
Prediction Privacy in Distributed Multi-Exit Neural Networks:
Vulnerabilities and Solutions

Tejas Kannan

tkannan@uchicago.edu

University of Chicago

Chicago, Illinois, United States

Nick Feamster

feamster@uchicago.edu

University of Chicago

Chicago, Illinois, United States

Henry Hoffmann

hankhoffmann@cs.uchicago.edu

University of Chicago

Chicago, Illinois, United States

ABSTRACT
Distributed Multi-exit Neural Networks (MeNNs) use partition-

ing and early exits to reduce the cost of neural network infer-

ence on low-power sensing systems. Existing MeNNs exhibit high

inference accuracy using policies that select when to exit based

on data-dependent prediction confidence. This paper presents a

side-channel attack against distributed MeNNs employing data-

dependent early exit policies. We find that an adversary can observe

when a distributed MeNN exits early using encrypted communi-

cation patterns. An adversary can then use these observations to

discover the MeNN’s predictions with over 1.85× the accuracy of

random guessing. In some cases, the side-channel leaks over 80% of

the model’s predictions. This leakage occurs because prior policies

make decisions using a single threshold on varying prediction confi-

dence distributions. We address this problem through two new exit

policies. The first method, Per-Class Exiting (PCE), uses multiple

thresholds to balance exit rates across predicted classes. This policy

retains high accuracy and lowers prediction leakage, but we prove

it has no privacy guarantees. We obtain these guarantees with a

second policy, Confidence-Guided Randomness (CGR), which ran-

domly selects when to exit using probabilities biased toward PCE’s

decisions. CGR provides statistically equivalent privacy with con-

sistently higher inference accuracy than exiting early uniformly

at random. Both PCE and CGR have low overhead, making them

viable security solutions in resource-constrained settings.

CCS CONCEPTS
• Computing methodologies→ Neural networks; • Computer
systems organization→ Sensor networks; • Security and privacy
→ Distributed systems security.

KEYWORDS
Neural Networks, Side Channels, Sensor Network Security

ACM Reference Format:
Tejas Kannan, Nick Feamster, and Henry Hoffmann. 2023. Prediction Privacy

in Distributed Multi-Exit Neural Networks: Vulnerabilities and Solutions. In

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0050-7/23/11. . . $15.00

https://doi.org/10.1145/3576915.3623069

Layer 0 Layer 1

Exit 0 Exit 1

�̂� (0) �̂� (1)

𝒙

Sensor Server

𝒛 (0)

Send

if not

exiting

early

Figure 1: A distributed Multi-exit Neural Network (MeNN)
[87] with two total exits.

Proceedings of the 2023 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS ’23), November 26–30, 2023, Copenhagen, Denmark.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3576915.3623069

1 INTRODUCTION
Battery-powered sensors are common in applications for areas

such as agriculture [91] and healthcare [32]. Sensor devices collect

measurements from their environment, process these values, and

communicate results to a server. For reliable performance, devices

must meet energy [25, 43] and latency [46, 102] constraints. Thus,

sensors seek ways to improve their efficiency, and a common tech-

nique for doing so is to push data processing onto the sensor device

[20]. This method is beneficial because local processing allows the

device to transmit smaller aggregate results [25].

Modern sensor processing uses deep neural networks (DNNs)

due to their high-quality results [25, 63]. However, DNNs have

high resource costs, making them challenging to deploy on low-

power devices [63, 101]. Prior systems address this challenge by

partitioning DNNs between sensor and server [7, 46, 61]. The sensor

device holds a subset of the DNN, and the system performs inference

as follows:

(1) Process measurements on the sensor with the DNN subset.

(2) Transmit the intermediate DNN activations to the server.

(3) Complete inference with the remaining DNN layers.

In this process, the sensor always transmits the intermediate state

(Step 2), and this step requires expensive wireless communica-

tion [25, 46]. Sensing systems address this problem by augmenting

DNNs with early exits (Figure 1). These inference models, called

Multi-exit Neural Networks (MeNNs), contain early exit points

which create predictions using a subset of the entire DNN [87].

Distributed MeNNs [56, 88] form an initial prediction on the sensor,

alleviating the need to communicate with the server.

MeNNs face a key decision when reaching an exit point: whether

to terminate inference. This exit decision, which represents where

the MeNN stops inference, comes with a tradeoff. Exiting earlier

leads to lower inference costs by skipping subsequent layers. Early

1123

https://doi.org/10.1145/3576915.3623069
https://doi.org/10.1145/3576915.3623069

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Tejas Kannan, Nick Feamster, and Henry Hoffmann

exits, however, generally reduce accuracy [87, 93]. Data-dependent
adaptive behavior is an emerging method to balance this tradeoff

[35, 37, 49, 78, 87, 93, 95, 105]. These methods determine when

to terminate inference by comparing the neural network’s predic-

tion confidence (e.g., the maximum classification probability) to a

single threshold [95]. Inference terminates when the confidence

exceeds the threshold. This strategy is data-dependent because

the prediction confidence is a function of the given input. These

data-dependent methods yield high accuracy under cost constraints

because not all inputs are equally difficult to classify [49, 95].

In this work, we study MeNN early exiting from a new perspec-

tive: privacy. We demonstrate how previous data-dependent exit

policies [87, 95] show asymmetric behavior on different predicted

classes. That is, the MeNN exits early for some classes more fre-

quently than others. This behavior occurs because MeNNs produce

different distributions of prediction confidence for different classes

(§2.3). Standard data-dependent methods, however, apply a single
threshold to all prediction confidence values. This single threshold

thus causes different average exit behavior across predictions.

This asymmetry means an adversary can learn about a dis-

tributed MeNN’s predictions by observing its exit decisions, creat-

ing a privacy issue in sensing systems for two reasons:

(1) Sensors leak when the distributed MeNN exits early through

side-channels derived from encrypted communication pat-

terns (§3.2, §6.8).

(2) Sensors collect values with temporal correlations [21, 23],

so an adversary who extracts when the MeNN exits early

observes consecutive elements with similar predictions.

With these properties, we discover that an adversary can use com-

munication side-channels to observe a distributed MeNN’s pattern

of exit decisions. The adversary can then use this pattern to infer

the model’s most frequent prediction over short timescales. For

example, on the task of activity recognition [55], we show that

this side-channel allows a white box attacker (§3.2) to uncover

52.00% of the MeNN’s predictions (§6.8). This leakage extends to

ten tasks; on average, we demonstrate how data-dependent policies

enable a white box attacker to infer MeNN predictions 1.85× more

frequently than random guessing (§6.2). Further, we build a black
box attacker (§3.2) which can still infer MeNN predictions at 1.56×
the rate of random guessing (§6.7). Thus, privacy-conscious sensor

systems [32, 91, 99] cannot gain the benefits of MeNNs.

There are two common approaches to closing side-channels

based on asymmetric behavior. The first method standardizes re-

source use [12, 22, 51]. For MeNNs, this principle forces all inputs to

exit at the same point. This design negates the benefits of MeNNs,

resulting in either suboptimal accuracy (§6.4) or prohibitive over-

head (§6.9). The second approach randomizes behavior [5, 51]. This

method leads to an MeNN policy that exits early uniformly at ran-

dom. Unfortunately, random exiting imposes a high accuracy cost

(§6.4). We instead want exit policies with the following properties:

(P1) Achieve perfect privacy by having no observable relation

between exit decisions and MeNN predictions.

(P2) Exhibit minimal energy overhead compared to previous data-

dependent methods.

(P3) Display greater inference accuracy than Random exiting.

(P4) Do not require retraining or redesign of existing MeNNs.

This last property is important because neural network training is

expensive. Solutions requiring new architectures or retraining are

not compatible with existing MeNNs.

We develop two new exit policies to meet (P1)–(P4). Our first

approach, Per-Class Exiting (PCE), augments prior data-dependent

methods by using different confidence thresholds for each class

(§4). PCE tunes these thresholds to exhibit symmetric exit rates for

better privacy (§6.2). The policy retains high inference accuracy

because it still makes decisions using prediction confidence (§6.4).

Despite improved empirical privacy, we prove that PCE has no

privacy guarantees (P1). To achieve these guarantees, we augment

PCE with randomization through a new policy called Confidence-
Guided Randomness (CGR) (§5). CGR randomly selects an exit us-

ing probabilities biased toward PCE’s confidence-based decisions.

Further, CGR optimizes the MeNN’s accuracy while maintaining

privacy by adapting the bias magnitude using trends in the MeNN’s

predictions. By using both prediction confidence and randomization,

CGR has higher accuracy than exiting early uniformly at random

(§6.4) with statistically equivalent privacy (§6.2). CGR also incurs

negligible overhead (§6.9) and works with already-trained MeNNs,

allowing the policy to successfully satisfy (P1)–(P4).

To the best of our knowledge, this is the first work to study

the prediction privacy of data-dependent early exiting for MeNNs.

Overall, we make the following contributions
1
:

(1) We show that previous data-dependent MeNN exit policies

leak information about model predictions. For two-exit dis-

tributed MeNNs, an adversary can infer the model’s predic-

tions under both white box and black box assumptions.

(2) We create a policy called Per-Class Exiting (PCE) that uses

different thresholds for inputs of each class. This method

reduces the leakage of prior data-dependent policies and

preserves accuracy to within 0.4 percentage points.

(3) We construct a policy, Confidence-Guided Randomness (CGR),

which integrates randomization into PCE. CGR has theo-

retical privacy benefits. Compared to exiting uniformly at

random, CGR displays statistically equivalent privacy with

higher accuracy on over 90% of target exit rates.

Our work demonstrates the privacy implications of performing

data-dependent distributed MeNN inference on sensing systems.

With our proposed methods, privacy-conscious applications can

safely achieve the performance benefits of MeNNs.

2 BACKGROUND AND MOTIVATION
This section provides background on multi-exit neural networks

(§2.1) before discussing policies for early exiting (§2.2). We then

provide an example of information leakage (§2.3) and state the goal

of privacy-preserving exit policies (§2.4).

2.1 Multi-Exit Neural Networks (MeNNs)
Deep neural networks (DNNs) are statistical inference models

with layers of linear and nonlinear transformations [57]. Under

supervised learning, DNNs 𝑓𝜽 fit their parameters 𝜽 by minimiz-

ing a loss function (e.g., cross-entropy) on a labelled dataset 𝐷 =

{(𝒙 (𝑡) , 𝑦 (𝑡))}𝑁−1
𝑡=0

[77]
2
. We consider DNNs on classification tasks

1
The code is available at https://github.com/tejaskannan/privacy-dnn-early-exit

2
We denote vectors in boldface and scalars in plain text.

1124

https://github.com/tejaskannan/privacy-dnn-early-exit

Prediction Privacy in Distributed Multi-Exit Neural Networks: Vulnerabilities and Solutions CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Algorithm 1 MeNN inference routine

procedure MeNNInference(𝒙 , 𝑓 (𝐾)𝜽 , 𝜋)

𝒛 (−1) ← 𝒙
for 𝑘 ∈ [𝐾 − 1] do

�̂� (𝑘) , 𝒛 (𝑘) ← 𝑓
(𝑘)
𝜽𝑘
(𝒛 (𝑘−1))

if 𝜋 (�̂� (𝑘) , 𝑘) = 0 then
return �̂� (𝑘)

�̂� (𝐾−1) , 𝒛 (𝐾−1) ← 𝑓
(𝐾−1)
𝜽𝑘

(𝒛 (𝐾−2))
return �̂� (𝐾−1)

where �̂� = 𝑓𝜽 (𝒙) ∈ R𝐿 has the predicted probabilities for each class

in [𝐿] = {0, 1, . . . , 𝐿 − 1}. The predicted class is 𝑦 = argmaxℓ∈[𝐿]𝑦ℓ .
Standard DNNs process inputs 𝒙 with all parameters 𝜽 . However,

this design is unnecessary to achieve high accuracy, as not all

inputs are equally difficult to classify [49, 95]. DNNs can preserve

accuracy with reduced execution costs using early exits; each exit

is an intermediate classifier that creates a prediction with a subset

of model parameters [87, 93, 95]. We describe this approach, called

a Multi-exit Neural Network (MeNN), as a collection of 𝐾 classifiers

𝑓
(𝐾)
𝜽 = [𝑓 (0)𝜽0

, 𝑓
(1)
𝜽1

, . . . , 𝑓
(𝐾−1)
𝜽𝐾−1

] where 𝑓 (𝑘)𝜽𝑘
is a DNN that takes

an input or output of 𝑓
(𝑘−1)
𝜽𝑘−1

, 𝒛 (𝑘−1) , and creates the predicted

probabilities �̂� (𝑘) ∈ R𝐿 . At time 𝑡 , the output of 𝑓
(𝑘)
𝜽𝑘

is �̂� (𝑘,𝑡) .
We consider MeNNs distributed across devices in a sensing sys-

tem [56, 88]. The sensor device contains the initial layers of the

MeNN, and the server contains the remaining portion of the model

(Figure 1). When crossing between devices, the system must trans-

mit the required state (e.g., 𝒛 (0) in Figure 1) to continue inference.

2.2 Early Exit Policies
MeNNs must determine the exit point at which to terminate in-

ference. This decision comes with a tradeoff [87, 93]. Later exits

apply more parameters and achieve higher accuracy. This benefit

comes with higher execution costs, as the system must compute

more layers and communicate between devices.

