
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LLAMA-OMNI: SEAMLESS SPEECH INTERACTION
WITH LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Models like GPT-4o enable real-time interaction with large language models
(LLMs) through speech, significantly enhancing user experience compared to tra-
ditional text-based interaction. However, there is still a lack of exploration on how
to build speech interaction models based on open-source LLMs. To address this,
we propose LLaMA-Omni, a novel end-to-end model architecture designed for
low-latency and high-quality speech interaction with LLMs. LLaMA-Omni inte-
grates a pretrained speech encoder, a speech adaptor, an LLM, and a streaming
speech decoder. It eliminates the need for speech transcription, and can simulta-
neously generate text and speech responses directly from speech instructions with
extremely low latency. We build our model based on the latest Llama-3.1-8B-
Instruct model. To align the model with speech interaction scenarios, we construct
a dataset named InstructS2S-200K, which includes 200K speech instructions and
corresponding speech responses, with a style that better matches the character-
istics of speech interaction scenarios. Experimental results show that compared
to previous speech-language models, LLaMA-Omni provides better responses in
both content and style, with a response latency as low as 236ms. Additionally,
training LLaMA-Omni takes less than 3 days on just 4 GPUs, paving the way for
the efficient development of speech-language models in the future.1

1 INTRODUCTION

Large language models (LLMs), represented by ChatGPT (OpenAI, 2022), have become powerful
general-purpose task solvers, capable of assisting people in daily life through conversational inter-
actions. However, most LLMs currently only support text-based interactions, which limits their
application in scenarios where text input and output are not ideal. Recently, the emergence of GPT-
4o (OpenAI, 2024) has made it possible to interact with LLMs through speech, responding to user’s
instruction with extremely low latency and significantly enhancing the user experience. However,
there is still a lack of exploration in the open-source community on building such speech interaction
models based on LLMs. Therefore, how to achieve low-latency and high-quality speech interaction
with LLMs is a pressing challenge that needs to be addressed.

The simplest way to enable speech interaction with LLMs is through a cascaded system based on
automatic speech recognition (ASR) and text-to-speech (TTS) models, where the ASR model tran-
scribes the user’s speech instruction into text, and the TTS model synthesizes the LLM’s response
into speech. However, since the cascaded system sequentially outputs the transcribed text, text re-
sponse, and speech response, the overall system tends to have higher latency. In contrast, some
multimodal speech-language models have been proposed (Zhang et al., 2023; Rubenstein et al.,
2023), which discretize speech into tokens and extend the LLM’s vocabulary to support speech in-
put and output. Such speech-language models theoretically can generate speech responses directly
from speech instructions without producing intermediate text, thereby achieving extremely low re-
sponse latency. However, in practice, direct speech-to-speech generation can be challenging due
to the complex mapping involved, so it is common to generate intermediate text to achieve higher
generation quality (Zhang et al., 2023), although this sacrifices some response latency.

1Audio samples are available at https://llama-omni.github.io/

1

https://llama-omni.github.io/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

LLaMA-Omni
(Hey! Can you give me some

advices on writing NLP papers?)
Certainly! Writing a high-quality NLP paper requires …

simultaneous
generation

Figure 1: LLaMA-Omni can simultaneously generate text and speech responses based on the speech
instruction, with extremely low response latency.

In this paper, we propose a novel model architecture, LLaMA-Omni, which enables low-latency and
high-quality interaction with LLMs. LLaMA-Omni consists of a speech encoder, a speech adaptor,
an LLM, and a streaming speech decoder. The user’s speech instruction is encoded by the speech
encoder followed by the speech adaptor, and then input into the LLM. The LLM decodes the text
response directly from the speech instruction, without first transcribing the speech into text. The
speech decoder is a non-autoregressive (NAR) streaming Transformer (Ma et al., 2023), which takes
the output hidden states of the LLM as input and uses connectionist temporal classification (CTC;
Graves et al., 2006a) to predict the sequence of discrete units corresponding to the speech response.
During inference, as the LLM autoregressively generates the text response, the speech decoder si-
multaneously generates the corresponding discrete units. To better align with the characteristics of
speech interaction scenarios, we construct a dataset named InstructS2S-200K by rewriting existing
text instruction data and performing speech synthesis. Experimental results show that LLaMA-
Omni can simultaneously generate high-quality text and speech responses with a latency as low as
236ms. Additionally, compared to previous speech-language models like SpeechGPT (Zhang et al.,
2023), LLaMA-Omni significantly reduces the required training data and computational resources,
enabling the efficient development of powerful speech interaction models based on the latest LLMs.

2 MODEL: LLAMA-OMNI

In this section, we introduce the model architecture of LLaMA-Omni. As shown in Figure 2, it
consists of a speech encoder, a speech adaptor, an LLM, and a speech decoder. We denote the user’s
speech instruction, text response, and speech response as XS , Y T , and Y S respectively.

2.1 SPEECH ENCODER

We use the encoder of Whisper-large-v32 (Radford et al., 2023) as the speech encoder E . Whisper is
a general-purpose speech recognition model trained on a large amount of audio data, and its encoder
is capable of extracting meaningful representations from speech. Specifically, for the user’s speech
instruction XS , the encoded speech representation is given by H = E(XS), where H = [h1, ...,hN]
is the speech representation sequence of length N . We keep the speech encoder’s parameters frozen
throughout the entire training process.

2.2 SPEECH ADAPTOR

To enable the LLM to comprehend the input speech, we incorporate a trainable speech adaptor A
that maps the speech representations into the embedding space of the LLM. Following Ma et al.
(2024b), our speech adaptor first downsamples the speech representations H to reduce the sequence
length. Specifically, every k consecutive frames are concatenated along the feature dimension:

H′ =
[
h′
1, ...,h

′
⌊N/k⌋

]
,where h′

i =
[
hk×(i−1)+1 ⊕ hk×(i−1)+2 ⊕ · · · ⊕ hk×i

]
. (1)

Next, H′ is passed through a 2-layer perceptron with ReLU activation between the linear layers,
resulting in the final speech representation S. The above process can be formalized as follows:

S = A(H) = Linear(ReLU(Linear(DownSample(H)))). (2)

2https://huggingface.co/openai/whisper-large-v3

2

https://huggingface.co/openai/whisper-large-v3

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Large Language Model

Speech Adaptor

Speech Encoder

Vocoder

(Hey! Can you give me some
advices on writing NLP papers?)

Certainly! Writing a

Upsample

Speech Decoder

✏
<latexit sha1_base64="ssxxscrscFDuELeuu/+9O0MDmKI=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhszPrzKwQQn7CiwdFvPo73vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUXGLDciuwnWqkSSSwFY1uZ37rCbXhSj7YcYphQgeSx5xR66R2F1PDhZK9csWv+nOQVRLkpAI56r3yV7evWJagtExQYzqBn9pwQrXlTOC01M0MppSN6AA7jkqaoAkn83un5MwpfRIr7UpaMld/T0xoYsw4iVxnQu3QLHsz8T+vk9n4OpxwmWYWJVssijNBrCKz50mfa2RWjB2hTHN3K2FDqimzLqKSCyFYfnmVNC+qgV8N7i8rtZs8jiKcwCmcQwBXUIM7qEMDGAh4hld48x69F+/d+1i0Frx85hj+wPv8AUzRkCA=</latexit><latexit sha1_base64="ssxxscrscFDuELeuu/+9O0MDmKI=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhszPrzKwQQn7CiwdFvPo73vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUXGLDciuwnWqkSSSwFY1uZ37rCbXhSj7YcYphQgeSx5xR66R2F1PDhZK9csWv+nOQVRLkpAI56r3yV7evWJagtExQYzqBn9pwQrXlTOC01M0MppSN6AA7jkqaoAkn83un5MwpfRIr7UpaMld/T0xoYsw4iVxnQu3QLHsz8T+vk9n4OpxwmWYWJVssijNBrCKz50mfa2RWjB2hTHN3K2FDqimzLqKSCyFYfnmVNC+qgV8N7i8rtZs8jiKcwCmcQwBXUIM7qEMDGAh4hld48x69F+/d+1i0Frx85hj+wPv8AUzRkCA=</latexit><latexit sha1_base64="ssxxscrscFDuELeuu/+9O0MDmKI=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhszPrzKwQQn7CiwdFvPo73vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUXGLDciuwnWqkSSSwFY1uZ37rCbXhSj7YcYphQgeSx5xR66R2F1PDhZK9csWv+nOQVRLkpAI56r3yV7evWJagtExQYzqBn9pwQrXlTOC01M0MppSN6AA7jkqaoAkn83un5MwpfRIr7UpaMld/T0xoYsw4iVxnQu3QLHsz8T+vk9n4OpxwmWYWJVssijNBrCKz50mfa2RWjB2hTHN3K2FDqimzLqKSCyFYfnmVNC+qgV8N7i8rtZs8jiKcwCmcQwBXUIM7qEMDGAh4hld48x69F+/d+1i0Frx85hj+wPv8AUzRkCA=</latexit><latexit sha1_base64="ssxxscrscFDuELeuu/+9O0MDmKI=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhszPrzKwQQn7CiwdFvPo73vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUXGLDciuwnWqkSSSwFY1uZ37rCbXhSj7YcYphQgeSx5xR66R2F1PDhZK9csWv+nOQVRLkpAI56r3yV7evWJagtExQYzqBn9pwQrXlTOC01M0MppSN6AA7jkqaoAkn83un5MwpfRIr7UpaMld/T0xoYsw4iVxnQu3QLHsz8T+vk9n4OpxwmWYWJVssijNBrCKz50mfa2RWjB2hTHN3K2FDqimzLqKSCyFYfnmVNC+qgV8N7i8rtZs8jiKcwCmcQwBXUIM7qEMDGAh4hld48x69F+/d+1i0Frx85hj+wPv8AUzRkCA=</latexit>

✏
<latexit sha1_base64="ssxxscrscFDuELeuu/+9O0MDmKI=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhszPrzKwQQn7CiwdFvPo73vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUXGLDciuwnWqkSSSwFY1uZ37rCbXhSj7YcYphQgeSx5xR66R2F1PDhZK9csWv+nOQVRLkpAI56r3yV7evWJagtExQYzqBn9pwQrXlTOC01M0MppSN6AA7jkqaoAkn83un5MwpfRIr7UpaMld/T0xoYsw4iVxnQu3QLHsz8T+vk9n4OpxwmWYWJVssijNBrCKz50mfa2RWjB2hTHN3K2FDqimzLqKSCyFYfnmVNC+qgV8N7i8rtZs8jiKcwCmcQwBXUIM7qEMDGAh4hld48x69F+/d+1i0Frx85hj+wPv8AUzRkCA=</latexit><latexit sha1_base64="ssxxscrscFDuELeuu/+9O0MDmKI=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhszPrzKwQQn7CiwdFvPo73vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUXGLDciuwnWqkSSSwFY1uZ37rCbXhSj7YcYphQgeSx5xR66R2F1PDhZK9csWv+nOQVRLkpAI56r3yV7evWJagtExQYzqBn9pwQrXlTOC01M0MppSN6AA7jkqaoAkn83un5MwpfRIr7UpaMld/T0xoYsw4iVxnQu3QLHsz8T+vk9n4OpxwmWYWJVssijNBrCKz50mfa2RWjB2hTHN3K2FDqimzLqKSCyFYfnmVNC+qgV8N7i8rtZs8jiKcwCmcQwBXUIM7qEMDGAh4hld48x69F+/d+1i0Frx85hj+wPv8AUzRkCA=</latexit><latexit sha1_base64="ssxxscrscFDuELeuu/+9O0MDmKI=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhszPrzKwQQn7CiwdFvPo73vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUXGLDciuwnWqkSSSwFY1uZ37rCbXhSj7YcYphQgeSx5xR66R2F1PDhZK9csWv+nOQVRLkpAI56r3yV7evWJagtExQYzqBn9pwQrXlTOC01M0MppSN6AA7jkqaoAkn83un5MwpfRIr7UpaMld/T0xoYsw4iVxnQu3QLHsz8T+vk9n4OpxwmWYWJVssijNBrCKz50mfa2RWjB2hTHN3K2FDqimzLqKSCyFYfnmVNC+qgV8N7i8rtZs8jiKcwCmcQwBXUIM7qEMDGAh4hld48x69F+/d+1i0Frx85hj+wPv8AUzRkCA=</latexit><latexit sha1_base64="ssxxscrscFDuELeuu/+9O0MDmKI=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhszPrzKwQQn7CiwdFvPo73vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUXGLDciuwnWqkSSSwFY1uZ37rCbXhSj7YcYphQgeSx5xR66R2F1PDhZK9csWv+nOQVRLkpAI56r3yV7evWJagtExQYzqBn9pwQrXlTOC01M0MppSN6AA7jkqaoAkn83un5MwpfRIr7UpaMld/T0xoYsw4iVxnQu3QLHsz8T+vk9n4OpxwmWYWJVssijNBrCKz50mfa2RWjB2hTHN3K2FDqimzLqKSCyFYfnmVNC+qgV8N7i8rtZs8jiKcwCmcQwBXUIM7qEMDGAh4hld48x69F+/d+1i0Frx85hj+wPv8AUzRkCA=</latexit>

