Under review as a conference paper at ICLR 2026

BEYOND FIXED BUDGETS: DYNAMIC REASONING EF-
FICIENCY REWARD FOR LARGE LANGUAGE MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

The “slow thinking” paradigm has been widely validated to enhance the reasoning
capabilities of large language models, but it also introduces reasoning inefficiency:
models may overthink simple problems while prematurely shifting their reasoning
paths when tackling complex problems. To address this, we propose AdapThink,
a simple yet efficient post-training framework designed to control preferences for
“slow thinking” pattern adaptively. Unlike directly imposing length budgets or
setting overlong filters, AdapThink leverages group-level length distributions and
reflective word distributions to construct reasoning process rewards and introduce
a two-stage sampling strategy aimed at maximizing group diversity. Experimental
results demonstrate that when post-training two DeepSeek-distilled Qwen mod-
els under a context length limit of only 2K tokens, AdapThink achieves a 27%
improvement in convergence rewards compared to the GRPO baseline. Notably,
when testing models with a 32K token limit, AdapThink also achieves 12.6% im-
provement over base model in several mathematical benchmarks.

1 INTRODUCTION

The breakthroughs in large language models (LLMs) such as OpenAI’s ol (OpenAl, 2024) and
DeepSeek R1 (Guo et al., 2025) have demonstrated that reinforcement learning (RL)-based post-
training methods can substantially improve their reasoning capabilities. This enhancement is pri-
marily attributed to the emergence of sophisticated self-reflection behaviors in models (Kumar et al.,
2025; Kazemnejad et al., 2024). However, recent research has highlighted a significant inefficiency
associated with this “slow thinking” pattern (Muennighoff et al., 2025; Han et al., 2024; Chen et al.,
2024; Wang et al., 2025b; Aggarwal & Welleck, 2025; Shen et al., 2025b). Reasoning models
frequently overthink simple problems, spending unnecessary computational resources, while con-
versely underthinking complex challenges, leading to incomplete reasoning and incorrect answers.
When presented with a simple problem (see Appendix A), a model can reach a correct answer with
merely 479 tokens. Yet, its self-validation mechanisms—marked by phrases such as “Verify” and
“Wait”—triggered unnecessary reflections, resulting in more than a quadrupled token consumption.
In contrast, when attempting a complex problem, the same model exhibited frequent and unpro-
ductive shifts, marked by phrases “Alternatively” and “Another.” Upon reaching its token limit, the
model stopped and arrived at an incorrect answer.

Therefore, an ideal chain of thought (CoT) would be capable of adjusting its self-reflection fre-
quency and depth, adaptive to the problem difficulty and its level of confidence. Empirically, (Ma
et al., 2025; Xie et al., 2025) have demonstrated that employing reflection vocabularies does not
always guarantee mathematical reasoning improvement. Drawing upon this insight, recent works
explored direct control via modifying the input prompt (Jin et al., 2024; Muennighoff et al., 2025;
Liu et al., 2025; Han et al., 2024; Chen et al., 2024) or providing indirect reasoning-length rewards
(Wang et al., 2025b; Aggarwal & Welleck, 2025; Shen et al., 2025b). A common limitation of
these approaches is using token budgets governed by rules or offering rewards for adhering to a
special length budget, overlooking the critical impact of the changes in models’ capabilities and
length preferences. Intuitively, models with limited reasoning abilities benefit from more extended
CoT patterns, as redundant self-reflection could serendipitously contribute to reaching correct solu-
tions. In contrast, high-performing models should aim to minimize token consumption to prevent
overthinking and to maintain efficient CoT reasoning.

Under review as a conference paper at ICLR 2026

Motivated by these insights and our observations in Section 2, we propose AdapThink, a token-
efficient post-training framework for reasoning models. Our post-training framework allows models
to tailor their reasoning depth preference to align with their current operational capabilities. In-
stead of directly limiting the budget of reasoning length, our work adjusts the length and reflection
preference through analyzing the distribution of diverse reasoning patterns observed in groups of
generated samples. We reveal that control reasoning length alone does not directly determine
model reasoning efficiency. Instead, strategically regulating reasoning depth is a more effective
way to mitigate overthinking and underthinking. Overall, our main contributions are:

(1) First, we introduce a group-level reasoning process reward. Instead of setting a fixed token
budget or restricting the number of reflection words, we quantify reflection-related preferences by
analyzing statistical differences in response length and reflection word usage within groups.

(2) Furthermore, we propose a diversity sampling mechanism to accelerate learning efficiency and
enhance response diversity. Unlike existing oversampling strategies designed for answer-based re-
wards, our AdapThink considers the entropy scores of reasoning process-based rewards, aiming to
increase CoT diversity while satisfying group accuracy constraints.

(3) By post-training two DeepSeek-Distilled Qwen models with a context length limit of only 2K
tokens, our method outperforms multiple length-control baselines under a 32K-token limit. Exper-
imental analyses demonstrate that AdapThink learns to generate efficient CoT rather than merely
shortening text to meet fixed length restrictions.

2 OBSERVATIONS

To investigate potential overthinking and underthinking issues in current reasoning language models,
we first conducted a comprehensive analysis of the generation patterns of the DeepSeek-R1-Distill-
Qwen-1.5B and DeepSeek-R1-Distill-Qwen-7B models (Guo et al., 2025) on the MATH-500 math-
ematical dataset. We measure the efficiency of CoT from two perspectives:

DeepSeek-R1-Distill-Qwen-1.5B DeepSeek-R1-Distill-Qwen-7B
8 alte . alte
wait ratively let me think hmm but hmm rnatively another
14039 2515 1760 1623 6938 1609 1514 1168 l4000
another check hold on make sure actually check let me think make sure actually hold on 3500
1310 1108 907 769 726 1072 674 672 605 532 3000
-
c
))))) . 2500 3
verify let me see why instead confirm verify let me see confirm why instead 8
297 235 127 108 70 368 255 148 113 106 2000%
15003
ensure however evaluate examine yet ensure however while evaluate otherwise
1000
39 37 30 24 23 71 65 a5 41 25
500
while rather " tpaen%ther though otherwise yet though examine rather O tlf:aen?jther L
22 13 10 7 6 21 21 16 9 7

Figure 1: The Reflection-related Words Distribution of the responses generated by the DeepSeek-
Distill-Qwen 1.5B (left) and 7B (right) models on the MATH-500 dataset, with an 8K token limit
and 8 rollouts per question. Each cell represents a specific reflection-related word and its average
occurrence frequency in the responses.