Prior MeNNs manage this tradeoff in a data-dependent manner

using prediction confidence [9, 87, 95]. Common confidence func-

tions ℎ : R𝐿 → R include the maximum value [95] and entropy

[87] in the predicted distribution. When inference reaches the 𝑘𝑡ℎ

exit, the system compares the confidence ℎ(�̂� (𝑘)) to a threshold

𝜏 (𝑘) . If ℎ(�̂� (𝑘)) ≥ 𝜏 (𝑘) , the model is “confident enough” and stops

inference; otherwise, the system continues to the next exit. The

thresholds 𝜏 (𝑘) control how the MeNN balances the tradeoff be-

tween accuracy and execution cost. Larger thresholds yield more

accurate results, and smaller thresholds result in low-cost inference.

We emphasize that these existing methods make data-dependent
decisions because the confidence is a deterministic function of the

𝑘𝑡ℎ prediction, �̂� (𝑘) . Thus, the MeNN’s exit decisions contain in-

formation about the model’s predictions, where the exit decision
for time 𝑡 , 𝑘𝑡 ∈ [𝐾], is the exit at which the MeNN stops inference.

We represent early exit methods using a policy 𝜋 : R𝐿 × N →
{0, 1}, which takes the prediction �̂� (𝑘) ∈ R𝐿 and the exit 𝑘 ∈ [𝐾].
The function outputs 0 to terminate inference and 1 to continue.

Algorithm 1 shows this procedure. The equation below is a general

data-dependent policy for the confidence ℎ where [·]1 is 1when the
condition holds and 0 otherwise. Concrete policies use a specific

implementation for ℎ such as ℎ𝑀𝑎𝑥𝑃𝑟𝑜𝑏 (�̂�) = max𝑖∈[𝐿] 𝑦𝑖 [95].

𝜋𝐷𝑎𝑡𝑎𝐷𝑒𝑝 (�̂� (𝑘) , 𝑘) = [ℎ(�̂� (𝑘)) < 𝜏 (𝑘)]1 (1)

2.3 Example of Information Leakage
Data-dependent MeNN exit policies create a relationship between

their predictions and exit decisions. We find that this relation allows

an adversary to learn about the MeNN’s predictions by observing

its exit pattern. This ability is useful when the attacker cannot view

the model’s classification directly due to a lack of physical device

access and encrypted wireless communication (§3).

We demonstrate this property on a speech detection task [96].

We use a BranchyNet [87] MeNN with two total exits and a data-

dependent policy (Equation 1) withℎ𝑀𝑎𝑥𝑃𝑟𝑜𝑏 [95].When predicting

the word “on," the MeNN exits early 61.61% of the time; when

predicting “off," the early exit rate is 33.44%. Thus, early exiting

means the MeNN is more likely to have predicted “on" than “off."

An adversary observing these exit decisions can infer the presence

of either word from this difference, indicating that data-dependent

policies expose valuable information about the MeNN’s predictions.

This asymmetric behavior stems from the prediction confidence

having different distributions for different classes. In this example,

the average confidence is 0.8328 for "on" and 0.7623 for "off." The

policy, however, uses the same threshold for all inputs (Equation

1). Thus, instances of "on" are more likely to exit early through

confidence scores above the single threshold, causing asymmetric

behavior. This insight leads to a key novelty of our work: the use of

multiple thresholds to account for distribution differences (§4, §5).

As we show, this privacy problem occurs on multiple tasks,

MeNNs, and confidence functions (§6.2). The breadth of this leakage

means the issue goes beyond a specific dataset, model architecture,

or prior data-dependent policy. Further, we emphasize that MeNNs

are not trained to exhibit this asymmetric behavior. Nevertheless,

we empirically observe this phenomenon on every considered task.

2.4 Goals of Private Exit Policies
We design MeNN exit policies 𝜋 : R𝐿 × N → {0, 1} to meet four

criteria on ordered input streams �̃� = [𝒙 (𝑡)]𝑇−1
𝑡=0

of length 𝑇 . First,

𝜋 should not leak information about the MeNN’s predictions; there

should be no observable relationship between the policy’s decisions

and the MeNN’s classifications (P1). This quality should hold for all

possible ordered streams �̃� , as system designers cannot anticipate

the exact stream at design time. This consideration encompasses

datasets with temporal correlations and shifting input distributions.

Second, the policy must adhere to given exit rates {𝜌𝑘 }𝐾−1𝑘=0

where

∑𝐾−1
𝑘=0

𝜌𝑘 = 1. Under 𝜋 , the MeNN should stop at exit 𝑘

on 𝜌𝑘 · 𝑇 of inputs in �̃� . This criterion is necessary to meet the

resource limits of low-power devices (P2).

A purely randomized policy meets these two criteria by stopping

at exit 𝑘 with probability 𝜌𝑘 . However, this method reduces the

MeNN’s inference accuracy (§6.4). Thus, the third goal is to build

policies with better inference accuracy than random exiting (P3).

Finally, solutions must not require retraining or redesigning the

MeNN (P4). This property is necessary because DNN training is

1125

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Tejas Kannan, Nick Feamster, and Henry Hoffmann

expensive, and security solutions should work for existing MeNNs.

Policies under the definition 𝜋 operate only on the MeNN’s predic-

tions. Thus, these policies satisfy this property, as 𝜋 is not tightly

coupled with the MeNN parameters. Indeed, Algorithm 1 shows

how 𝜋 can change without altering the MeNN.

We emphasize that a priori, it is not guaranteed that there exist

MeNN exit policies that meet all four properties. A key contribution
of this work is demonstrating that such policies exist.

3 THREAT MODEL
We first state the target system and the adversary’s goal (§3.1). We

then discuss the attacker’s capabilities (§3.2) and present examples

of distributed MeNNs requiring prediction privacy (§3.3).

3.1 Target System and Attack Goal
We consider a sensing system composed of edge devices and a

centralized server [66]. Each device periodically captures measure-

ments and processes these values using a distributed MeNN [56, 88],

encrypting all communication. We call this MeNN the target model.

The adversary is a passive observer who uses the target MeNN’s

exit decisions to expose its predictions. Specifically, the attacker sees

blocks of𝐵 > 0 exit decisions and uses an attackmodel 𝑔𝝓 : [𝐾]𝐵 →
[𝐿] to infer the MeNN’s most frequent prediction in this block.

Section 3.2 discusses how the attacker observes these exit decisions.

The attacker uses a training phase to find the parameters 𝝓 below

where 𝑣 (𝑡) is the exit decision and 𝑦 (𝑘𝑡 ,𝑡) is the MeNN’s prediction

at time 𝑡 .𝑀𝑜𝑠𝑡𝐹𝑟𝑒𝑞(·) returns the most common argument value.

�̂� (𝑡) = 𝑀𝑜𝑠𝑡𝐹𝑟𝑒𝑞 (�̂� (𝑘𝑡 ,𝑡) , �̂� (𝑘𝑡+1,𝑡+1) , .., �̂� (𝑘𝑡+𝐵−1,𝑡+𝐵−1)) (2)

𝝓 = argmax�̃�

⌊ 𝑇
𝐵
⌋−1∑︁

𝑞=0

[𝑔�̃� (𝑣
(𝑞𝐵) , 𝑣 (𝑞𝐵+1) , .., 𝑣 (𝑞𝐵+𝐵−1)) = �̂� (𝑞𝐵)]1 (3)

We assume the stream �̃� contains temporal correlations. Such

correlations occur in sensor settings [21, 23]. On correlated streams,

each block contains related inputs with similar labels. Correlated

streams present a greater privacy challenge. Intuitively, correlated

inputs cause MeNNs to make similar predictions and related exit

decisions under data-dependent policies, allowing the adversary

to view blocks of nearby decisions under one class. Streams with

independent inputs prevent this temporal linkage. More precisely,

an exit decision from one input gives the adversary one of𝐾 options

to recover a prediction ℓ ∈ [𝐿]. For uncorrelated inputs, the attacker
must view each decision in isolation; when 𝐾 < 𝐿, this recovery

is underdetermined. For correlated inputs, the attacker can link

adjacent decisions under approximately the same prediction. With

this ability, the attacker can use one of 𝐾𝐵 > 𝐾 possible inputs

to extract this block’s most frequent prediction ℓ ∈ [𝐿]. Thus, the
attacker can use more features on correlated streams.We emphasize

that the adversary targets the MeNN’s predictions instead of the

true labels, as ground truth is unavailable at runtime. An adversary

who infers the MeNN’s results learns what the target system knows.

3.2 Adversary Capabilities
We assume the adversary targets a sensing system known to use a

distributed MeNN. The attacker has no physical device access but

Sensor Server

Adversary

Execute 0
𝑡ℎ

exit Execute 1
𝑠𝑡

exit

Monitor encrypted com-

munication volume

𝒙0

𝒙1

𝒙2

𝒙3

Inferred exit deci-
sions: 1 1 0 1

𝑔𝝓
Most freq MeNN
pred: 7

MeNN preds: 7 7 2 7 MeNN exits: 1 1 0 1

Send state if not exiting

Figure 2: The threat model against distributed MeNNs. An
exit decision of 0 means stopping on the sensor.

can sniff the communication between the sensor and the server

[5, 22]. These assumptions are realistic for wearable sensors [32, 55]

and devices in remote locations [20, 43, 99]. The adversary cannot

directly read the MeNN’s predictions due to encrypted communica-

tion. Further, without physical access, the attacker cannot deploy

their own sensor to derive equivalent insights. As we design exit

policies, we follow Kerckhoffs’s Principle [79] and allow the adver-

sary to know the policy’s details. We assume the attacker knows

the sampling period and the target task’s label space.

The adversary exposes the MeNN’s predictions by inferring the

model’s exit decisions using communication side-channels. Below,

we describe two examples of how distributed MeNNs leak the deci-

sion to exit early through communication patterns. This general

pattern holds for all distributed MeNNs we are aware of.

DDNNs. Deep distributed neural networks (DDNNs) implement

distributed MeNNs across a hierarchy of devices [88]. The system

conserves resources by only transmitting information when con-

tinuing inference to the next device. An adversary can learn the

exit decision using the presence or absence of wireless traffic.

SPINN. SPINN performs distributed MeNN inference under la-

tency constraints [56]. When the MeNN partition point occurs after

the first early exit, SPINN only communicates when not exiting

early. This behavior creates the same side-channel as that of DDNNs.

SPINN also supports partitions before the first exit. This setting

still leaks information because SPINN requires the sensor to always

compute a local prediction by continuing until the first early exit.

If this exit signals termination, the sensor sends a second message

to the server to stop computation. The attacker can infer an early

exit using the presence of this second message.

In both cases, the passive adversary can use communication

patterns to discover early exit behavior (Figure 2). This side-channel

exists evenwhen data is encrypted, as encryption does not obfuscate

communication volume. This adversary only knows whether the

system exits on the sensor or server. Thus, we focus onMeNNs with

𝐾 = 2 exits where the sensor holds the initial exit. Our methods

extend to MeNNs with 𝐾 > 2 (§6.10).

The adversary uses the attack model 𝑔𝝓 to infer the target

MeNN’s predictions from the extracted exit decisions. We consider

two sets of assumptions for how the attacker fits the parameters 𝝓
(Equation 3) from examples of blocks of exit decisions and MeNN

1126

Prediction Privacy in Distributed Multi-Exit Neural Networks: Vulnerabilities and Solutions CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Substitute

MeNN (ℎ
(𝐾)
𝝍)

Attack

Model (𝑔𝝓)

Target MeNN (𝑓
(𝐾)
𝜽) Zero

Handwritten Digits [58]

Spoken Digits [41] Attacker

Target

TrainTrain

Infer target’s predictions from exposed exit decisions

Figure 3: An example of the black box attacker.

predictions. In both cases, the attacker applies 𝑔𝝓 at runtime to the

target MeNN executing on an unseen testing dataset.

(1) White Box: The white box adversary has access to an offline

version of the targetMeNN and training dataset. The attacker

uses exit patterns and predictions from this MeNN on the

target task to fit the attack model 𝑔𝝓 .

(2) Black Box: The black box adversary cannot access the target
MeNN or training dataset. Instead, this adversary trains a

substitute MeNN ℎ
(𝐾)
𝝍 on a related task and fits 𝑔𝝓 using

exit decisions and predictions from ℎ
(𝐾)
𝝍 (Figure 3).

We use the black box adversary to confirm that the white box

assumptions are not too strong.

3.3 Example Settings
This section describes two examples [7, 104] of distributed DNNs

in applications requiring prediction privacy.

Sensitive facilities use DNNs to perform license plate recognition

for authorized access [7]. Huawei’s AutoSplit [7] framework applies

distributed DNNs in this context. Prediction privacy is necessary,

as the DNN’s predictions indicate which license plates have access.

The attacker could use leaked predictions to create fake credentials

which pass the authorization check. Further, the server may be

hosted off-premise (e.g., in the cloud). Thus, when the adversary

cannot access the physical location without credentials, they can

still sniff the communication to the remote server. This property

means the system cannot leak information about authorization

decisions through communication patterns.

Manufacturing plants apply DNNs to detect defective parts, and

Boomerang [104] leverages distributed DNNs for this application.