✏
<latexit sha1_base64="ssxxscrscFDuELeuu/+9O0MDmKI=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhszPrzKwQQn7CiwdFvPo73vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUXGLDciuwnWqkSSSwFY1uZ37rCbXhSj7YcYphQgeSx5xR66R2F1PDhZK9csWv+nOQVRLkpAI56r3yV7evWJagtExQYzqBn9pwQrXlTOC01M0MppSN6AA7jkqaoAkn83un5MwpfRIr7UpaMld/T0xoYsw4iVxnQu3QLHsz8T+vk9n4OpxwmWYWJVssijNBrCKz50mfa2RWjB2hTHN3K2FDqimzLqKSCyFYfnmVNC+qgV8N7i8rtZs8jiKcwCmcQwBXUIM7qEMDGAh4hld48x69F+/d+1i0Frx85hj+wPv8AUzRkCA=</latexit><latexit sha1_base64="ssxxscrscFDuELeuu/+9O0MDmKI=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhszPrzKwQQn7CiwdFvPo73vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUXGLDciuwnWqkSSSwFY1uZ37rCbXhSj7YcYphQgeSx5xR66R2F1PDhZK9csWv+nOQVRLkpAI56r3yV7evWJagtExQYzqBn9pwQrXlTOC01M0MppSN6AA7jkqaoAkn83un5MwpfRIr7UpaMld/T0xoYsw4iVxnQu3QLHsz8T+vk9n4OpxwmWYWJVssijNBrCKz50mfa2RWjB2hTHN3K2FDqimzLqKSCyFYfnmVNC+qgV8N7i8rtZs8jiKcwCmcQwBXUIM7qEMDGAh4hld48x69F+/d+1i0Frx85hj+wPv8AUzRkCA=</latexit><latexit sha1_base64="ssxxscrscFDuELeuu/+9O0MDmKI=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhszPrzKwQQn7CiwdFvPo73vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUXGLDciuwnWqkSSSwFY1uZ37rCbXhSj7YcYphQgeSx5xR66R2F1PDhZK9csWv+nOQVRLkpAI56r3yV7evWJagtExQYzqBn9pwQrXlTOC01M0MppSN6AA7jkqaoAkn83un5MwpfRIr7UpaMld/T0xoYsw4iVxnQu3QLHsz8T+vk9n4OpxwmWYWJVssijNBrCKz50mfa2RWjB2hTHN3K2FDqimzLqKSCyFYfnmVNC+qgV8N7i8rtZs8jiKcwCmcQwBXUIM7qEMDGAh4hld48x69F+/d+1i0Frx85hj+wPv8AUzRkCA=</latexit><latexit sha1_base64="ssxxscrscFDuELeuu/+9O0MDmKI=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhszPrzKwQQn7CiwdFvPo73vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUXGLDciuwnWqkSSSwFY1uZ37rCbXhSj7YcYphQgeSx5xR66R2F1PDhZK9csWv+nOQVRLkpAI56r3yV7evWJagtExQYzqBn9pwQrXlTOC01M0MppSN6AA7jkqaoAkn83un5MwpfRIr7UpaMld/T0xoYsw4iVxnQu3QLHsz8T+vk9n4OpxwmWYWJVssijNBrCKz50mfa2RWjB2hTHN3K2FDqimzLqKSCyFYfnmVNC+qgV8N7i8rtZs8jiKcwCmcQwBXUIM7qEMDGAh4hld48x69F+/d+1i0Frx85hj+wPv8AUzRkCA=</latexit>

✏
<latexit sha1_base64="ssxxscrscFDuELeuu/+9O0MDmKI=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhszPrzKwQQn7CiwdFvPo73vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUXGLDciuwnWqkSSSwFY1uZ37rCbXhSj7YcYphQgeSx5xR66R2F1PDhZK9csWv+nOQVRLkpAI56r3yV7evWJagtExQYzqBn9pwQrXlTOC01M0MppSN6AA7jkqaoAkn83un5MwpfRIr7UpaMld/T0xoYsw4iVxnQu3QLHsz8T+vk9n4OpxwmWYWJVssijNBrCKz50mfa2RWjB2hTHN3K2FDqimzLqKSCyFYfnmVNC+qgV8N7i8rtZs8jiKcwCmcQwBXUIM7qEMDGAh4hld48x69F+/d+1i0Frx85hj+wPv8AUzRkCA=</latexit><latexit sha1_base64="ssxxscrscFDuELeuu/+9O0MDmKI=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhszPrzKwQQn7CiwdFvPo73vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUXGLDciuwnWqkSSSwFY1uZ37rCbXhSj7YcYphQgeSx5xR66R2F1PDhZK9csWv+nOQVRLkpAI56r3yV7evWJagtExQYzqBn9pwQrXlTOC01M0MppSN6AA7jkqaoAkn83un5MwpfRIr7UpaMld/T0xoYsw4iVxnQu3QLHsz8T+vk9n4OpxwmWYWJVssijNBrCKz50mfa2RWjB2hTHN3K2FDqimzLqKSCyFYfnmVNC+qgV8N7i8rtZs8jiKcwCmcQwBXUIM7qEMDGAh4hld48x69F+/d+1i0Frx85hj+wPv8AUzRkCA=</latexit><latexit sha1_base64="ssxxscrscFDuELeuu/+9O0MDmKI=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhszPrzKwQQn7CiwdFvPo73vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUXGLDciuwnWqkSSSwFY1uZ37rCbXhSj7YcYphQgeSx5xR66R2F1PDhZK9csWv+nOQVRLkpAI56r3yV7evWJagtExQYzqBn9pwQrXlTOC01M0MppSN6AA7jkqaoAkn83un5MwpfRIr7UpaMld/T0xoYsw4iVxnQu3QLHsz8T+vk9n4OpxwmWYWJVssijNBrCKz50mfa2RWjB2hTHN3K2FDqimzLqKSCyFYfnmVNC+qgV8N7i8rtZs8jiKcwCmcQwBXUIM7qEMDGAh4hld48x69F+/d+1i0Frx85hj+wPv8AUzRkCA=</latexit><latexit sha1_base64="ssxxscrscFDuELeuu/+9O0MDmKI=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhszPrzKwQQn7CiwdFvPo73vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUXGLDciuwnWqkSSSwFY1uZ37rCbXhSj7YcYphQgeSx5xR66R2F1PDhZK9csWv+nOQVRLkpAI56r3yV7evWJagtExQYzqBn9pwQrXlTOC01M0MppSN6AA7jkqaoAkn83un5MwpfRIr7UpaMld/T0xoYsw4iVxnQu3QLHsz8T+vk9n4OpxwmWYWJVssijNBrCKz50mfa2RWjB2hTHN3K2FDqimzLqKSCyFYfnmVNC+qgV8N7i8rtZs8jiKcwCmcQwBXUIM7qEMDGAh4hld48x69F+/d+1i0Frx85hj+wPv8AUzRkCA=</latexit>

✏
<latexit sha1_base64="ssxxscrscFDuELeuu/+9O0MDmKI=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhszPrzKwQQn7CiwdFvPo73vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUXGLDciuwnWqkSSSwFY1uZ37rCbXhSj7YcYphQgeSx5xR66R2F1PDhZK9csWv+nOQVRLkpAI56r3yV7evWJagtExQYzqBn9pwQrXlTOC01M0MppSN6AA7jkqaoAkn83un5MwpfRIr7UpaMld/T0xoYsw4iVxnQu3QLHsz8T+vk9n4OpxwmWYWJVssijNBrCKz50mfa2RWjB2hTHN3K2FDqimzLqKSCyFYfnmVNC+qgV8N7i8rtZs8jiKcwCmcQwBXUIM7qEMDGAh4hld48x69F+/d+1i0Frx85hj+wPv8AUzRkCA=</latexit><latexit sha1_base64="ssxxscrscFDuELeuu/+9O0MDmKI=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhszPrzKwQQn7CiwdFvPo73vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUXGLDciuwnWqkSSSwFY1uZ37rCbXhSj7YcYphQgeSx5xR66R2F1PDhZK9csWv+nOQVRLkpAI56r3yV7evWJagtExQYzqBn9pwQrXlTOC01M0MppSN6AA7jkqaoAkn83un5MwpfRIr7UpaMld/T0xoYsw4iVxnQu3QLHsz8T+vk9n4OpxwmWYWJVssijNBrCKz50mfa2RWjB2hTHN3K2FDqimzLqKSCyFYfnmVNC+qgV8N7i8rtZs8jiKcwCmcQwBXUIM7qEMDGAh4hld48x69F+/d+1i0Frx85hj+wPv8AUzRkCA=</latexit><latexit sha1_base64="ssxxscrscFDuELeuu/+9O0MDmKI=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhszPrzKwQQn7CiwdFvPo73vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUXGLDciuwnWqkSSSwFY1uZ37rCbXhSj7YcYphQgeSx5xR66R2F1PDhZK9csWv+nOQVRLkpAI56r3yV7evWJagtExQYzqBn9pwQrXlTOC01M0MppSN6AA7jkqaoAkn83un5MwpfRIr7UpaMld/T0xoYsw4iVxnQu3QLHsz8T+vk9n4OpxwmWYWJVssijNBrCKz50mfa2RWjB2hTHN3K2FDqimzLqKSCyFYfnmVNC+qgV8N7i8rtZs8jiKcwCmcQwBXUIM7qEMDGAh4hld48x69F+/d+1i0Frx85hj+wPv8AUzRkCA=</latexit><latexit sha1_base64="ssxxscrscFDuELeuu/+9O0MDmKI=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhszPrzKwQQn7CiwdFvPo73vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUXGLDciuwnWqkSSSwFY1uZ37rCbXhSj7YcYphQgeSx5xR66R2F1PDhZK9csWv+nOQVRLkpAI56r3yV7evWJagtExQYzqBn9pwQrXlTOC01M0MppSN6AA7jkqaoAkn83un5MwpfRIr7UpaMld/T0xoYsw4iVxnQu3QLHsz8T+vk9n4OpxwmWYWJVssijNBrCKz50mfa2RWjB2hTHN3K2FDqimzLqKSCyFYfnmVNC+qgV8N7i8rtZs8jiKcwCmcQwBXUIM7qEMDGAh4hld48x69F+/d+1i0Frx85hj+wPv8AUzRkCA=</latexit>

65 65 27 ✏
<latexit sha1_base64="ssxxscrscFDuELeuu/+9O0MDmKI=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhszPrzKwQQn7CiwdFvPo73vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUXGLDciuwnWqkSSSwFY1uZ37rCbXhSj7YcYphQgeSx5xR66R2F1PDhZK9csWv+nOQVRLkpAI56r3yV7evWJagtExQYzqBn9pwQrXlTOC01M0MppSN6AA7jkqaoAkn83un5MwpfRIr7UpaMld/T0xoYsw4iVxnQu3QLHsz8T+vk9n4OpxwmWYWJVssijNBrCKz50mfa2RWjB2hTHN3K2FDqimzLqKSCyFYfnmVNC+qgV8N7i8rtZs8jiKcwCmcQwBXUIM7qEMDGAh4hld48x69F+/d+1i0Frx85hj+wPv8AUzRkCA=</latexit><latexit sha1_base64="ssxxscrscFDuELeuu/+9O0MDmKI=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhszPrzKwQQn7CiwdFvPo73vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUXGLDciuwnWqkSSSwFY1uZ37rCbXhSj7YcYphQgeSx5xR66R2F1PDhZK9csWv+nOQVRLkpAI56r3yV7evWJagtExQYzqBn9pwQrXlTOC01M0MppSN6AA7jkqaoAkn83un5MwpfRIr7UpaMld/T0xoYsw4iVxnQu3QLHsz8T+vk9n4OpxwmWYWJVssijNBrCKz50mfa2RWjB2hTHN3K2FDqimzLqKSCyFYfnmVNC+qgV8N7i8rtZs8jiKcwCmcQwBXUIM7qEMDGAh4hld48x69F+/d+1i0Frx85hj+wPv8AUzRkCA=</latexit><latexit sha1_base64="ssxxscrscFDuELeuu/+9O0MDmKI=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhszPrzKwQQn7CiwdFvPo73vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUXGLDciuwnWqkSSSwFY1uZ37rCbXhSj7YcYphQgeSx5xR66R2F1PDhZK9csWv+nOQVRLkpAI56r3yV7evWJagtExQYzqBn9pwQrXlTOC01M0MppSN6AA7jkqaoAkn83un5MwpfRIr7UpaMld/T0xoYsw4iVxnQu3QLHsz8T+vk9n4OpxwmWYWJVssijNBrCKz50mfa2RWjB2hTHN3K2FDqimzLqKSCyFYfnmVNC+qgV8N7i8rtZs8jiKcwCmcQwBXUIM7qEMDGAh4hld48x69F+/d+1i0Frx85hj+wPv8AUzRkCA=</latexit><latexit sha1_base64="ssxxscrscFDuELeuu/+9O0MDmKI=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhszPrzKwQQn7CiwdFvPo73vwbJ8keNLGgoajqprsrSgU31ve/vcLa+sbmVnG7tLO7t39QPjxqGpVphg2mhNLtiBoUXGLDciuwnWqkSSSwFY1uZ37rCbXhSj7YcYphQgeSx5xR66R2F1PDhZK9csWv+nOQVRLkpAI56r3yV7evWJagtExQYzqBn9pwQrXlTOC01M0MppSN6AA7jkqaoAkn83un5MwpfRIr7UpaMld/T0xoYsw4iVxnQu3QLHsz8T+vk9n4OpxwmWYWJVssijNBrCKz50mfa2RWjB2hTHN3K2FDqimzLqKSCyFYfnmVNC+qgV8N7i8rtZs8jiKcwCmcQwBXUIM7qEMDGAh4hld48x69F+/d+1i0Frx85hj+wPv8AUzRkCA=</latexit>

