

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 POLICY NEWTON ALGORITHM IN REPRODUCING KERNEL HILBERT SPACE

Anonymous authors

Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) policies represented in Reproducing Kernel Hilbert Spaces (RKHS) offer powerful representational capabilities. While second-order optimization methods like Newton's method demonstrate faster convergence than first-order approaches, current RKHS-based policy optimization remains constrained to first-order techniques. This limitation stems primarily from the intractability of explicitly computing and inverting the infinite-dimensional Hessian operator in RKHS. We introduce Policy Newton in RKHS, the first second-order optimization framework specifically designed for RL policies represented in RKHS. Our approach circumvents direct computation of the inverse Hessian operator by optimizing a cubic regularized auxiliary objective function. Crucially, we leverage the Representer Theorem to transform this infinite-dimensional optimization into an equivalent, computationally tractable finite-dimensional problem whose dimensionality scales with the trajectory data volume. We establish theoretical guarantees proving convergence to a local optimum with a local quadratic convergence rate. Empirical evaluations on a toy financial asset allocation problem validate these theoretical properties, while experiments on standard RL benchmarks demonstrate that Policy Newton in RKHS achieves superior convergence speed and higher episodic rewards compared to established first-order RKHS approaches and parametric second-order methods. Our work bridges a critical gap between non-parametric policy representations and second-order optimization methods in reinforcement learning.

1 INTRODUCTION

Representing policies within Reproducing Kernel Hilbert Spaces (RKHS) offers a powerful non-parametric alternative, leveraging its definition in an infinite-dimensional functional space to provide strong representational capability and universal approximation (Barreto et al., 2016; Lee et al., 2023). Crucially, the RKHS framework facilitates dynamic complexity adaptation: the policy updates are efficiently restricted to the finite-dimensional span of observed data points, allowing the model size to adapt precisely to the task complexity. These properties are particularly advantageous in data-constrained environments, where sample efficiency is paramount, and in safety-critical applications, where the norm-induced smoothness provides policies with superior robustness and stability against noise and uncertainty (Paternain et al., 2020; Morimura et al., 2010). This approach has demonstrated success in various RL domains, including meta-RL (Lee et al., 2023) and distributional RL (Morimura et al., 2010). Despite these representational advantages, optimization methods for RKHS policies have remained primarily limited to first-order approaches. The RKHS Policy Gradient (Paternain et al., 2020), which achieves policy updates by adding gradient-derived functions in RKHS, represents the current standard. However, this approach inherits the fundamental convergence limitations common to all first-order methods - namely slow convergence in complex optimization landscapes characterized by high curvature or narrow valleys.

In parametric policy representations, second-order optimization methods have emerged as effective solutions to these convergence challenges. While first-order methods like Policy Gradient (Sutton et al., 1999) are widely implemented due to their simplicity, they often exhibit slow convergence and sensitivity to the optimization landscape's curvature, particularly when dealing with ill-conditioned problems (Furmston et al., 2016). Second-order methods, exemplified by the Policy Newton algorithm (Li et al., 2023; Jha et al., 2020), address these limitations by incorporating Hessian curvature

054 information, enabling potentially faster convergence rates and more appropriately scaled updates.
 055 These advantages make second-order methods particularly compelling candidates for accelerating
 056 learning in RKHS policy optimization.

057 The natural progression towards faster optimization—developing a Policy Newton method di-
 058 rectly within the RKHS—poses significant theoretical and practical challenges. Unlike the finite-
 059 dimensional case, the Hessian analogue in RKHS corresponds to the second-order Fréchet derivative
 060 of the expected cumulative reward function. This derivative is an operator acting on the function
 061 space, and computing its inverse explicitly, as required by standard Newton methods, is generally
 062 intractable in this infinite-dimensional setting. Existing research on second-order methods in RKHS
 063 has primarily focused on regret bounds in online learning settings with specific distributed data (Ca-
 064 landriello et al., 2017a;b; Lu et al., 2016; Le et al., 2013), leaving a critical gap for policy optimization
 065 in RL where the data distribution shifts with the policy.

066 To bridge this gap, this paper introduces the **Policy Newton in RKHS** algorithm, the first second-order
 067 optimization framework specifically tailored for policies represented within RKHS in the RL context.
 068 Our approach circumvents the explicit computation of the infinite-dimensional Hessian operator in
 069 policy optimization by reformulating the problem through a cubic regularized auxiliary objective
 070 function within the RKHS (Maniyar et al., 2024; Doikov et al., 2024). Crucially, we leverage
 071 the Representer Theorem (Schölkopf et al., 2001) to demonstrate that this infinite-dimensional
 072 optimization problem is equivalent to solving a finite-dimensional optimization problem in Euclidean
 073 space, whose dimension scales with the amount of trajectory data used in the estimate. This makes
 074 the approach computationally feasible.