Token Length Distribution. Following the settings in (Aggarwal & Welleck, 2025), we set the
maximum token limit to 8,192 during inference and divide the response range into four equal inter-
vals to analyze the distribution patterns. We then conduct statistical analysis on the samples with
correct and incorrect answers separately across different bin counts.

Under review as a conference paper at ICLR 2026

Reflection Words Distribution. The occurrence count of reflection-related terms is commonly
used to verify the emergence of reasoning capabilities in models (Guo et al., 2025). Studies such as
(Ma et al., 2025; Xie et al., 2025; Aggarwal & Welleck, 2025) all adopt specific reflection-related
terms as quantitative metrics for reasoning effectiveness. Therefore, we summarized and presented
the occurrence counts of most reflection-related terms in the responses. We selected the top 25
reflection-related words from the responses and analyzed their distribution, as shown in Figure 1.
Similarly, we divided the number of reflection words appearing in each response into four equal in-
tervals and conducted statistical analysis by distinguishing between correct and incorrect responses.

[Correct I Incorrect
Deepseek Distill Qwen 1.5B Deepseek Distill Qwen 1.5B Deepseek Distill Qwen 7B Deepseek Distill Qwen 7B

79.7

80

60

40

Percentage (%)

0-2K 2K-4K 4K-6K 6K+ 0-20 21-40 41-60 61+ 0-2K 2K-4K 4K-6K 6K+ 0-20 21-40 41-60 61+
Token Length Reflection Words Token Length Reflection Words

Figure 2: Key Observations from the distribution analysis of the DeepSeek-Distill-Qwen 1.5B and
7B models on the MATH-500 dataset. From left to right: token length ranges and reflection word
frequency intervals for each model. The y-axis represents the percentage distribution of correct vs.
incorrect samples.

As shown in Figure 2, over 83% of incorrect answers correlate with higher token consumption
and increased usage of reflection-related words. This suggests that when confronting challenging
problems, models tend to exhibit uncertain behavior through alternative explorations and repetitive
self-verifications triggered by reflection-related terms. Meanwhile, for correct answers, we observed
that approximately 54% of correct responses predominantly fall within the lowest token length
bin and show lower frequencies of reflection word occurrences, suggesting a potential distinction
between the preference for reflection words in correct and incorrect responses.

These observations motivate us to explore the value of the emergence of reflection-related words for
reasoning capabilities and reasoning efficiency. Instead of focusing on the token level, we conduct
our research at the sequence level, aiming to adjust the preference for reflection based on the overall
statistical information of reflection-related terms within a response.

3 METHOD
Building on the observations and analyses presented in Section 2, this section elaborates on our
proposed post-training framework AdapThink, focusing on addressing two critical questions:

Q1. How to measure the degree of reflection without relying on fixed-length budgets? And how to
allocate higher rewards to more efficient CoT beyond correctness-based rewards?

Q2. How to enhance the potential diversity of reasoning patterns for each question, and how to
better leverage reasoning diversity to accelerate the learning of efficient CoT?

We address Q1 and Q2 in Sections 3.1 and 3.2, respectively, with the overall framework of Adap-
Think illustrated in Figure 3 and the pseudo-code provided in Appendix B.

3.1 GROUP-RELATIVE REASONING PROCESS REWARD

We begin with a pre-trained reasoning language model 7y and a dataset D = {(z*,y**)}V_, where

each instance contains the input prompt = and the correct answer y*. For each input x € D, 7y
performs reasoning to generate |G| samples G := {@z}li‘1

For each generated sample y; € G, we define two key metrics to characterize its reasoning pattern:

* (¢;): the total number of tokens in the reasoning chain of §;

Under review as a conference paper at ICLR 2026

Over-Rollout and M e Reflection Reward CIETER PIEERy Selected Rollouts
o , Constraints
B A 4 4 P A & 1 Answer Reward ! T - - -
K DD DD DD { By DD DD
§ L raoe,] (DD <D D DD ,,ff,!)r?,,,t,@?,,?,,,i s (DD DD
v Policy | = i ' _
g DD DD DD | Fresrans | " Nasimizaton” DD D D
N =a Tl =b | - . . -
D D D ’ D D ;_r(!_)icf(__D_)zd' max H(DD)+maxH(D') :D (D :D ::'
N promp > N* (K*M)resp > N * M selected resp

Figure 3: The Framework Architecture of AdapThink. The left semicircular shapes ¢ represent
“prompts”, and the right semicircular shapes P represent “responses”. Green P indicates correct
answers, while red D indicates incorrect answers. Different shades correspond to varying reasoning
process rewards based on Equation 4.

99 ¢

* 7({;): the count of reflection-related words in ¢;, including terms such as “wait”, “alterna-

tively”, “verify”, and other metacognitive expressions (see Figure 5)

Next, based on the metrics [(g;) and r(g;) of each response, we analyze the output correctness and
CoT characteristics of each group {yz}lgl

Outcome Correctness. We represent the average correctness of the model’s |G| samples within a
group as the response accuracy, denoted as :

\g|

where I() is the indicator function and y* is the ground truth answer.

Process Characteristics. Given the distinct reasoning patterns observed between correct and in-
correct answers in Section 2, we partition the response groups into correct (G7) and incorrect (Gr)
sub-groups based on their correctness:

Gr={0:€G:0:i=v"}, Gr={0:€G:9:#y"} (2)
For each sub-group, we compute statistical measures of key reasoning process metrics:
1 . N
m(G) == D UG, (@) == D (@) 3)
j; €G §: €G

where G € {G7,Gr}. Thus, 1;(G) and i, (G) represent the mean reasoning lengths and reflection
word frequencies for each correctness group, respectively.

Additionally, the group correctness metric ¢ reflects the model’s ability to tackle the current question
z. Intuitively, when the model demonstrates high ¢, the responses g characterized by correct answer,
shorter reasoning length, and fewer reflection-related terms typically indicate a more efficient and
direct problem-solving process.

To verify our hypothesis, we introduce a group-level process reward 7¢(¢;) that adaptively regulates
reasoning preference based on group correctness ¢ and the CoT characteristics:

o=t (IS ()])

where G(;) € {G7,Gr} denotes the correctness group that sample §J; belongs to. Each fraction
poindividial 1yeasures the relative difference between the group mean and the individual sample’s rea-
soning characteristics, normalized by the group mean. Positive values indicate that the sample uses
fewer tokens/reflection words than the group average, while negative values indicate the opposite.

Under review as a conference paper at ICLR 2026

The weight function w(y) determines whether to favor more efficient CoT based on group correct-
ness:
0 if o < Ve

1=

In Equation 5, if the current group’s correctness ¢ falls below the threshold ,:, we do not impose
any preference on the reasoning process. This design ensures that when dealing with models lack-
ing reasoning capabilities or tackling difficult problems, we still train them in an answer-pursuing
mode. Once ¢ increases from g, to 1, the weight assigned to prioritizing efficient CoT, charac-
terized by fewer reflection-related terms and shorter response lengths, increases gradually through a
smooth cosine-based transition.