Prediction privacy is essential for two reasons. First, the defect

rate indicates the manufacturer’s efficiency. This information is

valuable to competitors. Second, an adversary launching a supply-

chain attack can use exposed DNN predictions to know whether

their attack is successful. In both cases, an adversary may be unable

to physically access all the validation points without alerting the

building’s security. Instead, the attacker can more easily observe

the communication patterns to a single server, especially if the

server is remote. Further, when validating a supply chain attack,

the adversary wants to know if their inserted defect passes the

target’s inspection. Thus, rather than finding the true defect rate, it

is more valuable to learn what the target system knows.

4 PER-CLASS EXITING (PCE)
Data-dependent MeNN policies using a single threshold can leak

information through their exit decisions (§2.3). Our first solution,

Per-Class Exiting (PCE), replaces the single confidence threshold

with separate thresholds for each class (§4.1). With this design, PCE

stops a fraction 𝜌𝑘 of inputs for every class at exit 𝑘 , thus preserving
resource usage and improving privacy compared to prior work.

Unfortunately, PCE has no theoretical privacy guarantees, and we

construct adversarial orderings with high prediction leakage (§4.2).

4.1 Policy Design
We formally describe PCE using an MeNN 𝑓

(𝐾)
𝜽 with target exit

rates 𝜌𝑘 ∈ [0, 1] ∀𝑘 ∈ [𝐾]. Consider the prediction confidence

function ℎ : R𝐿 → R (§2.2). Focusing on the 𝑘𝑡ℎ exit, PCE uses

thresholds 𝜏
(𝑘)
ℓ

for each class ℓ ∈ [𝐿] that satisfy the probability

below. The terms �̂� (𝑘) ∈ R𝐿 and 𝑌 are random variables for the

𝑘𝑡ℎ exit’s prediction and the true label, respectively.

𝑃 (ℎ (�̂� (𝑘)) ≥ 𝜏 (𝑘)ℓ , ℎ (�̂� (𝑟)) < 𝜏 (𝑟)ℓ ∀𝑟 ∈ [𝑘] | 𝑌 = ℓ) = 𝜌𝑘 (4)

Equation 4 states that for each label, inputs should stop at exit 𝑘

with rate 𝜌𝑘 . In practice, we fit the thresholds using the empirical

confidence distributions on the task’s validation set. PCE performs

inference using Algorithm 1 with 𝜋𝑃𝐶𝐸 below where 𝑦
(𝑘)
𝑖

the pre-

dicted probability for class 𝑖 ∈ [𝐿] at exit 𝑘 . We omit the time

𝑡 ∈ [𝑇], as the policy is stateless.

ℓ (𝑘) = arg max

𝑖∈[𝐿]
𝑦
(𝑘)
𝑖

(5)

𝜋𝑃𝐶𝐸 (�̂� (𝑘) , 𝑘) = [ℎ(�̂� (𝑘)) < 𝜏 (𝑘)ℓ (𝑘)]1 (6)

This design augments previous data-dependent exit policies (Equa-

tion 1) with different thresholds 𝜏
(𝑘)
ℓ

for each class. We emphasize

that the policy selects thresholds using the MeNN’s prediction

at each exit. To protect the overall classification, PCE should in-

stead choose thresholds using the final result i.e., use 𝜏
(𝑘)
ℓ

where

ℓ = argmax𝑖∈[𝐿] 𝑦𝑖 and �̂� is the MeNN’s final predicted probabili-

ties. At an early exit, however, we do not know the final prediction

𝑦 when not terminating inference. PCE thus uses the current exit’s

prediction 𝑦 (𝑘) as an approximation.

4.2 Adversarial Data Orderings
PCE uses a data-dependent approach that fits thresholds such that

the overall exit rates for each label are 𝜌𝑘 . This behavior means that

PCE delivers good privacy on uncorrelated input orders without

introducing randomization, as such streams only require long-term

balancing (§6.5.2). However, this long-term balancing makes no

guarantees about eliminating short-term patterns.

This insight suggests there exist input orders causing high leak-

age. We formalize this idea in Proposition 4.1 below. The proof

describes how to build the adversarial ordering �̃� and attack model

𝑔𝝓 (§3.1). As confirmation, we follow the proof and build an adver-

sarial ordering with inputs from Fashion MNIST [100]. We attack

a two-exit MeNN with PCE (𝜌0 = 0.9). As expected, the adver-

sary infers 100% of the MeNN’s predictions. Thus, despite lower

empirical leakage than prior methods (§6.2), PCE delivers no pri-

vacy guarantees on correlated inputs. Instead, PCE better protects

1127

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Tejas Kannan, Nick Feamster, and Henry Hoffmann

MeNNs processing unrelated inputs over time. We emphasize that

Proposition 4.1 applies to any deterministic policy, not just PCE.

We omit the exit index 𝑘 ∈ [𝐾] from 𝜋 below because we consider

a two-exit MeNN, which only applies 𝜋 at exit 𝑘 = 0 (Algorithm 1).

Proposition 4.1. Let 𝜋 : R𝐿 → {0, 1} be a deterministic policy on
a two-exit MeNN 𝑓

(2)
𝜽 for a rational exit rate 𝜌0 = 𝑚

𝑀
∈ (0, 1). Let 𝐷

be the set of possible samples (𝒙, 𝑦), 𝐷𝑥 = {𝒙 : ∃ℓ ∈ [𝐿], (𝒙, ℓ) ∈ 𝐷}
be the inputs, and 𝐷ℓ = {𝒙 : (𝒙, ℓ) ∈ 𝐷} be the inputs with label
ℓ . Assume ∀𝑘 ∈ {0, 1}, 𝜋−1 (𝑘) ∩ 𝐷ℓ ≠ ∅ where 𝜋−1 (𝑘) = {𝒙 ∈
𝐷𝑥 : 𝜋 (𝑓 (0)𝜽0

(𝒙)) = 𝑘}. Then, there exists an ordered dataset �̃� =

[(𝒙 (𝑡) , 𝑦 (𝑡)) ∈ 𝐷]𝑇−1
𝑡=0

for 𝑇 = 𝑛 · 𝐿𝑀, 𝑛 > 1 with the following.

(1) The policy 𝜋 exhibits an early exit rate of 𝜌0 on �̃� .
(2) There exists a function 𝑔𝝓 : {0, 1}𝐿𝑀 → [𝐿] such that

𝑔𝝓 (𝜋 (�̂� (𝑡)), . . . , 𝜋 (�̂� (𝑡+𝐿𝑀−1))) = MostFreq(𝑦 (𝑡) , . . . , 𝑦 (𝑡+𝐿𝑀−1))

where 𝑡 = 𝑗 · 𝐿𝑀 for any 𝑗 ∈ [𝑛].
(3) Not all non-overlapping blocks of 𝐿𝑀 exit decisions (in property

2) have the same most frequent label.

Proof. See this paper’s extended version [47]. □

5 CONFIDENCE-GUIDED RANDOMNESS (CGR)
PCE uses a modified data-dependent method to balance the long-

term exit rates across classes. This method, however, does not

address temporal correlations. In fact, Proposition 4.1 indicates that

temporal dependencies can compromise any deterministic policy.

Thus, we must obfuscate temporal patterns through randomization.

Unfortunately, exiting early uniformly at random achieves poor

inference accuracy (§6.4).

We instead present a new policy, Confidence-Guided Random-

ness (CGR), that is an interpolation between PCE and uniformly

randomized exiting, merging the benefits of both approaches. When

detecting uncorrelated inputs, CGR behaves like PCE to achieve

higher accuracy. On segments with high correlations, CGR applies

greater randomization to maintain privacy.

CGR has three features. First, the policy evaluates PCE and uses

its decision to create a confidence-biased exit probability which

determines the exiting behavior (§5.1). Second, CGR adapts the
bias magnitude on highly-correlated streams (§5.2). Finally, CGR

enforces exit quotas over short windows to limit an adversary’s

ability to discover data-dependent information (§5.3). By employing

randomness, CGR achieves theoretical benefits over PCE (§5.4).

5.1 Confidence-Biased Randomization
CGR uses PCE as an internal data-dependent method (Figure 4).

When reaching the 𝑘𝑡ℎ exit, CGR builds an exit probability that is

biased toward 𝜋𝑃𝐶𝐸 (�̂� (𝑘,𝑡) , 𝑘) at step 𝑡 ∈ [𝑇]. CGR samples this

biased probability to make a random exit decision. Thus, CGR lever-

ages prediction confidence through PCE, enabling higher inference

accuracy than pure randomization.

We formalize this design by considering the 𝑘𝑡ℎ exit of an MeNN

𝑓
(𝐾)
𝜽 with exit rate 𝜌𝑘 ∈ [0, 1]. CGR uses a bias 𝛼 (𝑘,𝑡) ∈ [0, 1)
(discussed in §5.2) at step 𝑡 to make randomized decisions with the

following probabilities. The rates for 𝜋𝐶𝐺𝑅 (�̂� (𝑘,𝑡) , 𝑘) = 1 are one

�̂� (𝑘,𝑡) PCE (𝜋𝑃𝐶𝐸)

Exit with probability

𝛼 (𝑘,𝑡) + 𝜌𝑘 (1 − 𝛼 (𝑘,𝑡))

Exit with probability

𝜌𝑘 (1 − 𝛼 (𝑘,𝑡))

If 𝜋𝑃𝐶𝐸 (�̂� (𝑘,𝑡) , 𝑘) = 0

If 𝜋𝑃𝐶𝐸 (�̂� (𝑘,𝑡) , 𝑘) = 1

Figure 4: CGR’s decision process at the 𝑘𝑡ℎ exit point.

minus those below. We omit the exit indices for brevity.

𝑃 (𝜋𝐶𝐺𝑅 (�̂� (𝑘,𝑡)) = 0 |𝜋𝑃𝐶𝐸 (�̂� (𝑘,𝑡)) = 0) = 𝛼 (𝑘,𝑡) + 𝜌𝑘 (1 − 𝛼 (𝑘,𝑡)) (7a)

𝑃 (𝜋𝐶𝐺𝑅 (�̂� (𝑘,𝑡)) = 0 |𝜋𝑃𝐶𝐸 (�̂� (𝑘,𝑡)) = 1) = 𝜌𝑘 (1 − 𝛼 (𝑘,𝑡)) (7b)

These equations show how the exit probabilities are biased in the

direction of PCE. For example, when 𝜋𝑃𝐶𝐸 (�̂� (𝑘,𝑡) , 𝑘) = 0, CGR exits

with rate 𝛼 (𝑘,𝑡) + 𝜌𝑘 (1 − 𝛼 (𝑘,𝑡)) = 𝜌𝑘 + 𝛼 (𝑘,𝑡) (1 − 𝜌𝑘) ≥ 𝜌𝑘 where

the inequality holds because 0 ≤ 𝜌𝑘 , 𝛼 (𝑘,𝑡) ≤ 1. Thus, CGR aligns

with the PCE’s decision and exits more frequently than the target

rate 𝜌𝑘 . Note that these probabilities maintain an overall exit rate of

𝜌𝑘 when 𝑃 (𝜋𝑃𝐶𝐸 (�̂� (𝑘,𝑡) , 𝑘) = 0) = 𝜌𝑘 . This condition holds when

the test distribution matches that of the training set.

5.2 Adapting the Probability Bias Magnitude
The probability biases control a tradeoff between accuracy and

privacy. If 𝛼 (𝑘,𝑡) ≈ 1, CGR skews toward PCE, yielding high infer-

ence accuracy with possible leakage (§4). If 𝛼 (𝑘,𝑡) = 0, CGR is fully

randomized. CGR balances this tradeoff using the insight that PCE

provides good privacy on uncorrelated input streams. Thus, CGR

exploits periods of low correlation by leveraging PCE to achieve

high accuracy. On highly correlated segments, CGR applies more

randomness to ensure privacy. To protect the MeNN’s predictions

(§2.4), CGR measures correlations using the model’s results.

CGR implements this design by adaptively setting the bias 𝛼 (𝑘,𝑡)

with the parameters 𝛾 < 1 < 𝛽 . The policy has a maximum bias of

𝛼 ∈ [0, 1). CGR sets 𝛼 (𝑘,𝑡) at step 𝑡 ≥ 1 as follows where 𝛼 (𝑘,0) = 𝛼 .

𝛼 (𝑘,𝑡) =

{
min(𝛽 · 𝛼 (𝑘,𝑡−1) , 𝛼) if 𝑦 (𝑘,𝑡) ≠ 𝑦 (𝑘,𝑡−1)

𝛾 · 𝛼 (𝑘,𝑡−1) if 𝑦 (𝑘,𝑡) = 𝑦 (𝑘,𝑡−1)
(8)

The parameters 𝛽 and 𝛾 control how the bias changes in response to

the MeNN’s predictions. For example, when 𝛽 >> 1 and𝛾 ≈ 1, CGR

will quickly increase and slowly decrease the bias. This behavior

causes CGR to have a higher average bias, thereby aligning more

with PCE than pure randomization (see the appendix in this paper’s

extended version [47] for experimental evidence of this trend).

Based on our experiments, 𝛽 = 2.0 and 𝛾 = 0.9 provide favorable

results, and these settings are robust across multiple datasets and

data orders. Overall, CGR uses this procedure to adapt the bias to

offset temporal trends in the MeNN’s predictions. We emphasize

that CGR still makes randomized decisions even when using a high

bias 𝛼 (𝑘,𝑡) < 1.