075 Our main contributions are summarized as follows:

- 077 • We propose the first second-order optimization algorithm for policy in RKHS, comprised of
 078 two key components: (1) We derive the second-order Fréchet derivative as the Hessian oper-
 079 ator and introduce a cubic regularized auxiliary function to find the update step, avoiding the
 080 need to compute the intractable inverse operator; (2) We reformulate the infinite-dimensional
 081 optimization problem into an equivalent finite-dimensional problem in Euclidean space
 082 using the Representer Theorem, making the approach computationally tractable.
- 083 • We establish theoretical guarantees for the proposed algorithm, proving convergence to a
 084 local optimum, and demonstrating a quadratic convergence rate. Our empirical evaluations
 085 on a toy problem verify these theoretical properties and show that Policy Newton in RKHS
 086 achieves superior performance in terms of episodic reward compared to baseline methods,
 087 with an enhanced ability to escape local optima.

089 2 PRELIMINARIES

091 2.1 POLICY NEWTON IN REINFORCEMENT LEARNING

093 In reinforcement learning, a Markov decision process is defined by the tuple $(\mathcal{S}, \mathcal{A}, P, r, \gamma, \rho)$ where
 094 \mathcal{S} denotes the state space; \mathcal{A} denotes the action space; $P(s_{t+1} | s_t, a_t)$ represents the transition
 095 probability function; $r(s_t, a_t)$ is the reward function; $\gamma \in [0, 1]$ is the discount factor; and $\rho(s_0)$ is
 096 the initial state distribution. Actions are selected according to a policy $\pi(a_t | s_t)$, which defines
 097 a probability distribution over actions conditional on the current state. A trajectory is denoted
 098 by $\omega = (s_0, a_0, \dots, a_{T-1}, s_T)$, where $s_0 \sim \rho(s_0)$ and T is the episode length. We denote the
 099 probability of trajectory ω following a policy π as $p(\omega; \pi)$. **Standard reinforcement learning aims**
 100 **to maximize the expected cumulative reward. However, to align with the standard conventions of**
 101 **gradient descent and Newton-type optimization frameworks, we reformulate this as a minimization**
 102 **problem. Throughout this paper, we define the instantaneous cost as the negative reward, effectively**
 103 **setting $r(s_t, a_t) \leftarrow -r(s_t, a_t)$, and minimize the expected discounted cumulative term given by**

$$104 J(\pi) = \mathbb{E}_{\omega \sim p(\omega; \pi)} \left[\sum_{t=0}^{T-1} \gamma^{t-1} r(s_t, a_t) \right],$$
 105 **where γ is the discount factor. Typically, the policy is**
 106 **parameterized by a vector $\theta \in \mathbb{R}^d$ and the notation π_θ is used as a shorthand for the distribution**

$$\pi(a_t | s_t; \theta).$$
 107 **The target of RL is to find a parameter (Sutton & Barto, 2018)**

$$\theta^* = \operatorname{argmin}_{\theta \in \mathbb{R}^d} J(\pi_\theta).$$

108 The Policy Gradient method (Maniyar et al., 2024; Williams, 1992) is utilized to find the optimal
 109 parameter using the gradient $\nabla_{\theta} J(\pi_{\theta})$ of the expected reward $J(\pi_{\theta})$:
 110

$$111 \quad 112 \quad 113 \quad \nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\omega \sim p(\omega; \pi)} \left[\sum_{t=0}^{T-1} \Psi_t(\omega) \nabla_{\theta} \log \pi(a_t | s_t; \theta) \right],$$

