 [S]

SEARCH SPACE 1 0.115± 0.011 0 .085 ± 0 .011
SEARCH SPACE 2 0.099± 0.019 0 .087 ± 0 .016
SEARCH SPACE 3 0.081± 0.020 0 .070 ± 0 .009

A PRELIMINARY EXPERIMENTS

A.1 VALIDITY OF USING ONE DATA

In our manuscript, setting x = xi reduces the computational cost. We tried to compute the nor-
malized variance using x1, . . . , xn. However, we used only xi in our experiments, since there was
no significant change in value from the normalized variance computed using only xi despite of the
increased computational cost.

As shown in Table.6, some preliminary experiments showed that such a simplification does not
significantly affect the statistical performance of our method.

A.2 THE NEED TO ADD CONSTRAINT

In NAS based on normalized 2nd order moment (NAS-NOM), we compared the case without a
constraint and the case with a constraint to see if a constraint is necessary.

The number of initialized models used to calculate the normalized 2nd order moment of NTK was
4 in NAS-NOM without or with constraint. In addition, one data for calculating the NTK moment
without or with constraint is randomly sampled at each step from the training data on CIFAR-10, in
all of the following experiments.

The values of the hyperparameters in Eq. 3 are as µ = 2.0 and ν = 1.5 for the loss of the NTK
moment with constraint.

Table 7 shows that in all three search spaces, NAS-NOM with constraint outperforms NAS-NOM
without constraint, i.e., it consistently selects neural architectures with better generalization perfor-
mance.

13

Under review as a conference paper at ICLR 2024

Table 8: Experimental results of NAS based on normalized 2nd order moment (NAS-NOM) without
constraint. The test error is reported along with the mean and standard error similar way to Table 2.
NAS-NOM using 64 models outperforms NAS-NOM using 4 models to calculate the NTK moment.

NO. MODEL 4 64

STEP 20 1

TIME 29.5± 2.85 [S] 28.1± 1.48 [S]

SEARCH SPACE 1 0.115± 0.011 0 .082 ± 0 .012
SEARCH SPACE 2 0.099± 0.019 0 .082 ± 0 .016
SEARCH SPACE 3 0.081± 0.020 0 .076 ± 0 .008

B ADDITIONAL EXPERIMENTS

B.1 EXPERIMENTS ON NAS-BENCH-1SHOT1

We describe a comparison of the performance of the NAS based on normalized 2nd order moment
(NAS-NOM) with different numbers of initialized models for calculating the normalized 2nd order
moment of NTK.

As an additional experiment, the number of initialized models used to compute the NTK moments
is increased from 4 to 64 while keeping the computation time the same about 30 seconds to verify
the effectiveness of the proposed method, i.e., NAS-NOM.

Table 8 shows that in all three search spaces, computing the NTK moment of NAS-NOM with 64
initialized models compared with 4 initialized models is consistently selects neural architecture with
better generalization performance.

The above results show that even when running NAS using only the NTK moment, increasing the
number of models can improve the performance of zero-cost proxy, even without a constraint term.
However, to consistently outperform the test performance in all search spaces, it is best to use a NAS
based on normalized generalization error (NAS-NGE).

B.2 EXPERIMENTS ON NAS-BENCH-201

In a very short search time, we also validate the search effectiveness of the proposed method, i.e.,
NAS based on normalized generalization error (NAS-NGE), in the CIFAR-100 search space of NAS-
Bench-201 (Dong & Yang, 2020).

The search budget of NASI (Shu et al., 2022a), NAS-NGE, ZiCo (Li et al., 2023) is each about 10
seconds, that of TE-NAS (Chen et al., 2021) is about 20 seconds, and that of HNAS (Shu et al.,
2022b) is about 10 minutes.

Table 9 show that the proposed training-free NAS, i.e., NAS-NGE, outperforms NASI, ZiCo, TE-
NAS and HNAS, i.e., it consistently selects neural architectures with better generalization perfor-
mance.

In a very short search time, we also validate the search effectiveness of the proposed method, i.e.
NAS based on normalized generalization error (NAS-NGE), in the ImageNet-16-120 (Chrabaszcz
et al., 2017) search space of NAS-Bench-201.

