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ABSTRACT

Reinforcement learning (RL) policies represented in Reproducing Kernel Hilbert
Spaces (RKHS) offer powerful representational capabilities. While second-order
optimization methods like Newton’s method demonstrate faster convergence than
first-order approaches, current RKHS-based policy optimization remains con-
strained to first-order techniques. This limitation stems primarily from the in-
tractability of explicitly computing and inverting the infinite-dimensional Hessian
operator in RKHS. We introduce Policy Newton in RKHS, the first second-order
optimization framework specifically designed for RL policies represented in RKHS.
Our approach circumvents direct computation of the inverse Hessian operator by
optimizing a cubic regularized auxiliary objective function. Crucially, we lever-
age the Representer Theorem to transform this infinite-dimensional optimization
into an equivalent, computationally tractable finite-dimensional problem whose
dimensionality scales with the trajectory data volume. We establish theoretical
guarantees proving convergence to a local optimum with a local quadratic con-
vergence rate. Empirical evaluations on a toy financial asset allocation problem
validate these theoretical properties, while experiments on standard RL benchmarks
demonstrate that Policy Newton in RKHS achieves superior convergence speed
and higher episodic rewards compared to established first-order RKHS approaches
and parametric second-order methods. Our work bridges a critical gap between
non-parametric policy representations and second-order optimization methods in
reinforcement learning.

1 INTRODUCTION

Representing policies within Reproducing Kernel Hilbert Spaces (RKHS) offers a powerful non-
parametric alternative, leveraging its definition in an infinite-dimensional functional space to provide
strong representational capability and universal approximation (Barreto et al., 20165 [Lee et al.| [2023)).
Crucially, the RKHS framework facilitates dynamic complexity adaptation: the policy updates are
efficiently restricted to the finite-dimensional span of observed data points, allowing the model size
to adapt precisely to the task complexity. These properties are particularly advantageous in data-
constrained environments, where sample efficiency is paramount, and in safety-critical applications,
where the norm-induced smoothness provides policies with superior robustness and stability against
noise and uncertainty (Paternain et al., | 2020; Morimura et al.| | 2010). This approach has demonstrated
success in various RL domains, including meta-RL (Lee et al.|[2023) and distributional RL (Morimura
et al.l|2010). Despite these representational advantages, optimization methods for RKHS policies have
remained primarily limited to first-order approaches. The RKHS Policy Gradient (Paternain et al.|
2020), which achieves policy updates by adding gradient-derived functions in RKHS, represents the
current standard. However, this approach inherits the fundamental convergence limitations common to
all first-order methods - namely slow convergence in complex optimization landscapes characterized
by high curvature or narrow valleys.

In parametric policy representations, second-order optimization methods have emerged as effective
solutions to these convergence challenges. While first-order methods like Policy Gradient (Sutton
et al.l|1999) are widely implemented due to their simplicity, they often exhibit slow convergence and
sensitivity to the optimization landscape’s curvature, particularly when dealing with ill-conditioned
problems (Furmston et al.,|2016). Second-order methods, exemplified by the Policy Newton algorithm
(L1 et al., 2023} Jha et al., 2020), address these limitations by incorporating Hessian curvature
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information, enabling potentially faster convergence rates and more appropriately scaled updates.
These advantages make second-order methods particularly compelling candidates for accelerating
learning in RKHS policy optimization.

The natural progression towards faster optimization—developing a Policy Newton method di-
rectly within the RKHS—poses significant theoretical and practical challenges. Unlike the finite-
dimensional case, the Hessian analogue in RKHS corresponds to the second-order Fréchet derivative
of the expected cumulative reward function. This derivative is an operator acting on the function
space, and computing its inverse explicitly, as required by standard Newton methods, is generally
intractable in this infinite-dimensional setting. Existing research on second-order methods in RKHS
has primarily focused on regret bounds in online learning settings with specific distributed data (Ca-
landriello et al.,|2017azb; [Lu et al.,[2016; [Le et al., |2013), leaving a critical gap for policy optimization
in RL where the data distribution shifts with the policy.

To bridge this gap, this paper introduces the Policy Newton in RKHS algorithm, the first second-order
optimization framework specifically tailored for policies represented within RKHS in the RL context.
Our approach circumvents the explicit computation of the infinite-dimensional Hessian operator in
policy optimization by reformulating the problem through a cubic regularized auxiliary objective
function within the RKHS (Maniyar et al., 2024} |Doikov et al., [2024). Crucially, we leverage
the Representer Theorem (Scholkopf et al.| 2001) to demonstrate that this infinite-dimensional
optimization problem is equivalent to solving a finite-dimensional optimization problem in Euclidean
space, whose dimension scales with the amount of trajectory data used in the estimate. This makes
the approach computationally feasible.

Our main contributions are summarized as follows:

* We propose the first second-order optimization algorithm for policy in RKHS, comprised of
two key components: (1) We derive the second-order Fréchet derivative as the Hessian oper-
ator and introduce a cubic regularized auxiliary function to find the update step, avoiding the
need to compute the intractable inverse operator; (2) We reformulate the infinite-dimensional
optimization problem into an equivalent finite-dimensional problem in Euclidean space
using the Representer Theorem, making the approach computationally tractable.

* We establish theoretical guarantees for the proposed algorithm, proving convergence to a
local optimum, and demonstrating a quadratic convergence rate. Our empirical evaluations
on a toy problem verify these theoretical properties and show that Policy Newton in RKHS
achieves superior performance in terms of episodic reward compared to baseline methods,
with an enhanced ability to escape local optima.

2 PRELIMINARIES

2.1 PoLICY NEWTON IN REINFORCEMENT LEARNING

In reinforcement learning, a Markov decision process is defined by the tuple (S, A, P, r,y, p) where
S denotes the state space; A denotes the action space; P(s¢11 | S, a:) represents the transition
probability function; r(s¢, a¢) is the reward function; v € [0, 1) is the discount factor; and p(sg) is
the initial state distribution. Actions are selected according to a policy 7(a; | s¢), which defines
a probability distribution over actions conditional on the current state. A trajectory is denoted
by w = (sg,a0,...,ar—1,87), where sg ~ p(sg) and T is the episode length. We denote the
probability of trajectory w following a policy 7 as p(w; ). Standard reinforcement learning aims
to maximize the expected cumulative reward. However, to align with the standard conventions of
gradient descent and Newton-type optimization frameworks, we reformulate this as a minimization
problem. Throughout this paper, we define the instantaneous cost as the negative reward, effectively
setting 7(s¢, ay) < —7(s¢, at), and minimize the expected discounted cumulative term given by

J(m) = Egmp(wir) {ZtT;Ol vt~ 1r (s¢,a4)|, where + is the discount factor. Typically, the policy is
parameterized by a vector # € R and the notation 7y is used as a shorthand for the distribution
7 (at | s¢;0). The target of RL is to find a parameter (Sutton & Bartol [2018)

0" = argminJ(mg).
OeR
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The Policy Gradient method (Maniyar et al., [2024}; [Williams|, [1992)) is utilized to find the optimal
parameter using the gradient Vy.J(mp) of the expected reward J(7p):

VoJ(m9) = Epop(wsn) Z‘I’t )Vologm (a; | s:0)] ,

where U (w) = ZzT tl vi=1r (si,a;) denotes the cumulative reward starting from (s, a;) in trajec-
tory w. The Policy Gradient has enjoyed success in many fields, but it is not scale invariant and the
search direction is often poorly-scaled (Furmston et al.,|2016). To accelerate the optimization, the
second-order information is integrated in the Policy Newton method by using the Hessian V2.J (7g)
(Shen et al., 2019):

T-1 T—1
vg‘](ﬂ—e) :]Ewwp(w;ﬂ'g) Z qjt(w)VQ IOgﬂ-(at | St;o) X Z Vt;r IOgT( (at’ | St’;g)
t=0 t’=0

ey

Z \I/t ve lOgﬂ' (a't | St ) = EwNP(w;Fe) [HG(W;WG)] ’

where Hyg(w; ) represents the Hessian matrix. During the training of the RL, the direct calculation
of the gradient is infeasible. Therefore, in the k-th iteration of the training, the gradient VyJ (%) is
estimated among the sampled trajectory set T (Sutton et al.l[1999):

VgJ (k) = Z Z Ui (w)Vologm (as | s¢;6k), 2)

wGTN t=0
where N denote the size of the trajectory set 7)y. Then the parameter € is updated through 651 =
O, + nVej (mg, ) where 7 is the learning rate. For the Policy Newton method, the Hessian is
similarly estimated as V2.J (6;) = + Zwem Hpy(w;mp), and the policy is updated through 60,41 =
O +n[V2J(01)] 1V9j(0k) where [V2.(0;,)]~'Vg.J(6%) is the Newton step. The calculation for
the inverse of the Hessian is computationally unstable and costly. A direct way to alleviate this

drawback is to introduce the regularization term and optimize an auxiliary function to obtain the
Newton step (Maniyar et al., [2024} |Doikov et al., 2024)):

A 1 A
s = avgmin { (V07 (00,0 = 0 + 5 (V37 (0 0~ 00),0 - 60) + 7 106l ) @)

feRrd
where (3 is the hyperparameter of the regularization term.

2.2 PoLicYy GRADIENT IN RKHS

Reproducing Kernel Hilbert Space (RKHS) is the Hilbert Space H x where the element K (x,-) € H
and f € H satisfy the reproducing property (K (z, ), f) = f(z). Despite the policy is modeled by
the parameter 6 with particular parameterized functions, the stochastic policy 7 is directly modeled
with a function h in RKHS Hx, where the updating gradient for it is also a function (Lever &

Stafford| [2015). Particularly, we denote the policy as 7y, (at | s¢) = %eTh(sf"“) for discrete action

space, where Z = >, 4 ¢Th(s1:0") i the normalization constant and 7 is the temperature. Through
the definition of the Fréchet derivative (Mcgillivray & Oldenburg| |1990), the Policy Gradient in
RKHS is derived as (Mercier et al., 2025; |[Lever & Stafford 2015} Paternain et al., 2020):

VhJ(’/Th) wwp(w h) [Zh(w ﬂ-h)] = wNp(w ) Z \Ijt Vh IOg Th (at ‘ St)]
_— 4)
:]Ewwp(w;‘n'h) Z \Ijt(w)T (K ((5t7 at)v . ) - EG/NT(}L("St) [K ((St, a/)a : )])‘| 3

t=0

where K ((st,at),- ) is the kernel section induced by the state action pair (s, a;). Without loss of
generality, the action space is set discretely in the rest of the paper. The estimation of the gradient is

similar to Equation [2, where we denote it as Vj,.J (1) = % Ywern Zn(w;m). Then the policy is

updated iteratively by hpi1 = hy + thj (7). For simplicity, we denote J (mh) as J (h) in the rest
of this paper.
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The use of RKHS policy improves the sample efficiency greatly during training (Paternain et al.|
2022), and the overall performance is better than traditional gradient methods (Zhang et al., |2025]).
However, there is still a lack of research on the Policy Newton algorithm within RKHS. A potential
obstacle for its derivation is that the Hessian of J(7p,) is infinite, where its inverse is infeasible to
represent explicitly. In previous research, Newton optimization is mainly studied in the online learning
problem. In (Calandriello et al.,|2017a), the Newton optimization scheme is derived where the inverse
of the Hessian in RKHS is approximated iteratively. The authors in (Calandriello et al., |2017b)
integrate the adaptive embedding with the inverse approximation, which alleviates the computational
burden. Despite this success in RKHS Newton optimization, the learning scheme is only suitable for
data sampled from the same distribution during training (Lu et al.; 2016} |Le et al.| |2013), while the
distribution of transitions in RL is related to the updating policy. As far as we investigated, this is
the first paper to derive the Policy Newton in RKHS, and the convergence of our algorithm is also
guaranteed.