11 1198

high …

…

53 2 …

LLaMA-Omni

latency

S
<latexit sha1_base64="a0vIHozkj3MebWDDSZECQ8FkwMY=">AAAB8XicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiF48VbS22oWy2L+3SzSbsboQS+i+8eFDEq//Gm//GTZuDtg4sDDPvsfMmSATXxnW/ndLK6tr6RnmzsrW9s7tX3T9o6zhVDFssFrHqBFSj4BJbhhuBnUQhjQKBD8H4OvcfnlBpHst7M0nQj+hQ8pAzaqz02IuoGQVhdjftV2tu3Z2BLBOvIDUo0OxXv3qDmKURSsME1brruYnxM6oMZwKnlV6qMaFsTIfYtVTSCLWfzRJPyYlVBiSMlX3SkJn6eyOjkdaTKLCTeUK96OXif143NeGln3GZpAYlm38UpoKYmOTnkwFXyIyYWEKZ4jYrYSOqKDO2pIotwVs8eZm0z+qeW/duz2uNq6KOMhzBMZyCBxfQgBtoQgsYSHiGV3hztPPivDsf89GSU+wcwh84nz/FAJD3</latexit><latexit sha1_base64="a0vIHozkj3MebWDDSZECQ8FkwMY=">AAAB8XicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiF48VbS22oWy2L+3SzSbsboQS+i+8eFDEq//Gm//GTZuDtg4sDDPvsfMmSATXxnW/ndLK6tr6RnmzsrW9s7tX3T9o6zhVDFssFrHqBFSj4BJbhhuBnUQhjQKBD8H4OvcfnlBpHst7M0nQj+hQ8pAzaqz02IuoGQVhdjftV2tu3Z2BLBOvIDUo0OxXv3qDmKURSsME1brruYnxM6oMZwKnlV6qMaFsTIfYtVTSCLWfzRJPyYlVBiSMlX3SkJn6eyOjkdaTKLCTeUK96OXif143NeGln3GZpAYlm38UpoKYmOTnkwFXyIyYWEKZ4jYrYSOqKDO2pIotwVs8eZm0z+qeW/duz2uNq6KOMhzBMZyCBxfQgBtoQgsYSHiGV3hztPPivDsf89GSU+wcwh84nz/FAJD3</latexit><latexit sha1_base64="a0vIHozkj3MebWDDSZECQ8FkwMY=">AAAB8XicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiF48VbS22oWy2L+3SzSbsboQS+i+8eFDEq//Gm//GTZuDtg4sDDPvsfMmSATXxnW/ndLK6tr6RnmzsrW9s7tX3T9o6zhVDFssFrHqBFSj4BJbhhuBnUQhjQKBD8H4OvcfnlBpHst7M0nQj+hQ8pAzaqz02IuoGQVhdjftV2tu3Z2BLBOvIDUo0OxXv3qDmKURSsME1brruYnxM6oMZwKnlV6qMaFsTIfYtVTSCLWfzRJPyYlVBiSMlX3SkJn6eyOjkdaTKLCTeUK96OXif143NeGln3GZpAYlm38UpoKYmOTnkwFXyIyYWEKZ4jYrYSOqKDO2pIotwVs8eZm0z+qeW/duz2uNq6KOMhzBMZyCBxfQgBtoQgsYSHiGV3hztPPivDsf89GSU+wcwh84nz/FAJD3</latexit><latexit sha1_base64="a0vIHozkj3MebWDDSZECQ8FkwMY=">AAAB8XicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiF48VbS22oWy2L+3SzSbsboQS+i+8eFDEq//Gm//GTZuDtg4sDDPvsfMmSATXxnW/ndLK6tr6RnmzsrW9s7tX3T9o6zhVDFssFrHqBFSj4BJbhhuBnUQhjQKBD8H4OvcfnlBpHst7M0nQj+hQ8pAzaqz02IuoGQVhdjftV2tu3Z2BLBOvIDUo0OxXv3qDmKURSsME1brruYnxM6oMZwKnlV6qMaFsTIfYtVTSCLWfzRJPyYlVBiSMlX3SkJn6eyOjkdaTKLCTeUK96OXif143NeGln3GZpAYlm38UpoKYmOTnkwFXyIyYWEKZ4jYrYSOqKDO2pIotwVs8eZm0z+qeW/duz2uNq6KOMhzBMZyCBxfQgBtoQgsYSHiGV3hztPPivDsf89GSU+wcwh84nz/FAJD3</latexit>

C
<latexit sha1_base64="Yuwf+5SXWb0MOGSTlISCA75qqi8=">AAAB8XicbVDLSsNAFL3xWeur6tLNYBFclUQEXRa7cVnBPrANZTK9aYdOJmFmIpTQv3DjQhG3/o07/8ZJm4W2Hhg4nHMvc+4JEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjBp5H7nCZXmsXww0wT9iI4kDzmjxkqP/YiacRBmjdmgUnVr7hxklXgFqUKB5qDy1R/GLI1QGiao1j3PTYyfUWU4Ezgr91ONCWUTOsKepZJGqP1snnhGzq0yJGGs7JOGzNXfGxmNtJ5GgZ3ME+plLxf/83qpCW/8jMskNSjZ4qMwFcTEJD+fDLlCZsTUEsoUt1kJG1NFmbEllW0J3vLJq6R9WfPcmnd/Va3fFnWU4BTO4AI8uIY63EETWsBAwjO8wpujnRfn3flYjK45xc4J/IHz+QOssJDn</latexit><latexit sha1_base64="Yuwf+5SXWb0MOGSTlISCA75qqi8=">AAAB8XicbVDLSsNAFL3xWeur6tLNYBFclUQEXRa7cVnBPrANZTK9aYdOJmFmIpTQv3DjQhG3/o07/8ZJm4W2Hhg4nHMvc+4JEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjBp5H7nCZXmsXww0wT9iI4kDzmjxkqP/YiacRBmjdmgUnVr7hxklXgFqUKB5qDy1R/GLI1QGiao1j3PTYyfUWU4Ezgr91ONCWUTOsKepZJGqP1snnhGzq0yJGGs7JOGzNXfGxmNtJ5GgZ3ME+plLxf/83qpCW/8jMskNSjZ4qMwFcTEJD+fDLlCZsTUEsoUt1kJG1NFmbEllW0J3vLJq6R9WfPcmnd/Va3fFnWU4BTO4AI8uIY63EETWsBAwjO8wpujnRfn3flYjK45xc4J/IHz+QOssJDn</latexit><latexit sha1_base64="Yuwf+5SXWb0MOGSTlISCA75qqi8=">AAAB8XicbVDLSsNAFL3xWeur6tLNYBFclUQEXRa7cVnBPrANZTK9aYdOJmFmIpTQv3DjQhG3/o07/8ZJm4W2Hhg4nHMvc+4JEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjBp5H7nCZXmsXww0wT9iI4kDzmjxkqP/YiacRBmjdmgUnVr7hxklXgFqUKB5qDy1R/GLI1QGiao1j3PTYyfUWU4Ezgr91ONCWUTOsKepZJGqP1snnhGzq0yJGGs7JOGzNXfGxmNtJ5GgZ3ME+plLxf/83qpCW/8jMskNSjZ4qMwFcTEJD+fDLlCZsTUEsoUt1kJG1NFmbEllW0J3vLJq6R9WfPcmnd/Va3fFnWU4BTO4AI8uIY63EETWsBAwjO8wpujnRfn3flYjK45xc4J/IHz+QOssJDn</latexit><latexit sha1_base64="Yuwf+5SXWb0MOGSTlISCA75qqi8=">AAAB8XicbVDLSsNAFL3xWeur6tLNYBFclUQEXRa7cVnBPrANZTK9aYdOJmFmIpTQv3DjQhG3/o07/8ZJm4W2Hhg4nHMvc+4JEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjBp5H7nCZXmsXww0wT9iI4kDzmjxkqP/YiacRBmjdmgUnVr7hxklXgFqUKB5qDy1R/GLI1QGiao1j3PTYyfUWU4Ezgr91ONCWUTOsKepZJGqP1snnhGzq0yJGGs7JOGzNXfGxmNtJ5GgZ3ME+plLxf/83qpCW/8jMskNSjZ4qMwFcTEJD+fDLlCZsTUEsoUt1kJG1NFmbEllW0J3vLJq6R9WfPcmnd/Va3fFnWU4BTO4AI8uIY63EETWsBAwjO8wpujnRfn3flYjK45xc4J/IHz+QOssJDn</latexit>

bC
<latexit sha1_base64="ZJhKogBfCBwQspaLXDY2Ho2f/Gw=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5KIoMtiNy4r2Ac0oUwmk3bo5MHMjVJD8FfcuFDErf/hzr9x0mahrQcGDufcyz1zvERwBZb1bVRWVtfWN6qbta3tnd09c/+gq+JUUtahsYhl3yOKCR6xDnAQrJ9IRkJPsJ43aRV+755JxePoDqYJc0MyinjAKQEtDc0j54H7bEwgc0ICYy/IWnk+NOtWw5oBLxO7JHVUoj00vxw/pmnIIqCCKDWwrQTcjEjgVLC85qSKJYROyIgNNI1IyJSbzdLn+FQrPg5iqV8EeKb+3shIqNQ09PRkEVEteoX4nzdIIbhyMx4lKbCIzg8FqcAQ46IK7HPJKIipJoRKrrNiOiaSUNCF1XQJ9uKXl0n3vGFbDfv2ot68LuuoomN0gs6QjS5RE92gNuogih7RM3pFb8aT8WK8Gx/z0YpR7hyiPzA+fwA7GpW2</latexit><latexit sha1_base64="ZJhKogBfCBwQspaLXDY2Ho2f/Gw=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5KIoMtiNy4r2Ac0oUwmk3bo5MHMjVJD8FfcuFDErf/hzr9x0mahrQcGDufcyz1zvERwBZb1bVRWVtfWN6qbta3tnd09c/+gq+JUUtahsYhl3yOKCR6xDnAQrJ9IRkJPsJ43aRV+755JxePoDqYJc0MyinjAKQEtDc0j54H7bEwgc0ICYy/IWnk+NOtWw5oBLxO7JHVUoj00vxw/pmnIIqCCKDWwrQTcjEjgVLC85qSKJYROyIgNNI1IyJSbzdLn+FQrPg5iqV8EeKb+3shIqNQ09PRkEVEteoX4nzdIIbhyMx4lKbCIzg8FqcAQ46IK7HPJKIipJoRKrrNiOiaSUNCF1XQJ9uKXl0n3vGFbDfv2ot68LuuoomN0gs6QjS5RE92gNuogih7RM3pFb8aT8WK8Gx/z0YpR7hyiPzA+fwA7GpW2</latexit><latexit sha1_base64="ZJhKogBfCBwQspaLXDY2Ho2f/Gw=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5KIoMtiNy4r2Ac0oUwmk3bo5MHMjVJD8FfcuFDErf/hzr9x0mahrQcGDufcyz1zvERwBZb1bVRWVtfWN6qbta3tnd09c/+gq+JUUtahsYhl3yOKCR6xDnAQrJ9IRkJPsJ43aRV+755JxePoDqYJc0MyinjAKQEtDc0j54H7bEwgc0ICYy/IWnk+NOtWw5oBLxO7JHVUoj00vxw/pmnIIqCCKDWwrQTcjEjgVLC85qSKJYROyIgNNI1IyJSbzdLn+FQrPg5iqV8EeKb+3shIqNQ09PRkEVEteoX4nzdIIbhyMx4lKbCIzg8FqcAQ46IK7HPJKIipJoRKrrNiOiaSUNCF1XQJ9uKXl0n3vGFbDfv2ot68LuuoomN0gs6QjS5RE92gNuogih7RM3pFb8aT8WK8Gx/z0YpR7hyiPzA+fwA7GpW2</latexit><latexit sha1_base64="ZJhKogBfCBwQspaLXDY2Ho2f/Gw=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5KIoMtiNy4r2Ac0oUwmk3bo5MHMjVJD8FfcuFDErf/hzr9x0mahrQcGDufcyz1zvERwBZb1bVRWVtfWN6qbta3tnd09c/+gq+JUUtahsYhl3yOKCR6xDnAQrJ9IRkJPsJ43aRV+755JxePoDqYJc0MyinjAKQEtDc0j54H7bEwgc0ICYy/IWnk+NOtWw5oBLxO7JHVUoj00vxw/pmnIIqCCKDWwrQTcjEjgVLC85qSKJYROyIgNNI1IyJSbzdLn+FQrPg5iqV8EeKb+3shIqNQ09PRkEVEteoX4nzdIIbhyMx4lKbCIzg8FqcAQ46IK7HPJKIipJoRKrrNiOiaSUNCF1XQJ9uKXl0n3vGFbDfv2ot68LuuoomN0gs6QjS5RE92gNuogih7RM3pFb8aT8WK8Gx/z0YpR7hyiPzA+fwA7GpW2</latexit>

A
<latexit sha1_base64="BAeVOBC5ObWqGCFk52KlP7hcwRg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPVi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOmXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqt3kcRTiBUzgHD66gBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBkt2MxQ==</latexit><latexit sha1_base64="BAeVOBC5ObWqGCFk52KlP7hcwRg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPVi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOmXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqt3kcRTiBUzgHD66gBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBkt2MxQ==</latexit><latexit sha1_base64="BAeVOBC5ObWqGCFk52KlP7hcwRg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPVi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOmXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqt3kcRTiBUzgHD66gBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBkt2MxQ==</latexit><latexit sha1_base64="BAeVOBC5ObWqGCFk52KlP7hcwRg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPVi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOmXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqt3kcRTiBUzgHD66gBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBkt2MxQ==</latexit>

simultaneous
generation

…

Large Language Model

Speech Adaptor

Speech Encoder

❄""