5.3 Short-Term Exit Quotas
CGR may leak predictions if the attacker infers the policy’s bi-

ased probabilities, as these probabilities encode PCE’s decisions

(Equation 7). CGR protects against this leakage by enforcing exit

1128

Prediction Privacy in Distributed Multi-Exit Neural Networks: Vulnerabilities and Solutions CCS ’23, November 26–30, 2023, Copenhagen, Denmark

quotas over short windows. The quotas ensure the MeNN stops a

set number of times at each exit point, balancing the exit counts and

reducing the adversary’s analysis to smaller sample sizes. For each

window, the attacker can only extract the bias direction before an

exit quota becomes saturated; afterward, the policy never stops at

this exit and uses no information from PCE. Exposing small samples

benefits privacy because it limits the adversary’s ability to derive

meaningful statistical significance on biased exit rates.

CGR implements exit quotas using a window𝑊 ∈ N. The pol-
icy enforces that 𝜔𝑘 = ⌊𝜌𝑘 ·𝑊 ⌋ + 𝜂𝑘 inputs stop at exit 𝑘 where

𝜂𝑘 ∈ {0, 1} are random such that

∑𝐾−1
𝑘=0

𝜔𝑘 = 𝑊 . The system

no longer exits at output 𝑘 upon meeting its quota. After each

window, the policy resets the quotas and randomly selects a new

𝑊 ∼ [𝑊𝑚𝑖𝑛,𝑊𝑚𝑎𝑥] where the bounds are parameters. This ran-

domization limits the adversary’s ability to locate each window.

Randomizing the window size, however, does not fully prevent

the attacker from discovering when CGR uses biased probabilities.

For example, the adversary can use a run of exits at a single output

to infer a window’s end. The theoretical privacy of this attack is not

well-established. However, we believe this attack does not present

a problem for three reasons. First, the adversary’s recovery of each

window is only approximate due to randomization. Second, CGR

already protects against periods of high potential leakage by adapt-

ing its bias parameter (§5.2). Finally, CGR’s empirical information

leakage is statistically equivalent to random exiting (§6.2, §6.5).

5.4 Theoretical Benefits
This section demonstrates CGR’s theoretical benefits. The main re-

sult is Proposition 5.1 which establishes a bound on the probability

ratio of finite exit patterns from inputs of different classes. This

result improves upon PCE, which can leak an unbounded amount of

information over finite time horizons (Proposition 4.1). A key prop-

erty of CGR is that its bounds apply to any data stream, including

those with temporal correlations and distributional shifts.

Proposition 5.1 further provides a guideline on how to set 𝛼 from

a security perspective, as 𝛼 determines the difference between the

upper and lower probability bounds. However, CGR will not be

tight with the established bounds because the policy uses biases

𝛼 (𝑘,𝑡) < 𝛼 (§6.5) due to similar predictions over time (§5.2). Smaller

biases create narrower probability bounds, allowing CGR to provide

better empirical privacy than the proposition guarantees.

Before presenting the proposition, we introduce relevant nota-

tion. Let 𝜋𝑟 be the CGR policy without exit quotas and 𝛿, 𝜖 : R→ R
be functions such that 𝛿 (𝛼) = (1 − 𝛼 − 𝜌0 (1 − 𝛼))/𝜌0 and 𝜖 (𝛼) =
(1 − 𝜌0 (1 − 𝛼))/𝜌0 where 𝜌0 is the exit rate for 𝐾 = 2. We define

these functions for notational convenience.

Proposition 5.1. Consider a two-exit MeNN with a target early
exit rate 𝜌0. Suppose we observe a sequence of 𝑇 exit decisions 𝜋 (𝑡)𝑟 :=

𝜋𝑟 (�̂� (0,𝑡) , 0) = 𝑣𝑡 for 𝑣𝑡 ∈ {0, 1} and 𝑡 ∈ [𝑇]. Let these 𝑇 inputs
belong to the same class and 𝑛 =

∑𝑇−1
𝑡=0 𝑣𝑡 . Then, 𝜋𝑟 displays the

following bounds for any labels ℓ0, ℓ1 ∈ [𝐿].(
𝛿 (𝛼)
𝜖 (𝛼)

)𝑛 (
1 − 𝜌0𝜖 (𝛼)
1 − 𝜌0𝛿 (𝛼)

)𝑇 −𝑛
≤ 𝑃 (𝜋 (𝑡)𝑟 = 𝑣𝑡 ∀𝑡 |𝑌 = ℓ0)
𝑃 (𝜋 (𝑡)𝑟 = 𝑣𝑡 ∀𝑡 |𝑌 = ℓ1)(

𝜖 (𝛼)
𝛿 (𝛼)

)𝑛 (
1 − 𝜌0𝛿 (𝛼)
1 − 𝜌0𝜖 (𝛼)

)𝑇 −𝑛
≥ 𝑃 (𝜋 (𝑡)𝑟 = 𝑣𝑡 ∀𝑡 |𝑌 = ℓ0)
𝑃 (𝜋 (𝑡)𝑟 = 𝑣𝑡 ∀𝑡 |𝑌 = ℓ1)

Table 1: Dataset properties.

Dataset # Train # Val # Test # Classes

Activity [4] 36,790 13,629 20,441 6

Cifar10 [53] 39,796 10,204 10,000 10

Cifar100 [53] 39,796 10,204 10,000 100

EMNIST [17] 87,800 25,000 18,800 47

Fash. MNIST [100] 47,798 12,202 10,000 10

Food Quality [33] 2,945 196 198 2

GTSRB [84] 38,580 10,799 9,120 43

MNIST [58] 47,798 12,202 10,000 10

Speech Cmds [96] 28,532 3,457 4,482 11

WISDM [55] 32,005 5,858 21,769 3

Proof. See this paper’s extended version [47]. □

One consequence of Proposition 5.1 results from the bounds hav-

ing the form (𝑞0)𝑛 (𝑠0)𝑇−𝑛 and (𝑞1)𝑛 (𝑠1)𝑇−𝑛 where 𝑞0, 𝑠0 < 1 <

𝑞1, 𝑠1. As 𝑇 →∞, the bounds go to zero and infinity, respectively.

Thus, the biased probabilities can cause unbounded exit rate differ-

ences over an infinite horizon. CGR prevents worst-case scenarios

by avoiding highly biased rates over long windows, confirming the

benefits of the adaptive bias procedure and use of exit quotas.

6 EVALUATION
We evaluate the information leakage and inference accuracy of

distributed MeNNs using previous data-dependent policies and our

proposed methods. In summary, we find the following:

(1) Standard data-dependent policies leak information about

MeNN predictions through their exit patterns. This leakage

occurs from practical (§6.2) and theoretical (§6.3) perspec-

tives. PCE uses multiple thresholds to reduce this leakage,

and CGR obtains near-perfect privacy.

(2) PCE and CGR use prediction confidence to display higher

inference accuracy than a fully randomized policy (§6.4).

(3) PCE has higher leakage on input streams with stronger cor-

relations (§6.5). CGR adapts itself to protect against these

trends, showing near-random leakage under temporal corre-

lations and distribution shifts (§6.6).

(4) Single-threshold data-dependent policies still leak valuable

information to a black box attacker who has no access to the

MeNN and training dataset (§6.7).

(5) On a realistic distributed MeNN setup, prior data-dependent

policies leak predictions to an attacker with access to en-

crypted communication patterns (§6.8). Ourmethods provide

protection in this end-to-end setting.

(6) PCE and CGR show negligible overhead on a low-power

microcontroller (MCU) (§6.9). Thus, our policies improve

privacy while retaining the efficiency of MeNNs.

(7) Prior data-dependent policies leak more information on

MeNNs with more exits (§6.10). In contrast, CGR protects

MeNNs independent of the number of exit points.

6.1 Experimental Setup
6.1.1 Datasets and Neural Network Parameters. WeevaluateMeNNs

on ten standard tasks (Table 1) covering many input types and label

spaces. We use BranchyNet [87] MeNNs, focusing on models with

1129

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Tejas Kannan, Nick Feamster, and Henry Hoffmann

two total exits. On Cifar [53], we use VGG models [82] with early

exiting after the first pooling layer. We use pre-trained versions of

each VGG model; we attach early exits and fine-tune these output

layers [49]. We apply dense models on Activity [4], Food Quality

[33], and WISDM [55] and convolutional networks on the remain-

der. These MeNNs have four hidden layers, with early exiting after

the first. We execute at most ten training epochs using Adam (step

size of 10
−3
) [50], a batch size of 16, and a dropout [83] rate of 0.3.

For two-exit MeNNs, we run policies on 21 exit rates 𝜌0 =

0.0, 0.05, . . . , 1.0. We use a tighter range for MeNNs with more

exits (§6.10). The datasets are unordered, and we use two methods

to create the temporal correlations present in sensor settings.

(1) Same-Label builds blocks of size 𝐵 by selecting (1 − 𝜀) · 𝐵
random elements of a single label and 𝜀 · 𝐵 inputs from

arbitrary classes. We set 𝐵 = 10 and 𝜀 = 0.2. The appendix

in this paper’s extended version [47] considers alternate

settings.

(2) Nearest-Neighbor constructs 𝐵-sized blocks by choosing a

random anchor element and using the anchor’s 𝐵− 1 nearest
neighbors [10] in order.

We focus on Same-Label orders, as Nearest-Neighbor produces

weak correlations on inputs such as colored images.

6.1.2 Exit Policies. We use following baseline exit policies.

(1) Random selects the MeNN exit uniformly at random using

the rates 𝜌𝑘 . This policy has perfect privacy because it makes

data-independent decisions.
(2) Entropy is a data-dependent method (Equation 1) with confi-

dence ℎ𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (�̂�) = (−
∑𝐿−1
𝑖=0 𝑦𝑖 log(𝑦𝑖))−1 [87].

(3) MaxProb is a data-dependent policy (Equation 1) with confi-

dence ℎ𝑀𝑎𝑥𝑃𝑟𝑜𝑏 (�̂�) = max𝑖∈[𝐿] 𝑦𝑖 [95].

We apply PCE and CGR to both confidence functions. We use

CGR with a maximum bias of 𝛼 = 0.5, adaptation factors of 𝛽 = 2.0

and 𝛾 = 0.9, and a window range of [5, 20] (§5). We set these

parameters using a grid search (see the appendix in this paper’s

extended version [47]) and fix them for all datasets.

We fit confidence thresholds 𝜏 for an exit rate 𝜌 by setting 𝜏

to the (1 − 𝜌)𝑡ℎ quantile of the MeNN’s confidence values on the

task’s validation set. We execute both Random and CGR over five

trials as these policies have stochastic behavior.

6.1.3 Adversary Design. We design the attack model 𝑔𝝓 using an

AdaBoost ensemble with 100 decision trees. The attack model uses

non-overlapping blocks of 𝐵 adjacent exit decisions to infer the

MeNN’s most frequent prediction in this block. This block size

matches that of the dataset order. We create two variants with

different input features. The first uses each exit point’s frequency,

and the second uses the exact exit pattern. We use the frequencies

against Same-Label orders and the patterns on Nearest-Neighbor

streams (§6.1.1). The exact pattern leads to overfitting on Same-

Label orders. We train 𝑔𝝓 with two different assumptions (§3.2).

(1) White box attackers use patterns from the target MeNN’s

on the original task’s validation set.

(2) Black box adversaries use patterns from a substitute MeNN

on a related task’s validation set.

We always evaluate 𝑔𝝓 on the target MeNN processing the test fold.

Acti
vit

y

Cifa
r1

0

Cifa
r1

00

EMNIS
T

Fas
h.

MNIS
T

Foo
d Q

ua
lity

GTSRB

MNIS
T

Spe
ec

h

W
IS

DM
Avg

Dataset

0

20

40

60

80

100

A
tta

ck
 A

cc
ur

ac
y

(%
)

Maximum Attack Accuracy on Same Label Orders
Random
Entropy
Max Prob
PCE Entropy

PCE Max Prob
CGR Entropy
CGR Max Prob

Figure 5:Maximumattack accuracy across 21 exit rates (lower
is better).

6.1.4 Aggregate Metrics. We evaluate policies on many sets of

target exit rates. For inference accuracy, we compute the average

result across all targets. For privacy metrics, we compute show the

worst-case result by calculating the maximum over the targets, as

policies should not leak information for any target exit rates (P1).

This methodology aligns with prior work in measuring security

from a worst-case perspective [14]. We aggregate trials by taking

the average trial result for each target exit rate.

6.1.5 Hardware Setup. We conduct experiments in simulation and

on a low-power microcontroller (MCU). The simulator runs MeNNs

in Tensorflow [1] and records the predictions and exit decisions

(§6.2-§6.7, §6.10). The adversary observes the exact exit decisions.

We perform an end-to-end side-channel attack on a two-exit

distributed MeNN [88] with the initial exit on a TI MSP430 FR5994

MCU [40] and the remaining model on a server (§6.8). The MCU

processes inputs every second and uses Bluetooth LowEnergy (BLE)

to transmit the intermediate state when not exiting early. This setup

follows DDNNs [88] and SPINN [56] on a two-device system. The

sensor applies AES-128 encryption [18]. We capture the encrypted

packets using Wireshark [72] and provide this log to the attacker.