3 THE PoLicy NEWTON IN RKHS

In this section, we present the derivation of the Policy Newton in RKHS. In the conventional Policy
Newton method, it is simple to obtain the Hessian by deriving the second-order derivative of the
expected discounted cumulative reward J () with respect to the parameter §. However, in RKHS
space, the second-order Fréchet derivative may not be implicitly represented. Before the derivative of
the Hessian within RKHS, we first introduce the following definition:

Definition 3.1 Defining the outer product Hx ® Hyik as a new RKHS with operator
K((s¢,at), (sp,a1)) = K ((st,a1),-) @ K ((s},a1),-) € Hrg @ Hi (Kubrusly & Vieird, 2008}
Szabo & Sriperumbudur} |2018; |Kumari et al.l 2017, it satisfies that:

K((stv at)a (327 aé)) oK ((Sg, ag)a : ) =K ((St; at)7 : ) K ((Siv a;)a (52/, ag))
< K((St7 at)’ (527 a:&))v K((Sg7 a;/)a (31/5”7 az/tl/)) >=K ((‘St’ at)v (51/‘//7 ag)) K ((31/5’ al/‘,)7 (Sg/’ av/tl/))
While the first-order Fréchet derivative V,J(h) is an element in Hx, the second-order Fréchet

derivative is an operator on this space, which we denote by the symbol V2 .J(h). This operator can be
identified with an element in the tensor product space Hx @ Hx, as shown in the following lemma.

Lemma 3.1 The second-order Fréchet derivative V3.J(mh) = Eoop(wir,) [Hn(w; )], where
Hh (w' 7Th) is

T-1
(Z Uy (w)Vp, 1og7rh) ® <Z v, log7r2> Z W (w)T CoVarrom(fsy) K ((s¢,a1), )]
=0

Here Vj, log 7t = V}, log 71, (at|s:) and Covalww(im) [K ((s¢,a}), - )] denotes the covariance opera-
tor for kernel section K ((s¢, a;), - ), which is detailed as:

IEa’~7r(-|8t) [K ((Stv ) )® K ((5t7 )7 : )]_]Eal"'/ﬂ'('lst)K ((Sta ) )®Ea”~ﬂ'( \st)K((St’ )7 : )

The detailed derivation is shown in Appendix Here, we only introduce a simple example,U (h) =
eTh(se:a) K ((s4,az), - ), which is a component in V,.J (7, ), to present the core concept for intro-
ducing the outer product in RKHS when implementing the Fréchet derivative.

The second-order Fréchet derivative Leth,g € Hx and D(h) = Te 60K ((s4,a4),-) ®
K ((s¢,at), ). Then according to the definition of the Fréchet derivative (Mcgillivray & Oldenburg,
1990), we testify that D(h) = V, U (h):

|U(h +g) — U(h) = D(h)ogl| _ [[€® K(z,)[eT#=) — 1 — Ty(a)]|
gl g1
T K )| M (@) MT? gy

gl T2

where the last inequality is due to Cauchy Schwarz. Through Lemma [3.1] we could find that the
second-order Fréchet derivative V2 J(m,) is infeasible to present explicitly. Calculating its inverse
is further infeasible for the Policy Newton methods in RKHS. Fundamentally, this is because the

(K (z,2))*? |lg]| <=2
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Hessian operator is trace-class in the RKHS, and therefore compact. In an infinite-dimensional space,
a compact operator does not have a bounded inverse (Kreyszig, [1991), rendering the standard Newton
step ill-posed. However, we can still obtain the RKHS Newton step Ah through optimizing the
regularized auxiliary function similar to Equation [3}

Ah:a}fgg}i(n{<vhj(hk),h> <vh (h)o b, h) + Hh\f’}, 5)

where V7.J (hy,) = + > wery Hn(w; ) is the estimated RKHS Hessian. Although this estimation

is not computationally feasible, the corresponding second-order component <V,21j (hi) o h, 71> is

easy to calculate according to the Definition [3.I] The optimization in H x is still hard to proceed, but
through the Representer Theorem in RKHS, we could easily transform the parameter space in this
optimization problem from H  into R.

Lemma 3.2 Representer Theorem (Scholkopf et al.| 2001). Suppose we are given a nonempty set X,
a positive definite real-valued kernel K (-,-) on X x X, a training sample (x1,y1),...,(Xp,ynm) €
X x R, a strictly monotonically increasing real-valued function G, an arbitrary cost function c. Then
any h € Hy minimizing the regularized functional

c((@iy,h (@) s (@, yas h(2ar))) + G([1A])

admits a representation of the form h(-) = Zf\il a; K (x;,-), where «; is the weight for kernel
sections.

Applying the Representer Theorem (Lemma [3.2), Optimization Problem[3]is equivalent to finding o*
via: . _ 1 R - -
o = argmin {<th(hk) ,ha> 4o <viJ(hk) 0 e, ha> LB ”hQHS} , ©6)
G ERNT 2 6
where hq, = Ziil Zthl oiK ((si,a}),-). Here, (s}, a}) denotes the state-action pair for the i-th
trajectory at time step t, and o = {ai}f\iftzl is the set of kernel weights. These weights can be

vectorized as & € RNT, where the [-th element corresponds to o with k = (i — 1)T + t. Applying
the Representer Theorem transforms the search for the optimal function perturbation h into a search
for finite coefficients av. By substituting the expansion h,, back into the operator-based objective
Equation[6]and utilizing the reproducing property (K (z,-), K (y,-)) = K(z,y), we can explicitly
derive the algebraic form of the quadratic and cubic terms with the following theorem.

Theorem 3.3 The optimization of the Policy Newton step in RKHS is equal to the optimization of the
following quadratic optimization with cubic regularization:

&* = argmin {@, a) + % (Ha, &) + g ||a||§} : (7)

aeRNT

Here, v € RNT is the first-order coefficient vector where
T NT
Vi = N Z \Pl(c‘)) (K ((Slv al>7 (Si> al)) —Eo [K ((Sl’ a/)’ (Si’ al))]) .
=1
Let H € RNTXNT pe the second-order coefficient matrix given by:

H——bT——Z\I/l )=, ®)

Here, b € RYT and ¢ € RYT are vectors, and Z(l) represents component-related covariance
. . . l
information. The components b;, c;, and the related covariance terms EE j) are defined as:

NT NT
b = Z Viw) (Ki — B [K})),  ci=) (Kq—EalK})])
=1

55 = CoVaran(ia) [Kit, KJ]

In these expressions, the kernel terms are K;; = K ((s;,a:), (51, a1)) and K[, = K ((s;, i), (s1,a’)).
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The detailed derivation for Theorem [3.3]is presented in Appendix [B] It is observed from this theorem
that the Policy Newton in RKHS is similar to the traditional Policy Newton method, but the complexity
of the Optimization Problem [7]is dependent on the volume of data, i.e., N x T', which possesses
the same property of other RKHS methods like support vector machine (Burges} |1998) and radial
basis function networks (Park & Sandberg) [1991)). We show in the next section the suboptimality and
convergence rate for the proposed Policy Newton in RKHS.

Intuitive Interpretation of the Reduction. Before proceeding to the convergence analysis, we
briefly clarify the physical meaning of the terms in the finite-dimensional optimization problem
The vector v represents the projection of the functional gradient Vj.J onto the data-dependent
subspace spanned by { K ((s, a}),-)}. The matrix H encapsulates the curvature information: the
term %bcT corresponds to the outer product of first-order gradients (the first term in Equation ,

while the term involving X() captures the covariance structure of the policy’s action distribution (the
second term).

4 THE SUBOPTIMALITY AND CONVERGENCE RATE OF POLICY NEWTON IN
RKHS

In this section, we first detail the Policy Newton in RKHS algorithm. We then analyze its convergence
properties, demonstrating that despite optimizing via a surrogate function, the resulting policy
converges to a local optimum. Furthermore, we show that our proposed Policy Newton in RKHS
exhibits a second-order convergence rate, in contrast to the first-order rate achieved by Policy Gradient
in RKHS.

4.1 THE PoLicy NEWTON IN RKHS METHOD

The Optimization Problem [ admits two primary solution approaches:

(1) Directly computing the derivative of the objective function, setting it to zero, and solving for the
critical points.

(2) Optimizing it using various classic optimization methods, including gradient descent, the Newton
method, and the conjugate gradient method (Lasdon et al., 2003)).

While the analytic method (1) is conceptually simple and direct, it can introduce significant instability
into the training process. In complex environments, this instability can lead to exponential error
growth. Consequently, method (2) represents a more practical optimization approach. We select the
conjugate gradient method as our optimization method. More settings are detailed in Appendix [H]

Algorithm 1 Policy Newton RKHS Method
Input: Number of iterations M, trajectory batch size IV, learning rate n
1: Initialize RKHS function h; < 0, actor policy 7, based on hq, trajectory set 7.
2: form=1,...,M do
3:  Sample N trajectories using the current policy 7y, , store in 7.
4:  Estimate the first-order coefficient vector v and second-order coefficient matrix H using 7
(according to Theorem [3.3)).
5. Solve the Optimization Problem [/| using conjugate gradient descent method, output the
optimization result .
Construct the RKHS update step Ah using & via Lemma
Update the RKHS function: hp,41 < hy, +nAh and the actor policy 7y, ., based on Ay, 1.
end for
return final policy 7y, , .

g s
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4.2 SUBOPTIMALITY ANALYSIS OF THE PROPOSED ALGORITHM

Theoretically, we assume that the optimal solution to Problem [7]is consistently achieved by Algo-
rithm([T] To establish the convergence properties of our algorithm, we introduce the following lemmas
and assumptions.