3.2 DIVERSITY-AWARE SAMPLING

As shown in Equation 4, the reasoning process reward incorporates group-relative distribution pat-
terns from Gr and G into its computation. Therefore, the diversity of reasoning metrics {(3j) and
r(¢) within each group significantly influences the effectiveness of 7y learning. While previous
studies have addressed the zero-advantage problem through dynamic oversampling strategies (Yu
et al., 2025) to avoid homogeneous rewards within groups, they have not considered the diversity of
reasoning processes. We claim that homogeneous reasoning patterns may also hinder effective
model learning by limiting the model’s exposure to diverse problem-solving strategies.

To address this limitation, we propose a two-stage sampling strategy that enhances reasoning diver-
sity while maintaining balanced group correctness. The pseudo-code of this sampling strategy is
provided in Appendix Algorithm 2.

Stage 1: Upsampling and Diversity Measurement. First, we oversample by a factor of K to
expand the candidate response pool to G’ for current question x, enabling exploration of diverse
reasoning styles within each group. To quantify this diversity, we introduce an entropy-based metric
‘H that captures the distributional spread of reasoning length I(§;) and reflection word count r(g;).

Specifically, we partition the combined range of I(§;) and r(§;) into four bins S as defined in Sec-
tion 2, where each bin s € S corresponds to a unique interval combination of length and reflection
word count. The diversity metric H is then defined as:

, 1 sl s
= — 71 _—
9D = a1 24671 g ©

where |s| counts the number of samples in G’ whose r(g;) values fall into the interval pair of bin s.
Higher 7(G’) indicates more diverse reasoning patterns in a group.

Stage 2: Diversity-Maximizing Downsampling. From the upsampled pool G’, we downsample
to a final set G of target size |G|. Specifically, we select samples to maximize the diversity entropy
H(G) while ensuring the response accuracy of the downsampled group satisfies ¢(G) € (0, 1) if the
original p(G’) € (0,1).

This design serves two purposes: (1) the retained samples maintain maximal diversity in reasoning
length 1({;) and reflection word count 7(§;), providing rich training signals for the reasoning pro-
cess reward; (2) the constraint p(G) € (0,1) avoids extreme homogeneity in answer correctness
(i.e., neither all correct nor all incorrect), thus alleviating the zero-advantage problem and ensuring
meaningful reward gradients.

4 EXPERIMENTAL SETUP

Datasets and Base Models. We conduct experiments on a curated lightweight mathematics
dataset that spans various difficulty levels. This dataset combines queations from DeepScaleR-
Preview-Dataset (Luo et al., 2025b), including about 5K question-answer pairs sampled from AIME
(1984-2023), AMC (prior to 2023), and MATH training sets. For baseline models, we employ
DeepSeek-R1-Distill-Qwen-1.5B and DeepSeek-RI-Distill-Qwen-7B (Guo et al., 2025), which are
obtained through supervised fine-tuning on reasoning data generated by the DeepSeek-R1 model.

Under review as a conference paper at ICLR 2026

1.5B Model - Accuracy Reward 1.5B Model - Response Length 7B Model - Accuracy Reward 7B Model - Response Length

w

o
N
o

W

S
w
[

N

o
w
=)

Accuracy (%)
N
[

N
o
Accuracy (%)

o

%
N
o

200 400 600 800 0 200 400 600 800
Steps Steps Steps Steps

GRPO —— AdapThink

Figure 4: Training Comparison between GRPO and AdapThink on DeepSeek-Distill-Qwen-
1.5B and DeepSeek-Distill-Qwen-7B with a 2K token response length constraint.

Table 1: Performance Comparison on Mathematical Reasoning Benchmarks. The Acc metric
is determined by averaging pass@1 scores over 16 independent generation runs, and the Token
metric measures the corresponding average response length for each benchmark. Overall results are
the simple arithmetic mean across all benchmarks.

MATH-500 AMC 2023 AIME 2024 AIME 2025 Overall

Method Acct Tokens| | AccT Tokens| | AccT Tokens] | Acct Tokens] | Acct Tokens)
DeepSeek-R1-Distill-Qwen-1.5B
Original 83.0 3,978 67.7 7,160 29.3 13,832 | 269 14,680 | 51.73 5,348
O1-Pruner (Luo et al., 2025a) 82.3 2,446 69.5 5,622 27.5 12,155 24.1 12,701 50.85 3,787
No Wait (Wang et al., 2025a) 81.6 2,894 68.5 6,422 26.1 9,167 20.3 11,601 | 49.13 4,048
DAST (Shen et al., 2025b) 83.4 3,155 70.2 5,583 29.5 10,042 | 20.6 10,647 | 50.93 4,139
FCS+Ref. (Chen et al., 2024) 82.9 2,383 72.1 4,449 29.7 9,898 28.6 11,624 | 53.32 3,820
LCPO (Aggarwal & Welleck, 2025) | 80.5 2,684 63.9 6,694 235 9,692 24.7 10,075 | 48.15 3,873
DEER (Yang et al., 2025) 84.1 2,398 70.2 4,179 26.6 9,732 20.2 9,890 50.27 3,320
MERA (Ha et al., 2025) 86.3 2,165 73.3 3,262 314 8,927 334 9,495 56.10 2,964
AdapThink (Ours) 86.8 2,742 76.0 4,226 333 9,521 36.0 9,719 | 58.03 3,575
DeepSeek-R1-Distill-Qwen-7B
Original 86.9 3,422 774 6,738 53.1 12,185 | 48.2 13,276 | 66.40 4,719
O1-Pruner (Luo et al., 2025a) 89.0 2,678 82.8 7,501 522 9,412 49.4 10,973 68.35 4,002
No Wait (Wang et al., 2025a) 87.2 2,579 75.7 5,478 42.5 10,048 | 35.2 11,827 | 60.15 3,733
DAST (Shen et al., 2025b) 88.6 2,876 80.3 4,601 52.6 10,240 | 495 9,721 67.75 3,762
FCS+Ref. (Chen et al., 2024) 87.8 2,909 81.5 5,143 55.1 9,212 49.8 9,844 68.55 3,815
LCPO (Aggarwal & Welleck, 2025) | 84.7 2,539 73.6 4,821 453 9,408 40.6 9,904 61.05 3,498
DEER (Yang et al., 2025) 88.9 1,908 822 5,194 46.4 9,932 39.6 9,302 6428 3,052
MERA (Ha et al., 2025) 91.0 1,739 85.7 3,711 56.1 8,398 50.6 8,732 70.85 2,631
AdapThink (Ours) 92.0 2,472 90.0 4,047 60.4 9,464 49.1 9,864 | 72.88 3,346