We drop 5% of packets to simulate a lossy link. The attacker only

observes traffic when the system does not exit early. The adversary
finds the number of early exits between transmissions as follows,

where𝑅 is the sampling period and𝑑𝑛 is the time of the𝑛𝑡ℎ message.

num_early_exits(𝑛) = max(⌊(𝑑𝑛 − 𝑑𝑛−1)/𝑅⌋ − 1, 0) (9)

We emphasize that the side-channel attack applies to variants of

this system; e.g., if the sensor sends predictions when exiting early,

the attacker can infer early exits using differences in message sizes.

6.2 White Box Attack
We first measure the practical privacy of MeNN exit policies under

white box assumptions (§6.3 discusses theoretical leakage). We

use the white box methodology in §6.1.3 to infer predictions from

two-exit MeNNs with Same-Label orders (𝐵 = 10, 𝜀 = 0.2).

Figure 5 shows the maximum attack accuracy across all target

exit rates. The attack accuracy is the accuracy of the attackmodel𝑔𝝓 ;

this metric measures the fraction of the adversary’s predictions that

1130

Prediction Privacy in Distributed Multi-Exit Neural Networks: Vulnerabilities and Solutions CCS ’23, November 26–30, 2023, Copenhagen, Denmark

match the MeNN’s most common classification in each temporal

block. These results display how standard data-dependent policies

consistently leak information about MeNN predictions. Across all

tasks, these policies show mean worst-case attack accuracy that is

1.87× (Entropy) and 1.85× (Max Prob) higher than Random. On the

Food Quality task, the attacker infers up to 100% of the MeNN’s

most frequent predictions in each block. Further, both methods

display worse privacy than Random on all tasks. Thus, this leakage

does not result from a single dataset or confidence function; instead,

it comes from the data-dependent approach of previous methods.

Both PCE and CGR display better privacy. PCE yields 1.16× (En-

tropy) and 1.12× (Max Prob) higher worst-case attack accuracy than

Random. These values are lower than that of prior data-dependent

policies (Figure 5), showing the benefit of multiple thresholds. CGR

performs even better, displaying 1.02× higher worst-case attack ac-

curacy averaged across all tasks. We further compare these policies

to Random using Welch’s t-test. The null hypothesis is the attack

accuracy normalized to the most frequent MeNN prediction is no

different than that of Random. With this methodology, Random and

CGR have an insignificant difference at the 0.05 level with 𝑝-values
of 0.21 (CGR Entropy) and 0.09 (CGR Max Prob). Thus, CGR ob-

tains near-random privacy independent of the confidence function.

Entropy, Max Prob, and PCE show significant differences.

Entropy and Max Prob show low attack accuracy on Cifar100, as

this dataset has a large label space (Table 1). However, we observe

leakage through the attacker’s average rank (AR) of the correct

class [6]. On Cifar100, Entropy and Max Prob have a worst-case

AR of 33.60 and 35.77, respectively. These values are far lower than

Random (48.20); thus, attackers still learn valuable information on

tasks with many labels. Across all datasets, CGR has an AR of 0.99×
Random, further demonstrating its near-random privacy.

6.3 Theoretical Information Leakage
We supplement the practical attack with an analysis agnostic of the

attack model. We quantify privacy using the empirical normalized

mutual information (NMI) [54] between the MeNN’s exit decisions

and predictions. A high NMI means observing the exit decisions

reduces the adversary’s uncertainty about the model’s predictions.

A policy with no leakage should exhibit an NMI close to Random.

We use the definition 𝑁𝑀𝐼 (𝑋,𝑌) = (2 · 𝐼 (𝑋,𝑌))/(𝐻 (𝑋) + 𝐻 (𝑌))
where 𝐼 (·) is the mutual information and 𝐻 (·) is the Shannon en-

tropy. We measure the NMI by comparing individual exit decisions

(𝑋) and MeNN predictions (𝑌). This metric does not depend on

temporal correlations. We reduce the empirical NMI’s bias with

Miller-Madow correction [74]. We use the same setup as §6.2.

Table 2 shows the maximum NMI, confirming the trends in §6.2.

Standard data-dependent policies show high NMI with values up

to 0.1725 points higher than Random on average. Further, both

policies eclipse Random on all tasks, indicating that this leakage is

consistent and independent of the confidence function.

PCE improves privacy, showing an NMI of up to 0.0203 points

higher than Random; this rate is over 8.4× lower than previous data-
dependent methods (Table 2). On average, CGR has a maximum

NMI of only 0.0009 points above Random. This figure is over 191×
lower than prior data-dependent policies. These results provide

additional evidence that CGR has near-perfect privacy.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Inputs using the Full Model

84

86

88

90

In
fe

re
nc

e
A

cc
ur

ac
y

(%
)

Inference Accuracy for Target Exit Rates

Random
Entropy
PCE Entropy
CGR Entropy
Max Prob
PCE Max Prob
CGR Max Prob

Figure 6: Inference accuracy (%) on the Activity dataset. Error
bars show the standard deviation over five trials.

6.4 Inference Accuracy
The second tradeoff dimension we investigate is inference accuracy,

as accuracy represents the MeNN’s answer quality. We use two-exit

MeNNs under the setup in §6.2.

Table 3 shows the average MeNN accuracy across all exit rates,

and Figure 6 displays the results on the Activity task. We have three

takeaways. First, Random has a high accuracy penalty; existing

policies achieve an average accuracy of 2.03 (Entropy) and 2.30

(Max Prob) points above Random. Second, PCE retains high MeNN

accuracy, showing values within 0.5 points of its standard data-

dependent variant on seven of ten datasets. Random achieves this

mark only twice. Finally, CGR consistently outperforms Random on

all tasks with an overall average accuracy of 0.51 (Entropy) and 0.57

(Max Prob) points higher. For 𝜌0 ∈ (0, 1), CGR eclipses Random on

90% (171 / 190) of target rates under both confidence functions.

We note two additional results. First, an alternate method to elim-

inate leakage is to use a fixed policy that always exits at the same

point. This baseline must use the early exit to meet resource limits

(§6.9), resulting in low accuracy. From Figure 6, the early exit has an

accuracy of about 83%; all other policies reach an average accuracy

above 87% (Table 3). Thus, PCE and CGR show better accuracy

under resource limits than a fixed policy. Second, Entropy and Max

Prob perform poorly on WISDM. This result comes from subopti-

mal exit decisions due to MeNN overconfidence. PCE corrects this

problem by setting higher thresholds for the overconfident classes,

highlighting an alternative benefit of using multiple thresholds.

6.5 Alternate Dataset Orders
6.5.1 Nearest Neighbor. We further evaluate privacy using the

white box adversary (§3.2) on Nearest-Neighbor orders (§6.1.1) with

𝐵 = 10 (Figure 7). CGR maintains its near-random privacy, showing

0.99× higher attack accuracy than Random on average. Using the

methodology of §6.2, CGR’s attack accuracy is not significantly
greater than Random. In contrast, PCE shows higher leakage on

Nearest-Neighbor orders, displaying an average worst-case attack

accuracy that is 1.24× (Entropy) and 1.28× (Max Prob) higher than

Random. These values exceed the 1.12× (Entropy) and 1.18× (Max

Prob) marks from the Same-Label order on these four tasks. This

greater leakage comes from the Nearest-Neighbor order’s high

correlations. Nevertheless, PCE still displays better privacy than

single-threshold techniques.

1131

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Tejas Kannan, Nick Feamster, and Henry Hoffmann

Table 2: Maximum empirical normalized mutual information (NMI) (all values ×10−2) between exit decisions and MeNN
predictions across 21 target rates (lower is better). The final row shows the average (std dev) difference compared to Random.

Dataset Rand Entropy Max Prob
Stnd PCE CGR Stnd PCE CGR

Activity 0.25 33.99 2.33 0.35 34.22 2.11 0.40

Cifar10 0.25 5.43 0.66 0.31 5.24 0.76 0.29

Cifar100 0.45 4.79 1.21 0.50 4.10 1.25 0.52

EMNIST 0.07 7.19 0.31 0.09 7.29 0.30 0.09

Fash. MNIST 0.04 19.84 0.28 0.04 19.83 0.25 0.04

Food Quality 0.24 49.62 3.73 0.11 49.62 5.73 0.33

GTSRB 1.26 8.92 5.26 1.59 9.23 4.45 1.46

MNIST 0.06 6.30 0.85 0.05 6.29 2.44 0.15

Speech Cmds 0.33 16.15 3.17 0.50 16.29 3.22 0.48

WISDM 0.42 23.61 3.32 0.58 18.77 3.14 0.55

Avg Diff v Rand 0.00 (0.00) 17.25 (14.06) 1.78 (1.38) 0.08 (0.12) 16.75 (14.01) 2.03 (1.58) 0.09 (0.06)

Table 3: Average (std dev) inference accuracy across 21 target exit rates for each policy and task (higher is better). The standard
deviation shows the variation in the average accuracy across five independent trials.

Dataset Rand Entropy Max Prob
Stnd PCE CGR Stnd PCE CGR

Activity 87.22 (0.02) 89.24 88.46 87.57 (0.01) 89.69 88.85 87.70 (0.02)

Cifar10 80.35 (0.04) 85.18 84.83 81.69 (0.03) 85.50 85.17 81.78 (0.01)

Cifar100 61.68 (0.05) 64.47 64.43 62.40 (0.04) 64.81 64.79 62.52 (0.02)

EMNIST 85.92 (0.02) 87.28 87.35 86.37 (0.01) 87.31 87.37 86.39 (0.01)

Fash. MNIST 90.37 (0.03) 91.59 91.38 90.69 (0.03) 91.66 91.46 90.72 (0.01)

Food Quality 97.01 (0.02) 97.34 97.34 97.09 (0.01) 97.34 97.34 97.09 (0.01)

GTSRB 80.45 (0.04) 84.85 83.21 81.21 (0.04) 85.37 83.74 81.39 (0.05)

MNIST 98.64 (0.01) 99.19 99.19 98.83 (0.01) 99.19 99.19 98.83 (0.01)

Speech Cmds 85.94 (0.04) 88.58 87.76 86.43 (0.02) 88.78 87.92 86.40 (0.01)

WISDM 86.31 (0.02) 86.48 87.81 86.68 (0.01) 87.24 87.93 86.77 (0.02)

Avg Diff v Rand 0.00 (0.00) 2.03 (1.55) 1.79 (1.18) 0.51 (0.34) 2.30 (1.63) 1.99 (1.31) 0.57 (0.38)

Table 4: Average (std dev) inference accuracy across 21 exit
rates for Nearest-Neighbor blocks (higher is better).

Dataset Rand MaxProb
Stnd PCE CGR

Activity 87.46 (0.02) 89.99 89.17 87.51 (0.01)

EMNIST 87.10 (0.01) 88.04 88.10 87.38 (0.02)

Fash. MNIST 91.11 (0.03) 92.36 92.09 91.34 (0.01)

MNIST 99.44 (0.01) 99.67 99.68 99.48 (0.01)

Avg Diff v Rand 0.00 (0.00) 1.06 (0.57) 0.95 (0.48) 0.17 (0.09)

CGR continues to show improved inference accuracy (Table

4), eclipsing Random on 80% (61 / 76) of target exit rates under

the Max Prob metric. These results are similar with the Entropy

function. However, the gap between CGR and Random is smaller

than on Same-Label streams (Table 3). This difference results from

CGR’s adaptive bias. The Nearest-Neighbor order contains stronger

correlations, often having blocks with over 90% of elements in the

same class. In turn, CGR acts more randomly. For example, on the

Activity task with 𝜌0 = 0.5, CGR has an average bias of 0.1507

on Nearest-Neighbor and 0.4446 on Same-Label. CGR properly

responds to greater correlations by reducing its bias magnitude.

Activity EMNIST Fash. MNIST MNIST Avg
Dataset

0

10

20

30

40

A
tta

ck
 A

cc
ur

ac
y

(%
)

Maximum Attack Accuracy on Nearest Neighbor Orders
Random
Entropy
Max Prob
PCE Entropy

PCE Max Prob
CGR Entropy
CGR Max Prob

Figure 7: Maximum attack accuracy on Nearest-Neighbor
dataset orders (lower is better).

6.5.2 Uncorrelated. We further evaluate the attack on data streams

with randomly-ordered inputs. In this setting, the adversary uses

each exit decision to infer the MeNN’s individual predictions. Table

5 compares the average inference accuracy and maximum attack ac-

curacy on the Activity task for Uncorrelated and Nearest-Neighbor

streams. The latter order exhibits the strongest temporal relations.

The adversary still learns information about MeNN’s results in

uncorrelated settings, though the attack efficacy is lower. We hy-

pothesize this result occurs because the adversary has less context

1132

Prediction Privacy in Distributed Multi-Exit Neural Networks: Vulnerabilities and Solutions CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Table 5: Mean inference accuracy (Infr. Acc.) and maximum
attack accuracy (Att. Acc.) on the Activity task for Uncorre-
lated and Nearest-Neighbor orders.

Policy Uncorrelated Nearest-Neighbor
Infr. Acc. Att. Acc. Infr. Acc. Att. Acc.