Lemma 4.1 (Monte Carlo convergence rate (C.1)) Assuming Eq,p(r) [|| 21 (w; m)|]?] < 0

and B, (o) ||| Hn (w3 m3)||2] < 0%, the Monte Carlo estimation of first and second-order Fréchet
derivative, namely V1,J (hy,) and V3.J (hy,), achieve the convergence rate of O(ﬁ)

% of
N N’
The proof is straightforward by using the property of expectation, which we show in the Appendix

[C.1] Establishing convergence also requires a Lipschitz continuity assumption for the Hessian, similar
to other gradient-based methods (Xiao} |2022; |Zhang et al., [2020).

Euptemn) [IV3 () = Vi (i) 1] < 52, Bpusm V3T (i) = V37 () |F] <

Assumption 4.1 (Lipschitz continuous) The Hessian operator V3 .J(h) is Lipschitz continuous
with constant 0 < L < , i.e., for all h1, ho € Hy: (we discuss the validation of this assumption in

Appendix
ppendicl) V27 (hy) — V2 I (ha)|| < Llhy — hol.

Through this assumption, we could establish the upper bound for J(h) with respect to the Hessian
and step norm:

Lemma 4.2 (Taylor upper bound (C.2)) Under Assumptiond.1} for any hy, hs € Hy:
1 L
J(h2) < J(h1) + (Vi J(h1), ho — h1) + §<V%J(h1) o (ha = ha) hy = hn) + Zl[hs - ha?.

The fundamental approach to proving convergence centers on establishing a relationship between
the expected gradient norm, E||V},J(hy)||, and a function denoted by L(3, 02, 0%, N). Following
standard techniques in convergence analysis, the norm of the update step, ||hg+1 — hkl|, is employed
as an intermediate quantity to construct this relationship. To this end, an upper bound for this step
norm is derived in Lemma 4.3]

Lemma 4.3 (Step norm upper bound (C.3)) Denoting the updating times for Policy Newton in
RKHS as M, and the number of trajectories sampled in each updating as N, the updating step can
be upper bounded as: 3/2

36(J(h1) — J*)  48V3 o 864 of

]E [||hR+1 _ hR||3] S ( ( 1) ) 0 1

BM + 33/2 N3/4 + ﬁNs/w
where R is a random variable uniformly distributed on {1, ..., M}, such that P(R = k) = 1/M.

This lemma provides an upper bound on the expected cubed norm of the update step involving a
randomly selected iteration R, which is a key quantity used subsequently to establish convergence
bounds in expectation for the Policy Newton in RKHS. Next, we establish the lower bound of the
norm for the update step, which relates it to the RKHS gradient.

Lemma 4.4 (Step norm lower bound (C.4)) The updating step can be lower bounded as:

1 o of
Elllhrt1 — hel?] > I+5 (E[IIVJ(th)II] - \/7% - QN(L-FB)> :

Having established both lower and upper bounds for the step norm, we can now use these results to
construct the main convergence theorem.

Theorem 4.5 (Convergence property (C.5)) Given LemmasH.3|and let R be a random vari-

able uniformly distributed on {1, ..., M}. The sequence {hy} generated by iterative optimization in
Theorem 3.3] satisfies )
lim E[[[VJ(hr1)]] = 0.
M,N— o0

This theorem indicates that the expected gradient norm at a randomly chosen iteration converges to
zero, implying convergence towards a stationary point.
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4.3 THE SECOND-ORDER CONVERGENCE RATE

Establishing the convergence rate for stochastic Policy Newton methods typically requires specific
assumptions regarding problem structure. While the convergence properties of Newton’s method in
finite-dimensional Euclidean spaces are well-established (Furmston et al.| [2016), extending these
guarantees to the infinite-dimensional RKHS setting—specifically with the cubic regularization auxil-
iary function—requires rigorous verification. We demonstrate that the finite-dimensional reduction
derived in Theorem [3.3] preserves the desirable quadratic convergence properties of the original
operator-theoretic problem. To establish baseline performance characteristics, this section analyzes
the convergence rate under idealized conditions, while a comprehensive analysis under more realistic
stochastic assumptions remains for future work. Specifically, we assume access to the true gradient
V1J(hy) and Hessian V3 .J(hy,) at each iteration k, effectively setting Vj,.J (hy) = V4.J(hi) and
V2 .J(hy) = V3.J(hy,). Under this deterministic scenario, we prove that the method achieves a local
quadratic convergence rate.

Our analysis relies on a key assumption: that the inverse of the regularized Hessian is uniformly
bounded. This is a standard condition in the analysis of Newton-type methods, required to ensure the
update step is well-defined by excluding potential singularities (Nesterov & Polyakl 2006a; Nocedal
& Wright, [2006a)).

Theorem 4.6 (Local Quadratic Convergence (D)) Consider the deterministic Policy Newton
RKHS method (Algorithmwith Vid(h) = Vi J(hy) and V3 J(hy) = V3 J(hy,)). Assuming the
norm of the inverse operator ||(V3J (hy) + gHAhk |Z)~1|| is bounded by some constant B, and we
assume that the update step is sufficiently small that || Ahy|| < L|eg].

If the initial iterate hy is sufficiently close to h*, the sequence {hy} converges quadratically to h*.
That is, there exists a constant Cyq > 0 such that

s = h*|| < Collhe — h* |
for all k sufficiently large. The validation of the assumptions is discussed in Appendix|E]

5 NUMERICAL EXPERIMENT

This section presents an empirical evaluation of our proposed Policy Newton method in Reproducing
Kernel Hilbert Space (RKHS) across two distinct experimental settings: (a) a simplified Asset Alloca-
tion environment designed specifically to demonstrate the quadratic convergence properties of Policy
Newton in RKHS (Yoo et al.| 2023)), and (b) complex control tasks from the Gymnasium framework
(Towers et al., [2024), including CartPole and Lunar Lander. Throughout all experiments, we utilize a
standard Gaussian kernel for the RKHS representations. The Asset Allocation environment serves to
empirically validate the theoretical convergence guarantees established in Section[d] Additionally, we
benchmark Policy Newton in RKHS against several baseline methods in complex environments to
demonstrate its superior performance characteristics.

5.1 QUADRATIC CONVERGENCE TESTED IN THE TOY EXPERIMENT

We empirically validate the quadratic convergence properties of Policy Newton in RKHS using a
simplified Asset Allocation environment (Lee et al., 2004} Yoo et al.| [2023). While the complete asset
allocation problem presents substantial analytical challenges, we utilize a reduced-complexity variant
(detailed in Appendix [F) where the global optimal policy can be explicitly represented, enabling
precise quantification of convergence properties for both the policy and cumulative reward J (7).

For comparative analysis, we implemented four distinct methodologies. The conventional Policy Gra-
dient and Policy Newton methods (Maniyar et al., |2024) utilize discrete policies with parameterized
action probabilities. The Policy Gradient in RKHS implementation follows the approach described in
(Lever & Stafford, 2015)), while our Policy Newton in RKHS method is implemented according to
Algorithm|[I] All policies were initialized with uniform distributions.

The experimental results presented in Figure[I]reveal several important findings. Figure[Taldemon-
strates that both Policy Gradient in RKHS and Policy Newton in RKHS converge rapidly toward
the maximum expected episodic reward. Notably, Policy Newton in RKHS exhibits clear quadratic
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Figure 1: Experimental results demonstrating the quadratic convergence of Policy Newton in RKHS
within the simplified Asset Allocation environment. Three benchmark methods are compared:
conventional Policy Gradient, Policy Newton, and Policy Gradient in RKHS. [Ta] illustrates the
convergence metrics during training. [Ib] visualizes the optimization trajectories of all methods in a
PCA-projected policy space, where the background surface is an interpolated return landscape. This
plot highlights how different algorithms move through the policy space toward the optimal policy.

convergence behavior as it approaches the optimal policy. In contrast, the conventional methods show
different characteristics—while the standard Policy Newton method converges more rapidly than
conventional Policy Gradient (as shown in Figures[Ia)and [Tb), its training trajectory exhibits greater
instability and ultimately converges to a suboptimal local maximum. It is important to note that in
this toy environment all four compared methods share the same representational capacity: the state
and action spaces are finite, and each algorithm directly optimizes the probability value assigned to
every (state, action) pair. Thus, all methods are able to exactly represent the optimal policy. The
differences observed in Figure[TB|therefore arise purely from the optimization geometry rather than
the expressiveness of the policy class. In particular, RKHS-based updates span the data-dependent
kernel basis, which yields a richer set of descent directions and enables the optimizer to move out of
suboptimal attraction regions that trap parametric methods.

5.2 TRAINING PERFORMANCE IN RL TESTING ENVIRONMENT

To evaluate the efficacy and universality of the proposed Policy Newton in RKHS algorithm, we
conduct experiments utilizing standard RL environments from the Gymnasium suite (Towers et al.|
[2024), covering both discrete and continuous action spaces.

Discrete Control Tasks. We first evaluate the method on CartPole and Lunar Lander. These
environments feature discrete action spaces, directly utilizing the theoretical framework established
in Section 3. The baseline policies (Policy Gradient and Policy Newton) are parameterized using
a linear model augmented with a polynomial transformation (Maniyar et al 2024) to ensure fair
comparison in representational power.

Continuous Control Tasks. To demonstrate the method’s scalability to high-dimensional continu-
ous control, we further evaluate it on Inverted Pendulum and Hopper. For these tasks, we implement
the Policy Newton in RKHS using the continuous Gaussian policy formulation. The rigorous theoret-
ical derivation for the second-order RKHS step in the Gaussian policy is provided in Appendix[I] The
baselines utilize the same polynomial feature expansion as in the discrete case but map to continuous
action outputs.

Performance Analysis. The experimental results are summarized in Figure 2] In the discrete tasks
(Figs. 2a)and 2B)), Policy Newton in RKHS exhibits rapid convergence and superior sample efficiency,
significantly outperforming the first-order RKHS baseline and the parametric Policy Newton method.
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In the continuous tasks (Figs. 2c|and 2d), the advantage of our method is equally pronounced. In
Inverted Pendulum, our method stabilizes quickly. In the challenging Hopper environment, Policy
Newton in RKHS demonstrates superior sample efficiency, achieving high rewards with fewer
iterations than the baselines. We attribute this performance to the effective utilization of curvature
information via the Hessian operator, which aids in navigating complex optimization landscapes, and
the flexible representational capacity of the RKHS.