Comparing Methods. We conduct post-training on DeepSeek-R1-Distill-Qwen-1.5B and
DeepSeek-R1-Distill-Qwen-7B using Group Relative Policy Optimization (GRPO) (Guo et al.,
2025) as the base algorithm. The detailed objective is shown in Appendix B. To evaluate different
length-control methods for enhancing reasoning efficiency, we implement the following baselines:
(1) Methods that directly reduce reasoning length, including O1-Pruner (Luo et al., 2025a) and
No-Wait (Wang et al., 2025a); (2) Methods that rely on preset computational budgets before in-
ference, including DAST (Shen et al., 2025b), FCS+Ref (Chen et al., 2024), and LCPO (Aggarwal
& Welleck, 2025); (3) Methods that dynamically determine termination, including DEER (Yang
et al., 2025) and MERA (Ha et al., 2025).

5 RESULTS

In this section, we evaluate and analyze the performance of AdapThink across various settings
through three key aspects: answer accuracy, reasoning efficiency, and group diversity.

Overall Comparison. As shown in Figure 4 and Table 1, AdapThink demonstrates superior per-
formance across both model scales. Compared to the original baseline, AdapThink achieves a 6.11%
relative improvement on the 1.5B model and a 7.27 % relative improvement on the 7B model.

Notably, although trained under a strict 2K token limit, AdapThink develops a dynamic preference
for reasoning depth based on group characteristics, rather than a fixed budget. Consequently, when

Under review as a conference paper at ICLR 2026

evaluated with a 32K token context, the post-trained model adaptively tailors its response length to
the complexity of the problem. As shown in Table 1, for challenging benchmarks like AIME, Adap-
Think generates longer responses to facilitate complex reasoning, while maintaining conciseness on
simpler problems such as those in MATH-500.

While MERA achieves shorter response lengths with a 17.1% reduction on the 1.5B model and
21.4% reduction on the 7B model, its performance also drops relative to ours by 1.93 and 2.03,
respectively. Particularly on the AMC 2023 and AIME 2024, 2025 benchmarks, our performance
significantly outperforms MERA.

Table 2: Test Performance Comparison of AdapThink Variants. Max Token represents the
maximum response token limit (in thousand) in training phase. The accuracy metric is determined
by averaging PASS@1 scores over 16 independent generation runs under the 8K token limit on
AIME 2025. The diversity metrics are from the training phase, while other metrics are from testing.
G7 and G indicate correct and incorrect answer groups, respectively.

AdapThink Variants | Accuracy | Length | Reflection Words | Diversity
. pr K Max Token | PASSEL | w(Gr) w(GF) | w(Gr) w(GF) | H(Gr) H(GF)
v o vo2 2 | 254475 | 3561 1550 7442 a7 | 18.5 150 345,01 | 257132 321 11
X v 1 2 233154 | 4772 1630 8154 1235 | 30.3 158 403117 | 222 03 321 18
v X 1 2 22.9 15.0 4395 253 7872 148 304165 409123 | 235110 29.3 |46
v vl 2 | 250171 | 3803 330 7579 1340 | 224 114 357 120 | 232108 33.5 0
v v 2 4 24.6 16.7 | 3861 |281 7909 +10 273434 46.1 175 | 245121 274 165
v v 2 2—4 26.0 1s.1 3339 ;502 6886 1031 | 15.5 183 38.6 00 | 31.619.1 30.3 |36

To verify the effectiveness of each component in the AdapThink framework, we conducted compre-
hensive ablation experiments, and the evaluation results are shown in Figure 5 and Table 2.

Ablation of Diversity-aware Sampling 7. As shown DeepSeek Distilled Qwen 1.58
in Appendix Table 4 and the figure right, AdapThink (w/o o PN
‘H), which is equivalent to GRPO + r¢, exhibits slower 30% '.// .N"“N
convergence. While this has a smaller impact on the test g Vad /
set, as seen in Table 2, Row 4, where AdapThink (w/o 3 / /
H) still achieves a +7.1 PASS@1 accuracy improvement & *°% ./ // G'\;'{itgm
over the baseline. We further verified the general applica- g e / — GRPO4r ref
bility of our proposed diversity sampling method by ap- ~ 20% .ﬁﬂ GRPO+max(H)
plying it to other length-control methods. As shown in { — AdapThink

0

200 400 600 800 1000

Table 4, we found that this sampling method also accel-
Train Step

erates the convergence of these baselines: LCPO+H ex-
hibits a 36.4% improvement in convergence speed, and DAST+7 shows a 31.6% improvement.

Ablation of Reasoning Process Reward 7. As shown in Equation 4, the 7y is controlled by
metrics p, ft., and weight w(p). We first study y; and p, through ablation, as shown in Rows 2,3
of Table 2. Using only p, or y; alone cannot fully control the reduction of reflection words, but
they also bring 5.4% and 5.0% performance gains over the original base. However, the complete
AdapThink method uses both parts together, achieving a better performance gain while controlling
reflection words more effectively.

For w(p), we conduct the ablation AdapThink(no weight) with the training dynamic shown in Fig-
ure 5 and test dynamic in Appendix Figure 7. AdapThink(no weight) greatly reduced response
lengths, which is helpful in the early stages of training due to the deeply overthinking phenomenon
in the base model. However, the later training stage of AdapThink(no weight) led to significantly
degraded performance on the AIME 2025 benchmark. As shown in Figure 7, we found that the
shorter length in later stages of AdapThink(no weight) matched with lower PASS@1. It uncovers
a notable insight for current length-control methods: Consistently prioritizing shorter lengths does
not benefit reasoning performance; while enabling reflection-related preferences at the appropriate
time can improve overall effectiveness without sacrificing model performance.

Under review as a conference paper at ICLR 2026

Accuracy Reward Response Length Switch Words Count Check Words Count

Counts
Counts

0 200 400 600 800 0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
Steps Steps Steps Steps
—— AdapThink(Switch) GRPO —— AdapThink(Check) ~ —— AdapThink(All)
Accuracy Reward 2000 Response Length Switch Words Count Check Words Count
6
1800 5
5 1600 24 8
=) € €
H 33 2
%1400 S S
2
1200
1
1000 | |
0 200 400 600 800 0 200 400 600 800 0 200 400 600 800
Steps Steps Steps
—— AdapThink —— AdapThink(No weight) —— AdapThink(Sequential)

Figure 5: Training Comparison of AdapThink Variants with different calculation methods for
et (Equation 4). AdapThink(Switch), AdapThink(Check), and AdapThink(Sequential) denote
controlling different transition words or conjunctions as (., while AdapThink(No weight) indicates
the elimination of weighting by w((p).