114 where $\Psi_t(\omega) = \sum_{i=t}^{T-1} \gamma^{i-1} r(s_i, a_i)$ denotes the cumulative reward starting from (s_t, a_t) in trajectory
 115 ω . The Policy Gradient has enjoyed success in many fields, but it is not scale invariant and the
 116 search direction is often poorly-scaled (Furmston et al., 2016). To accelerate the optimization, the
 117 second-order information is integrated in the Policy Newton method by using the Hessian $\nabla_{\theta}^2 J(\pi_{\theta})$
 118 (Shen et al., 2019):
 119

$$120 \quad 121 \quad 122 \quad 123 \quad 124 \quad \nabla_{\theta}^2 J(\pi_{\theta}) = \mathbb{E}_{\omega \sim p(\omega; \pi_{\theta})} \left[\sum_{t=0}^{T-1} \Psi_t(\omega) \nabla_{\theta} \log \pi(a_t | s_t; \theta) \times \sum_{t'=0}^{T-1} \nabla_{\theta}^{\top} \log \pi(a_{t'} | s_{t'}; \theta) \right. \\ \left. + \sum_{t=0}^{T-1} \Psi_t(\omega) \nabla_{\theta}^2 \log \pi(a_t | s_t; \theta) \right] = \mathbb{E}_{\omega \sim p(\omega; \pi_{\theta})} [H_{\theta}(\omega; \pi_{\theta})], \quad (1)$$

125 where $H_{\theta}(\omega; \pi)$ represents the Hessian matrix. During the training of the RL, the direct calculation
 126 of the gradient is infeasible. Therefore, in the k -th iteration of the training, the gradient $\nabla_{\theta} J(\theta_k)$ is
 127 estimated among the sampled trajectory set τ (Sutton et al., 1999):
 128

$$129 \quad 130 \quad 131 \quad \nabla_{\theta} \hat{J}(\theta_k) = \frac{1}{N} \sum_{\omega \in \tau_N} \sum_{t=0}^{T-1} \Psi_t(\omega) \nabla_{\theta} \log \pi(a_t | s_t; \theta_k), \quad (2)$$

132 where N denote the size of the trajectory set τ_N . Then the parameter θ is updated through $\theta_{k+1} =$
 133 $\theta_k + \eta \nabla_{\theta} \hat{J}(\pi_{\theta_k})$ where η is the learning rate. For the Policy Newton method, the Hessian is
 134 similarly estimated as $\nabla_{\theta}^2 \hat{J}(\theta_k) = \frac{1}{N} \sum_{\omega \in \tau_N} H_{\theta}(\omega; \pi_{\theta_k})$, and the policy is updated through $\theta_{k+1} =$
 135 $\theta_k + \eta [\nabla_{\theta}^2 \hat{J}(\theta_k)]^{-1} \nabla_{\theta} \hat{J}(\theta_k)$, where $[\nabla_{\theta}^2 \hat{J}(\theta_k)]^{-1} \nabla_{\theta} \hat{J}(\theta_k)$ is the Newton step. The calculation for
 136 the inverse of the Hessian is computationally unstable and costly. A direct way to alleviate this
 137 drawback is to introduce the regularization term and optimize an auxiliary function to obtain the
 138 Newton step (Maniyar et al., 2024; Doikov et al., 2024):
 139

$$140 \quad \theta_{k+1} = \operatorname{argmin}_{\theta \in \mathbb{R}^d} \left\{ \left\langle \nabla_{\theta} \hat{J}(\theta_k), \theta - \theta_k \right\rangle + \frac{1}{2} \left\langle \nabla_{\theta}^2 \hat{J}(\theta_k) (\theta - \theta_k), \theta - \theta_k \right\rangle + \frac{\beta}{6} \|\theta - \theta_k\|^3 \right\}, \quad (3)$$

141 where β is the hyperparameter of the regularization term.
 142

2.2 POLICY GRADIENT IN RKHS

143 Reproducing Kernel Hilbert Space (RKHS) is the Hilbert Space \mathcal{H}_K where the element $K(x, \cdot) \in \mathcal{H}_K$
 144 and $f \in \mathcal{H}_K$ satisfy the reproducing property $\langle K(x, \cdot), f \rangle = f(x)$. Despite the policy is modeled by
 145 the parameter θ with particular parameterized functions, the stochastic policy π is directly modeled
 146 with a function h in RKHS \mathcal{H}_K , where the updating gradient for it is also a function (Lever &
 147 Stafford, 2015). Particularly, we denote the policy as $\pi_h(a_t | s_t) = \frac{1}{Z} e^{\mathcal{T}h(s_t, a_t)}$ for discrete action
 148 space, where $Z = \sum_{a' \in \mathcal{A}} e^{\mathcal{T}h(s_t, a')}$ is the normalization constant and \mathcal{T} is the temperature. Through
 149 the definition of the Fréchet derivative (Mcgillivray & Oldenburg, 1990), the Policy Gradient in
 150 RKHS is derived as (Mercier et al., 2025; Lever & Stafford, 2015; Paternain et al., 2020):
 151