—— Policy Newton in RKHS ~ —— Policy Newton —— Policy Newton in RKHS ~ —— Policy Newton
Policy Gradient in RKHS ~ —— Policy Gradient 2001 Policy Gradient in RKHS ~ —— Policy Gradient
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Figure 2: Comparative analysis of Policy Newton in RKHS against established baseline methods
across discrete and continuous Gymnasium environments. The plots display mean episodic rewards
across 5 independent runs, and the shaded regions denote the 95% confidence intervals. (a-b)
Performance on discrete tasks, utilizing the formulation in Section 3. (c-d) Performance on continuous
control tasks, utilizing the extension derived in Appendix [[} Our method demonstrates consistent
superior sample efficiency and rapid convergence speed in both settings.

6 CONCLUSION AND FUTURE WORK

This paper successfully introduced Policy Newton in RKHS, the first practical second-order opti-
mization method for reinforcement learning policies represented within Reproducing Kernel Hilbert
Spaces. We established its theoretical foundations, proving convergence to a local optimum and
demonstrating a local quadratic convergence rate. These theoretical properties were empirically
validated on both a toy problem and standard RL benchmarks, where Policy Newton in RKHS
achieved significantly faster convergence to superior episodic rewards compared to first-order and
parametric Newton baselines.

While the current results are promising, extending the application of Policy Newton in RKHS to
highly complex RL problems, such as the Humanoid environment (Todorov et al, 2012)), may reveal
challenges related to robustness and stability. A promising avenue for future research is the integration
of neural networks with the Policy Newton in RKHS framework, potentially drawing inspiration
from architectures similar to those proposed in (Zhang et al.} 2023)), to enhance performance in such
demanding scenarios. The primary focus of this paper has been the rigorous theoretical establishment
of Policy Newton in RKHS, laying the groundwork for these and other exciting explorations in future
work.

10
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ETHICS STATEMENT

This study uses only a synthetic toy Asset Allocation environment (Appendix [F) and public Gymna-
sium benchmarks (CartPole, Lunar Lander) (Towers et al.,|2024); no human subjects, personal data,
or sensitive attributes are involved, and no proprietary datasets are introduced. We caution against de-
ploying the method in high-stakes settings (e.g., financial decision systems) without domain-specific
governance, distribution-shift monitoring, and independent validation. The compute footprint is
modest. The authors disclose no conflicts of interest and no external sponsorship that could bias the
work.

REPRODUCIBILITY STATEMENT

We provide an anonymous supplementary archive containing the full implementation, dependency
specifications, and runnable scripts to reproduce all figures. The algorithmic procedure is given in
Algorithm T} the finite-dimensional reduction and coefficient construction appear in Theorem[3.3]
with derivations in Appendix [B]and RKHS second-order calculus in Appendix [A] Experimental
settings, hyperparameters, and random seeds are documented in Appendix [H} the toy environment is
fully specified in Appendix [F} These materials enable end-to-end reproduction of the reported results.
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A THE DERIVATION OF THE SECOND-ORDER FRECHET DERIVATIVE IN RKHS

This section details the derivation of second-order Fréchet derivatives of the log-policy, log 7, (at | St),
with respect to the function h € H . The first-order Fréchet derivative is introduced in (Mercier
et al., [2025)), for convenience’s sake, we also detail it in this section. The policy is defined as
T (ap | s¢) = £eT 500 where Z =3, 4 ¢Th(st:4) is the normalization constant. For brevity
in this section, we will denote (s¢, at) as (s, a) when the context is clear for a single state-action pair
for which the log-policy is being differentiated. The kernel section K ((s, a), -) is an element in H .

We first derive the first-order Fréchet derivative V, log 7y, (a | s). The log-policy is log 7 (a | s) =
Th(s,a) —logZ.

The Fréchet derivative of the first term is:

Vi(Th(s,a)) =TK((s,a),")

For the second term, — log Z:
1
Vi(=logZ) = —ZVhZ

We compute V, Z:
7 — Z 67—h(s,a')
a’€A
VhZ:ZVh(GTh(S’a) ZeThsa thh S (J, TZeTh(sa )’)
Substituting this back:
Vi(—log Z) = —Jrzemsa s,a'),")

13
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. Th(s,a’) o
Recognizing that “—— = 7, (a’ | 5), we simplify:

Vi(=logZ) = =T > mu(a’' | $)K((s,d),") = =TEarum, (s) [K((s,d),")]

Combining the derivatives of both terms, we obtain the first-order Fréchet derivative of the log-policy:
Vilogmn(a|s) =TK((s,a), ) = TEam,(|s) K (s a'), )]

Factorizing 7T:
Vilogmi(a|s) =T (K((s,a),") = Baram, (1) [K((s,0),)]) )

This expression forms the core of the Policy Gradient in RKHS as shown in Equation 4| of the main
paper when appropriately weighted and summed.

Next, we derive the second-order Fréchet derivative (Hessian operator) of the log-policy with respect
to h, denoted as V% log p, (a | s). This is obtained by differentiating Equation@

Vilogmy(a|s) =V,

T <K((87a)7'> - Z Wh(a, ‘ 5>K<(Sva/)’ )>‘|

a’eA

Since T is a constant and K ((s,a),-) is a fixed element in Hy (not depending on h for this
differentiation), its derivative is zero:

Vilogm(a|s) =TV (— > mld | 9)K((s,a'), '))

a’€A

Applying the product rule for Fréchet derivatives (treating K ((s,a’), ) as a constant vector in H g
for each a’):

Vilogmu(a|s)=—T Z (Vimn(a' | s)) @ K((s,a’),-)
a’eA
Here, ® denotes the outer product as defined in Definition [3.1]

Now, we compute V7, (a’ | s). Recall m,(a’ | ) = eTh(ZS’a a3 Using the quotient rule V(%) =

WP -NEWD); Let Ny = €754, 50 VyNyr = TeTM K ((s,d'),"). Let D = Z =
Za// eTh(S’a”), so VD = TZa“ eTh(s’a”)K((Sa a’//)v )-

(TeTh(S’a/)K((S, a/), )) 7 — eTh(s,a’) (Tza// eTh(s,a//)K((s, a/,)’ ))
Z2

V}Lﬂ'h(a/ | S) =

eTh(s,a') e'Th(s,a') Ea” eTh(S"a”)K((S, Cl”), )
Z 7

=Tmn(d | $)K((s,a),-) = Tmn(a’ | 8) Y mu(a” | $)K((s,a"),)

a’’

Vimp(a' | s) = Tmp(d | s) (K((s,a),") = Earmm,(1s) K ((s,a"),)])

Substituting this expression for V7, (a’ | s) back into the equation for V2 logmn(a | s).
To align with the result in Lemma of the main paper, which states V3 logmp(a: | s:) =

14
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—T CoVyrrm, (-|s) K ((5¢, @), -)], the substitution effectively uses V7, (a’ | s)/T:

Vh logmp(a|s)=—T Z 7 (a a | s) (K ((s, ) ) = Ea,/Nm("s) [K((S,a'/),~)]) ® K((s,d),")
a’€A
=-T (Z mh(a | s)K((s,a'),") ® K((s,a’),")
a’€A

- Z 7T'h a | S a”wﬂ'h s)[ ((570'”)?')]) ®K((s,a’),-)>

a’€eA

-T (]Ea’~7rh(-|s) [K((57 a/)7 ) ® K((57 a/)7 )]
— (g (15 [K ((5,0"),)]) ® (Z mh(a" | $)K((s,a’), )))

a’€eA
=-T (]Ea/Mths) [K((s,a"),") ® K((s,a"),)]
_]Etl’N‘ffh(-IS) [K((Sv a/)’ )] ® Ea”le(-|8) [K((S, a”), )]) (10)

This can be compactly written using the covariance operator as defined in Lemma [3.1] (using s, a;
for generality):

V% 10g 7rh(a’f | St) = 7TCOV(1/N7T}L("S{,) [K((Stval)7 )]

This expression for V2 log 7y, (ay | s¢) is the - component used in constructing the Hessian operator in

Lemma and the estimated Hessian V3 J (hk) in the paper. By substituting the first and second
derivative 1nw1th Vi logmy(ag | si) and \W 7 logmp(ay | s¢), the Lemma s proved.

B THE DERIVATION OF THEOREM [3.3]

Theorem [3.3] transforms the RKHS optimization problem for the Newton step Ah (Equation
into an equivalent finite-dimensional optimization problem (Equation [7). The RKHS update step

is Ah = ho () = chv:Tl ar K (xy, ), where x, = (sg,ay) are state-action pairs from the N x T
trajectory data points ( k is a flattened index from 1 to M = NT), and & € RN7 is the coefficient
vector.

The objective function in Equation [3]is:
L(&) = <th(hk) h > 41 <V2j(hk) 0 b, h > D a
y e 2 h o) 'ta 6 2

We derive the forms for the first two terms. The third term, 2 ||& ||§, directly uses the Euclidean norm
of & as stated in Equation[7]

Let M = NT. The set of basis functions is {/(zy,)}}L,. The perturbation is hq(-) =

Zi\ll ;K (z;,-). We use index 7 (or j) for the coefficients «; and the basis functions K (z;,-)
We use index [ (or ') for data points from the batch of M samples when defining the gradient and
Hessian operators.