The Potential Impact of the Selection of Reflection-related Terms on the Metric (j). We fur-
ther conduct ablations on different types of reflection-related or non-reflection-related term controls
to examine their impact on reasoning patterns when calculating (). The selection criteria follow
those in (Yeo et al., 2025; Luo et al., 2025b), including AdapThink(check) for verification-related
words (“wait”, “hold on”, “check”, and ‘“verify”), AdapThink(switch) for reasoning expansion-
related transition words (“alternatively”, “however”, “another”, and “instead’), and a reflection-
unrelated ablation AdapThink(sequential) for sequential transition words without reflection mean-
ing (“first”, “then”, “next”, “finally”, “therefore”, “so”, “thus”). As shown in Figure 5, Adap-
Think(Switch) functions similarly to AdapThink. This aligns with the motivation outlined in the
study by (Wang et al., 2025b): Frequent thought switching exacerbates the model’s propensity to
generate incorrect answers. AdapThink addresses this issue by appropriately controlling its prefer-
ence for such words. Additionally, AdapThink(sequential) exhibits no clear changes in either out-
come rewards or process metrics, which aligns with our expectations, as reflection-unrelated terms
exert little impact on reasoning patterns. Meanwhile, controlling via AdapThink(check) actually
impairs model performance, which indicates that the model’s hesitation behavior is crucial for the
reasoning patterns required to generate correct answers.

5.1 DISCUSSION

Curriculum Learning. Inspired by (Luo et al., 2025b), Table 3: N-gram repetition analysis
we implemented a curriculum learning for AdapThink. across different post-training methods.
Specifically, we conduct secondary training on the best ‘

N-grams (%)

checkpoint from the 2K token limit to 4K. For compari- Method

son, we also trained a model directly with 4K token limit ‘ Total Gr Gr
using AdapThink. Our results (Table 2 Rows 5,6) shows

that progressive training from 2K to 4K token limit out- GRPO 0.3 03 02
performed direct 4K training, and achieves the highest DAST 3.0 3.5 22
accuracy while maintaining the most efficient reasoning LCPO 10.8 59 198
patterns among all the AdapThink variants. AdapThink | 0.7 06 09

Reward Hacking. To further investigate potential re-
ward hacking introduced by length-control mechanisms, we employ N-gram (/N = 40) repetition
rate metrics (Yeo et al., 2025) to quantify repetitive patterns in model responses for the MATH-

Under review as a conference paper at ICLR 2026

500 test dataset, as shown in Table 3. Our analysis reveals that LCPO exhibits severe repetitive
patterns with an average N-gram repetition rate of 10.8%, especially 19.8% in incorrect answers,
indicating potential reward hacking in its length control mechanism. Notably, AdapThink main-
tains consistently low repetition rates across both correct and incorrect responses, suggesting its
superior robustness for scaling across more models.

Out-of-Distribution Evaluation. We also validated AdapThink on non-math out-of-distribution
(OOD) benchmarks in Appendix Table 5. We found that AdapThink’s improvements over the base
model are not limited to math tasks. It also achieves performance gains on OOD tasks with improved
2.77% Pass@1 scores and reduced 26.7 % token usage.

6 RELATED WORK

Induce Longer CoT. For inducing longer reasoning length, several works (Weng et al., 2023;
Miao et al., 2023; Saunders et al., 2022; Renze & Guven, 2024b; Jin et al., 2024) have encouraged
models to engage in deeper thinking through natural language feedback. For zero-shot CoT, (Weng
et al., 2023; Miao et al., 2023) stimulate model self-reflection by performing backward verification
or multiple response voting. For few-shot CoT with demonstrations, (Jin et al., 2024) introduced
five general standardized patterns to induce models to simulate human thinking and reshape the CoT.
However, these one-size-fits-all approaches ignore the diversity of problem-solving paths, only have
a monotonous processing mode. Similarly, (Muennighoff et al., 2025) designed several budget
forcing mechanisms to increase guidance in CoT, such as appending “Wait” multiple times when
the model tries to end, forcing it to double-check. Likewise, (Shen et al., 2025a) introduced special
meta-action markers like <|continue|>, <|reflect|>, and <|explore|>, enabling the
model to restart from intermediate steps, lengthen responses, and correct errors.

Induce Shorter CoT. Simple prompt methods are also effective for encouraging a shorter CoT
(Nayab et al., 2024; Xu et al., 2025; Renze & Guven, 2024a). For example, (Muennighoff et al.,
2025) added “Final answer” to terminate the model’s thinking process. Besides, (Jin et al., 2024;
Kang et al., 2025) used stronger models to compress long CoTs semantically into shorter ones.
(Yeo et al., 2025; Shen et al., 2025b; Aggarwal & Welleck, 2025; Yu et al., 2025) design differ-
ent length-budget signals from the perspective of rule-based reward design, encouraging models to
balance accuracy and token efficiency during the thinking process. Although (Shen et al., 2025b)
already takes problem complexity and model confidence into account for the budget, its adoption of
a uniformly shorter response preference is less suitable for models with weaker reasoning abilities.

Moreover, some studies have further focused on addressing overthinking and underthinking in long
CoTs. (Wang et al., 2025b; Sui et al., 2025) introduced thought switching penalties to influence the
token decoding probability distribution early in CoT generation, reducing initial thought-switching.
Similarly, (Chen et al., 2024) presented an efficiency metric to evaluate each token’s contribution to
accuracy and used length preference optimization to achieve more efficient CoT patterns. However,
both approaches depend on auxiliary judgments from more powerful reasoning models, making the
performance improvements inherently constrained by the capabilities of the reference models.

7 CONCLUSION

In this paper, we present AdapThink, an efficient post-training framework for reasoning models that
adaptively modulates reflection preferences based on a group’s outcome correctness and reasoning
process characteristics. We highlight two key insights: (1) Controlling reasoning length alone does
not directly determine a model’s reasoning efficiency, and (2) Homogeneous reasoning patterns may
also hinder effective model learning by limiting the model’s exposure to diverse problem-solving
strategies. Notably, with only a 2K token limit during training, AdapThink outperforms existing
baselines in both reasoning accuracy and token efficiency across various mathematical reasoning
benchmarks. One limitation and potential future direction lies in exploring token-level reflection-
related control beyond the current response-level. We will further conduct experiments to investigate
the impact of larger reasoning models.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

All authors of this study strictly adhere to the ICLR code of ethics. Our research does not involve
any potential conflicts of interest or sponsorship issues. We have carefully considered and addressed
concerns related to discrimination, bias, and fairness in our methodology. The study raises no pri-
vacy or security concerns, maintains full legal compliance, and upholds the highest standards of
research integrity. All experimental procedures and data handling practices follow established ethi-
cal guidelines for machine learning research.