Random 86.86 18.12 87.46 19.86

Max Prob 89.44 36.59 89.99 41.63

PCE Max Prob 88.57 21.14 89.17 26.47

CGR Max Prob 87.36 18.88 87.51 18.35

on uncorrelated orders (§3.1). This comparison further shows the

benefits of PCE in isolation. On uncorrelated streams, PCE displays

an attack accuracy within 3 points of Random. This figure is over

2× smaller than PCE’s gap to Random on the Nearest-Neighbor

order. Thus, for uncorrelated streams, PCE delivers an inference

accuracy of 1.7 points above Random for a small cost in privacy.

We note that PCE does not achieve an attack accuracy equivalent

to either Random or CGR because PCE uses static thresholds fit on

a training set, and the testing set contains empirical differences.

6.6 Distribution Shifts
Sensing systems often face distribution shifts where the data ob-

served at runtime differs from that used during training [52]. We

evaluate the privacy impact of distribution shifts by constructing

an alternate testing set for MNIST [58] using the first 10,000 digits

from the Extended MNIST dataset [17]. This alternate dataset has a

higher mean (𝜇 = 0.172) and standard deviation (𝜎 = 0.331) pixel

value than that of MNIST (𝜇 = 0.131, 𝜎 = 0.308) due to differences

in image preprocessing. We use the same MeNN trained on MNIST

as in §6.2 and evaluate the MeNN on this alternate testing set.

Table 6 shows the white box attack accuracy with the Same-

Label order. Under distributional shifts, PCE has privacy similar to

standard data-dependent exiting. This phenomenon occurs because

the shifted distribution changes the MeNN’s prediction confidence,

breaking the balancing effect of PCE’s multiple thresholds. For

example, when 𝜌 = 0.75, PCE exits early on 96.88% of the digit 1 and

55.08% of the digit 7 in the shifted test set; on standard MNIST, these

exit rates are 73.03% and 72.49%, respectively. Thus, under shifted

distributions, PCE shows the same asymmetric exit behavior seen

in previous data-dependent methods. In contrast, CGR protects

against this issue by leveraging randomness. With the Entropy

metric, CGR displays a worst-case attack accuracy less than that

of Random. Along with this privacy benefit, CGR shows higher

mean inference accuracy on the shifted test set. CGR has an average

accuracy of 88.33% (Entropy) and 88.30% (Max Prob), compared to

87.07% for Random. Note that the shifted distribution causes lower

MeNN inference accuracy overall (Table 3). This finding aligns with

prior work on neural networks facing distributional shifts [52].

6.7 Black Box Attack
We confirm the white box assumptions are not too strong by con-

sidering a weakened attacker with black box access (§3.2). This

adversary cannot access the target MeNN and only knows the num-

ber of MeNN exits 𝐾 and the target task’s label space (e.g., the

digits 0-9 for MNIST). The adversary uses this knowledge to select

Table 6: Worst-case attack accuracy for exit policies on an
MeNN trained on MNIST and tested on either a shifted dis-
tribution (EMNIST Digits) or the same distribution (MNIST).

Policy EMNIST Digits MNIST

Random 13.60 12.50

Entropy 21.80 27.40

Max Prob 20.10 27.40

PCE Entropy 19.30 13.30

PCE Max Prob 21.10 16.90

CGR Entropy 13.50 13.80

CGR Max Prob 14.20 12.50

a related dataset with the same label space. The attacker trains a

substitute MeNN ℎ
(𝐾)
𝝍 on this related dataset (Figure 3). We assume

the attacker uses a reasonable MeNN architecture for their selected

dataset (e.g., ResNet [31] on Cifar-10). The adversary trains their

MeNN by optimizing the average individual classification loss of

each exit point [87]. Finally, following black box adversarial DNN

attacks [75], the attacker fits an attack model 𝑔𝝓 on patterns from

the substitute ℎ
(𝐾)
𝝍 and applies 𝑔𝝓 to the target MeNN 𝑓

(𝐾)
𝜽 on the

original dataset. We use the following attack settings.

(1) Cifar10 Blurred: The attacker has a version of Cifar10 [53]

corrupted with a Gaussian blur (𝑟 = 0.5). This version has

different training and validation splits than the original. The

attacker generalizes to the standard Cifar10 task.

(2) Pen Digits: The adversary attacks an MNIST [58] convolu-

tionalMeNNwith a dense substitutemodel trained to classify

digits from sequences of (𝑥,𝑦) pen coordinates [3].

(3) Spoken Digits: The attacker targets an MNIST [58] MeNN

with a substitute trained on spoken digit audio [41].

(4) Speech Noisy: The adversary uses the Speech [96] dataset

perturbed with white noise (𝑆𝑁𝑅 = 50). The training and

validation splits differ from those of the original. The attacker

targets an MeNN on the standard Speech task.

(5) WISDM Sim: The adversary uses theWISDM task’s simulated

version to target an MeNN trained on real-world data [55],

emulating an attacker collecting its own dataset.

Compared to the target MeNN, we use substitutes with different ar-

chitectures and hyperparameters (e.g., batch sizes). For example, the

attacker’s substitute MeNN for Pen Digits uses five fully connected

layers with sizes (8, 12, 48, 48, 48), early exiting after the second,

and Leaky ReLU activations. The target MeNN processes theMNIST
dataset using four convolutional layers with (16, 32, 64, 32) filters,
early exiting after the first, and ReLU activations. On Cifar-10, the
attacker uses ResNet-18 [31] with early exiting after the second

block. The target system uses a VGG architecture. These settings

thus consider different neural networks which both achieve good

accuracy on their given tasks. We fit each substitute three times.

Table 7 shows the maximum attack accuracy. The weakened ad-

versary still achieves the best results against existing data-dependent

policies; MeNNs using Max Prob show a mean worst-case attack ac-

curacy of 1.56× Random. Although this efficacy is lower than white

1133

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Tejas Kannan, Nick Feamster, and Henry Hoffmann

0 1 2 3 4 5 6 7 8 9
Prediction

0.0

0.2

0.4

0.6

0.8

E
ar

ly
 E

xi
t R

at
e

Target Exit Rate

Early Exit Behavior Under Max Prob

Target Model (MNIST)
Substitute Model (Spoken Digit)

Figure 8: Early exit rates per prediction under the Max Prob
policy for the target MeNN trained on MNIST [58] and the
substitute trained on spoken digits [41].

Table 7: Worst-case attack accuracy (%) averaged (std dev)
across trainedMeNNs. In each group, the top row is the white
box setting. The remaining rows use the black box method.

Train Task Rand MaxProb
Stnd CGR

Cifar10 13.20 23.30 12.80

Cifar10 Blurred 11.93 (0.52) 19.17 (1.51) 12.30 (0.37)

MNIST 12.30 27.40 12.50

Pen Digits 12.83 (0.45) 17.80 (0.72) 12.77 (0.12)

Spoken Digit 12.57 (0.21) 20.17 (1.41) 12.80 (0.16)

Speech Cmds 12.05 28.79 12.28

Speech Cmds Noisy 12.87 (0.42) 24.78 (4.90) 12.80 (0.28)

WISDM 45.96 74.08 46.14

WISDM Sim 45.82 (0.00) 59.30 (2.19) 45.88 (0.09)

box settings (§6.2), the black box attacker still learns valuable infor-

mation despite having no offline access to the target MeNN. CGR

continues to show a worst-case attack accuracy close to Random.

This attack works because the substitute ℎ
(𝐾)
𝝍 and target 𝑓

(𝐾)
𝜽

MeNNs often contain similar exit behavior, even though the target

MeNN is unknown to the adversary. Figure 8 shows this phenome-

non. Predictions for zero and seven have similar exit rates across the

two MeNNs despite training the target on images and the substitute

on audio. However, these rates are not always consistent. When

predicting six, the target exits early more frequently, showing why

the black box accuracy does not reach that of white box settings.

6.8 White Box Attack on Low-Power MCUs
We launch an end-to-end side-channel attack against distributed

MeNNs [88] executing on a low-power MCU (§6.1.5). We execute

each policy for 500 inputs on the Activity [55] task with the Same-

Label order (𝐵 = 10), creating 50 temporal windows for the attacker.

Figure 9 shows inference and attack accuracy. In all cases, the

attacker discovers the correct exit decisions from the packet trace.

Using the white box attack model 𝑔𝝓 , the Max Prob policy exhibits

the highest attack accuracy, while CGR reduces this leakage to

Random. Further, CGR outperforms Random in inference accuracy

on the MCU. These results match those from simulation (§6.2),

showing how the discovered privacy issue and proposed defenses

apply to real hardware.

Inference Accuracy Attack Accuracy
0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

86.60

12.00

90.20

52.00

89.60

18.00

89.20

12.00

MCU Results for the Activity Dataset

Random
Max Prob
PCE Max Prob
CGR Max Prob

Figure 9: Inference accuracy and attack accuracy against dis-
tributed MeNNs executing on a low-power MCU.

Table 8: Average (std dev) energy consumption (mJ) on a TI
MSP430 MCU [40].

Policy Exit Early Continue

Fixed 0.047 (0.017) 30.813 (5.234)

Random 0.049 (0.018) 31.144 (6.262)

Max Prob 0.059 (0.020) 32.799 (6.114)

PCE Max Prob 0.057 (0.019) 31.249 (6.243)

CGR Max Prob 0.061 (0.020) 32.320 (6.646)

6.9 Energy Consumption
MeNNs reduce the average cost of inference [87]. We show how

CGR and PCE preserve this benefit by measuring their energy on a

TI MSP430 [39, 40]. We run the distributed MeNN from §6.8 over 40

trials, recording the average energy to wake the CPU, execute the

first exit point, evaluate the policy, and encrypt the result. When

continuing inference, we include the energy to transmit the 128-

byte state over BLE. The Fixed policy always uses the same exit.

Table 8 shows the average energy for each configuration. We

highlight two aspects of these results. First, using the full model in-

curs over two orders of magnitude of overhead. This phenomenon

comes from the high energy cost of communication, as early exiting

allows the system to keep the BLE module off. This discrepancy

shows the prohibitive cost of a Fixed policy that always uses the

entire MeNN. Second, PCE and CGR incur some computation over-

head compared to Random when exiting early. However, this cost

is negligible compared to BLE when using the full MeNN, and for

exit rates 𝜌0 < 1, this BLE cost dominates the energy consumption.

Further, under Welch’s t-test, we observe an insignificant energy

difference between Random and either PCE or CGR when continu-

ing inference, with 𝑝-values of 0.94 (PCE) and 0.39 (CGR). Note that

Max Prob has the highest average energy for the full MeNN. This

result occurs due to the variance in communication energy; Max

Prob also shows an insignificant difference compared to Random

when using the full model. Thus, both PCE and CGR incur minimal

overhead, allowing them to preserve the efficiency of MeNNs.

6.10 Beyond Two Exits
Prior sections display the leakage present in two-exit MeNNs. How-

ever, MeNNs can have more than two exits [87, 93]. We thus mea-

sure how the number of MeNN exit points impacts its privacy in

simulation under Same-Label orders (𝐵 = 10). We emphasize that

this analysis does not yield a practical attack under our threat model;

the adversary can only observe a binary decision of whether the

1134

Prediction Privacy in Distributed Multi-Exit Neural Networks: Vulnerabilities and Solutions CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Activity Cifar10 EMNIST Speech Cmds
Dataset

0

10

20

30

40

50

A
tta

ck
er

 A
cc

ur
ac

y
(%

)

Attack Accuracy for Varying Numbers of Exits
Random, 2 Exits
Random, 3 Exits
Random, 4 Exits
Max Prob, 2 Exits
Max Prob, 3 Exits
Max Prob, 4 Exits
PCE Max Prob, 2 Exits
PCE Max Prob, 3 Exits
PCE Max Prob, 4 Exits
CGR Max Prob, 2 Exits
CGR Max Prob, 3 Exits
CGR Max Prob, 4 Exits

Figure 10: Maximum attack accuracy for MeNNs with two,
three, and four exits (lower is better).

system exits on the sensor or server (§3.2). Instead, we include this

analysis to demonstrate (1) the potential for information leakage

and (2) the performance of our methods on MeNNs with 𝐾 > 2.

Figure 10 displays the maximum white box attack accuracy for

MeNNs with 𝐾 = 2, 3, and 4. Max Prob has higher leakage on

MeNNs with more exits; its average worst-case attack accuracy is

2.20× (two exits), 2.53× (three exits), and 2.79× (four exits) Random.

Both PCE and CGR have lower leakage compared to this single-

threshold policy. In particular, CGR displays near-random privacy

with an average worst-case attack accuracy of 1.01× (two), 1.01×
(three), and 0.98× (four) Random. These values have no trend with

the number of exits. Further, CGR still shows higher inference

accuracy than Random. On the Activity task, CGR has an average

accuracy of 88.72 (three exits) and 88.16 (four exits). These values

eclipse Random: 88.15 (three) and 87.56 (four). Overall, prior data-

dependent methods exhibit greater leakage on MeNNs with more

exits, and both PCE and CGR provide protection in all contexts.