B.1 FIRST-ORDER TERM: (V},J (ht), he)

The estimated first-order Fréchet derivative V,.J (hy) (denoted g,, for operator form) is given by
adapting Equation 4] for the empirical average over NN trajectories, or M = N total samples:

gop( ) = vhJ hi)( Z\Ill K(xy,-) _Ea/wﬂ(~\sl) [K(<Sl’a/)7')])
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where x; = (s, a;) is the [-th data point in the batch, and ¥, (w) is its associated cumulative reward.
The inner product is:

<th(hk), Ba> = <th<hk), ZOCZ‘K(Q?Z‘, )>

M
= Z Q; <th(hk)7 K(x;, )> (by linearity of inner product)
i=1

Letv; = <th (hi), K (x;, )> Using the reproducing property and the expression for Vj,.J (hy,):
T M
vi= > U(w) (K(21,7) = Egrr(gsy) K ((s1,0), )], K (3,-))
=1
T M
= N Z \Pl(w) (K(Ib :EZ) - E(J/“"ﬂ'(‘lé‘l) [K((Sla a/)a zl)])
=1
Thus, <VhJ(hk) he > = ZM1 a;v; = v &. This definition of v; matches Theorem

B.2 SECOND-ORDER TERM: 2 <V2J (hi) © hey, Ea>

Let H g;t = V%j (hk). Based on the updated Lemma and Equation |1} the estimated Hessian
operator V3 J(hy) includes two components:

l(Z U, (w)Vy, log mp (1) ) <Z Vi logmp (ay ) Z\I/l W)T Covarran(ls) [K (Jcl,a’)}]

I'=1

Let H (()p) be the operator for the first part (outer product) and H, ép)

sum), such that V3 .J J(hy) = +(Hs (1) Hé?)

for the second part (covariance

1. Contribution from H) : Let Vi log mp(21) (1) = T (K (21,-) = Earn( sy [K((s1,0"),-)]). Let
Xl(ha) = (Vhlogwh(xl) h >

— TZ o (K(x1,2:) = Egrmon(s) K ((s1,0"), 25)])

The quadratic form from H(()p) is (Hc(,zl,) 0 has ha) = ( = 1‘111( W)X (h )) (Zl/ L Xu(h ))

Using the definitions of b; and ¢; from Theorem[3.3|(with Ky = K (3, 2;) and K, = K (x4, (s1,a')),
and summation index [ for data points):

M
bi = Z Uy (w) (K (25, 21) = B o )sy) [K (23, (s1,0"))])

M

Ci = Z (K(xivxl) - EG/NW('|SZ) (K (i, (Slva/))])

I=1
Then, Y7, U(w) Xy(ha) = T Y00, aiby = T(&Th). And, 300, Xy (ha) = T Y00, ajej =
T (&' c). So, the contribution to <V,2LJ (hk)Oha,}_za> from this first part is:

i<H<1>oB h >:i(TdTb)(TcT y=a' EbCT a
N op oy (e % N N

2. Contribution from Héf,)i Hé,%) ou = M U(w)T CoVarrun(an K ((s1,d), )] o w. The
quadratic form is (HS2 o hayha) = M, Uy (w)T (CoVarmn(sn K ((s1,a"), )] © ha, ha).
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The inner term is Vary or(|s)[(K((s1,a'),"),ha)] = @& 'SO&, where Z(é) =
Covarmm(.lsy) K ((s1,0"), 23), K((81,0"), z5)]. Using K| = K(z;,(s;,d’)), this is
EE? = CoVarr(s) [Kll,K }, matching Theorem So, the contribution to

<V%j(hk) 0 Nexs Ba> from this second part is:

M
—%<H§§) 0 ha, ha) = ——‘T <TZ Ty (w)s® ) —a’l (—;Z\Pz(w)x(”) &

Combining terms for the matrix /7: The full quadratic form for the second-order term in the
objective function is %dTH &, where the matrix H is given by:

T2 1 T

_ 7 _ L 0}
H = —be N;\m(w)z
This matches Equation [§]in Theorem [3.3]

C THE PROOF OF THE CONVERGENCE

C.1 PROOF FOR MONTE CARLO CONVERGENCE

Let the Monte Carlo estimates be defined as the average of [V independent and identically distributed
(i.i.d.) samples, denoted by g}(f) and H }(f), corresponding to trajectories w; ~ p(w; 7).

Vid (hy) = NZ ()

N
R 1 i
Vid (i) = 5 > !
i=1
The true Fréchet derivatives are the expectations of these samples (we use E[-] as shorthand for
EUJN[)(UJ;TF) [])
Vi (hi) = Elgn]

Vid (hi) = E[Hy]

Consider the expected squared norm for the first-order derivative estimate. Since the Monte Carlo
estimator is unbiased (E[VJ(ht)] = Vi J (hi)), the expected squared norm equals the variance:

B |91 ) = 97 ()| = Var(@17h)

The variance of the mean of N random variables is 1/N times the variance of a single variable:

; (i) @y_ 1
Var(Vy,J(hy)) = Var (N Z ¢ ) e ZVar ghl = NVar(gh)
The variance of gy, is defined as:

Var(gn) = Elllgn — Elga]|’]

Using the property Var(X) = IE[HX || ] — |E[X]||* (which holds according to the definition of
RKHS) and the fact that ||E[X]||? >

2 2
Var(gn) = E[[lga*] = IElgallI* < Elllgn]*]
Applying the assumption E[||g,||*] < 02:

Var(gp,) < 03
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Substituting this back, we find the standard convergence rate for the expected squared norm:
2

R 2
B |97 () - 1 )| < 2
Similarly, for the second-order derivative estimate:

“ 2 ~
E {HV%J(hk) - VZJ(hk)H ] = Var(V}.J (hy,))

N
Var(V3.J(hy)) = Var (zlv > H,i”) = %Var(Hh)
=1

Var(Hy,) = E[|Hy — E[H,]|%) < E[| Ha ]
Applying the assumption E[||Hj, ||°] < o2
Var(Hp) < o}
Substituting back, the standard convergence rate for the expected squared norm is:

E [vahw - vmhk)\f] =

This completes the proof.

C.2 PROOF FOR TAYLOR UPPER BOUND

Let Ah = hy — h;. Define the auxiliary function ¢ : [0, 1] — R by ¢(t) = J(hy + tAh). By the
chain rule for Fréchet derivatives:

&' (t) = (VpJ(h1 + tAR), Ah)

#"(t) = (Vi J(hy +tAh) o Ah, Ah)
Using Taylor’s theorem with integral remainder for ¢)(¢):

¢(1) = ¢(0) +¢'(0) + /01(1 —t)¢" (t)dt
Substituting the expressions for ¢, ¢’, and ¢
J(ha) = J(h1) + (ViJ(h1), Ah) + /01(1 —t)(V3J(hy + tAh) o Ah, Ah)dt
We introduce the second-order term at h;. Note that fol(l —t)dt = 1/2. Thus,
%<v%,](h1) o Ah, Ah) = /01(1 —t)(V2J(h1) o Ah, Ah)dt
Adding and subtracting this term within the integral expression for J(hs):

J(ha) = J(h1) + (ViJ(h1), Ah) + %(Vij(hl) o Ah, AR)
+ /1(1 —1)(V2J(hy + tAh) o Ah, Ah)dt
0
1
f/ (1 —t)(V2J(hy) o Ah, AR)dt
0
— J(h1) + (Y (h), AR) + %(V%J(hl) o Ah, Ah)

+ /1(1 —1)([V7J(h1 +tAR) — V3 J(h1)] o Ah, Ah)dt
0

18
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Let R5 be the remainder term:
1
Ry = / (1 —t)([V2J(hy + tAh) — V2 J(h1)] o Ah, Ah)dt
0

Through Cauchy-Schwarz inequality, the quadratic form (Av,v) < || Al||Jv||*:
[V (hy +tAR) = V3 (1)] 0 Ahy AhY < V3 (hy + tAR) — V3J (k) | AR
Using the Lipschitz continuity of the Hessian in Assumption 4.1}
IV27(hy + tAR) — V2J(h1)|| < Ll (hy + tAR) — ha]| = LA = LE|AR|| (since t > 0)
Substituting this bound into the integral for Ro:

1
Rs < / (1 — t)(Lt| AR|) | Ab|2dt
0
1
:LHAh||3/ (1— t)tdt
0

1
:LHAh||3/ (t —t%)dt
0
L
= gHAhII3

Substituting this upper bound for Rs back into the expression for J(hs) and replacing Ah with
h,g — hll

1 L
J(ho) < J(h1) +(VrJ(h1),ha — h1) + §<V;21J(h1) o (hg —h1),ha — h1) + g\|h2 —h?
This completes the proof.
C.3 PROOF FOR THE UPPER BOUND OF THE STEP NORM

To prove this upper bound, we first need to introduce a lemma to show the optimality conditions of
the iteration step:

Lemma C.1 (Optimality conditions) Let

: 5 7 1 /o2 =2\, Byz3
Ah = argunin {<vhJ (hs) h> +3 <VhJ (hi) o b, h> + = |12l }
, then it satisfies that:
Vi (hi) + V2.J (hi) o Ah + g”AhHAh = 0 (necessary condition),
(V2] ou,u) + <§||Ah||] ou,u) > 0Vu € Hg (sufficient condition),
where [ is the identity operator on Hx ® Hx — Hi.

Proof: To simplify the notation in the proof, we denote g = V.J(hy,) € Hx, Hy, = V2J(h) and
the objective function M : Hx — R:

_ _1 o
M(h) = {g,h) + 5 ((Hk o h), h) +
The first Fréchet derivative of M at h is given by:
VM) = g + Heoh+ 2]
Since Ah is a minimizer, it must satisfy the necessary condition VM (Ah) = 0:

g+ Hy oAb+ §||Ah||Ah =0.
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We now prove the standard second-order necessary condition for Ah.

Let Ah be a minimizer of M (h) and let §||Ah|| = gHAhH Then the operator Hy, + gHAhHI must
be positive semi-definite, i.e.,

((Hi o) + (NANT o) > 0 — Hy+ D) AR =0

We proceed by contradiction. Assume that Hj + §||Ah||l is not positive semi-definite (H}, +

gHAhHI % 0). This implies that there exists a direction u € Hyx with ||u]| = 1 such that its
associated quadratic form is negative:

= ((Hp + gHAhHI) ou,uy <0

Consider the Taylor expansion of M around the minimizer Ah along the direction u for a small step
€ € R. Using Taylor’s theorem in Hilbert spaces:

2
M(AR + eu) = M(A) + e(VM(Ah), u) + %((VQM(Ah)) ou,u) + O(e?)
Since VM (Ah) = 0 from the first-order condition, this simplifies to:
2
M(Ah + eu) = M(Ah) + %((VQM(Ah)) ou,u) + O(e?)

The second Fréchet derivative (Hessian operator) of M at h is calculated as:

P Bh®h B+

VM (h) = Hy, + 2 Tl + 5||h||1

Evaluating at Ah (assuming Ah # 0, which implies gHAhH > 0; the case Ah = 0 requires separate,
simpler verification) and substituting §||Ah|| = gHAhH yields:

B AR ® Ah 8 Ah® Ah

2 ||Ah]| 2 ||An]

Now, substitute this Hessian back into the Taylor expansion. The quadratic term is:

B
2[|An|]
Using the definition of  and properties of the inner product, this becomes:

B
2||An||

VZM(Ah) = Hy + +§||Ah|\1: (Hk+§|mh||1)+

(V2M(AR)) o u,u) = ((Hy + gHAhHI) ou,u) + ({(Ah,u)Ah, u)

(VZM(AR)) o u,u) = pu+ (Ah,u)?
The Taylor expansion for the difference is thus:

2

M(Ah + eu) — M(Ah) = % <u +

B
2| An]|
Let K = pu+ ﬁ(Ah, u)?. By assumption, ;1 < 0. The second term m(Ah, u)? is non-
negative. Since the assumption H, k+§ |Ah||I % 0leads to a contradiction in all cases, the assumption

(A, u>2> +O(Y)

must be false. Therefore, we must conclude that Hj, + gHAhHI > 0, which complete the proof.