LLLM
<latexit sha1_base64="HXhp2GGFt6SfsC7AtGxd8eT7i6M=">AAAB/3icbVDLSsNAFJ3UV62vqODGTbAIrkoigi6LblxUqGAf0IQwmU7boZNJmLkRS8zCX3HjQhG3/oY7/8ZJm4W2Hhg4nHMv98wJYs4U2Pa3UVpaXlldK69XNja3tnfM3b22ihJJaItEPJLdACvKmaAtYMBpN5YUhwGnnWB8lfudeyoVi8QdTGLqhXgo2IARDFryzQM3xDAimKeNzHeBPkDaaNxkvlm1a/YU1iJxClJFBZq++eX2I5KEVADhWKmeY8fgpVgCI5xmFTdRNMZkjIe0p6nAIVVeOs2fWcda6VuDSOonwJqqvzdSHCo1CQM9madV814u/uf1EhhceCkTcQJUkNmhQcItiKy8DKvPJCXAJ5pgIpnOapERlpiArqyiS3Dmv7xI2qc1x645t2fV+mVRRxkdoiN0ghx0juroGjVRCxH0iJ7RK3oznowX4934mI2WjGJnH/2B8fkDdYCWXg==</latexit><latexit sha1_base64="HXhp2GGFt6SfsC7AtGxd8eT7i6M=">AAAB/3icbVDLSsNAFJ3UV62vqODGTbAIrkoigi6LblxUqGAf0IQwmU7boZNJmLkRS8zCX3HjQhG3/oY7/8ZJm4W2Hhg4nHMv98wJYs4U2Pa3UVpaXlldK69XNja3tnfM3b22ihJJaItEPJLdACvKmaAtYMBpN5YUhwGnnWB8lfudeyoVi8QdTGLqhXgo2IARDFryzQM3xDAimKeNzHeBPkDaaNxkvlm1a/YU1iJxClJFBZq++eX2I5KEVADhWKmeY8fgpVgCI5xmFTdRNMZkjIe0p6nAIVVeOs2fWcda6VuDSOonwJqqvzdSHCo1CQM9madV814u/uf1EhhceCkTcQJUkNmhQcItiKy8DKvPJCXAJ5pgIpnOapERlpiArqyiS3Dmv7xI2qc1x645t2fV+mVRRxkdoiN0ghx0juroGjVRCxH0iJ7RK3oznowX4934mI2WjGJnH/2B8fkDdYCWXg==</latexit><latexit sha1_base64="HXhp2GGFt6SfsC7AtGxd8eT7i6M=">AAAB/3icbVDLSsNAFJ3UV62vqODGTbAIrkoigi6LblxUqGAf0IQwmU7boZNJmLkRS8zCX3HjQhG3/oY7/8ZJm4W2Hhg4nHMv98wJYs4U2Pa3UVpaXlldK69XNja3tnfM3b22ihJJaItEPJLdACvKmaAtYMBpN5YUhwGnnWB8lfudeyoVi8QdTGLqhXgo2IARDFryzQM3xDAimKeNzHeBPkDaaNxkvlm1a/YU1iJxClJFBZq++eX2I5KEVADhWKmeY8fgpVgCI5xmFTdRNMZkjIe0p6nAIVVeOs2fWcda6VuDSOonwJqqvzdSHCo1CQM9madV814u/uf1EhhceCkTcQJUkNmhQcItiKy8DKvPJCXAJ5pgIpnOapERlpiArqyiS3Dmv7xI2qc1x645t2fV+mVRRxkdoiN0ghx0juroGjVRCxH0iJ7RK3oznowX4934mI2WjGJnH/2B8fkDdYCWXg==</latexit><latexit sha1_base64="HXhp2GGFt6SfsC7AtGxd8eT7i6M=">AAAB/3icbVDLSsNAFJ3UV62vqODGTbAIrkoigi6LblxUqGAf0IQwmU7boZNJmLkRS8zCX3HjQhG3/oY7/8ZJm4W2Hhg4nHMv98wJYs4U2Pa3UVpaXlldK69XNja3tnfM3b22ihJJaItEPJLdACvKmaAtYMBpN5YUhwGnnWB8lfudeyoVi8QdTGLqhXgo2IARDFryzQM3xDAimKeNzHeBPkDaaNxkvlm1a/YU1iJxClJFBZq++eX2I5KEVADhWKmeY8fgpVgCI5xmFTdRNMZkjIe0p6nAIVVeOs2fWcda6VuDSOonwJqqvzdSHCo1CQM9madV814u/uf1EhhceCkTcQJUkNmhQcItiKy8DKvPJCXAJ5pgIpnOapERlpiArqyiS3Dmv7xI2qc1x645t2fV+mVRRxkdoiN0ghx0juroGjVRCxH0iJ7RK3oznowX4934mI2WjGJnH/2B8fkDdYCWXg==</latexit>

Stage 1

Large Language Model

Speech Adaptor

Speech Encoder

Upsample

Speech Decoder

❄❄❄"

LCTC
<latexit sha1_base64="C4R/ezudux7OrGdJobJudvV521Y=">AAAB/3icbVDLSsNAFJ3UV62vqODGTbAIrkoigi6L3bhwUaEvaEOYTCft0MkkzNyIJWbhr7hxoYhbf8Odf+OkzUJbDwwczrmXe+b4MWcKbPvbKK2srq1vlDcrW9s7u3vm/kFHRYkktE0iHsmejxXlTNA2MOC0F0uKQ5/Trj9p5H73nkrFItGCaUzdEI8ECxjBoCXPPBqEGMYE8/Q28wZAHyBttBqZZ1btmj2DtUycglRRgaZnfg2GEUlCKoBwrFTfsWNwUyyBEU6zyiBRNMZkgke0r6nAIVVuOsufWadaGVpBJPUTYM3U3xspDpWahr6ezNOqRS8X//P6CQRXbspEnAAVZH4oSLgFkZWXYQ2ZpAT4VBNMJNNZLTLGEhPQlVV0Cc7il5dJ57zm2DXn7qJavy7qKKNjdILOkIMuUR3doCZqI4Ie0TN6RW/Gk/FivBsf89GSUewcoj8wPn8AZL+WUw==</latexit><latexit sha1_base64="C4R/ezudux7OrGdJobJudvV521Y=">AAAB/3icbVDLSsNAFJ3UV62vqODGTbAIrkoigi6L3bhwUaEvaEOYTCft0MkkzNyIJWbhr7hxoYhbf8Odf+OkzUJbDwwczrmXe+b4MWcKbPvbKK2srq1vlDcrW9s7u3vm/kFHRYkktE0iHsmejxXlTNA2MOC0F0uKQ5/Trj9p5H73nkrFItGCaUzdEI8ECxjBoCXPPBqEGMYE8/Q28wZAHyBttBqZZ1btmj2DtUycglRRgaZnfg2GEUlCKoBwrFTfsWNwUyyBEU6zyiBRNMZkgke0r6nAIVVuOsufWadaGVpBJPUTYM3U3xspDpWahr6ezNOqRS8X//P6CQRXbspEnAAVZH4oSLgFkZWXYQ2ZpAT4VBNMJNNZLTLGEhPQlVV0Cc7il5dJ57zm2DXn7qJavy7qKKNjdILOkIMuUR3doCZqI4Ie0TN6RW/Gk/FivBsf89GSUewcoj8wPn8AZL+WUw==</latexit><latexit sha1_base64="C4R/ezudux7OrGdJobJudvV521Y=">AAAB/3icbVDLSsNAFJ3UV62vqODGTbAIrkoigi6L3bhwUaEvaEOYTCft0MkkzNyIJWbhr7hxoYhbf8Odf+OkzUJbDwwczrmXe+b4MWcKbPvbKK2srq1vlDcrW9s7u3vm/kFHRYkktE0iHsmejxXlTNA2MOC0F0uKQ5/Trj9p5H73nkrFItGCaUzdEI8ECxjBoCXPPBqEGMYE8/Q28wZAHyBttBqZZ1btmj2DtUycglRRgaZnfg2GEUlCKoBwrFTfsWNwUyyBEU6zyiBRNMZkgke0r6nAIVVuOsufWadaGVpBJPUTYM3U3xspDpWahr6ezNOqRS8X//P6CQRXbspEnAAVZH4oSLgFkZWXYQ2ZpAT4VBNMJNNZLTLGEhPQlVV0Cc7il5dJ57zm2DXn7qJavy7qKKNjdILOkIMuUR3doCZqI4Ie0TN6RW/Gk/FivBsf89GSUewcoj8wPn8AZL+WUw==</latexit><latexit sha1_base64="C4R/ezudux7OrGdJobJudvV521Y=">AAAB/3icbVDLSsNAFJ3UV62vqODGTbAIrkoigi6L3bhwUaEvaEOYTCft0MkkzNyIJWbhr7hxoYhbf8Odf+OkzUJbDwwczrmXe+b4MWcKbPvbKK2srq1vlDcrW9s7u3vm/kFHRYkktE0iHsmejxXlTNA2MOC0F0uKQ5/Trj9p5H73nkrFItGCaUzdEI8ECxjBoCXPPBqEGMYE8/Q28wZAHyBttBqZZ1btmj2DtUycglRRgaZnfg2GEUlCKoBwrFTfsWNwUyyBEU6zyiBRNMZkgke0r6nAIVVuOsufWadaGVpBJPUTYM3U3xspDpWahr6ezNOqRS8X//P6CQRXbspEnAAVZH4oSLgFkZWXYQ2ZpAT4VBNMJNNZLTLGEhPQlVV0Cc7il5dJ57zm2DXn7qJavy7qKKNjdILOkIMuUR3doCZqI4Ie0TN6RW/Gk/FivBsf89GSUewcoj8wPn8AZL+WUw==</latexit>

Stage 2

Figure 2: Left: Model architecture of LLaMA-Omni. Right: Illustration of the two-stage training
strategy for LLaMA-Omni.

2.3 LARGE LANGUAGE MODEL

We use Llama-3.1-8B-Instruct3 (Dubey et al., 2024) as the LLM M, which is currently the state-
of-the-art open-source LLM. It has strong reasoning capabilities and is well-aligned with human
preferences. The prompt template P(·) is shown in Appendix A. The speech representation sequence
S is filled into the position corresponding to <speech>, and then the entire sequence P(S) is input
into the LLM. Finally, the LLM autoregressively generates the text response Y T = [yT1 , ..., y

T
M]

directly based on the speech instruction and is trained using cross-entropy loss:

LLLM = −
M∑

i=1

logP (yTi |P(S), Y T
<i). (3)

2.4 SPEECH DECODER

For the speech response Y S , we first follow Zhang et al. (2023) to discretize the speech into discrete
units. Specifically, we use the pretrained HuBERT (Hsu et al., 2021) model to extract continuous
representations of the speech, and then convert these representations into discrete cluster indices
using a K-means model. Subsequently, consecutive identical indices are merged into a single unit,
resulting in the final discrete unit sequence Y U = [yU1 , ..., y

U
L], y

U
i ∈ {0, 1, ...,K − 1},∀1 ≤ i ≤ L,

where K is the number of clusters, and L is the length of discrete unit sequence. To synthesize
waveforms based on discrete units, we adopt a unit-based HiFi-GAN vocoder with a duration pre-
dictor (Polyak et al., 2021). It first predicts the duration of each discrete unit and repeats them to
model prosody, and then generates the waveform based on discrete units.

To generate speech responses simultaneously with text responses, we add a streaming speech de-
coder D after the LLM. It consists of several standard Transformer (Vaswani et al., 2017) layers
with the same architecture as LLaMA (Dubey et al., 2024), each containing a causal self-attention
module and a feed-forward network. Similar to Ma et al. (2024a); Zhang et al. (2024b), the speech
decoder runs in a non-autoregressive manner, which takes the output hidden states from the LLM as
input, and generates the discrete unit sequence corresponding to the speech response. Specifically,
the output hidden states corresponding to the text response are denoted as C = [c1, ..., cM], where
ci = M(P(S), Y T

<i). We first upsample each hidden state into a chunk by a factor of λ, resulting in
an upsampled hidden state sequence Ĉ = [ĉ1, ...ĉλ·M], where ĉi = c⌊i/λ⌋. Next, Ĉ is fed into the
speech decoder D, and the output hidden state sequence is denoted as O = [o1, ...,oλ·M]. We use
connectionist temporal classification (CTC; Graves et al., 2006a) to align O with the discrete unit

3https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct

3

https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

sequence Y U . Specifically, CTC extends the output space with a special blank token ϵ:

P (ai|O) = softmax(Woi + b)[ai],∀ai ∈ {0, 1, ...,K − 1, ϵ}, (4)

where W ∈ R(K+1)×d and b ∈ RK+1 are weights and biases of the linear layer, and the sequence
A = [a1, ..., aλ·M] is known as the alignment. To model the variable-length mapping between input
and output, CTC introduces a collapsing function β(A), which first merges all consecutive repeated
tokens in A and then eliminates all blank tokens ϵ. For instance: β([1, 1, 2, ϵ, ϵ, 2, 3]) = [1, 2, 2, 3].
During training, CTC performs marginalization over all possible alignments as follows:

LCTC = − logP (Y U |O) = − log
∑

A∈β−1(Y U)

P (A|O) = − log
∑

A∈β−1(Y U)

λ·M∏

i=1

P (ai|O), (5)

where β−1(Y U) denotes all possible alignments of length λ ·M that can be collapsed to Y U . The
alignment is modeled in a non-autoregressive way. During inference, we select the best alignment
A∗ = argmaxA P (A|O), and apply the collapsing function to obtain the discrete unit sequence
β(A∗), which is then fed into the vocoder to synthesize waveform.