The search budget of NASI, NAS-NGE, ZiCo is each about 10 seconds, that of TE-NAS is about 20
seconds, and that of HNAS is about tens of minutes.

Table 10 show that the proposed training-free NAS, i.e., NAS-NGE outperforms NASI, ZiCo, TE-
NAS and HNAS, i.e., it consistently selects neural architectures with better generalization perfor-
mance.

14

Under review as a conference paper at ICLR 2024

Table 9: Results of NAS based on normalized generalization error (NAS-NGE). The test accuracy
is reported along with the mean and standard error similar way to Table 5, by using CIFAR-100 on
NAS-Bench-201. NAS-NGE outperforms NASI (Shu et al., 2022a), ZiCo (Li et al., 2023), TE-NAS
(Chen et al., 2021) and HNAS (Shu et al., 2022b).

NASI PROPOSED ZICO TE-NAS HNAS

STEP 40 15 2 2 2

TIME 10.0± 0.00 [S] 9.4± 0.49 [S] 13.2± 0.75 [S] 22.8± 0.40 [S] 619.6± 59.86 [S]

CIFAR-100 46.52± 25.57 67.79± 2.12 65.86± 6.21 55.97± 27.50 65.04± 2.39

Table 10: Results of NAS based on normalized generalization error (NAS-NGE). The test accuracy
is reported along with the mean and standard error similar way to Table 5, using ImageNet-16-120
on NAS-Bench-201. NAS-NGE outperforms NASI, ZiCo, TE-NAS and HNAS.

NASI PROPOSED ZICO TE-NAS HNAS

STEP 40 15 2 2 2

TIME 7.0± 0.00 [S] 9.6± 0.49 [S] 12.2± 0.98 [S] 16.8± 0.40 [S] 1472.6± 180.30 [S]

IN-16-120 33.71± 11.11 39.25± 2.63 37.48± 6.02 37.70± 3.93 36.12± 3.39

C FURTHER SURVEY

C.1 DNN ARCHITECTURE

Specifically, SOTA architectures are often developed in the field of natural language processing,
where large amounts of data can be acquired, and a great deal of effort is expended by developers
(Vaswani et al., 2017). Architectures developed in the field of natural language processing have been
applied to the field of image processing, and many researchers have continued to improve them by
incorporating inductive bias in images (Liu et al., 2021). Recently, these architectures have been
introduced in the field of acoustics, and the scope of DNN development has expanded significantly
(Wakayama & Saito, 2022). Thus, the impact of a research in training-free NAS could be significant.

C.2 EXTENSION OF NTK

The theoretical understanding of deep learning has attracted the interest of many researchers and
practitioners (Hanin, 2018; Hanin & Nica, 2020b). Recently, NTK was proposed as a promising
method to analyze convergence performance and generalization performance by making the objec-
tive function convex by introducing the restriction that the width of DNN is infinite or sufficiently
wide (Jacot et al., 2018; Lee et al., 2019). NTK takes into account the gradient flow (Jacot et al.,
2018). Furthermore, in the infinite width limit, the initial value of NTK and the NTK after train-
ing coincide by linearizing the function of the DNN using Taylor expansion. Hence, the DNN can
be represented by kernel ridge regression with NTKs (Lee et al., 2019). NTKs for many types of
architectures were derived, including CNN, ResNet and RNN, as well as NTK for Feed Forward
Network, and the generalization and convergence performance of each architecture was analyzed
(Huang et al., 2020; Arora et al., 2019; Alemohammad et al., 2021). For any given architecture, as
with feed forward network, it has also been confirmed that the NTK is kept unchanged during the
learning process in the infinite-width limit (Yang & Littwin, 2021).

Huang & Yau (2020) proposed the higher-order extension of NTK called Neural Tangent Hierarchy
(NTH) to describe the dynamics of finite-width DNNs. In addition, Fort et al. (2020) studied the
relationship between the time evolution of NTK and the geometry of the loss landscape. Recently,
Mok et al. (2022) empirically investigated the time evolution of NTKs by showing the relationship
between NTK-based indicators (F-Norm, Mean, Negative Condition Number; NGN, Label-Gradient
Alignment; LGA) and different DNN architectures. Based on this survey, a NAS based on the LGA
has been proposed, but it assumes learning over several epochs and is not efficient.