Now we continue the proof for the upper bound of the step norm. Through the Taylor upper bound in
lemma .2l we know that:

1 L
J(h2) < J(h1) +(VirJ(h1),hy — h1) + §<V%J(h1) o (hg — h1),ha — hq) + g”hz —h?.

For Ah = ho — h; that satisfies the optimality conditions, we can use the necessary condition to
establish that:

J(ha) <J(hy) 4+ (ViJ(h1) — ViJ (hy) , AR) + %((VﬁJ(hl) — v,%j(hl)) o (Ah), Ah)+

L 3 1 9 3 B 3
SIAR|® = Z((V3J(h) ) o (AR), Ak) = Sl AP "
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For L < j3 and the sufficient condition in Lemma[C.1] we could find that

Lyang® < Zjan)?
6 6

1 -
5 {(V3I()) o (an), ARy < Ty
Substituting back into the inequality [TT] we can find that:
s
NABI < I () = I (ha)

(12)
(V0T () = Vo (), ) + 5 {(V37 () = V3.7() ) o (AR), Ah)

For the gradient error term, applying Cauchy-Schwarz and Young’s inequality (ab < C1a3/? + €b?
with a = ||V J(hi) — Vi J (b)), b = [[Ahgl, p = 3/2, ¢ = 3, and € = 3/36):
(Vid (hi) = Vid (hy), Ahy)
< |IVnd (hi) = Vi (hie) ||| A |
4\f |
\/>
For the Hessian error term, applying generalized Cauchy-Schwarz and Young’s inequality (cd? <
Csc® + ed® with ¢ = ||V2J(hy,) — V2J (hi)|, d = || Ahy|l, p = 3, ¢ = 3/2, and € = 3/36):

VT (e) = VT ()2 + 2| AP

ST () = V3T () © (Ahi), A
< S IV3T () = V3T () | A
< Z3IVEI () = VI + S Ab .
Substituting these bounds back into [T2}
N <) — T ()

§ 3 () /2

fnw( O = VT2 + 2| Am P

2 B
+ @IIV?LJ(M) = Vid ()| + g | Ahi 1.

Rearranging terms yields:

(152 _ % _ 5) ARG < T(hi) = T (i)
43

S\FthJ(hk) Vi d (hi) |IP/% + @Hvij(hk) — Vi (h)|I?,

which simplifies to:

DA < I0) I i) + 22 19,7 04) ~ DT )2+ 2292 )~ TR T

m“vhc]
(13)

Now, we take the total expectation E[-] over all randomness. Using Lemma and properties of
expectation (Jensen’s inequality), we bound the expected error terms:

2 3/2 7 21\*/4 03 o 03/2
B (19 0) = Va0 1%] < (B (19050 - Tad)P]) " < () = 7%

3 3
. o o
E [HV,?LJ(hk) - V%J(hk)”z)’] < (\/le> = N31/2' (See note below)
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Substituting these bounds into the expectation of [I3}
B o TiAn [
36 E UIAR1°] <E[T ()] = E[J (hg41)]

4\f oo/ 24 ([ o}
+av () + 3 ()

Summing this inequality over the total iterations k = 1,..., M:
3 M M
%ZE ks = hill®] < ) (BLT(hi)] = E[J (1))
k=1 k=1

13 03?2 L2 dd
+Z S\f N3/4 62 N3/2 |
The first sum on the right-hand side telescopes to E[J(h1)] —E[J(har41)]. Assuming h; is determin-

istic and J(h) > J* for some minimum value J*, this sum is bounded by J(h1) — J*. The second
sum consists of terms independent of the summation index k:

M( - M<4\f 3/2+24 og’>>
A 3/4 " B2 n73/2 |
‘ 3B N3/4 " B2 N3/

k=

Combining these results:

M
S B s bl < () — I+ M
k=1

43 00 24 oF
3VB N3/4 T B2 N3/2 |-

Let R be a random variable uniformly distributed on {1,..., M}, such that P(R = k) = 1/M.
Then E[||hps1 — hgl?] = & She, E [t — hel?]. Dividing the inequality by M:

38 J(hy) — *+<4\f o2 L o3 )

PR — 3 JR—
?,(sE[HhR+1 hall’] < M 3B N3/4 " 32 N3/2

Finally, multiplying by 36/0 isolates the expected cubic step norm for a randomly chosen iteration
R:

E [lhr1 — hgl?] <

36(J (M) — J*) | 36 43 o/ L2 o
BM 3\fN3/4 62 N3/2

_ 36(J(h) = J*) | 48V3 o} 32 864 o3
= BM + 33/2 N3/4 ﬁNs/z'

(14)

We can box the final result for emphasis:

36(J(hy) — J*)  48v3 o2/ 864 o
BM 33/2 N3/4 ﬁNsp'

E kg1 = hrl?] <

This completes the derivation of the upper bound on the expected cubic step norm.

C.4 PROOF FOR THE LOWER BOUND OF THE STEP NORM

From the proof of the Taylor upper bound in Appendix [C.2] we could similarly derive the first-order
Taylor upper bound as

L
VJ(he) < VJ(h) 4+ (ViJ (h1) o (hy = h1), hy — hn) + 5 llh2 = hall®. (15)
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Through this, we could prove the lower bound by first constructing this auxiliary equation through
the optimality conditions in Lemma [CI}

VI (hisr) = VI (hieyr) = (Vad (he) + Vi J (hi) o Ay, + *||Ahk||Ahk)
= [VJ(his1) = VI (hi) = V2 I (hy) o Ahy]  (Term 1)
+ [VI) = Vid(hi)] - (Term 2)
+ [(VQJ(hk) ~V2J(hy)) o Ahk} (Term 3)

- §||Ahk||Ah;€ (Term 4)
Taking norms and applying the triangle inequality:
IV (hies )| <INV T (hieir) = VI (hie) = V2T (hy) o Ay
+ VI (h) = Vi (b |
+ (V2T (hx) = Vi J (i) © Ahy|
= S an Ak

We bound the terms using Assumption .1] for Term 1, norm properties for Term 3, and direct
calculation for Term 4:

L N
IV I (hierr) | 1A + VT (hi) = Vi d (ha) |
2
+ V2T (hi) — V3] (hk)||||Ahk||+*||Ah [§

Applying Young’s inequality ab < % + %’2 with C' = L + f to the term involving the Hessian
error:

IV (he) = Vi, J (hz‘c)IIQJF(LJrB)IIAth2
2(L+5) 2

Substituting this back and collecting terms with ||Ahy]|?:

IV2 (hx) = Vi () | A ]| <

19wl < (5 + 252+ 5 ) han?

V2T (hy,) — V2T (hy)||?

+ |V J(hy) — th(hk)H + 2(L+ B)

= (L+B) | Ahu |
IV2J (i) = Vi J () |1*
2(L+7)

Now, take the total expectation E[-]. Using Lemma and Jensen’s inequality:

+ VI (hie) = Vid ()| +

B [I900) — V0] < /B [19700) = V) F] < 22
E[IV27(h) = V3I()|12] <

Applying expectation to the inequality for ||V J(hk+1)]|:
E[||VJ (his2)l] < (L + B) E[[| Ahl|?]
E[IV2(hi) = V3 ()]?]

+E [||VJ(hk) - th(hk-)H] + 2(L + B)
2 90 of
<+ DENAMI + T2+ o
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Rearranging to isolate the expected squared step norm:

[ 0‘2
(L AENAMIF) > BNV Cuenll) = 75 = 3577 1.5
1 ” 2
El||hk41 — thQ} > Li—i—ﬁ (E[||VJ(hk+1)|” - \/7% - 2N(L+ﬁ))

This completes the proof for the lower bound based on the gradient norm, using the corrected
regularization term.

C.5 PROOF FOR CONVERGENCE THEOREM
From Lemma[4.3] the upper bound on the expected cubic step norm for R ~ Uniform{1, ..., M} is:
36(J(hy) — J*) 483 oo/? 864 o

BM 33/2 N3/4 ﬁNs/z'

As the number of iterations M — oo and the batch size N — oo, the right-hand side approaches
zero. Thus,

E [|[hr1 — hrl’] <

. . 31 _

yhim B[l — k]’ = 0. (16)
Using Lyapunov’s inequality, E[|hr41 — hg|?] < (E[||hri1 — hg|*])%/?
M, N — oo and using[I6}

. Taking the limit as
li — hg|?] =o0. 1
pm [lhg1 — hgll?] =0 (17
From Lemma 4.4} we rearrange the inequality which holds for any iteration k:
BV ()] < (L -+ BBl — hil?] + T2+ 1
k+1) Il = k+1 k N CAN(L+8)
Now, we take the expectation over the random index R ~ Uniform{1, ..., M}. Since R selects one

of the iterations k& € {1, ..., M} uniformly, taking the expectation of the inequality with respect to
R effectively averages it:

ago g %

N aNT By
Here, E denotes the expectation over the choice of R. Let E[-] denote the total expectation (over the
process history and R). The inequality becomes:

Er [E[|VJ(hrs)l]] < Er [(L+ B)E[|hrs1 — hrl®] + +

2

(o1) 0-1
E[||VJ(h < (L+ B)E|[||hps1 — hg|* ]+ — + —————.
[IVI(hrr)ll] < (L + B)E[[|hr+1 — bRl N ()
Taking the limit as M — oo and N — oo:
im B[Vl < lim (L4 OEhre - hal? 4 2 g T
MN S oo R+UIE= ) W e Rl — DR VN | 2N(L+ )

2
_ : 21 g 00 o
=09t Bl hal)+ i s i g,
=(L+p5)x0+0+0 (Using[T7)
=0.
Since E[||VJ(hgr+1)||] > 0, we conclude that:
aim B[V (hrr)ll] = 0.
As E[||VJ(hg)||] differs from E[||VJ(hgr+1)||] by terms that vanish as M — oo (typically
a7 B[V I (hars1)[] — E[[[VJ(R1)][])), we can equivalently state:
i E[[VI(hr)ll] = 0.