2.5 TRAINING
Algorithm 1: Inference Process

Input: speech instruction XS .
Output: text outputs Y T , units outputs

Y U , waveform outputs Y S .
Model: speech encoder E , speech adaptor

A, LLMM, speech decoder D,
vocoder V .

Require: Minimum chunk size for units Ω.
Initialization: i = 1, j = 0, Y T = [],

Y U = [], Y S = [], Ĉ = [].
S← A(E(XS));
while yT

i−1 ̸= ⟨EOS⟩ do
ci ←M(P(S), Y T

<i);
yT
i ← argmaxyT

i
P (yT

i |P(S), Y T
<i);

Y T ← Y T + yT
i ;

Ĉ← Ĉ+ UpSample(ci);
O← D(Ĉ);
A∗ ← argmaxA P (A|O);
Y U ← β(A∗);
if |Y U | − j ≥ Ω then

yS ← V(Y U
j+1:);

Y S ← Y S + yS ;
j ← |Y U |;

end
i← i+ 1;

end
if j < |Y U | then

yS ← V(Y U
j+1:);

Y S ← Y S + yS ;
end

As shown in Figure 2, we adopt a two-stage train-
ing strategy for LLaMA-Omni. In the first stage, we
train the model to generate text responses directly from
the speech instructions. Specifically, the speech en-
coder is frozen, and the speech adaptor and the LLM
are trained using the objective LLLM in Eq. (3). The
speech decoder is not involved in training during this
stage. In the second stage, we train the model to gen-
erate speech responses. During this stage, the speech
encoder, speech adaptor, and LLM are all frozen, and
only the speech decoder is trained using the objective
LCTC in Eq. (5).

2.6 INFERENCE

During inference, the LLM autoregressively gener-
ates the text response based on the speech instruction.
Meanwhile, since our speech decoder uses causal at-
tention, once the LLM generates a text response pre-
fix Y T

≤i, the corresponding upsampled hidden states
Ĉ≤λ·i can be fed into the speech decoder to generate
a partial alignment A≤λ·i, which in turn yields the dis-
crete units corresponding to the generated text prefix.
To further enable streaming synthesis of speech wave-
forms, when the number of generated units reaches a
pre-defined chunk size Ω, we input this unit segment
into the vocoder to synthesize a speech segment, which
is then immediately played to the user. As a result,
users can start listening to the speech response without
waiting for the complete text response to be generated, ensuring low response latency that is not
affected by the length of the text response. Algorithm 1 describes the above process. Additionally,
since the speech decoder uses non-autoregressive modeling, the alignment corresponding to each
text token yTi , specifically Aλ·(i−1)+1:λ·i, is generated in parallel within the chunk. Therefore, the
decoding speed for generating both text and speech responses simultaneously is not significantly
different from the speed of generating text response alone.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3 CONSTRUCTION OF SPEECH INSTRUCTION DATA: INSTRUCTS2S-200K

To train LLaMA-Omni, we need triplet data consisting of <speech instruction, text response, speech
response>. However, most publicly available instruction data is in text form. Therefore, we con-
struct speech instruction data based on existing text instruction data through the following process:

Step 1: Instruction Rewriting Since speech input has different characteristics compared to text
input, we rewrite the text instructions according to the following rules: (1) Add appropriate filler
words (such as “hey”, “so”, “uh”, “um”, etc.) to the instructions to simulate natural speech patterns.
(2) Convert non-text symbols in the instructions (such as numbers) into their corresponding spoken
forms to ensure correct synthesis by TTS. (3) Modify the instructions to be relatively brief without
excessive verbiage. We use the Llama-3-70B-Instruct4 model to rewrite the instructions according
to these rules. The prompt can be found in Appendix A.

Step 2: Response Generation In speech interactions, existing responses from text instructions
are not suitable for direct use as speech instruction responses. This is because, in text-based inter-
actions, models tend to generate lengthy responses, using complex sentences and possibly including
non-verbal elements like ordered lists or parentheses. However, in speech interactions, concise yet
informative responses are typically preferred (Cho et al., 2024). Therefore, we use the Llama-3-
70B-Instruct model to generate responses for speech instructions according to the following rules:
(1) The response should not contain content that cannot be synthesized by the TTS model, such as
parentheses, ordered lists, etc. (2) The response should be very concise and to the point, avoiding
lengthy explanations. The prompt can be found in Appendix A.

Step 3: Speech Synthesis After obtaining the instructions and responses suitable for speech in-
teractions, we need to further convert them into speech using TTS models. For the instructions, to
make the synthesized speech sound more natural, we use the CosyVoice-300M-SFT (Du et al., 2024)
model5, randomly selecting either a male or female voice for each instruction. For the responses,
we use the VITS (Kim et al., 2021) model6 trained on the LJSpeech (Ito & Johnson, 2017) dataset
to synthesize the responses into a standard voice.

Table 1: Statistical information of the
InstructS2S-200K dataset.

Statistic Value
Speech Instruction Duration 418h
Speech Response Duration 1058h

Avg. Speech Instruction Duration 7.5s
Avg. Speech Response Duration 19.0s

Avg. Text Instruction Length 21.7
Avg. Text Response Length 39.5
Avg. Unit Sequence Length 553.6

For the basic text instructions, we collect around 50K in-
structions from the Alpaca dataset7 (Taori et al., 2023),
which covers a wide range of topics. Additionally,
we gather around 150K instructions from the UltraChat
dataset8 (Ding et al., 2023), which primarily consist of
questions about the world. Note that UltraChat is a large-
scale multi-turn conversation dataset, but we only select
the first 150K entries and use only the first-round in-
struction. Using the above datasets and data processing
pipeline, we ultimately obtain 200K speech instruction
data, referred to as InstructS2S-200K. The detailed sta-
tistical information is listed in Table 1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Datasets For the training data, we use the InstructS2S-200K dataset mentioned in Section 3,
which includes 200K speech instruction data. To extract discrete units corresponding to the target
speech, we use a pre-trained K-means quantizer9, which has learned 1000 clusters from the HuBERT

4https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
5https://github.com/FunAudioLLM/CosyVoice
6https://github.com/jaywalnut310/vits
7https://huggingface.co/datasets/tatsu-lab/alpaca
8https://github.com/thunlp/UltraChat
9https://dl.fbaipublicfiles.com/hubert/mhubert_base_vp_en_es_fr_it3_

L11_km1000.bin

5

https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://github.com/FunAudioLLM/CosyVoice
https://github.com/jaywalnut310/vits
https://huggingface.co/datasets/tatsu-lab/alpaca
https://github.com/thunlp/UltraChat
https://dl.fbaipublicfiles.com/hubert/mhubert_base_vp_en_es_fr_it3_L11_km1000.bin
https://dl.fbaipublicfiles.com/hubert/mhubert_base_vp_en_es_fr_it3_L11_km1000.bin

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

features. The pretrained HiFi-GAN vocoder10 (Kong et al., 2020; Polyak et al., 2021) is used to
synthesize discrete units into waveform. For the evaluation data, we select two subsets from Alpaca-
Eval11 (Li et al., 2023): helpful base and vicuna, as their questions are more suitable for speech
interaction scenarios. We remove questions related to math and code, resulting in a total of 199
instructions. To obtain the speech version, we use the CosyVoice-300M-SFT model to synthesize
the instructions into speech. We refer to this test set as InstructS2S-Eval in the following sections.

Model Configuration We use the encoder of Whisper-large-v3 as the speech encoder, and use
Llama-3.1-8B-Instruct as the LLM. The speech adapter performs a 5× downsampling on the speech
representations. The speech decoder consists of 2 Transformer layers with the same architecture
as LLaMA, with a hidden dimension of 4096, 32 attention heads, and a feed-forward network di-
mension of 11008, which contains 425M parameters. The upsample factor λ is set to 25. For the
minimum unit chunk size Ω input to the vocoder, we set Ω = +∞ in the offline scenario, meaning
we wait for the entire unit sequence to be generated before inputting it to the vocoder for speech
synthesis. In the streaming scenario, we adjust the value of Ω within the range of [10, 20, 40, 60,
80, 100] to control the response latency of the model.

Training LLaMA-Omni follows a two-stage training process. In the first stage, we train the speech
adapter and the LLM with a batch size of 32 for 3 epochs. We use a cosine learning rate scheduler
with the first 3% of steps for warmup, and the peak learning rate is set to 2e-5. In the second
stage, we train the speech decoder, using the same batch size, number of steps, and learning rate
scheduler as the first stage, but with the peak learning rate set to 2e-4. The entire training process
takes approximately 65 hours on 4 NVIDIA L40 GPUs.

4.2 EVALUATION

Since LLaMA-Omni can generate both text and speech responses based on speech instructions,
we evaluate the model’s performance on two tasks: speech-to-text instruction-following (S2TIF)
and speech-to-speech instruction-following (S2SIF). We use greedy search to ensure reproducible
experimental results. For the S2SIF task, we further evaluate the model in two scenarios: offline and
streaming. In the offline scenario, the model generates the text response first, and then synthesizes
the complete speech. In the streaming scenario, the speech response is generated simultaneously
with the text response. We use the following metrics to evaluate the model:

ChatGPT Score To evaluate the model’s ability to follow speech instructions, we use GPT-
4o (OpenAI, 2024) to score the model’s responses. For the S2TIF task, scoring is based on the
transcribed text of the speech instructions and the model’s text response. For the S2SIF task, we first
transcribe the model’s speech responses into text using the Whisper-large-v3 model, and then score
it in the same manner as the S2TIF task. GPT-4o gives a score between 1 and 5 based on factors
such as helpfulness, relevance, fluency, and suitability for speech interaction. The detailed prompt
for evaluation can be found in Appendix A.

ASR-WER To evaluate the alignment between text and speech responses, we use the Whisper-
large-v3 model to transcribe the speech responses into text, and then calculate the Word Error Rate
(WER) between the transcribed text and the text response, which is referred to as ASR-WER.

UTMOS To evaluate the quality of the generated speech, we utilize a Mean Opinion Score (MOS)
prediction model called UTMOS12 (Saeki et al., 2022), which is capable of predicting the MOS score
of the speech to assess its naturalness.

Latency The response latency is a key metric for speech interaction models, referring to the time
interval between the input of a speech instruction and the start of the speech response, which has a
significant impact on user experience. We measure the latency on 1 NVIDIA L40 GPU.

10https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/vocoder/code_
hifigan/mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj/g_00500000

11https://github.com/tatsu-lab/alpaca_eval
12https://github.com/tarepan/SpeechMOS

6

https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/vocoder/code_hifigan/mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj/g_00500000
https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/vocoder/code_hifigan/mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj/g_00500000
https://github.com/tatsu-lab/alpaca_eval
https://github.com/tarepan/SpeechMOS

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Results on the InstructS2S-Eval benchmark in the offline scenario. ∆ refers to the differ-
ence in ChatGPT Score between the S2SIF and S2TIF tasks.

Model ChatGPT Score ASR-WER ↓ UTMOS ↑S2TIF S2SIF ∆

SpeechGPT 2.98 2.19 0.79 45.00 3.8958
SALMONN + Orca 3.44 3.40 0.04 3.78 3.8286
Qwen2-Audio + Orca 3.47 3.38 0.09 6.77 3.6119
LLaMA-Omni 3.99 3.47 0.52 10.82 3.9296

Speech Rate To measure the speech rate of the generated speech, we use the metric Words Per
Second (WPS), which represents the average number of words per second in the generated speech.

4.3 BASELINE SYSTEMS

We include the following speech-language models as baseline systems:

SpeechGPT SpeechGPT (Zhang et al., 2023) is a speech-language model that supports both
speech input and output. We use the chain-of-modality prompting adopted in the original paper
for decoding, which sequentially outputs the text instruction, text response, and speech response
based on the speech instruction.

SALMONN + Orca SALMONN (Tang et al., 2024) is a LLM capable of accepting speech and
audio inputs and responding with text, enabling it to perform the S2TIF task. For the S2SIF task, we
add a TTS model called Orca13 after SALMONN. Orca is an industrial TTS model that supports both
streaming and offline speech synthesis, delivering excellent performance. This integrated system
enables speech synthesis to begin concurrently with the generation of the text response.

Qwen2-Audio + Orca Qwen2-Audio (Chu et al., 2024) is a powerful general-purpose audio un-
derstanding model capable of performing various audio-related tasks, including the S2TIF task. We
also build a cascaded system with Qwen2-Audio and Orca to complete the S2SIF task.

When using Orca for streaming speech synthesis, we need to set a word chunk size Θ, which means
that speech synthesis is triggered every time Θ new words arrive. In our experiments, we varies Θ
within the range of [1, 3, 5, 7, 9] to control the response latency of cascaded systems.

4.4 RESULTS IN THE OFFLINE SCENARIO

Table 2 presents the results on the InstructS2S-Eval benchmark in the offline scenario. For the
S2TIF task, LLaMA-Omni achieves the highest ChatGPT Score, significantly outperforming the
baseline systems. We attribute this to two key factors. First, our model is built upon the latest
Llama-3.1-8B-Instruct model, leveraging its strong text instruction-following capabilities. Second,
our InstructS2S-200K dataset effectively aligns the model with speech interaction scenarios, en-
suring that its responses are both high-quality and well-suited to speech contexts. In comparison,
SALMONN and Qwen2-Audio, as speech-to-text models, have not been aligned with speech inter-
action scenarios. As a result, their responses often include formatted content and a lot of redundant
explanations, making them less suitable for such contexts.