7 RELATEDWORK

Multi-Exit Neural Networks (MeNNs). Prior work introduces early
exits into neural networks [9, 37, 49, 60, 87, 92, 93, 95]. To select an

exit point, existing systems use data-dependent exit policies with a

single threshold on prediction confidence [9, 87, 95]. Other meth-

ods use bandit algorithms [42], runtime feedback [94], or decision

agreement [105]. We focus on policies using maximum probability

and entropy confidence, as they are cheap and well-suited for low-

power sensors. We show how these policies leak information and

propose new methods to address this problem.

Distributed Neural Network Inference. Existing frameworks parti-

tion DNNs across multiple systems to reduce resource costs on edge

devices [7, 46, 61, 104]. Both DDNNs [88] and SPINN [56] intro-

duce early exit behavior to improve distributed inference, creating

distributed MeNNs. We develop a side-channel attack against the

communication patterns of these distributed MeNNs. We defend

against this attack through new early exit policies.

Attacks on Neural Networks. Common attacks against DNNs

force misbehavior through adversarial noise [11, 15, 26, 28, 38, 59,

65, 75, 81, 86]. Other work induces adversarial behavior using train-

ing set poisoning [27], attacker-specified triggers [73], or batch

orderings [80]. Popular countermeasures against these attacks in-

clude defensive distillation [76] and adversarial training [26, 90].

Further, existing proposals observe that MeNNs reduce the impact

of adversarial examples [35, 49]. Previous attacks target MeNNs

by crafting adversarial examples to maximize the execution cost

[29, 34] and using exit decisions to improve membership inference

queries [62]. Similar to our work, these attacks exploit early-exit

behavior in neural networks. However, we evaluate how distributed

MeNNs leak predictions through communication patterns.

Neural Networks and Privacy. Previous systems address the pri-

vacy of DNNs through homomorphic encryption [24, 64] and secure

two-party computation [70]. Other methods protect DNNs using

trusted execution environments [30, 69] and differential privacy

[2, 85, 89, 97]. Our work also examines DNN privacy, but we create

a new attack that uses exit patterns to infer MeNN predictions.

Prior work leverages power [98], electromagnetic [8, 103], and

timing/memory [36] side-channels to find DNN architectures and

parameters. We instead use the communication patterns of dis-

tributed MeNNs as a side-channel to uncover model predictions.

We further create efficient solutions for this new privacy concern.

Side-Channel Attacks. Many side-channel attacks exploit variable

behavior under different inputs or operating conditions [16, 19, 67].

Previous work uses timing [12] and power discrepancies [51, 68]

to extract encryption keys. We also study side-channels against

varying behavior, but our work focuses on MeNNs, which is new.

Previous work closes side-channels through fixed resource usage

or randomized behavior. BuFLO [22] and its extensions [13, 44, 71]

standardize traffic patterns to prevent website fingerprinting. Other

systems obfuscate compromising communication patterns in sensor

networks [5, 45, 48]. Our work uses a new randomization technique

to retain the accuracy and resource benefits of MeNNs.

8 CONCLUSION
This work creates a side-channel attack that exploits the communi-

cation patterns of distributed Multi-exit Neural Networks (MeNNs)

with data-dependent early exiting. This side-channel allows an ad-

versary to discover the MeNN’s predictions with over 1.85× the

accuracy of random guessing. We address this attack through two

new exit policies: Per-Class Exiting (PCE) and Confidence-Guided

Randomness (CGR). PCE uses multiple confidence thresholds to

reduce information leakage with inference accuracy close to prior

methods. CGR augments PCE with randomization to achieve theo-

retical privacy guarantees and deliver consistently better inference

accuracy than exiting early uniformly at random. This attack high-

lights how modern inference systems must consider the privacy

implications of data-dependent behavior.

ACKNOWLEDGMENTS
We thank our reviewers for their constructive feedback. This work

was supported by the National Science Foundation (NSF) grants

CCF-1822949, CCF-2119184, CNS-1764039, and CISE-ANR-2124393.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.

2016. TensorFlow: A system for Large-Scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Implementation. 265–283.

1135

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Tejas Kannan, Nick Feamster, and Henry Hoffmann

[2] Martín Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In

23rd ACM Conf. on Computer and Communications Security. 308–318.
[3] Fevzi Alimoglu and Ethem Alpaydin. 1996. Methods of combining multiple

classifiers based on different representations for pen-based handwritten digit

recognition. In 5th Turkish Artificial Intelligence and Artificial Neural Networks
Symposium. Citeseer.

[4] DavideAnguita, AlessandroGhio, LucaOneto, Xavier Parra Perez, and Jorge Luis

Reyes Ortiz. 2013. A public domain dataset for human activity recognition using

smartphones. In 21st International European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning. 437–442.

[5] Noah Apthorpe, Danny Yuxing Huang, Dillon Reisman, Arvind Narayanan, and

Nick Feamster. 2019. Keeping the smart home private with smart(er) IoT traffic

shaping. Proceedings on Privacy Enhancing Technologies 2019, 3 (2019).
[6] Dmitri Asonov and Rakesh Agrawal. 2004. Keyboard acoustic emanations. In

IEEE Symposium on Security and Privacy. 3–11.
[7] Amin Banitalebi-Dehkordi, Naveen Vedula, Jian Pei, Fei Xia, Lanjun Wang, and

Yong Zhang. 2021. Auto-split: A general framework of collaborative edge-cloud

AI. In 27th ACM Conf. on Knowledge Discovery & Data Mining. 2543–2553.
[8] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. 2019. CSI NN:

Reverse engineering of neural network architectures through electromagnetic

side channel. In 28th USENIX Security Symposium. 515–532.

[9] Konstantin Berestizshevsky and Guy Even. 2019. Dynamically sacrificing accu-

racy for reduced computation: Cascaded inference based on softmax confidence.

In International Conf. on Artificial Neural Networks. Springer, 306–320.
[10] Erik Bernhardsson. 2023. Annoy. https://github.com/spotify/annoy.

[11] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić,

Pavel Laskov, Giorgio Giacinto, and Fabio Roli. 2013. Evasion attacks against

machine learning at test time. In Joint European Conf. on Machine Learning and
Knowledge Discovery in Databases. Springer, 387–402.

[12] David Brumley and Dan Boneh. 2005. Remote timing attacks are practical.

Computer Networks 48, 5 (2005), 701–716.
[13] Xiang Cai, Rishab Nithyanand, and Rob Johnson. 2014. Cs-BuFLO: A congestion

sensitive website fingerprinting defense. In 13th Workshop on Privacy in the
Electronic Society. 121–130.

[14] Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and

Florian Tramer. 2022. Membership inference attacks from first principles. In

43rd IEEE Symposium on Security and Privacy. 1897–1914.
[15] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness

of neural networks. In 38th IEEE Symposium on Security and Privacy. 39–57.
[16] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. 2010. Side-channel

leaks in web applications: A reality today, a challenge tomorrow. In 31st IEEE
Symposium on Security and Privacy. 191–206.

[17] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. 2017.

EMNIST: an extension of MNIST to handwritten letters. arXiv:1702.05373.

[18] Joan Daemen and Vincent Rijmen. 1999. AES proposal: Rijndael. (1999).

[19] Aveek K Das, Parth H Pathak, Chen-Nee Chuah, and Prasant Mohapatra. 2016.

Uncovering privacy leakage in BLE network traffic of wearable fitness trackers.

In 17th Workshop on Mobile Computing Systems and Applications. 99–104.
[20] Bradley Denby and Brandon Lucia. 2020. Orbital edge computing: Nanosatellite

constellations as a new class of computer system. In 25th Conf. on Architectural
Support for Programming Languages and Operating Systems. 939–954.

[21] Amol Deshpande, Carlos Guestrin, Samuel R Madden, Joseph M Hellerstein,

and Wei Hong. 2004. Model-driven data acquisition in sensor networks. In 13th
Conf. on Very Large Databases. 588–599.

[22] Kevin P Dyer, Scott E Coull, Thomas Ristenpart, and Thomas Shrimpton. 2012.

Peek-a-boo, I still see you: Why efficient traffic analysis countermeasures fail.

In 33rd IEEE symposium on Security and Privacy. 332–346.
[23] Bugra Gedik, Ling Liu, and S Yu Philip. 2007. ASAP: An adaptive sampling

approach to data collection in sensor networks. IEEE Transactions on Parallel
and Distributed Systems 18, 12 (2007), 1766–1783.

[24] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,

and John Wernsing. 2016. Cryptonets: Applying neural networks to encrypted

data with high throughput and accuracy. In International Conf. on Machine
Learning. PMLR, 201–210.

[25] Graham Gobieski, Brandon Lucia, and Nathan Beckmann. 2019. Intelligence

beyond the edge: Inference on intermittent embedded systems. In 24th Conf.
on Architectural Support for Programming Languages and Operating Systems.
199–213.

[26] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and

harnessing adversarial examples. In International Conf. on Learning Representa-
tions.

[27] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. BadNets:

Identifying vulnerabilities in the machine learning model supply chain.

arXiv:1708.06733.

[28] Amira Guesmi, Ihsen Alouani, Khaled N Khasawneh, Mouna Baklouti, Tarek

Frikha, Mohamed Abid, and Nael Abu-Ghazaleh. 2021. Defensive approximation:

Securing CNNs using approximate computing. In 26th Conf. on Architectural

Support for Programming Languages and Operating Systems. 990–1003.
[29] Mirazul Haque, Anki Chauhan, Cong Liu, andWei Yang. 2020. ILFO: Adversarial

attack on adaptive neural networks. In IEEE Conf. on Computer Vision and Pattern
Recognition. 14264–14273.

[30] Hanieh Hashemi, Yongqin Wang, and Murali Annavaram. 2021. DarKnight: An

accelerated framework for privacy and integrity preserving deep learning using

trusted hardware. In 54th IEEE/ACM International Symposium on Microarchitec-
ture. 212–224.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In IEEE Conf. on Computer Vision and Pattern
Recognition. 770–778.

[32] Shivayogi Hiremath, Geng Yang, and Kunal Mankodiya. 2014. Wearable Internet

of Things: Concept, architectural components and promises for person-centered

healthcare. In 4th IEEE Conf. on Wireless Mobile Communication and Healthcare.
304–307.

[33] JK Holland, EK Kemsley, and RH Wilson. 1998. Use of Fourier transform in-

frared spectroscopy and partial least squares regression for the detection of

adulteration of strawberry purees. Journal of the Science of Food and Agriculture
76, 2 (1998), 263–269.

[34] Sanghyun Hong, Yiğitcan Kaya, Ionuţ-Vlad Modoranu, and Tudor Dumitraş.

2020. A panda? No, it’s a sloth: Slowdown attacks on adaptive multi-exit neural

network inference. arXiv:2010.02432.

[35] Ting-Kuei Hu, Tianlong Chen, Haotao Wang, and Zhangyang Wang. 2020.

Triple wins: Boosting accuracy, robustness and efficiency together by enabling

input-adaptive inference. arXiv:2002.10025.

[36] Weizhe Hua, Zhiru Zhang, and G Edward Suh. 2018. Reverse engineering

convolutional neural networks through side-channel information leaks. In 55th
ACM/ESDA/IEEE Design Automation Conf. 1–6.

[37] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens Van Der Maaten, and

Kilian Q Weinberger. 2017. Multi-scale dense networks for resource efficient

image classification. arXiv:1703.09844.

[38] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon

Tran, and Aleksander Madry. 2019. Adversarial examples are not bugs, they are

features. Advances in Neural Information Processing Systems 32 (2019).
[39] Texas Instruments. 2020. TI MSP430 EnergyTrace Technology. https://www.ti.

com/lit/ug/slau157as/slau157as.pdf. Accessed: 04-2023.

[40] Texas Instruments. 2021. TI MSP430 FR5994 Datasheet. https://www.ti.com/lit/

ds/symlink/msp430fr5994.pdf. Accessed: 04-2023.

[41] Zohar Jackson. 2022. Free spoken digit dataset. https://github.com/Jakobovski/

free-spoken-digit-dataset. Accessed: 04-2023.

[42] Weiyu Ju, Wei Bao, Liming Ge, and Dong Yuan. 2021. Dynamic early exit

scheduling for deep neural network inference through contextual bandits. In

30th ACM International Conf. on Information & Knowledge Management. 823–
832.

[43] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li Shiuan Peh, and

Daniel Rubenstein. 2002. Energy-efficient computing for wildlife tracking: De-

sign tradeoffs and early experiences with ZebraNet. In 10th Conf. on Architectural
Support for Programming Languages and Operating Systems. 96–107.

[44] Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz, and Matthew Wright.

2016. Toward an efficient website fingerprinting defense. In 21st European
Symposium on Research in Computer Security. Springer, 27–46.

[45] Pandurang Kamat, Wenyuan Xu, Wade Trappe, and Yanyong Zhang. 2007.

Temporal privacy in wireless sensor networks. In 27th IEEE International Conf.
on Distributed Computing Systems. 23–23.

[46] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason

Mars, and Lingjia Tang. 2017. Neurosurgeon: Collaborative intelligence between

the cloud and mobile edge. ACM SIGARCH Computer Architecture News 45, 1
(2017), 615–629.

[47] Tejas Kannan, Nick Feamster, and Henry Hoffmann. 2023. Prediction pri-

vacy in distributed multi-exit neural networks: Vulnerabilities and solu-

tions. https://github.com/tejaskannan/privacy-dnn-early-exit/blob/master/

dnn_early_exit_privacy_extended.pdf.