This proves that the expected gradient norm at a randomly chosen iteration converges to zero.
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D PROOF FOR QUADRATIC CONVERGENCE

Let the error at iteration k be e, = hy — h*. The update gives hy11 — h* = hy — h* + Ahy, so
ex+1 = e + Ahy. The update step satisfies the optimal condition@, which is given by:

VJ(hi) + V2J(hy) 0 Ay + §||Ahk||Ahk. =0.
Rearranging yields:
(V2J(hy) + §||Ahk\|l') o Ahy = —VJ(hy)
where 7 is the identity operator.
We expand V.J(hy,) around h* using Taylor’s theorem (similar to the derivation in Appendix :
VI (he) = VI(*) + VI (h*) o (hye = h*) + Ra (e, 1)

where VJ(h*) = 0 and the remainder term satisfies | R+ (hg, 2*)|| < £||he — h*||* = £|lex||* for
some constant % when Ay, is near h*. Thus,

VJ(h) = V2J(h*) o ex + Ry (hw, h¥)
Substitute this into the rearranged update equation:

(V2T (hy) + gHAthI) o Ahg = =V?J(h*) o e, — R (hu, h")

Let Hy = V2J(hy) and H* = V2J(h*). Let Ay = Hy, + 5||Ahy||Z. The equation is Ay o Ahy, =
—H* o ey, — Ry (hg, h*). Assuming the norm of the inverse operator ||A; ! ||,, will be bounded by
some constant B, and we assume that the update step is sufficiently small that | Ahg|| < Ll|ek]|-

Now, substitute Ahy, = ex11 — ey, into the equation Ay o Ahy = —H* o e, — Ry (hg, h*):
Ak o (6;€+1 — €k) =-—H"o € — Rl(hk, h*)
Ak O€r+1 = Ak ocer — H* o€ — Rl(hk,h*)

Ap o Ckt1 = (Hk + gHAhk”I— H*) oer — Rl(hk,h*)
Ak Oepy1 = (Hk — H*) oer + gHAthek — Rl(hk,h*)
Applying the inverse A,:l:
Cp+1 = A,;l o |:(Hk — H*) oer + g”AthGk — Rl(hk, h*):|
Taking norms and using the triangle inequality:

ller+1ll < 145 Hlop

(Hk — H*) oer + gHAthek — Rl(hk,h*)H

- . B x
< 4% Hlop (IIHk = H|lopllexll + 5 [ Ahklllex]l + IRy (hre, %)

Substitute the bounds: [|A;'|lop < B, |[Hr — H*|lop < Lllexl, |Ahi| < L|lex|, and
IR (B, ) < & lex .

I3 L
lexsall < B ((Llekll)llekl + 5 (Lllexlllex ] + 5 llexll®
L L
< B ( Llexl? + 2L el + Zlex?
2 6
BL LY,
B(L+—+—
(£+5 +5) e
Setting C; = B(L + % + %), which is a positive constant independent of k£, we have shown that
11 = B[ < Cyllhy — h*|1?

This demonstrates local quadratic convergence for the deterministic version of the algorithm, provided
hy, is sufficiently close to h*.

IA
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E VALIDITY OF THE ASSUMPTIONS

E.1 VALIDITY OF ASSUMPTION 4.1 (LIPSCHITZ CONTINUITY OF THE HESSIAN)

Claim. Under mild regularity conditions standard in second—order analysis (Nesterov & Polyak,
2006b; Nocedal & Wright, 2006b) and in Lipschitz MDPs (Pirotta et al., 2015), the RKHS Hessian
operator V;, J(h) is Lipschitz on a neighborhood N' C H ; i.e., there exists L > 0 such that

V7 (h1) — viJ(hz)Hop < L|hy —hs|  Vhi,he €N

Sufficient conditions. It suffices that the following hold:

1. Bounded horizon and rewards. Finite horizon T' < oo (as in our experiments) or a discounted
infinite horizon with v < 1, and |r(s, a)| < Rmax-

2. Lipschitz MDP. The transition and reward are Lipschitz in a metric d (cf. (Pirotta et al.,
2015)):
Wi(P(:|s,a), P(:|s',a’")) < Lpd((s,a),(s',d")), and |r(s,a) — r(s’,a’)| <
Ly d((s,a),(s",a")).

3. Kernel boundedness and smoothness. The kernel sections satisfy || K((s,a), )| < x and
the map (s,a) — K((s,a),-) is Lipschitz in RKHS norm with constant L.

4. Softmax RKHS policy with Lipschitz log-policy. For 7, (a|s) o exp(Th(s,a)) with finite T
and h restricted to ||| < B, the log-policy and its first two Fréchet derivatives are Lipschitz
in h.

5. Uniform integrability. The trajectory weights ¥;(w) admit finite moments ensuring inter-
change of expectation and differentiation (dominated convergence).

Sketch. By Lemma 3.2,

ViJ(h) = E{(Et W, Vj, log WL) ®(Zt, vV} log Tr};/” -E

Z U, TCOVQ’Nﬂh(-\st)[K((St’ Cl/), )]
t

For the outer-product term, V, log 7, (als) = T(K((s,a),) — Eq~r, [K((s,a"),-)]). Because
(s,a) — K((s,a),-) is Lipschitz (Assumption 3) and h — 7, is smooth and Lipschitz on ||h] <
B, the map h — V}, log 7, is Lipschitz; bilinearity of the outer product then yields a Lipschitz
bound on the first expectation. For the covariance term, the maps h — Eq/r, [K((s,a’), )] and
h—= Egor, [K((s,a’),-) ® K((s,a’), )] are Lipschitz by the same reasoning, hence h — X (s) =
CoVarmm, (-1s) [ ((s,a’), )] is Lipschitz. Multiplying by bounded |¥;| and taking expectations over
bounded-horizon (or discounted) trajectories preserves Lipschitzness. Therefore there exists L > 0
such that |V2J(h1) — V2.J(h2)|lop < L ||h1 — ho||. This mirrors the Lipschitz-gradient results for
value functions in Lipschitz MDPs (Pirotta et al.,[2015) and the smoothness assumptions used in
cubic-regularized/Newton methods (Nesterov & Polyakl 2006b; Nocedal & Wrightl |2006b)).

E.2 VALIDITY OF THE ASSUMPTIONS IN THEOREM 4.6 (LOCAL QUADRATIC CONVERGENCE)

The theorem rests on three local assumptions. Below we give standard sufficient conditions and why
they hold in our setting.

B.1 Bounded inverse of the regularized Hessian. We require
(V7T (hi) + §||Ahk|\1)71|| < B.

If h* is a strict local minimizer, then H* = V% .J(h*) is positive definite. By continuity (Assump-
tion 4.1), there exists a neighborhood N that Apin (V2 .J(h) + gHAhH Z) > u, so the inverse is
uniformly bounded by B < 1/u. The cubic regularizer only enlarges the spectrum, a standard
safeguard in cubic-regularized Newton analyses (Nesterov & Polyak, 2006bj Nocedal & Wright,
2006b).
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B.2 Step—-error proportionality | Ahy|| < K|legx||. Letey = hy—h*. The step solves (V3.J (hy)+
gHAth I)Ahy, = —V},J(hg). By Taylor’s theorem with Lipschitz Hessian (Assumption 4.1),
Vi d(hi) = ViJ(h*) ex 4 ry with || || < c|lex . Multiplying by the bounded inverse from B.1
gives

ARkl < TAZ I AE Nlewll + lirell) < BAE I+ cllexlDllexll < Kllex|

for ||ex || small enough, establishing the proportionality in the local region.

B.3 Initialization inside the local basin. Quadratic convergence for Newton-type methods is
inherently local: starting sufficiently close to h* ensures the Newton map is a contraction and that
iterates remain in . This basin-of-attraction requirement is standard (Nocedal & Wright, [2006bj))
and is precisely the regime where cubic regularization attains its classical rates (Nesterov & Polyak,
2006D).

B.4 Deterministic scope of Section 4.3. Rates for stochastic Newton-type methods depend on
curvature, noise, and step-size policies and typically require separate concentration and bias—variance
controls; see, e.g., (Boyer & Godichon-Baggionil 2023; Bottou et al.,2018)). Our Section 4.3 therefore
establishes the baseline local quadratic rate in the deterministic setting—the hallmark behavior of
Newton’s method—providing a principled rationale for a second-order approach to RKHS policies
and a foundation for future stochastic analysis.

F ASSET ALLOCATION EXPERIMENT

In our investment planning MDP, we formulate a state-action framework that models investment
decisions under varying market conditions and resource constraints. This model captures the funda-
mental trade-offs between risk and return across different market states while accounting for resource
dynamics.

The state s € S is characterized by a tuple (r, m) where:
*r € {0,1,..., Rmar — 1} represents the discrete resource level, with R, being the
maximum possible resource level
* m € {0, 1,2} corresponds to market conditions (recession, stability, and prosperity, respec-

tively)

The cardinality of the state space is |S| = Rz X 3.

The action space .4 comprises three distinct investment strategies:

¢ g = 0: Conservative investment (low risk/low return)
¢ a = 1: Balanced investment (moderate risk/moderate return)
* a = 2: Aggressive investment (high risk/high return)

The state transition function P(s;y; | s, a;) models the stochastic evolution of both resource
levels and market conditions:

1. Resource Dynamics: The probability of resource level transitions depends on the chosen
action:

 Conservative strategy: P(riyi|ri,a; = 0) = [0.1,0.8,0.1,0.0,0.0] for Ar €
{=1,0,+1,+2,+3}

* Balanced strategy: P(riyi|r,ax = 1) = [0.2,0.2,0.4,0.2,0.0] for Ar €
{-1,0,+1,+2,+3}
» Aggressive strategy: P(ry1i1|r,ac = 2) = [0.4,0.1,0.1,0.2,0.2] for Ar €

{-1,0,+1,+2,+3}

2. Market Dynamics: Market state transitions follow a Markov chain with the following
probabilities:

* Recession: P(myy1|m: = 0) = [0.6,0.3,0.1] for msy;1 € {0,1,2}
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b Stablhty P(mt+1|mt = 1) = [03,04,03] for miy1 € {0, ].,2}
* Prosperity: P(my1|m: = 2) =[0.1,0.3,0.6] for m;; € {0,1,2}
The joint transition probability is computed as:
P((res1,mes1)|(re, me), ae) = P(regalre, ap) - P(mega|my)

The reward function (s, a;) captures the expected immediate return for taking action a in state
st = (re, my):

’I“t—|-1

T((Tt7mt);at) = B(mt,at) : R

where B(my, a;) is the base reward that depends on the market state and chosen action:

* Conservative strategy (a; = 0):

— Base reward = 1.0 for all market states, except
— Base reward = 0.5 in prosperity (m; = 2) to represent opportunity cost

* Balanced strategy (a; = 1):
— Base reward = 0.5 in recession (m; = 0)
— Base reward = 2.0 in stability (m; = 1)
— Base reward = 1.5 in prosperity (m; = 2)
» Aggressive strategy (a; = 2):
— Base reward = —1.0 in recession (m; = 0)
— Base reward = 1.0 in stability (m; = 1)
— Base reward = 3.0 in prosperity (m; = 2)

The resource scaling factor Igt—ﬂ ensures that higher resource levels amplify rewards.