For the S2SIF task, LLaMA-Omni still achieves the highest ChatGPT score among all models. We
observe that scores for the S2SIF task are generally lower than those for the S2TIF task. This
decline is primarily due to errors introduced during the speech synthesis process and the reliance on
an ASR model for evaluation. The two cascaded baseline systems, which use industrial TTS models
for speech synthesis, exhibit the smallest decline in scores. For the end-to-end models, LLaMA-
Omni demonstrates a smaller drop in score compared to SpeechGPT, indicating that LLaMA-Omni
has stronger speech generation capabilities. This can be further verified by the ASR-WER metric:

13https://github.com/Picovoice/orca

7

https://github.com/Picovoice/orca

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

200 300 400 500 600 700 800

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

C
ha

tG
PT

 S
co

re

6000 8000

LLaMA-Omni
LLaMA-Omni (Offline)
SALMONN + Orca
SALMONN + Orca (Offline)
Qwen2-Audio + Orca
Qwen2-Audio + Orca (Offline)
SpeechGPT
SpeechGPT (Offline)

Latency (ms)

(a) ChatGPT Score against latency.

200 300 400 500 600 700 800

10

20

30

40

A
SR

-W
ER

6000 8000

LLaMA-Omni
LLaMA-Omni (Offline)
SALMONN + Orca
SALMONN + Orca (Offline)
Qwen2-Audio + Orca
Qwen2-Audio + Orca (Offline)
SpeechGPT
SpeechGPT (Offline)

Latency (ms)

(b) ASR-WER against latency.

200 300 400 500 600 700 800

2.8

3.0

3.2

3.4

3.6

3.8

U
TM

O
S

6000 8000

LLaMA-Omni
LLaMA-Omni (Offline)
SALMONN + Orca
SALMONN + Orca (Offline)
Qwen2-Audio + Orca
Qwen2-Audio + Orca (Offline)
SpeechGPT
SpeechGPT (Offline)

Latency (ms)

(c) UTMOS against latency.

200 300 400 500 600 700 800
1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

W
or

ds
 P

er
 S

ec
on

d
(W

PS
)

6000 8000

LLaMA-Omni
LLaMA-Omni (Offline)
SALMONN + Orca
SALMONN + Orca (Offline)
Qwen2-Audio + Orca
Qwen2-Audio + Orca (Offline)
SpeechGPT
SpeechGPT (Offline)

Latency (ms)

(d) WPS against latency.

Figure 3: Results on the InstructS2S-Eval benchmark in the streaming scenario. We report the
ChatGPT Score, ASR-WER, UTMOS, and WPS under different latency conditions.

the cascaded systems achieve the lowest ASR-WER, while LLaMA-Omni’s ASR-WER is slightly
higher but still acceptable. In contrast, SpeechGPT’s ASR-WER is significantly higher, suggesting
poor alignment between its speech and text responses. Although the alignment between LLaMA-
Omni’s speech and text responses is slightly lower than that of the cascaded systems, this is primarily
due to the fact that LLaMA-Omni’s speech decoder is trained on only approximately 1K hours of
data, which is far less than the industrial TTS model. We believe that with more training data,
LLaMA-Omni’s performance could be further improved. Finally, the UTMOS metric shows that
LLaMA-Omni generates satisfactory speech quality, slightly surpassing other baseline models.

4.5 RESULTS IN THE STREAMING SCENARIO

In the streaming scenario, the model generates speech responses simultaneously while generating
text responses. For SpeechGPT and LLaMA-Omni, the response latency is controlled by adjusting
the unit chunk size Ω, whereas for cascaded systems, it is managed by adjusting the word chunk size
Θ. In Figure 3, we present the ChatGPT Score, ASR-WER, UTMOS and WPS results of all models
under different latency conditions. Firstly, we examine the results of LLaMA-Omni under different
latency conditions and observe that LLaMA-Omni can achieve a minimum latency of 236ms (with
Ω = 10), which is even lower than GPT-4o’s average audio latency of 320ms. As latency increases
(Ω grows larger), we notice a slight decrease in the ChatGPT Score, while ASR-WER shows a minor
improvement. We believe this is mainly because the vocoder may handle shorter unit sequences
more reliably than longer ones, as it is typically trained on shorter sequences. However, when Ω is
smaller, the speech is divided into more segments for synthesis, which increases discontinuities in
the speech. This leads to a decline in speech quality, and consequently, a decrease in the UTMOS
score is observed. In addition, the speech generated by LLaMA-Omni maintains almost consistent
speech rate across different latency conditions. In summary, LLaMA-Omni achieves relatively stable

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Number of Votes

Qwen2-Audio
+ Orca

SALMONN
+ Orca

50 20 30

48 28 24

LLaMA-Omni Wins Tie LLaMA-Omni Loses

(a) Helpfulness.

0 20 40 60 80 100
Number of Votes

Qwen2-Audio
+ Orca

SALMONN
+ Orca

42 20 38

44 33 23

LLaMA-Omni Wins Tie LLaMA-Omni Loses

(b) Naturalness.

Figure 4: Results of human evaluation from the perspectives of helpfulness and naturalness.

performance under varying latency conditions. At a latency of 563ms (Ω = 100), the results of all
metrics are relatively close to those in the offline scenario.

Next, we compare LLaMA-Omni with other baseline systems. For SpeechGPT, its decoding la-
tency is significantly higher than other systems (>4500ms) due to the sequential generation of text
instructions and text responses before generating units. Additionally, the quality of its generated
responses is relatively poor. For cascade systems based on streaming TTS, we observe that both
Qwen2-Audio + Orca and SALMONN + Orca can achieve latencies below 300ms. However, they
exhibit two notable issues. Firstly, in the streaming scenario, their ChatGPT Score and ASR-WER
show significant gaps compared to the offline scenario, indicating that streaming speech synthesis at
the word level tends to introducing additional errors. Secondly, as shown in Figure 3(d), when the
latency is low, the overall speech rate of cascaded systems drops sharply. This is mainly because the
pauses between words become more frequent, resulting in reduced naturalness and coherence of the
speech. In contrast, LLaMA-Omni’s streaming unit generation is performed within the end-to-end
model, requiring only a cascaded vocoder to complete the streaming unit-to-waveform conversion.
As a result, the overall prosody and rhythm of the speech remain almost unchanged across different
latency levels. This demonstrates the advantage of end-to-end models over cascade systems based on
streaming TTS. This can be more intuitively experienced by listening to the provided audio samples.
We provide the numerical results of all models in the streaming scenario in Appendix C.

4.6 HUMAN EVALUATION

To better understand human preferences for model responses in real-time speech interaction sce-
narios, we further conduct a human evaluation. Specifically, we perform side-by-side comparisons
between LLaMA-Omni (Ω = 40, latency=347ms) and two cascaded systems: SALMONN+Orca
(Θ = 3, latency=352ms) and Qwen2-Audio+Orca (Θ = 3, latency=420ms). For each comparison,
we randomly select 20 speech instructions and collect the speech responses generated by the two
models. We then invite 5 participants to evaluate all samples from two key perspectives: helpfulness
and naturalness. Helpfulness evaluates whether the model follows the instructions and provides
appropriate responses, while naturalness evaluates the fluency and natural quality of the generated
speech. Participants compare each pair of samples rate them as win, tie, or lose for both aspects.
Finally, each pairwise model comparison results in a total of 100 votes. The results, shown in Fig-
ure 5, demonstrate that LLaMA-Omni achieves a higher win rate compared to the cascade systems
in both helpfulness and naturalness, confirming that LLaMA-Omni generates responses that better
align with human preferences.

5 RELATED WORK

Speech/Audio Language Models With the success of language models in the field of natural lan-
guage processing (Brown et al., 2020), researchers have begun exploring how to model speech or
audio using language models. Early work attempted to train language models on semantic tokens or
acoustic tokens of audio, enabling the generation of audio without the need for text (Lakhotia et al.,
2021; Nguyen et al., 2023; Borsos et al., 2023). Furthermore, by jointly training speech tokens and
text, decoder-only models like VALL-E (Wang et al., 2023b) and VioLA (Wang et al., 2023c) can
perform tasks such as speech recognition, speech translation, and speech synthesis. However, the
above models are not built upon LLMs. To harness the power of LLMs, many studies explore how to
build speech-language models based on LLMs like LLaMA, which can be further divided into two
types. The first type, represented by SpeechGPT (Zhang et al., 2023; 2024a), AudioPaLM (Ruben-
stein et al., 2023), and AnyGPT (Zhan et al., 2024), involves creating native multimodal speech-text
models by adding speech tokens to the LLM’s vocabulary and continuing pretraining using speech

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

and text data. However, this approach typically requires a large amount of data and substantial
computational resources. The second type typically involves adding a speech encoder before the
LLM and finetuning the entire model to equip it with speech understanding capabilities (Shu et al.,
2023; Deshmukh et al., 2023), such as speech recognition (Fathullah et al., 2024a; Yu et al., 2024;
Ma et al., 2024b; Hono et al., 2024), speech translation (Wu et al., 2023; Wang et al., 2023a; Chen
et al., 2024), or other general speech-to-text tasks (Chu et al., 2023; Tang et al., 2024; Chu et al.,
2024; Fathullah et al., 2024b; Das et al., 2024; Hu et al., 2024). However, these approaches typi-
cally focus only on speech or audio understanding without the ability to generate them. Compared
to previous work, LLaMA-Omni equips the LLM with both speech understanding and generation
capabilities, enabling it to perform general speech instruction-following tasks. Recently, some con-
temporary works such as Mini-Omni (Xie & Wu, 2024) and Moshi (Défossez et al., 2024) have
also focused on speech interactions with LLMs, aiming to improve the quality of speech response
by simultaneously generating both text and speech. Compared to them, our advantages include:
(1) LLaMA-Omni is built upon the latest LLM Llama-3.1-8B-Instruct model, which has stronger
reasoning capabilities; (2) We utilize CTC to adaptively learn the alignment between speech and
text responses, eliminating the need to pre-align speech and text during training; (3) Our training
only uses 200K data samples, which is several orders of magnitude less than theirs, and the training
requires only 4 GPUs for 3 days, making the training cost significantly lower.

Simultaneous Generation Streaming generation aims to begin producing output before the en-
tire input is received. This capability is crucial for maintaining synchronization between speak-
ers and listeners in various scenarios, such as streaming speech recognition and simultaneous in-
terpretation. In the case of large language models, having a streaming speech synthesis compo-
nent can significantly reduce latency between the model and its users. Popular streaming gener-
ation methods fall into three main categories: monotonic-attention-based methods (Raffel et al.,
2017), CTC-based methods (Graves et al., 2006b), and Transducer-based methods (Graves, 2012).
Monotonic-attention-based methods modify the traditional attention-based sequence-to-sequence
framework (Bahdanau, 2014) to support streaming generation. These methods rely on an exter-
nal module to manage the READ/WRITE policy, which can be either fixed (e.g., Wait-k (Ma et al.,
2018)) or adaptive (e.g., MMA (Ma et al., 2019), EDAtt (Papi et al., 2022), Seg2Seg (Zhang & Feng,
2024)). CTC-based methods add a blank symbol to the target vocabulary to represent a WAIT action.
Streaming inference is achieved by removing adjacent repetitive tokens and blank symbols, which
has proven effective in simultaneous interpretation and streaming speech synthesis (Ma et al., 2023;
Zhang et al., 2024b; Ma et al., 2024a). Transducer-based methods are designed to bridge the gap
between the non-autoregressive nature of CTC-based methods and the autoregressive dependency
between target tokens. These approaches introduce an additional predictor to capture token depen-
dencies, and their variants have also shown strong performance in simultaneous interpretation (Liu
et al., 2021; Tang et al., 2023) and streaming speech synthesis (Chen et al., 2021). For the stream-
ing TTS task, many studies employ straightforward lookahead strategies built upon models like
Tacotron 2 (Shen et al., 2018), such as waiting for a few future words (Ma et al., 2020; Stephenson
et al., 2020) or leveraging a language model to predict several future words (Saeki et al., 2021a;b;
Liu et al., 2022), enabling improved streaming speech synthesis. Dekel et al. (2024) achieves stream-
ing speech synthesis simultaneously with the output stream of LLMs by employing two cascaded
streamable models that sequentially generate phonemes and speech in real-time.

6 CONCLUSION

In this paper, we propose an innovative model architecture, LLaMA-Omni, which enables low-
latency and high-quality speech interaction with LLMs. LLaMA-Omni is built upon the latest
Llama-3.1-8B-Instruct model, with the addition of a speech encoder for speech understanding
and a streaming speech decoder that can generate both text and speech responses simultaneously.
To align the model with speech interaction scenarios, we construct a speech instruction dataset
InstructionS2S-200K, which contains 200K speech instructions along with the speech responses.
Experimental results show that, compared to previous speech-language models, LLaMA-Omni de-
livers superior responses in both content and style, with a response latency as low as 236ms. More-
over, training LLaMA-Omni requires less than 3 days on 4 GPUs, enabling rapid development of
speech interaction models based on the latest LLMs. In the future, we plan to explore enhancing the
expressiveness of generated speech responses and improving real-time interaction capabilities.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Dzmitry Bahdanau. Neural machine translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

Zalán Borsos, Raphaël Marinier, Damien Vincent, Eugene Kharitonov, Olivier Pietquin, Matt Shar-
ifi, Dominik Roblek, Olivier Teboul, David Grangier, Marco Tagliasacchi, et al. Audiolm: a
language modeling approach to audio generation. IEEE/ACM transactions on audio, speech, and
language processing, 31:2523–2533, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Jiawei Chen, Xu Tan, Yichong Leng, Jin Xu, Guihua Wen, Tao Qin, and Tie-Yan Liu. Speech-t:
Transducer for text to speech and beyond. Advances in Neural Information Processing Systems,
34:6621–6633, 2021.