$$152 \quad 153 \quad 154 \quad \nabla_h J(\pi_h) = \mathbb{E}_{\omega \sim p(\omega; \pi_h)} [\mathcal{Z}_h(\omega; \pi_h)] = \mathbb{E}_{\omega \sim p(\omega; \pi_h)} \left[\sum_{t=0}^{T-1} \Psi_t(\omega) \nabla_h \log \pi_h(a_t | s_t) \right] \\ 155 \quad 156 \quad 157 \quad = \mathbb{E}_{\omega \sim p(\omega; \pi_h)} \left[\sum_{t=0}^{T-1} \Psi_t(\omega) \mathcal{T}(K((s_t, a_t), \cdot) - \mathbb{E}_{a' \sim \pi_h(\cdot | s_t)} [K((s_t, a'), \cdot)]) \right], \quad (4)$$

158 where $K((s_t, a_t), \cdot)$ is the kernel section induced by the state action pair (s_t, a_t) . Without loss of
 159 generality, the action space is set discretely in the rest of the paper. The estimation of the gradient is
 160 similar to Equation 2, where we denote it as $\nabla_h \hat{J}(\pi_h) = \frac{1}{N} \sum_{\omega \in \tau_N} \mathcal{Z}_h(\omega; \pi)$. Then the policy is
 161 updated iteratively by $h_{k+1} = h_k + \eta \nabla_h \hat{J}(\pi_h)$. For simplicity, we denote $\hat{J}(\pi_h)$ as $\hat{J}(h)$ in the rest
 162 of this paper.
 163

162 The use of RKHS policy improves the sample efficiency greatly during training (Paternain et al.,
163 2022), and the overall performance is better than traditional gradient methods (Zhang et al., 2025).
164 However, there is still a lack of research on the Policy Newton algorithm within RKHS. A potential
165 obstacle for its derivation is that the Hessian of $J(\pi_h)$ is infinite, where its inverse is infeasible to
166 represent explicitly. In previous research, Newton optimization is mainly studied in the online learning
167 problem. In (Calandriello et al., 2017a), the Newton optimization scheme is derived where the inverse
168 of the Hessian in RKHS is approximated iteratively. The authors in (Calandriello et al., 2017b)
169 integrate the adaptive embedding with the inverse approximation, which alleviates the computational
170 burden. Despite this success in RKHS Newton optimization, the learning scheme is only suitable for
171 data sampled from the same distribution during training (Lu et al., 2016; Le et al., 2013), while the
172 distribution of transitions in RL is related to the updating policy. As far as we investigated, this is
173 the first paper to derive the Policy Newton in RKHS, and the convergence of our algorithm is also
174 guaranteed.

3 THE POLICY NEWTON IN RKHS

175 In this section, we present the derivation of the Policy Newton in RKHS. In the conventional Policy
176 Newton method, it is simple to obtain the Hessian by deriving the second-order derivative of the
177 expected discounted cumulative reward $J(\pi_\theta)$ with respect to the parameter θ . However, in RKHS
178 space, the second-order Fréchet derivative may not be implicitly represented. Before the derivative of
179 the Hessian within RKHS, we first introduce the following definition:

180 **Definition 3.1** *Defining the outer product $\mathcal{H}_K \otimes \mathcal{H}_K$ as a new RKHS with operator
181 $\mathbb{K}((s_t, a_t), (s'_t, a'_t)) = K((s_t, a_t), \cdot) \otimes K((s'_t, a'_t), \cdot) \in \mathcal{H}_K \otimes \mathcal{H}_K$ (Kubrusly & Vieira, 2008;
182 Szabó & Sriperumbudur, 2018; Kumari et al., 2017), it satisfies that:*

$$\begin{aligned} \mathbb{K}((s_t, a_t), (s'_t, a'_t)) \circ K((s''_t, a''_t), \cdot) &= K((s_t, a_t), \cdot) K((s'_t, a'_t), (s''_t, a''_t)) \\ &< \mathbb{K}((s_t, a_t), (s'_t, a'_t)), \mathbb{K}((s''_t, a''_t), (s'''_t, a'''_t)) > = K((s_t, a_t), (s''_t, a''_t)) K((s'_t, a'_t), (s'''_t, a'''_t)) \end{aligned}$$

183 While the first-order Fréchet derivative $\nabla_h J(h)$ is an element in \mathcal{H}_K , the second-order Fréchet
184 derivative is an operator on this space, which we denote by the symbol $\nabla_h^2 J(h)$. This operator can be
185 identified with an element in the tensor product space $\mathcal{H}_K \otimes \mathcal{H}_K$, as shown in the following lemma.