The initial state distribution p(s() is typically set to start with a medium resource level and a
randomly selected market state:

(70 = [Rynan /2], m0 = m)) = % for m € {0, 1,2}

In our experiment, R4 1S set as 5, balancing sufficient environmental complexity with simplicity
for visualization and optimal policy calculation.

G VISUALIZATION OF POLICY LANDSCAPES

To visualize the optimization behavior of different algorithms in Figure 1(b), we project the high-
dimensional policy space onto a two-dimensional plane and overlay an approximate value landscape
and the optimization trajectories.

PCA projection of policy space. Let Gim) € RP denote the flattened policy parameter vector of
method m at iteration ¢, and let 8* be the analytically known optimal policy in the toy asset allocation
setting. We collect all visited policies across all methods,

D ={6™ | vm,vt} U {6},
and form the data matrix X € RV*P with N = |D|. We apply PCA to X, obtain the first two
principal components w1, ws € R”, and project any policy 6 to
2(0) = [w{ (0~ 0), w; (0 - 0)] €R?,
where 0 is the empirical mean of D. This 2D plane captures the dominant variation of all policies

and makes their relative positions (initial policies, intermediate iterates, and the optimum) directly
comparable.
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Value surface reconstruction. Let z; = z(6;) be the 2D projection of a policy ; € D and
v; = J(0;) its corresponding expected return. We construct a dense grid over the convex hull of
{z;}}¥, and approximate the value landscape by interpolating the pairs {(z;,v;)}}\, using standard
scattered-data interpolation (cubic interpolation when possible, and linear interpolation in sparse
regions). This yields a smooth surrogate J (z) whose level sets define the background contour in
Figure 1(b).

Trajectory smoothing. For each method m, the projected iterates {z(@t(m))}fzo are connected into
a smooth curve using B-spline interpolation with a small smoothness penalty. This reduces visual
clutter due to small step-to-step fluctuations while preserving the global optimization trend towards
z(0*), which is marked as the optimal policy in Figure 1(b).

Additional high-contrast visualization. The main-panel Figure 1(b) was primarily designed to
highlight the geometric differences between optimization trajectories and their distances to the
optimal policy in the PCA-projected space. As noted by the reviewer, reward differences in the
high-return region can appear visually subtle due to the relatively flat landscape around the optimum.
To make these differences more apparent, we provide in Figure [3|an additional visualization with an
adjusted color scale (and identical trajectories), which enhances the contrast of the reward values
while keeping the underlying optimization paths unchanged.
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Figure 3: Alternative visualization of the policy landscape with enhanced reward contrast. The
optimization trajectories are identical to Figure 1(b); only the color scale of the value surface is
adjusted.

H OPTIMIZATION DETAILS

To solve the optimization problem formulated in Equation[7} we implemented a conjugate gradient
optimization framework based on the Newton-CG method. This approach combines the second-order
convergence properties of Newton’s method with the computational efficiency of the conjugate
gradient algorithm, making it particularly suitable for our problem where the dimensionality of the
Hessian matrix H scales with the volume of trajectory data N x T'.
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Specifically, we address the following optimization problem:

1
a* = argmin {(v,&) + - (Ha,a) + b ||5‘|§}
a€cRNT 2

This optimization problem incorporates a linear term (v, &), a quadratic term % (H &, &), and a cubic
regularization term %H&H% The objective function and its gradient are computed as:

f( 5

% a
Vi@ =v+Hat D ala

Qi

):<v,a>+%<Ha,a>+

In each Newton iteration, we determine the search direction by solving the linear system (H +
ngHI)Ad = —Vf(&). The conjugate gradient method is employed to efficiently solve this linear
system, avoiding the high computational cost of directly computing (H + gH&HI )~L. This method
constructs a set of conjugate directions {p; } and progressively approximates the optimal solution
through orthogonal projections. The algorithm proceeds as follows:

1. Initialize residual ro = =V f(&o) = —(v+ Hayg + g”&o &) and initial search direction
Po=To
2. For each iteration k:
T‘kT’I"k-
pL(H+5arlT)px
» Update solution A1 = Adyg + gk

* Compute optimal step size o =

* Update residual ry11 = ry, — ap(H + §||64k||I)pk
T
* Calculate conjugate direction update coefficient 5, = %
k

 Update search direction py 1 = 7r+1 + BkPk

In our implementation, we utilized the minimize function from the SciPy optimization library,
configured with the "Newton-CG’ method. To balance optimization accuracy and computational
efficiency, we set the convergence tolerance to 10~2 and the maximum number of iterations to 500.

H.1 COMPUTATIONAL COST ANALYSIS

To address the practical concerns regarding the computational overhead of second-order methods, we
present a comparison of the training time (wall-clock time) for the proposed method and baselines.

All experiments reported in this subsection were conducted on the CartPole environment. The total
training duration corresponds to 1.2 x 107 training steps for each method. All runs were executed on
the same hardware infrastructure (Intel Xeon Gold 5218 CPU) to ensure a fair comparison.

Table [T summarizes the total wall-clock time required. We compare our Policy Newton in RKHS
against first-order RKHS methods, as well as parametric methods with varying model complexities
(Polynomial features of degree 1 and 3).

Analysis. The results indicate that the Policy Newton in RKHS requires approximately 1.97x the
computation time of its first-order counterpart (Policy Gradient in RKHS). This overhead is primarily
attributed to the construction of the Hessian operator and the Conjugate Gradient (CG) iterations
required to solve the Newton step.

However, it is crucial to interpret this cost in the context of sample efficiency:

Relative Overhead: The ~ 2Xx cost factor is consistent with the overhead observed in parametric
second-order methods (e.g., Policy Newton Poly-3 vs. Gradient Poly-3), suggesting that the RKHS
formulation does not introduce disproportionate computational burdens.

Thus, while computationally more intensive per update, Policy Newton in RKHS remains practically
feasible for standard RL benchmarks.
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Table 1: Comparison of total training time (in minutes) for 1.2 x 107 training steps on the CartPole
task. The RKHS methods utilize a non-parametric representation scaling with sample size. Poly-1
and Poly-3 denote parametric policies using polynomial feature representations of degree 1 and
degree 3, respectively. We note that the degree 3 is used in the experiment of the main paper.

Method Optimization Type Time (min)
Policy Newton in RKHS (Ours) Second-Order (RKHS) 435
Policy Gradient in RKHS First-Order (RKHS) 22.1
Policy Newton (Poly 3) Second-Order (Parametric) 18.8
Policy Gradient (Poly 3) First-Order (Parametric) 9.7
Policy Newton (Poly 1) Second-Order (Parametric) 16.3
Policy Gradient (Poly 1) First-Order (Parametric) 8.5

I EXTENSION TO CONTINUOUS ACTION SPACES

In the main text, we focused on discrete action spaces to establish the theoretical foundation of
Policy Newton in RKHS. In this appendix, we demonstrate that our framework naturally extends to
continuous action spaces. Specifically, we derive the second-order optimization steps for a Gaussian
policy parameterized by a RKHS function.

I.1 GAUSSIAN PoLICcY IN RKHS

We consider a continuous action space A C R?. The policy is modeled as a multivariate Gaussian
distribution with a fixed covariance matrix ¥ € R?*< and a state-dependent mean () represented
by a function A in a Reproducing Kernel Hilbert Space (RKHS) H% . The policy is defined as:

1 1
mp(a | s) = ———ex —a—hsTZ_la—hS>. (18)
019 = e (=50 @) o - h(o)
Here, h = [hy, ..., hd]T where each component h; € H g is a function in a scalar RKHS associated

with kernel K (-, -). The reproducing property implies h(s) = (h, K(s,"))5a (component-wise).
The log-policy is given by:
1
logmp(a|s) = —§(a—h(s))TEfl(a—h(s))—FC, (19)

where C'is a constant independent of h.

1.2 FRECHET DERIVATIVES IN RKHS

We derive the Fréchet derivatives of the expected return .J (7)) with respect to the function h.

First-Order Derivative. The gradient of the log-policy with respect to h is simply the kernel
function scaled by the score vector (Zhang et al., [2025):

Vilogmp(a|s) = K(s,-) [E7 (a—h(s))] € HY. (20)
Note that this is a standard element in the RKHS. Consequently, the Policy Gradient in RKHS is:

T-1
Vid (1) = Bumpuimn) | D Ve(w)K (s¢,7) [B7"(ar — h(s))] | - (21)
t=0

Second-Order Derivative (Hessian Operator). Differentiating the log-policy again yields the
Hessian operator. The Gauss-Newton approximation (outer product of gradients) involves the tensor
product of the gradient element with itself. The curvature term arises from the second derivative of
the log-likelihood. Specifically, the Hessian of the log-policy is the operator:

Vilogmp(a|s)=— (K(s,)S7") @ K(s,-). (22)
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This notation denotes an operator 7' : H% — H% such that for any u € HE, Tu =
K (s,7) [E7HK (5,), )y, | = K (5,5 u(s)].

The full Hessian of the objective J(7y,) is thus:

T-1
Uy (w Vhlogwh> ® (Z Vi 10g7rf£>
=0

T—

;-.

V%J(ﬂ—h) wwp(w ) [(

t=0

(23)
T—1
+ Z \I/t(W) (*(K(St, ')271) & K(St, ))] .
t=0
[.3  FINITE-DIMENSIONAL REDUCTION
By applying the Representer Theorem, we seek the update step in the form:
=Y K(a,-)wy, (24)

where z; = (s, a;) corresponds to the [-th sample in the dataset, and w; € R are coefficient vectors.
We define the full coefficient vector & € RNT4 by stacking wy, ..., wnT.

Theorem 1.1 For a continuous Gaussian policy, the optimization of the Policy Newton step in RKHS
is equivalent to minimizing:

B

1
L(@) = (v, @) + 5 (H&, &) + ¢ [lall;- (25)

2
The vector v € RNT4 is composed of blocks v; € R (i =1...NT):

1 _
vi = > W(w) K (s1, )5 (ar — h(s1).- (26)
=1
The matrix H € RNTIXNTd js ajven by:
Z‘I’l ) [Gi® (86 =571, 27)

where §; = X" a; — h(s;)) € RY, and G) = klkl—'— € RNTXNT s the outer product of the kernel
column vector k; = [K (s1,51), ..., K(s1,sn7)]". The Kronecker product A ® B here assumes the
standard block layout where A (the kernel matrix part) dictates the block structure and B (the action
dimension part) dictates the content of each block.

J  LLM USAGE DISCLOSURE

We used a large language model solely for writing polish. Its assistance was limited to grammar and
style edits, wording suggestions for titles/abstract/captions, consistency of terminology, and minor
LaTeX phrasing (e.g., figure/table captions and cross-reference text).
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