Xi Chen, Songyang Zhang, Qibing Bai, Kai Chen, and Satoshi Nakamura. LLaST: Improved end-
to-end speech translation system leveraged by large language models. In Lun-Wei Ku, An-
dre Martins, and Vivek Srikumar (eds.), Findings of the Association for Computational Lin-
guistics ACL 2024, pp. 6976–6987, Bangkok, Thailand and virtual meeting, August 2024.
Association for Computational Linguistics. URL https://aclanthology.org/2024.
findings-acl.416.

Hyundong Justin Cho, Nicolaas Paul Jedema, Leonardo F. R. Ribeiro, Karishma Sharma, Pedro
Szekely, Alessandro Moschitti, Ruben Janssen, and Jonathan May. Speechworthy instruction-
tuned language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Pro-
ceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp.
10652–10670, Miami, Florida, USA, November 2024. Association for Computational Linguis-
tics. URL https://aclanthology.org/2024.emnlp-main.595.

Yunfei Chu, Jin Xu, Xiaohuan Zhou, Qian Yang, Shiliang Zhang, Zhijie Yan, Chang Zhou, and
Jingren Zhou. Qwen-audio: Advancing universal audio understanding via unified large-scale
audio-language models. arXiv preprint arXiv:2311.07919, 2023.

Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei, Zhifang Guo, Yichong Leng, Yuanjun Lv,
Jinzheng He, Junyang Lin, Chang Zhou, and Jingren Zhou. Qwen2-audio technical report. arXiv
preprint arXiv:2407.10759, 2024.

Nilaksh Das, Saket Dingliwal, Srikanth Ronanki, Rohit Paturi, David Huang, Prashant Mathur, Jie
Yuan, Dhanush Bekal, Xing Niu, Sai Muralidhar Jayanthi, et al. Speechverse: A large-scale
generalizable audio language model. arXiv preprint arXiv:2405.08295, 2024.

Alexandre Défossez, Laurent Mazaré, Manu Orsini, Amélie Royer, Patrick Pérez, Hervé Jégou,
Edouard Grave, and Neil Zeghidour. Moshi: a speech-text foundation model for real-time dia-
logue. Technical report, Kyutai, September 2024. URL http://kyutai.org/Moshi.pdf.

Avihu Dekel, Slava Shechtman, Raul Fernandez, David Haws, Zvi Kons, and Ron Hoory. Speak
while you think: Streaming speech synthesis during text generation. In ICASSP 2024-2024 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 11931–
11935. IEEE, 2024.

Soham Deshmukh, Benjamin Elizalde, Rita Singh, and Huaming Wang. Pengi: An audio language
model for audio tasks. Advances in Neural Information Processing Systems, 36:18090–18108,
2023.

11

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/2024.findings-acl.416
https://aclanthology.org/2024.findings-acl.416
https://aclanthology.org/2024.emnlp-main.595
http://kyutai.org/Moshi.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong
Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional
conversations. arXiv preprint arXiv:2305.14233, 2023.

Zhihao Du, Qian Chen, Shiliang Zhang, Kai Hu, Heng Lu, Yexin Yang, Hangrui Hu, Siqi Zheng, Yue
Gu, Ziyang Ma, et al. Cosyvoice: A scalable multilingual zero-shot text-to-speech synthesizer
based on supervised semantic tokens. arXiv preprint arXiv:2407.05407, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yassir Fathullah, Chunyang Wu, Egor Lakomkin, Junteng Jia, Yuan Shangguan, Ke Li, Jinxi Guo,
Wenhan Xiong, Jay Mahadeokar, Ozlem Kalinli, et al. Prompting large language models with
speech recognition abilities. In ICASSP 2024-2024 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 13351–13355. IEEE, 2024a.

Yassir Fathullah, Chunyang Wu, Egor Lakomkin, Ke Li, Junteng Jia, Yuan Shangguan, Jay Ma-
hadeokar, Ozlem Kalinli, Christian Fuegen, and Mike Seltzer. Audiochatllama: Towards general-
purpose speech abilities for llms. In Proceedings of the 2024 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies (Vol-
ume 1: Long Papers), pp. 5522–5532, 2024b.

Alex Graves. Sequence transduction with recurrent neural networks. arXiv preprint
arXiv:1211.3711, 2012.

Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connectionist tempo-
ral classification: Labelling unsegmented sequence data with recurrent neural networks. In Pro-
ceedings of the 23rd International Conference on Machine Learning, ICML ’06, pp. 369–376,
New York, NY, USA, 2006a. Association for Computing Machinery. ISBN 1595933832. doi:
10.1145/1143844.1143891. URL https://doi.org/10.1145/1143844.1143891.

Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connectionist tem-
poral classification: labelling unsegmented sequence data with recurrent neural networks. In
Proceedings of the 23rd international conference on Machine learning, pp. 369–376, 2006b.

Yukiya Hono, Koh Mitsuda, Tianyu Zhao, Kentaro Mitsui, Toshiaki Wakatsuki, and Kei Sawada. In-
tegrating pre-trained speech and language models for end-to-end speech recognition. In Lun-Wei
Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association for Computational
Linguistics ACL 2024, pp. 13289–13305, Bangkok, Thailand and virtual meeting, August 2024.
Association for Computational Linguistics. URL https://aclanthology.org/2024.
findings-acl.787.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov,
and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked
prediction of hidden units. IEEE/ACM transactions on audio, speech, and language processing,
29:3451–3460, 2021.

Shujie Hu, Long Zhou, Shujie Liu, Sanyuan Chen, Hongkun Hao, Jing Pan, Xunying Liu, Jinyu
Li, Sunit Sivasankaran, Linquan Liu, et al. Wavllm: Towards robust and adaptive speech large
language model. arXiv preprint arXiv:2404.00656, 2024.

Keith Ito and Linda Johnson. The lj speech dataset. https://keithito.com/
LJ-Speech-Dataset/, 2017.

Jaehyeon Kim, Jungil Kong, and Juhee Son. Conditional variational autoencoder with adversarial
learning for end-to-end text-to-speech. In International Conference on Machine Learning, pp.
5530–5540. PMLR, 2021.

Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. Hifi-gan: Generative adversar-
ial networks for efficient and high fidelity speech synthesis. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural In-
formation Processing Systems, volume 33, pp. 17022–17033. Curran Associates, Inc.,

12

https://doi.org/10.1145/1143844.1143891
https://aclanthology.org/2024.findings-acl.787
https://aclanthology.org/2024.findings-acl.787
https://keithito.com/LJ-Speech-Dataset/
https://keithito.com/LJ-Speech-Dataset/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/c5d736809766d46260d816d8dbc9eb44-Paper.pdf.

Kushal Lakhotia, Eugene Kharitonov, Wei-Ning Hsu, Yossi Adi, Adam Polyak, Benjamin Bolte,
Tu-Anh Nguyen, Jade Copet, Alexei Baevski, Abdelrahman Mohamed, et al. On generative
spoken language modeling from raw audio. Transactions of the Association for Computational
Linguistics, 9:1336–1354, 2021.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca_eval, 5 2023.

Dan Liu, Mengge Du, Xiaoxi Li, Ya Li, and Enhong Chen. Cross attention augmented transducer
networks for simultaneous translation. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pp. 39–55, 2021.

Danni Liu, Changhan Wang, Hongyu Gong, Xutai Ma, Yun Tang, and Juan Pino. From start to finish:
Latency reduction strategies for incremental speech synthesis in simultaneous speech-to-speech
translation. In Interspeech 2022, pp. 1771–1775, 2022. doi: 10.21437/Interspeech.2022-10568.

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng, Kaibo Liu, Baigong Zheng, Chuanqiang
Zhang, Zhongjun He, Hairong Liu, Xing Li, et al. Stacl: Simultaneous translation with im-
plicit anticipation and controllable latency using prefix-to-prefix framework. arXiv preprint
arXiv:1810.08398, 2018.

Mingbo Ma, Baigong Zheng, Kaibo Liu, Renjie Zheng, Hairong Liu, Kainan Peng, Kenneth Church,
and Liang Huang. Incremental text-to-speech synthesis with prefix-to-prefix framework. In Find-
ings of the Association for Computational Linguistics: EMNLP 2020, pp. 3886–3896, 2020.

Xutai Ma, Juan Pino, James Cross, Liezl Puzon, and Jiatao Gu. Monotonic multihead attention.
arXiv preprint arXiv:1909.12406, 2019.

Zhengrui Ma, Shaolei Zhang, Shoutao Guo, Chenze Shao, Min Zhang, and Yang Feng. Non-
autoregressive streaming transformer for simultaneous translation. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 5177–5190, 2023.

Zhengrui Ma, Qingkai Fang, Shaolei Zhang, Shoutao Guo, Yang Feng, and Min Zhang. A
non-autoregressive generation framework for end-to-end simultaneous speech-to-any translation.
arXiv preprint arXiv:2406.06937, 2024a.

Ziyang Ma, Guanrou Yang, Yifan Yang, Zhifu Gao, Jiaming Wang, Zhihao Du, Fan Yu, Qian Chen,
Siqi Zheng, Shiliang Zhang, et al. An embarrassingly simple approach for llm with strong asr
capacity. arXiv preprint arXiv:2402.08846, 2024b.

Tu Anh Nguyen, Eugene Kharitonov, Jade Copet, Yossi Adi, Wei-Ning Hsu, Ali Elkahky, Paden
Tomasello, Robin Algayres, Benoı̂t Sagot, Abdelrahman Mohamed, and Emmanuel Dupoux.
Generative spoken dialogue language modeling. Transactions of the Association for Com-
putational Linguistics, 11:250–266, 2023. doi: 10.1162/tacl a 00545. URL https://
aclanthology.org/2023.tacl-1.15.

OpenAI. Introducing chatgpt, 2022. URL https://openai.com/blog/chatgpt.

OpenAI. Hello gpt-4o, 2024. URL https://openai.com/index/hello-gpt-4o/.

Sara Papi, Matteo Negri, and Marco Turchi. Attention as a guide for simultaneous speech translation.
arXiv preprint arXiv:2212.07850, 2022.

Adam Polyak, Yossi Adi, Jade Copet, Eugene Kharitonov, Kushal Lakhotia, Wei-Ning Hsu, Ab-
delrahman Mohamed, and Emmanuel Dupoux. Speech Resynthesis from Discrete Disentangled
Self-Supervised Representations. In Proc. Interspeech 2021, 2021.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. In International conference on ma-
chine learning, pp. 28492–28518. PMLR, 2023.

13

https://proceedings.neurips.cc/paper_files/paper/2020/file/c5d736809766d46260d816d8dbc9eb44-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c5d736809766d46260d816d8dbc9eb44-Paper.pdf
https://github.com/tatsu-lab/alpaca_eval
https://aclanthology.org/2023.tacl-1.15
https://aclanthology.org/2023.tacl-1.15
https://openai.com/blog/chatgpt
https://openai.com/index/hello-gpt-4o/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Colin Raffel, Minh-Thang Luong, Peter J Liu, Ron J Weiss, and Douglas Eck. Online and linear-time
attention by enforcing monotonic alignments. In International conference on machine learning,
pp. 2837–2846. PMLR, 2017.

Paul K Rubenstein, Chulayuth Asawaroengchai, Duc Dung Nguyen, Ankur Bapna, Zalán Borsos,
Félix de Chaumont Quitry, Peter Chen, Dalia El Badawy, Wei Han, Eugene Kharitonov, et al.
Audiopalm: A large language model that can speak and listen. arXiv preprint arXiv:2306.12925,
2023.

Takaaki Saeki, Shinnosuke Takamichi, and Hiroshi Saruwatari. Incremental text-to-speech synthesis
using pseudo lookahead with large pretrained language model. IEEE Signal Processing Letters,
28:857–861, 2021a.

Takaaki Saeki, Shinnosuke Takamichi, and Hiroshi Saruwatari. Low-latency incremental text-to-
speech synthesis with distilled context prediction network. In 2021 IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU), pp. 749–756. IEEE, 2021b.

Takaaki Saeki, Detai Xin, Wataru Nakata, Tomoki Koriyama, Shinnosuke Takamichi, and Hiroshi
Saruwatari. Utmos: Utokyo-sarulab system for voicemos challenge 2022. In Interspeech 2022,
pp. 4521–4525, 2022. doi: 10.21437/Interspeech.2022-439.

Jonathan Shen, Ruoming Pang, Ron J. Weiss, Mike Schuster, Navdeep Jaitly, Zongheng Yang,
Zhifeng Chen, Yu Zhang, Yuxuan Wang, Rj Skerrv-Ryan, Rif A. Saurous, Yannis Agiomvr-
giannakis, and Yonghui Wu. Natural tts synthesis by conditioning wavenet on mel spectrogram
predictions. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 4779–4783, 2018. doi: 10.1109/ICASSP.2018.8461368.

Yu Shu, Siwei Dong, Guangyao Chen, Wenhao Huang, Ruihua Zhang, Daochen Shi, Qiqi Xiang,
and Yemin Shi. Llasm: Large language and speech model. arXiv preprint arXiv:2308.15930,
2023.