[48] Tejas Kannan and Henry Hoffmann. 2022. Protecting adaptive sampling from

information leakage on low-power sensors. In 27th ACM Conf. on Architectural
Support for Programming Languages and Operating Systems. 240–254.

[49] Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras. 2019. Shallow-deep

networks: Understanding and mitigating network overthinking. In International
Conf. on Machine Learning. PMLR, 3301–3310.

[50] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv:1412.6980.

[51] Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential power analysis.

In Annual International Cryptology Conf. Springer, 388–397.
[52] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin

Zhang, Akshay Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas

Phillips, Irena Gao, et al. 2021. Wilds: A benchmark of in-the-wild distribution

shifts. In International Conf. on Machine Learning. PMLR, 5637–5664.

[53] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of

features from tiny images.

1136

https://github.com/spotify/annoy
https://www.ti.com/lit/ug/slau157as/slau157as.pdf
https://www.ti.com/lit/ug/slau157as/slau157as.pdf
https://www.ti.com/lit/ds/symlink/msp430fr5994.pdf
https://www.ti.com/lit/ds/symlink/msp430fr5994.pdf
https://github.com/Jakobovski/free-spoken-digit-dataset
https://github.com/Jakobovski/free-spoken-digit-dataset
https://github.com/tejaskannan/privacy-dnn-early-exit/blob/master/dnn_early_exit_privacy_extended.pdf
https://github.com/tejaskannan/privacy-dnn-early-exit/blob/master/dnn_early_exit_privacy_extended.pdf

Prediction Privacy in Distributed Multi-Exit Neural Networks: Vulnerabilities and Solutions CCS ’23, November 26–30, 2023, Copenhagen, Denmark

[54] Tarald O Kvålseth. 2017. On normalized mutual information: Measure deriva-

tions and properties. Entropy 19, 11 (2017), 631.

[55] Jennifer R Kwapisz, Gary M Weiss, and Samuel A Moore. 2011. Activity recog-

nition using cell phone accelerometers. ACM SigKDD Explorations Newsletter
12, 2 (2011), 74–82.

[56] Stefanos Laskaridis, Stylianos I Venieris, Mario Almeida, Ilias Leontiadis, and

Nicholas D Lane. 2020. SPINN: Synergistic progressive inference of neural

networks over device and cloud. In 26th International Conf. on Mobile Computing
and Networking. 1–15.

[57] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
521, 7553 (2015), 436–444.

[58] Yann LeCun, Corinna Cortes, and Chris Burges. 1998. The MNIST database of

handwritten digits. http://yann. lecun. com/exdb/mnist/ (1998).
[59] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman

Jana. 2019. Certified robustness to adversarial examples with differential privacy.

In 40th IEEE Symposium on Security and Privacy. 656–672.
[60] Hankook Lee and Jinwoo Shin. 2018. Anytime neural prediction via slicing

networks vertically. arXiv:1807.02609.

[61] En Li, Liekang Zeng, Zhi Zhou, and Xu Chen. 2019. Edge AI: On-demand accel-

erating deep neural network inference via edge computing. IEEE Transactions
on Wireless Communications 19, 1 (2019), 447–457.

[62] Zheng Li, Yiyong Liu, Xinlei He, Ning Yu, Michael Backes, and Yang Zhang.

2022. Auditing membership leakages of multi-exit networks. In ACM Conf. on
Computer and Communications Security. 1917–1931.

[63] Ji Lin, Wei-Ming Chen, Yujun Lin, Chuang Gan, Song Han, et al. 2020. MCUnet:

Tiny deep learning on IoT devices. Advances in Neural Information Processing
Systems 33 (2020), 11711–11722.

[64] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. 2017. Oblivious neural

network predictions via MiniONN transformations. In ACM Conf. on Computer
and Communications Security. 619–631.

[65] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and

Adrian Vladu. 2017. Towards deep learning models resistant to adversarial

attacks. arXiv:1706.06083.

[66] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and John

Anderson. 2002. Wireless sensor networks for habitat monitoring. In 1st ACM
Workshop on Wireless Sensor Networks and Applications. 88–97.

[67] Aastha Mehta, Mohamed Alzayat, Roberta De Viti, Björn B. Brandenburg, Peter

Druschel, and Deepak Garg. 2022. Pacer: Comprehensive Network Side-Channel

Mitigation in the Cloud. In 31st USENIX Security Symposium. USENIX Associa-

tion, Boston, MA, 2819–2838.

[68] Thomas S. Messerges and Ezzy A. Dabbish. 1999. Investigations of Power

Analysis Attacks on Smartcards. In USENIX Workshop on Smartcard Technology.
USENIX Association.

[69] Fan Mo, Ali Shahin Shamsabadi, Kleomenis Katevas, Soteris Demetriou, Ilias

Leontiadis, Andrea Cavallaro, and Hamed Haddadi. 2020. DarkneTZ: Towards

model privacy at the edge using trusted execution environments. In 18th Conf.
on Mobile Systems, Applications, and Services. 161–174.

[70] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A system for scalable

privacy-preserving machine learning. In 38th IEEE symposium on Security and
Privacy. 19–38.

[71] Rishab Nithyanand, Xiang Cai, and Rob Johnson. 2014. Glove: A bespoke website

fingerprinting defense. In 13th Workshop on Privacy in the Electronic Society.
131–134.

[72] Angela Orebaugh, Gilbert Ramirez, and Jay Beale. 2006. Wireshark & Ethereal
network protocol analyzer toolkit. Elsevier.

[73] Xudong Pan, Mi Zhang, Beina Sheng, Jiaming Zhu, and Min Yang. 2022. Hidden

Trigger Backdoor Attack on NLP Models via Linguistic Style Manipulation. In

31st USENIX Security Symposium. 3611–3628.

[74] Liam Paninski. 2003. Estimation of entropy and mutual information. Neural
computation 15, 6 (2003), 1191–1253.

[75] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay

Celik, and Ananthram Swami. 2017. Practical black-box attacks against machine

learning. In 12th ACM Asia Conf. on Computer and Communications Security.
506–519.

[76] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.

2016. Distillation as a defense to adversarial perturbations against deep neural

networks. In 37th IEEE symposium on Security and Privacy. 582–597.
[77] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1986. Learning

representations by back-propagating errors. Nature 323, 6088 (1986), 533–536.
[78] Simone Scardapane, Michele Scarpiniti, Enzo Baccarelli, and Aurelio Uncini.

2020. Why should we add early exits to neural networks? Cognitive Computation
12, 5 (2020), 954–966.

[79] Claude E Shannon. 1949. Communication theory of secrecy systems. The Bell
system technical journal 28, 4 (1949), 656–715.

[80] Ilia Shumailov, Zakhar Shumaylov, Dmitry Kazhdan, Yiren Zhao, Nicolas Paper-

not, Murat A Erdogdu, and Ross J Anderson. 2021. Manipulating SGD with data

ordering attacks. Advances in Neural Information Processing Systems 34 (2021),
18021–18032.

[81] Ilia Shumailov, Yiren Zhao, Daniel Bates, Nicolas Papernot, Robert Mullins,

and Ross Anderson. 2021. Sponge examples: Energy-latency attacks on neural

networks. In 6th IEEE European Symposium on Security and Privacy. 212–231.
[82] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional net-

works for large-scale image recognition. arXiv:1409.1556.

[83] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: A simple way to prevent neural networks from

overfitting. Journal of Machine Learning Research 15, 1 (2014), 1929–1958.

[84] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. 2011.

The German Traffic Sign Recognition Benchmark: A multi-class classification

competition. In IEEE International Joint Conf. on Neural Networks. 1453–1460.
[85] Timothy Stevens, Christian Skalka, Christelle Vincent, John Ring, Samuel Clark,

and Joseph Near. 2022. Efficient Differentially Private Secure Aggregation

for Federated Learning via Hardness of Learning with Errors. In 31st USENIX
Security Symposium. 1379–1395.

[86] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru

Erhan, Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural

networks. arXiv:1312.6199.

[87] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. 2016.

Branchynet: Fast inference via early exiting from deep neural networks. In

23rd IEEE International Conf. on Pattern Recognition. 2464–2469.
[88] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. 2017. Dis-

tributed deep neural networks over the cloud, the edge and end devices. In 37th
IEEE International Conf. on Distributed Computing Systems. 328–339.

[89] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig,

Rui Zhang, and Yi Zhou. 2019. A hybrid approach to privacy-preserving fed-

erated learning. In 12th ACM Workshop on Artificial Intelligence and Security.
1–11.

[90] Pratik Vaishnavi, Kevin Eykholt, and Amir Rahmati. 2022. Transferring Adver-

sarial Robustness Through Robust Representation Matching. In 31st USENIX
Security Symposium. 2083–2098.

[91] Deepak Vasisht, Zerina Kapetanovic, Jongho Won, Xinxin Jin, Ranveer Chandra,

Sudipta Sinha, Ashish Kapoor, Madhusudhan Sudarshan, and Sean Stratman.

2017. FarmBeats: An IoT platform for data-driven agriculture. In 14th USENIX
Symposium on Networked Systems Design and Implementation. 515–529.

[92] Andreas Veit and Serge Belongie. 2018. Convolutional networks with adaptive

inference graphs. In European Conf. on Computer Vision (ECCV). 3–18.
[93] Chengcheng Wan, Henry Hoffmann, Shan Lu, and Michael Maire. 2020. Or-

thogonalized SGD and nested architectures for anytime neural networks. In

International Conf. on Machine Learning. PMLR, 9807–9817.

[94] Chengcheng Wan, Muhammad Santriaji, Eri Rogers, Henry Hoffmann, Michael

Maire, and Shan Lu. 2020. ALERT: Accurate learning for energy and timeliness.

In USENIX Annual Technical Conf. 353–369.
[95] Xin Wang, Yujia Luo, Daniel Crankshaw, Alexey Tumanov, Fisher Yu, and

Joseph E Gonzalez. 2017. Idk cascades: Fast deep learning by learning not to

overthink. arXiv:1706.00885.

[96] Pete Warden. 2018. Speech commands: A dataset for limited-vocabulary speech

recognition. arXiv:1804.03209.

[97] Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi,

Shi Jin, Tony QS Quek, and H Vincent Poor. 2020. Federated learning with

differential privacy: Algorithms and performance analysis. IEEE Transactions
on Information Forensics and Security 15 (2020), 3454–3469.

[98] Lingxiao Wei, Bo Luo, Yu Li, Yannan Liu, and Qiang Xu. 2018. I know what you

see: Power side-channel attack on convolutional neural network accelerators.

In 34th Annual Computer Security Applications Conf. 393–406.
[99] Michael Winkler, Klaus-Dieter Tuchs, Kester Hughes, and Graeme Barclay. 2008.

Theoretical and practical aspects of military wireless sensor networks. Journal
of Telecommunications and Information Technology (2008), 37–45.

[100] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: A novel im-

age dataset for benchmarking machine learning algorithms. arXiv:1708.07747.

[101] Shuochao Yao, Yiran Zhao, Aston Zhang, Lu Su, and Tarek Abdelzaher. 2017.

DeepIoT: Compressing deep neural network structures for sensing systems with

a compressor-critic framework. In 15th ACM Conf. on Embedded Network Sensor
Systems. 1–14.

[102] Kasım Sinan Yıldırım, Amjad Yousef Majid, Dimitris Patoukas, Koen Schaper,

Przemyslaw Pawelczak, and Josiah Hester. 2018. Ink: Reactive kernel for tiny

batteryless sensors. In 16th ACM Conf. on Embedded Networked Sensor Systems.
41–53.

[103] Honggang Yu, Haocheng Ma, Kaichen Yang, Yiqiang Zhao, and Yier Jin. 2020.

DeepEM: Deep neural networks model recovery through EM side-channel

information leakage. In IEEE Symposium on Hardware Oriented Security and
Trust. 209–218.

[104] Liekang Zeng, En Li, Zhi Zhou, and Xu Chen. 2019. Boomerang: On-demand

cooperative deep neural network inference for edge intelligence on the industrial

Internet of Things. IEEE Network 33, 5 (2019), 96–103.

[105] Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei.

2020. Bert loses patience: Fast and robust inference with early exit. Advances in
Neural Information Processing Systems 33 (2020), 18330–18341.

1137

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Multi-Exit Neural Networks (MeNNs)
	2.2 Early Exit Policies
	2.3 Example of Information Leakage
	2.4 Goals of Private Exit Policies

	3 Threat Model
	3.1 Target System and Attack Goal
	3.2 Adversary Capabilities
	3.3 Example Settings

	4 Per-Class Exiting (PCE)
	4.1 Policy Design
	4.2 Adversarial Data Orderings

	5 Confidence-Guided Randomness (CGR)
	5.1 Confidence-Biased Randomization
	5.2 Adapting the Probability Bias Magnitude
	5.3 Short-Term Exit Quotas
	5.4 Theoretical Benefits

	6 Evaluation
	6.1 Experimental Setup
	6.2 White Box Attack
	6.3 Theoretical Information Leakage
	6.4 Inference Accuracy
	6.5 Alternate Dataset Orders
	6.6 Distribution Shifts
	6.7 Black Box Attack
	6.8 White Box Attack on Low-Power MCUs
	6.9 Energy Consumption
	6.10 Beyond Two Exits

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