REPRODUCIBILITY STATEMENT

To ensure full reproducibility of our results, we provide comprehensive implementation details of
the proposed BAPO training algorithm in the supplementary materials. All experimental settings,
hyperparameters, and dataset specifications are clearly documented. For our theoretical contribu-
tions, complete proofs and clear explanations of all assumptions are included in the appendix. Code
and data will be made available upon acceptance to facilitate replication of our findings.

THE USE OF LARGE LANGUAGE MODELS

In this research, we employed LLMs solely as language editing tools to improve the clarity and read-
ability of our manuscript. LLMs were used for grammar checking, style refinement, and language
polishing purposes only. All core research ideas, experimental design, analysis, and conclusions are
entirely the original work of the authors. The use of LLMs did not contribute to the conceptual or
technical content of this study.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking
of ol-like llms. arXiv preprint arXiv:2412.21187, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Rui Ha, Chaozhuo Li, Rui Pu, and Sen Su. From" aha moments" to controllable thinking: Toward
meta-cognitive reasoning in large reasoning models via decoupled reasoning and control. arXiv
preprint arXiv:2508.04460, 2025.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
budget-aware 1lm reasoning. arXiv preprint arXiv:2412.18547, 2024.

Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao, Wenyue Hua, Yanda Meng, Yongfeng Zhang, and
Mengnan Du. The impact of reasoning step length on large language models. In ACL (Findings),
2024.

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: Generating shorter chain-of-thought
without compromising effectiveness. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 39, pp. 24312-24320, 2025.

Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron Courville, and Nicolas Le Roux. Vineppo: Unlocking rl potential for Ilm reasoning through
refined credit assignment. arXiv preprint arXiv:2410.01679, 2024.

Komal Kumar, Tajamul Ashraf, Omkar Thawakar, Rao Muhammad Anwer, Hisham Cholakkal,
Mubarak Shah, Ming-Hsuan Yang, Phillip HS Torr, Fahad Shahbaz Khan, and Salman Khan.
Llm post-training: A deep dive into reasoning large language models. arXiv preprint
arXiv:2502.21321, 2025.

Yuliang Liu, Junjie Lu, Zhaoling Chen, Chaofeng Qu, Jason Klein Liu, Chonghan Liu, Zefan Cai,
Yunhui Xia, Li Zhao, Jiang Bian, et al. Adaptivestep: Automatically dividing reasoning step
through model confidence. arXiv preprint arXiv:2502.13943, 2025.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. Ol-pruner: Length-harmonizing fine-tuning for ol-like reasoning pruning.
arXiv preprint arXiv:2501.12570, 2025a.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing ol-preview
with a 1.5b model by scaling rl, 2025b. Notion Blog.

Yan Ma, Steffi Chern, Xuyang Shen, Yiran Zhong, and Pengfei Liu. Rethinking rl scaling for vision
language models: A transparent, from-scratch framework and comprehensive evaluation scheme.
arXiv preprint arXiv:2504.02587, 2025.

Ning Miao, Yee Whye Teh, and Tom Rainforth. Selfcheck: Using llms to zero-shot check their own
step-by-step reasoning. arXiv preprint arXiv:2308.00436, 2023.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Sania Nayab, Giulio Rossolini, Marco Simoni, Andrea Saracino, Giorgio Buttazzo, Nicolamaria
Manes, and Fabrizio Giacomelli. Concise thoughts: Impact of output length on 1lm reasoning and
cost. arXiv preprint arXiv:2407.19825, 2024.

11

Under review as a conference paper at ICLR 2026

OpenAL Learning to reason with LLMs. https://openai.com/index/
learning-to-reason-with-11ms, 2024. Accessed: 2024.

Matthew Renze and Erhan Guven. The benefits of a concise chain of thought on problem-solving in
large language models. In 2024 2nd International Conference on Foundation and Large Language
Models (FLLM), pp. 476—483. IEEE, 2024a.

Matthew Renze and Erhan Guven. Self-reflection in 1lm agents: Effects on problem-solving perfor-
mance. arXiv preprint arXiv:2405.06682, 2024b.

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and Jan
Leike. Self-critiquing models for assisting human evaluators. arXiv preprint arXiv:2206.05802,
2022.

Maohao Shen, Guangtao Zeng, Zhenting Qi, Zhang-Wei Hong, Zhenfang Chen, Wei Lu, Gre-
gory Wornell, Subhro Das, David Cox, and Chuang Gan. Satori: Reinforcement learning
with chain-of-action-thought enhances 1lm reasoning via autoregressive search. arXiv preprint
arXiv:2502.02508, 2025a.

Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wenjing Zhang, Jiangze Yan, Ning Wang, Kai
Wang, and Shiguo Lian. Dast: Difficulty-adaptive slow-thinking for large reasoning models.
arXiv preprint arXiv:2503.04472, 2025b.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Hanjie Chen, et al. Stop overthinking: A survey on efficient
reasoning for large language models. arXiv preprint arXiv:2503.16419, 2025.

Chenlong Wang, Yuanning Feng, Dongping Chen, Zhaoyang Chu, Ranjay Krishna, and Tianyi
Zhou. Wait, we don’t need to" wait"! removing thinking tokens improves reasoning efficiency.
arXiv preprint arXiv:2506.08343, 2025a.

Yue Wang, Qiuzhi Liu, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He, Linfeng Song, Dian Yu,
Juntao Li, Zhuosheng Zhang, et al. Thoughts are all over the place: On the underthinking of
ol-like llms. arXiv preprint arXiv:2501.18585, 2025b.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and
Jun Zhao. Large language models are better reasoners with self-verification. In Findings of the
Association for Computational Linguistics: EMNLP 2023, pp. 2550-2575, 2023.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yugian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
Zhirong Wu, and Chong Luo. Logic-rl: Unleashing Ilm reasoning with rule-based reinforcement
learning. arXiv preprint arXiv:2502.14768, 2025.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing
less. arXiv preprint arXiv:2502.18600, 2025.

Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Qiaowei Li, Zheng Lin, Li Cao,
and Weiping Wang. Dynamic early exit in reasoning models. arXiv preprint arXiv:2504.15895,
2025.

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long chain-
of-thought reasoning in llms. arXiv preprint arXiv:2502.03373, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gachong
Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025.