Brooke Stephenson, Laurent Besacier, Laurent Girin, and Thomas Hueber. What the future brings:
Investigating the impact of lookahead for incremental neural tts. In Interspeech, 2020. URL
https://api.semanticscholar.org/CorpusID:221507498.

Changli Tang, Wenyi Yu, Guangzhi Sun, Xianzhao Chen, Tian Tan, Wei Li, Lu Lu, Zejun MA,
and Chao Zhang. SALMONN: Towards generic hearing abilities for large language models.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=14rn7HpKVk.

Yun Tang, Anna Sun, Hirofumi Inaguma, Xinyue Chen, Ning Dong, Xutai Ma, Paden Tomasello,
and Juan Pino. Hybrid transducer and attention based encoder-decoder modeling for speech-
to-text tasks. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 12441–12455, 2023.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Chen Wang, Minpeng Liao, Zhongqiang Huang, Jinliang Lu, Junhong Wu, Yuchen Liu, Chengqing
Zong, and Jiajun Zhang. Blsp: Bootstrapping language-speech pre-training via behavior align-
ment of continuation writing. arXiv preprint arXiv:2309.00916, 2023a.

Chengyi Wang, Sanyuan Chen, Yu Wu, Ziqiang Zhang, Long Zhou, Shujie Liu, Zhuo Chen, Yanqing
Liu, Huaming Wang, Jinyu Li, et al. Neural codec language models are zero-shot text to speech
synthesizers. arXiv preprint arXiv:2301.02111, 2023b.

14

https://api.semanticscholar.org/CorpusID:221507498
https://openreview.net/forum?id=14rn7HpKVk
https://openreview.net/forum?id=14rn7HpKVk
https://github.com/tatsu-lab/stanford_alpaca
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Tianrui Wang, Long Zhou, Ziqiang Zhang, Yu Wu, Shujie Liu, Yashesh Gaur, Zhuo Chen, Jinyu
Li, and Furu Wei. Viola: Unified codec language models for speech recognition, synthesis, and
translation. arXiv preprint arXiv:2305.16107, 2023c.

Jian Wu, Yashesh Gaur, Zhuo Chen, Long Zhou, Yimeng Zhu, Tianrui Wang, Jinyu Li, Shujie Liu,
Bo Ren, Linquan Liu, et al. On decoder-only architecture for speech-to-text and large language
model integration. In 2023 IEEE Automatic Speech Recognition and Understanding Workshop
(ASRU), pp. 1–8. IEEE, 2023.

Zhifei Xie and Changqiao Wu. Mini-omni: Language models can hear, talk while thinking in
streaming. arXiv preprint arXiv:2408.16725, 2024.

Wenyi Yu, Changli Tang, Guangzhi Sun, Xianzhao Chen, Tian Tan, Wei Li, Lu Lu, Zejun Ma, and
Chao Zhang. Connecting speech encoder and large language model for asr. In ICASSP 2024-
2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
12637–12641. IEEE, 2024.

Jun Zhan, Junqi Dai, Jiasheng Ye, Yunhua Zhou, Dong Zhang, Zhigeng Liu, Xin Zhang, Ruibin
Yuan, Ge Zhang, Linyang Li, Hang Yan, Jie Fu, Tao Gui, Tianxiang Sun, Yu-Gang Jiang, and
Xipeng Qiu. AnyGPT: Unified multimodal LLM with discrete sequence modeling. In Lun-Wei
Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 9637–9662, Bangkok,
Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
acl-long.521. URL https://aclanthology.org/2024.acl-long.521.

Dong Zhang, Shimin Li, Xin Zhang, Jun Zhan, Pengyu Wang, Yaqian Zhou, and Xipeng Qiu.
SpeechGPT: Empowering large language models with intrinsic cross-modal conversational abil-
ities. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association for
Computational Linguistics: EMNLP 2023, pp. 15757–15773, Singapore, December 2023. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.1055. URL
https://aclanthology.org/2023.findings-emnlp.1055.

Dong Zhang, Xin Zhang, Jun Zhan, Shimin Li, Yaqian Zhou, and Xipeng Qiu. Speechgpt-gen:
Scaling chain-of-information speech generation. arXiv preprint arXiv:2401.13527, 2024a.

Shaolei Zhang and Yang Feng. Unified segment-to-segment framework for simultaneous sequence
generation. Advances in Neural Information Processing Systems, 36, 2024.

Shaolei Zhang, Qingkai Fang, Shoutao Guo, Zhengrui Ma, Min Zhang, and Yang Feng. Stream-
speech: Simultaneous speech-to-speech translation with multi-task learning. arXiv preprint
arXiv:2406.03049, 2024b.

15

https://aclanthology.org/2024.acl-long.521
https://aclanthology.org/2023.findings-emnlp.1055

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A PROMPT

Prompt template of LLaMA-Omni

<|begin of text|><|start header id|>system<|end header id|>
You are a helpful language and speech assistant. You are able to understand the speech content that the user
provides, and assist the user with a variety of tasks using natural language. <|eot id|>
<|start header id|>user<|end header id|>
<speech>
Please answer the questions in the user’s input speech. <|eot id|>
<|start header id|>assistant<|end header id|>

Prompt for ChatGPT Scoring (Model: GPT-4o)

I need your help to evaluate the performance of several models in a speech interaction scenario. The
models receive the user’s speech input and respond with speech output. For evaluation purposes, both the
user’s speech input and the model’s speech response have been transcribed into text using Automatic Speech
Recognition (ASR). Your task is to rate the model’s responses based on the provided user input transcription
[Instruction] and the model’s output transcription [Response]. Please consider factors such as helpfulness,
relevance, fluency, and suitability for speech interaction in your evaluation, and provide a single score on a
scale from 1 to 5.

Below are the transcription of user’s instruction and models’ response:
[Instruction]: {instruction}
[Response]: {response}

After evaluating, please output the scores in JSON format: {score: ...}. You don’t need to provide any
explanations.

Prompt for Instruction Rewriting (Model: Llama-3-70B-Instruct)

Below is an instruction data containing the user’s instruction. I would like to generate a speech version of
this instruction for training a large language model that supports speech input. Therefore, please rewrite my
instruction data according to the following requirements:

1. Modify the instruction to simulate human speech, adding fillers as appropriate (but not too many ‘you
know’, ‘like’, etc.).
2. The question should not contain content that cannot be synthesized by the TTS model. Numbers should
be written in English words rather than Arabic numerals.
3. The question should be relatively brief without excessive verbiage.

[instruction]: {instruction}

Please output in JSON format as follows: {“question”: {question}}.

Prompt for Response Generation (Model: Llama-3-70B-Instruct)

Below is the transcribed text of a user’s speech query. Please provide a response to this question, which will
be converted to speech using TTS. Please follow these requirements for your response:

1. Your response should not contain content that cannot be synthesized by the TTS model, such as paren-
theses, ordered lists, etc. Numbers should be written in English words rather than Arabic numerals.
2. Your response should be very concise and to the point, avoiding lengthy explanations.

[instruction]: {instruction}

Please output in JSON format as follows: {“response”: {response}}.

B CASE STUDY

To intuitively understand the differences in responses from different models, we provide an example
in Table 3. It can be observed that the response of Qwen2-Audio are quite lengthy and include
elements such as line breaks and parentheses that cannot be synthesized into speech. The response

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 3: Responses from different models for the instruction: “How do I wrap a present neatly?”

Model Response
Qwen2-Audio Wrapping a present neatly can be a bit tricky, but with some practice and patience, you can master the art

of wrapping presents beautifully. Here are some steps to follow:\n\n1. Start with a clean, flat surface:
Find a clean, flat surface where you can work on wrapping your present. A large table or countertop works
well.\n\n2. Gather your supplies: You will need wrapping paper, gift wrap scissors, a ruler or measuring
tape, and any other decorations you want to use (such as ribbon, bows, or stickers).\n\n3. Measure the gift:
Use the ruler or measuring tape to measure the width and length of the gift. Make sure to add a little extra
space around the edges for wrapping.\n\n4. Cut the wrapping paper: Cut the wrapping paper to the size
you measured. If you have multiple pieces of wrapping paper, layer them together so that they fit neatly
around the gift.\n\n5. Fold the paper: Begin by folding one of the sides of the wrapping paper over the gift,
crease it well, and then fold the other side over the top. This creates a simple, yet attractive fold.\n\n6. Add
decorations: If you like, you can add decorations such as ribbon, bows, or stickers to the gift. Simply attach
them to the top of the gift using glue or double-sided tape.\n\n7. Wrap the gift: Starting at the bottom
of the gift, place a piece of wrapping paper over it. Bring the left side of the paper up over the gift, tuck
it in tightly, and press it down. Repeat this process on the right side of the gift, bringing the right side of
the paper up over the gift, tucking it in tightly, and pressing it down.\n\n8. Finish the edges: Once you
have wrapped the gift, trim off any excess paper along the edges using the gift wrap scissors. You can also
add additional touches such as a bow or decorative label to complete the look.\n\nRemember, the key to
wrapping a present neatly is to take your time and pay attention to detail. With practice, you’ll be able to
create beautiful wrapping paper presentations every time!

SALMONN To wrap a present neatly, you can start by laying out a clean and flat surface to work on. Then, place the
present on the surface and wrap it in a piece of wrapping paper that is slightly larger than the present. Fold
the paper in half and then in half again, so that the top and bottom flaps meet in the middle. Then, fold the
left and right flaps in towards the center, so that they meet at the top and bottom of the present. Finally, seal
the present by pressing the flaps together and using some tape to secure them.

SpeechGPT Wrapping a present neatly requires a few simple steps. First, you should fold the paper in half and then
unfold it. Then, you should place the present in the center of the paper and fold the paper around it. Finally,
you should tie the ends of the paper with a ribbon or string.

LLaMA-Omni To wrap a present neatly, start with a flat surface, place the gift in the center, and fold one edge of the
wrapping paper over the gift, crease it, and tape it down. Repeat this process with the remaining edges,
making sure to align them evenly and smooth out any air bubbles.

from SALMONN is also a bit long. The style of SpeechGPT’s response is more appropriate for
speech interaction scenarios, but the amount of information contained in its responses is less. In
contrast, the response given by LLaMA-Omni is more detailed and helpful while maintaining a
concise style, outperforming previous models in speech interaction scenarios.

C NUMERICAL RESULTS IN THE STREAMING SCENARIO

We present the numerical results of all models in streaming scenarios in Tables 4, 5, 6, and 7.

Table 4: Numerical results of LLaMA-Omni in the streaming scenario.

Ω
Latency (ms) ChatGPT Score ASR-WER UTMOS WPSLLM Vocoder Total

10 206.03 30.15 236.18 3.54 9.84 3.2304 2.76
20 236.18 45.23 281.41 3.56 9.91 3.4748 2.75
40 301.51 45.23 346.73 3.52 10.37 3.6688 2.74
60 361.81 50.25 412.06 3.52 10.47 3.7549 2.74
80 432.16 55.28 487.44 3.50 10.70 3.7858 2.73

100 497.49 65.33 562.81 3.49 10.71 3.8242 2.74
Offline 1542.71 211.06 1753.77 3.47 10.82 3.9296 2.73

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 5: Numerical results of SpeechGPT in the streaming scenario.

Ω
Latency (ms) ChatGPT Score ASR-WER UTMOS WPSLLM Vocoder Total

10 4899.50 30.15 4929.65 2.16 44.85 2.7099 1.95
20 5005.03 30.15 5035.18 2.22 42.03 3.1920 1.86
40 5547.74 40.20 5587.94 2.17 43.88 3.5106 1.89
60 6005.03 45.23 6050.25 2.16 43.35 3.6293 1.84
80 6160.80 55.28 6216.08 2.21 43.98 3.6970 1.87

100 8301.51 65.33 8366.83 2.20 43.74 3.7397 1.86
Offline 17919.60 170.85 18090.45 2.19 45.00 3.8958 1.85

Table 6: Numerical results of SALMONN + Orca in the streaming scenario.

Θ
Latency (ms) ChatGPT Score ASR-WER UTMOS WPSLLM TTS Total

1 212.45 19.71 232.16 3.28 6.64 3.0947 1.86
3 316.59 35.08 351.67 3.09 8.65 3.7338 2.91
5 428.79 32.08 460.87 3.04 9.23 3.7750 3.18
7 536.47 45.90 582.37 3.06 8.49 3.7972 3.20
9 659.57 69.38 728.95 3.23 7.07 3.8060 3.22

Offline 4274.48 1049.59 5324.07 3.40 3.78 3.8286 3.31

Table 7: Numerical results of Qwen2-Audio + Orca in the streaming scenario.

Θ
Latency (ms) ChatGPT Score ASR-WER UTMOS WPSLLM TTS Total

1 289.46 19.15 308.61 2.79 25.25 2.8597 1.90
3 381.66 38.19 419.85 2.95 13.30 3.5529 2.91
5 470.55 38.64 509.19 2.93 13.00 3.5865 3.08
7 568.22 52.95 621.17 3.07 10.59 3.5739 3.11
9 675.55 81.02 756.57 3.14 9.81 3.6016 3.13

Offline 7062.93 2361.49 9424.42 3.38 6.77 3.6119 3.30

18

	Introduction
	Model: LLaMA-Omni
	Speech Encoder
	Speech Adaptor
	Large Language Model
	Speech Decoder
	Training
	Inference

	Construction of Speech Instruction Data: InstructS2S-200K
	Experiments
	Experimental Setups
	Evaluation
	Baseline Systems
	Results in the Offline Scenario
	Results in the Streaming Scenario
	Human Evaluation

	Related Work
	Conclusion
	Prompt
	Case Study
	Numerical Results in the Streaming Scenario