186 **Lemma 3.1** *The second-order Fréchet derivative $\nabla_h^2 J(\pi_h) = \mathbb{E}_{\omega \sim p(\omega; \pi_h)} [H_h(\omega; \pi_h)]$, where
187 $H_h(\omega; \pi_h)$ is*

$$\left(\sum_{t=0}^{T-1} \Psi_t(\omega) \nabla_h \log \pi_h^t \right) \otimes \left(\sum_{t'=0}^{T-1} \nabla_h^\top \log \pi_h^t \right) - \sum_{t=0}^{T-1} \Psi_t(\omega) \mathcal{T} \text{Cov}_{a' \sim \pi(\cdot | s_t)} [K((s_t, a'_t), \cdot)].$$

188 Here $\nabla_h \log \pi_h^t = \nabla_h \log \pi_h(a_t | s_t)$ and $\text{Cov}_{a' \sim \pi(\cdot | s_t)} [K((s_t, a'_t), \cdot)]$ denotes the covariance operator
189 for kernel section $K((s_t, a'_t), \cdot)$, which is detailed as:

$$\mathbb{E}_{a' \sim \pi(\cdot | s_t)} [K((s_t, a'), \cdot) \otimes K((s_t, a'), \cdot)] - \mathbb{E}_{a' \sim \pi(\cdot | s_t)} K((s_t, a'), \cdot) \otimes \mathbb{E}_{a'' \sim \pi(\cdot | s_t)} K((s_t, a''), \cdot).$$

190 The detailed derivation is shown in Appendix A. Here, we only introduce a simple example, $U(h) =$
191 $e^{\mathcal{T}h(s_t, a_t)} K((s_t, a_t), \cdot)$, which is a component in $\nabla_h J(\pi_h)$, to present the core concept for intro-
192 ducing the outer product in RKHS when implementing the Fréchet derivative.

193 **The second-order Fréchet derivative** Let $h, g \in \mathcal{H}_K$ and $\mathbb{D}(h) = \mathcal{T} e^{\mathcal{T}h(s_t, a_t)} K((s_t, a_t), \cdot) \otimes$
194 $K((s_t, a_t), \cdot)$. Then according to the definition of the Fréchet derivative (Mcgillivray & Oldenburg,
195 1990), we testify that $D(h) = \nabla_h U(h)$:

$$\begin{aligned} \frac{\|U(h+g) - U(h) - \mathbb{D}(h) \circ g\|}{\|g\|} &= \frac{\|e^{\mathcal{T}h(x)} K(x, \cdot) [e^{\mathcal{T}g(x)} - 1 - \mathcal{T}g(x)]\|}{\|g\|} \\ &\leq \frac{e^{\mathcal{T}h(x)} \|K(x, \cdot)\| \frac{M\mathcal{T}^2}{2} |g(x)|^2}{\|g\|} \leq \frac{M\mathcal{T}^2}{2} e^{\mathcal{T}h(x)} (K(x, x))^{3/2} \|g\| \xrightarrow{g \rightarrow 0} 0, \end{aligned}$$

196 where the last inequality is due to Cauchy-Schwarz. Through Lemma 3.1, we could find that the
197 second-order Fréchet derivative $\nabla_h^2 J(\pi_h)$ is infeasible to present explicitly. Calculating its inverse
198 is further infeasible for the Policy Newton methods in RKHS. Fundamentally, this is because the

Hessian operator is trace-class in the RKHS, and therefore compact. In an infinite-dimensional space, a compact operator does not have a bounded inverse (Kreyszig, 1991), rendering the standard Newton step ill-posed. However, we can still obtain the RKHS Newton step Δh through optimizing the regularized auxiliary function similar to Equation 3:

$$\Delta h = \underset{\bar{h} \in \mathcal{H}_K}{\operatorname{argmin}} \left\{ \left\langle \nabla_h \hat{J}(h_k), \bar{h} \right\rangle + \frac{1}{2} \left\langle \nabla_h^2 \hat{J}(h_k) \circ \bar{h}, \bar{h} \right\rangle + \frac{\beta}{6} \|\bar{h}\|^3 \right\}, \quad (5)$$

where $\nabla_h^2 \hat{J}(h_k) = \frac{1}{N} \sum_{\omega \in \tau_N} H_h(\omega; \pi_h)$ is the estimated RKHS Hessian. Although this estimation is not computationally feasible, the corresponding second-order component $\left\langle \nabla_h^2 \hat{J}(h_k) \circ \bar{h}, \bar{h} \right\rangle$ is easy to calculate according to the Definition 3.1. The optimization in \mathcal{H}_K is still hard to proceed, but through the Representer Theorem in RKHS, we could easily transform the parameter space in this optimization problem from \mathcal{H}_K into \mathbb{R} .