12

https://openai.com/index/learning-to-reason-with-llms
https://openai.com/index/learning-to-reason-with-llms

Under review as a conference paper at ICLR 2026

A EXAMPLES OF BASE MODEL’S THINKING PROCESS

A.1 EXAMPLE 1: OVERTHINKING ON A SIMPLE PROBLEM

In this example, the model (DeepSeek Distilled Qwen 1.5B) was presented with a straightforward
probability problem. While it reached the correct answer early in its reasoning process (using only
479 tokens), it continued to reflect unnecessarily. The model’s self-validation tendencies, marked
by frequent use of phrases like “Wait”, “check”, and “verify”, led to multiple alternative approaches
and verifications. This resulted in consuming 2,613 tokens—more than five times the tokens needed
for the initial correct solution.

Overthinking Example

A bag contains 4 red balls and 3 blue balls. Two balls are drawn without replacement.
What is the probability that both balls are of different colors?

Model Response

Okay, let’s see. Well, I can think ... Alternatively, maybe I should ... Wait,
is it right? ... Alternatively, maybe it is easier to ... So, the probability is
4/7.

But ... Alternatively ... But let me check both approaches ... Alternatively
... Approach 1 ... Wait ... Let me check ... Approach 2 ... Alternatively ...
Wait, but let me just verify ... So all methods lead to 4/7.

Final Answer:

4
The probability that both balls are of different colors is .

4
All methods confirm the probability that both balls are of different colors is .

Correct

2613 (479 for first generating the correct answer.)

Reflection Words Count

13

Under review as a conference paper at ICLR 2026

A.2 EXAMPLE 2: UNDERTHINKING ON A COMPLEX PROBLEM

The second example shows the model attempting a more challenging modular arithmetic problem.
Here, the model exhibited frequent but unproductive shifts in thinking, marked by numerous “Wait”
and “Alternatively” statements. Unlike the first example where excessive reflection was merely
inefficient, it reached the maximum token limit (4,096 token) before completing its calculation,
resulting in an incorrect answer.

Underthinking Example

Question

Let a,, = 6™ + 8". Determine the remainder upon dividing ags by 49?

Model Response

Okay, so I need to find the remainder ... Let me think ... First ... But wait
... Alternatively ... Alternatively ... Wait ... Let’s check... Wait, perhaps
there’s a better way ... Oh! Wait a second ... Wait ... Okay, so that’s the first
part ... Wait ... Wait first ... Wait, perhaps ... Wait, but just to make sure ...
Similarly, 8" = 1 (mod 13), 83 divided by 7 gives 11%¥7=

Correctness

Incorrect

4096 (max token limit)

Reflection Words Count

B ADAPTHINK ALGORITHM DETAILS

Pseudo Code. We provide the complete training process of AdapThink in Algorithm | and the
sampling strategy in Algorithm 2.

Objective. Following the setting of GRPO (Guo et al., 2025), the objective is formulated as:

G lyil
1 1 . 7 . 7
= o > min (pia(0) Asa,clip(pii(0),1 = 2,1+ 2)Ai) = 8- D (mollmer) ()
i=1 7t =1
where G = {y1, y2, . . ., Yo } represents a G-size group of responses sampled from 7y, (-|x) for each

mo (y! |yt x)

input z; p; 4(0) is the probability ratio Wil between current policy and old policy g,
Toaa\Yil1Yi >

14

Under review as a conference paper at ICLR 2026

for the ¢-th responses’ ¢-th token, ¢ limits the magnitude of policy updates; and Dx;, constrains the
policy mg from deviating too far from a reference policy .. Crucially, flu denotes the estimated
advantage of response y for input z within group G, which is derived from the standardization
of rewards using the statistical properties of group G. For the i-th response y; € G with reward
r; = r(z,y;), the estimated advantage is:

. r; —mean({re})

Ay = ®)
std?({re}) +¢

where mean({r,}) and std®({r,}) are the empirical mean and variance of rewards in group G, re-

spectively.

For the reward r;, we incorporate two components: the outcome reward 7gyicome and the reflection-
related process reward 7s. The definition of s is provided in Equation 4. The reward 7oyicome 18
defined as follows:

1, ify is correct

0, otherwise

7Aoutcomf:(xvy) = {

Algorithm 1 AdapThink Training Framework

Require: Pre-trained model 7y, Dataset D, Upsample factor K
Ensure: Updated model 7y

1: for each (z,y*) € D do

2: G < DIVERSITYSAMPLING(z, K) {Using Algorithm 2}
4

3 e ﬁ > I(9; = y*) {Group Correctness}

4 Gre{0€G: 9=y} Gr<{0:€G 9 #y"}

5: for gsub € {gT7 g]:} do

6: 11 (Gsub) ﬁ >4, cu L(@i) {Group Length Baseline}

7: tr(Gaup) ITIM Ey G r(¢;) {Group Reflection Words Baseline}
8: end for

9: foreachy; € Gdo

10: Tref (i) < w(ep) - ’”(ifé’é)&_)l)(y) + ”T(i(’@(’é)();;)(yi)} {Reasoning Process Reward}
11: rtotal(gi) — Tanswer(gi) + rref(gi)

12: end for

13: mg < GRPO(7y, G, {riom(9:)}) (Equation 7)

14: end for

C MORE RESULTS

Analysis of Detailed Reflection Words Distribution. To provide deeper insights into how dif-
ferent post-training methods affect the model’s reasoning behavior, we analyze the distribution of
reflection words across correct and incorrect responses, as shown in Figure 6. For most reflection-
related words, we observe that AdapThink significantly reduces the frequency in both correct and
incorrect responses compared to the base model, suggesting a more efficient reasoning process. In
contrast, GRPO and TLB exhibit less pronounced changes in these reflection words; LCPO shows
elevated counts of pause words, particularly in incorrect responses.

Analysis of More Ablation. We evaluate AdapThink on two out-of-distribution (OOD) tasks, as
shown in Table 5. The results demonstrate that models fine-tuned on the MATH dataset achieve
improved PASS @1 performance on other OOD tasks compared to the baseline, while significantly
reducing token consumption. Additionally, we track the accuracy and token length of three Adap-
Think variants on the AIME2025 benchmark across checkpoints at 50-step intervals. Our findings
reveal: (1) AdapThink (No weight) exhibits consistent token reduction behavior, leading to perfor-
mance gains in the first 250 steps but causing significant accuracy degradation after 250 steps. (2)
AdapThink (Sequential) shows that controlling non-reflective vocabulary has minimal impact on the
results.