15

Under review as a conference paper at ICLR 2024

D UPPER BOUND OF THE SECOND-ORDER MOMENT

The upper bound in (2) is derived as follows.

Eθ0,D[∥Θ0(x
′, x′)g∥2]

∥Eθ0,D[Θ0(x′, x′)g]∥2
≤ λmax(Eθ0,D[Θ0(x

′, x′)2])

λmin(Eθ0,D[Θ0(x′, x′)]2)

≤ κ2
0

λmax(Eθ0,D[Θ0(x
′, x′)2])

λmax(Eθ0,D[Θ0(x′, x′)]2)

≤ κ2
0

Eθ0,D[(TrΘ0(x
′, x′))2]

(1
mEθ0,D[TrΘ0(x′, x′)])2

= κ2
0m

2Z(TrΘ0(x
′, x′)).

The numerator in the third inequality is given by λmax(E[Θ2
0]) ≤ E[λmax(Θ

2
0)] ≤ E[(TrΘ0)

2]. In
order to reduce the computation cost, the maximum eigenvalue in the above inequalities is bounded
using the trace such as 1

mTrA ≤ λmax(A) ≤ TrA for a positive semi-definite matrix A ∈ Rm×m.

E DETAILS OF NAS-BENCH-1SHOT1

Three types of search spaces were proposed by varying the determination of the number of parents
each selected block has. Here, the sum of the parents number of all nodes in the search space is
chosen to be 9. Each search space has a different number of architectures with or without loose
ends, as shown in Table 1. A loose end is node whose output does not contribute to the discrete cell
output.

Given weights of the cell architecture, the testing error and the validation error can be queried from
NAS-Bench-101 as follows. First, in each choice block (Zela et al., 2020), an operation with the
highest architecture weight is selected to determine the operation. Second, the parents of each
choice block and output are determined by choosing the top-k edges. Third, the list of operations
is constructed from the first procedure, the cell adjacency matrix is constructed from the second
procedure, and these are used to query NAS-Bench-101 for the testing and validation errors.

F EXPERIMENTS IN DARTS SEARCH SPACE

In numerical experiments in Section 4, we confirmed that our method efficiently works under less
than about one minute of computation. Here, let us validate the search effectiveness of NAS-NGE
with a more computation time using DARTS search space (Shu et al., 2022a), which is larger than
NAS Benchmarks. The values of the hyperparameter in Eq. 4 is µ′ = 2, and ν′ is determined
adaptively, where the initial value of ν′ is 500. The values of µ, ν and γ are set to same in previous
experiments (Sec. 4.1). Table 11 shows that NAS-NGE attains a similar performance as NASI with
about 1.5 times higher computation efficiency in DARTS search space.

Table 11: Experimental results in the DARTS search space. The test accuracy is reported along with
the mean and standard error after 600 epochs training on each 3 independently searched architecture.

NASI PROPOSED

STEP 20 10

TIME 599.0± 0.00 [S] 392.7± 0.47 [S]

CIFAR-10 96.85± 0.23 97.02± 0.07

16

	Introduction
	Related Work
	Neural Architecture Search
	Neural Tangent Kernel

	Proposed Method
	Bias-variance Decomposition of Normalized Generalization Error
	A Surrogate of Normalized 2nd Order Moment
	Evaluation of Normalized Bias
	NAS based on Normalized Generalization Error

	Experiments
	Experiments on NAS-Bench-1Shot1
	Experiments on NAS-Bench-201

	Conclusion
	Preliminary experiments
	Validity of using one data
	The need to add constraint

	Additional Experiments
	Experiments on NAS-Bench-1Shot1
	Experiments on NAS-Bench-201

	Further Survey
	DNN architecture
	Extension of NTK

	Upper bound of the Second-order Moment
	Details of NAS-Bench-1Shot1
	Experiments in DARTS search space