15

Under review as a conference paper at ICLR 2026

Algorithm 2 Diversity-Aware Sampling Strategy

Require: Question x, Upsample factor K, Target size |G|
Ensure: Diverse sample set G

1: Stage 1: Upsampling

2: G’ + Generate K x |G| responses from 7y (+|)

3: S < Partition (I, r) space into 4 bins

4: Stage 2: Downsampling

5: Gpest Q)’ Hmax < 0

6: if p(G') € (0,1) then

7: for each subset Geang C G’ with |Geana| = |G| do

8: if ©(Geand) € (0,1) and H(Geand) > Himax then
9: Goest < Geands Hmax H(gcand)

10: end if
11: end for
12: else

13: for each subset Geang C G’ with |Geana| = |G| do
14: if H(Geand) > Hmax then

15: gbest — gcand, Hmax — H(gcand)
16: end if

17: end for

18: end if

19: return G < Gpey

1 Base [0 AdapThink [GRPO =3 LCPO 3 TLB [CosFn

Correct Response Incorrect Response
104 40 A
84 30
+ -
<]
3 6 I~
§ § 2
4
‘] [l _—
0] }] T = 0 | [= e e S S S .
wait check hold on verify wait check hold on verify
3] 6 W T P
2 24 w44 0
3 il g
]]
1 24
0) = I [l 0 ‘ | o S S)]
alternatively however another instead alternatively ~ however another instead

Figure 6: Distribution of reflection words across different post-training methods for correct and
incorrect responses in MATH-500 datasets.

Table 4: Ablation studies of Table 5: Performance Comparison on Out-of-Distribution
Diversity-aware Sampling. (OOD) Benchmarks for AdapThink.

Variants Accuracy Model LSAT GPQA
LCPO 7.6 Pass@l Avg Token Pass@l Avg Token
LCPO+H. 284 Deepseek 1.5B 0.2462 7481 0.2942 6052
DAST 298 +AdapThink 0.2478 6810 0.2830 4436

: Deepseek 7B 0.4168 6723 0.4561 5759
DAST+H 32.3 +AdapThink 0.4283 5982 0.4838 4944

16

Under review as a conference paper at ICLR 2026

Accuracy and Length Comparison on AIME 2025

0.261
."=:.::=.~_
0.241 N F 7000
0.221 F6500
£
4 (o)}
5020 F6000 €
E)
> 4 [
g o018 5500 @
< o
0.16 z
r5000
0.14 1
r4500
0.124
| | I I | | | ! 4000
100 200 300 400 500 600 700 800
Checkpoint

AdapThink(No weight) —#— AdapThink(Sequential) —&— AdapThink

Figure 7: Evaluation comparison among three AdapThink variants across checkpoints at 50-step
intervals.

D HYPERPARAMETER CONFIGURATION

The core hyperparameters used in AdapThink are summarized in Table 6. The training is on 8
NVIDIA H100 GPUs, taking approximately 22 hours to complete 1000 steps for 1.5B model and 1
day 16 hours for 7B model.

Table 6: Core hyperparameters for AdapThink post-training configuration

Category Parameter Value
Base Model DeepSeek-R1-Distill-Qwen-1.5B
. Torch Dtype bfloat16
Model Settings Max Sequence Length 1024
Max New Tokens 2048
Learning Rate 2e-6
Number of Epochs 5
Training Settings Batch Size 8
Gradient Accumulation Steps 8
Warmup Steps 20
. LoRA Rank (r) 32
LoRA Settings LoRA Alpha 32
Algorithm GRPO
KL Coefficient 0.15
. Number of Generations 12
RL Settings Target Generations 8
Temperature 0.7

Generation Settings Top-p 0.95

17

Under review as a conference paper at ICLR 2026

E EXAMPLE OF BASE MODEL AND ADAPTHINK

DeepSeek-distilled Qwen 1.5B Example (from AIME 2025)

Find the number of ordered pairs (x,y), where both = and y are integers between
—100 and 100, inclusive, such that 1222 — zy — 6y* = 0.

Model Response

Alright, so I have this problem here: ... Hmm, okay. Let me try to figure this
out step by step.

First, I notice that this is a quadratic equation in terms of x and y. Maybe I
can factor it or rewrite it Let me write it down again:

1222 —zy — 6% =0
Alternatively, maybe factor the quadratic expression as (ax + by)(cx +
dy) = 0. Let me try that...
Alternatively, perhaps I can write the equation as: 1222 — 7y — 6y = 0...
Alternatively, maybe factor it as (az + by)(cz + dy) = 0...
Alternatively, perhaps factor out a 3:

1
3(42” — 3%~ 2%) =0

But that doesn’t seem helpful.
Alternatively, maybe factor as (4x + ay)(3z + by) =0 ...

So, I think I can confidently say the answer is 117. **Final Answer®*: | 117 |,

We need to find the number of ordered pairs (z,y) where both « and y are integers
between —100 and 100, inclusive, such that 1222 — zy — 6y?> = 0 ... The total
number of solutions is:

67+51 —-1=117

Thus, the number of ordered pairs (x, y) is: ,

Correct

7377

Reflection Words Count

18

Under review as a conference paper at ICLR 2026

AdapThink Example (from AIME 2025)

Find the number of ordered pairs (x,y), where both = and y are integers between
—100 and 100, inclusive, such that 122° — 2y — 6y = 0.

Model Response

Okay, so I need to find the number of ordered pairs (z,y) where both x
and y are integers between -100 and 100, inclusive. The condition given is
1222 — xy — 6y% = 0. Hmm, let me try to figure this out step by step.
First, looking at the equation: 122? — 2y —6y? = 0. It seems like a quadratic
in terms of x and y. Maybe I can factor it or rearrange it somehow. ... Let’s
see:

1222 — 2y — 6y =0
Divide both sides by 3:

42— 929

3

Wait, that doesn’t help much because we have a fraction. Maybe factoring
differently. ...

So, seems consistent. Therefore, the number of ordered pairs is 117. **Final

Answer**: The number of ordered pairs is | 117 .

To find the number of ordered pairs (x, y) where both x and y are integers between
-100 and 100, inclusive, such that 1222 — xy — 632 = 0, we start by ... Thus, we
subtract 1 to avoid double-counting. The total number of ordered pairs is:

51+67—-1=117
Thus, the number of ordered pairs is .

Correctness

Correct

4502

Reflection Words Count

19

	Introduction
	Observations
	Method
	Group-relative Reasoning Process Reward
	Diversity-aware Sampling

	Experimental Setup
	Results
	Discussion

	Related Work
	Conclusion
	Examples of Base Model's Thinking Process
	Example 1: Overthinking on a Simple Problem
	Example 2: Underthinking on a Complex Problem

	AdapThink Algorithm Details
	More Results
	Hyperparameter Configuration
	Example of Base Model and AdapThink