Lemma 3.2 Representer Theorem (Schölkopf et al., 2001). *Suppose we are given a nonempty set \mathcal{X} , a positive definite real-valued kernel $K(\cdot, \cdot)$ on $\mathcal{X} \times \mathcal{X}$, a training sample $(x_1, y_1), \dots, (x_M, y_M) \in \mathcal{X} \times \mathbb{R}$, a strictly monotonically increasing real-valued function \mathcal{G} , an arbitrary cost function c . Then any $h \in \mathcal{H}_K$ minimizing the regularized functional*

$$c((x_1, y_1, h(x_1)), \dots, (x_M, y_M, h(x_M))) + \mathcal{G}(\|h\|)$$

admits a representation of the form $h(\cdot) = \sum_{i=1}^M \alpha_i K(x_i, \cdot)$, where α_i is the weight for kernel sections.

Applying the Representer Theorem (Lemma 3.2), Optimization Problem 5 is equivalent to finding α^* via:

$$\alpha^* = \underset{\alpha \in \mathbb{R}^{NT}}{\operatorname{argmin}} \left\{ \left\langle \nabla_h \hat{J}(h_k), \bar{h}_\alpha \right\rangle + \frac{1}{2} \left\langle \nabla_h^2 \hat{J}(h_k) \circ \bar{h}_\alpha, \bar{h}_\alpha \right\rangle + \frac{\beta}{6} \|\bar{h}_\alpha\|^3 \right\}, \quad (6)$$

where $\bar{h}_\alpha = \sum_{i=1}^N \sum_{t=1}^T \alpha_t^i K((s_t^i, a_t^i), \cdot)$. Here, (s_t^i, a_t^i) denotes the state-action pair for the i -th trajectory at time step t , and $\alpha = \{\alpha_t^i\}_{i=1, t=1}^{N, T}$ is the set of kernel weights. These weights can be vectorized as $\bar{\alpha} \in \mathbb{R}^{NT}$, where the l -th element corresponds to α_t^i with $k = (i-1)T + t$. Applying the Representer Theorem transforms the search for the optimal function perturbation \bar{h} into a search for finite coefficients α . By substituting the expansion \bar{h}_α back into the operator-based objective Equation 6 and utilizing the reproducing property $\langle K(x, \cdot), K(y, \cdot) \rangle = K(x, y)$, we can explicitly derive the algebraic form of the quadratic and cubic terms with the following theorem.

Theorem 3.3 *The optimization of the Policy Newton step in RKHS is equal to the optimization of the following quadratic optimization with cubic regularization:*

$$\bar{\alpha}^* = \underset{\bar{\alpha} \in \mathbb{R}^{NT}}{\operatorname{argmin}} \left\{ \langle v, \bar{\alpha} \rangle + \frac{1}{2} \langle H \bar{\alpha}, \bar{\alpha} \rangle + \frac{\beta}{6} \|\bar{\alpha}\|_2^3 \right\}. \quad (7)$$

Here, $v \in \mathbb{R}^{NT}$ is the first-order coefficient vector where

$$v_i = \frac{\mathcal{T}}{N} \sum_{l=1}^{NT} \Psi_l(\omega) (K((s_l, a_l), (s_i, a_i)) - \mathbb{E}_{a'}[K((s_l, a'), (s_i, a_i))]).$$

Let $H \in \mathbb{R}^{NT \times NT}$ be the second-order coefficient matrix given by:

$$H = \frac{\mathcal{T}^2}{N} bc^\top - \frac{\mathcal{T}}{N} \sum_{l=1}^{NT} \Psi_l(\omega) \Sigma^{(l)}. \quad (8)$$

Here, $b \in \mathbb{R}^{NT}$ and $c \in \mathbb{R}^{NT}$ are vectors, and $\Sigma^{(l)}$ represents component-related covariance information. The components b_i , c_i , and the related covariance terms $\Sigma_{ij}^{(l)}$ are defined as:

$$\begin{cases} b_i = \sum_{l=1}^{NT} \Psi_l(\omega) (K_{it} - \mathbb{E}_{a'}[K'_{it}]), & c_i = \sum_{l=1}^{NT} (K_{il} - \mathbb{E}_{a'}[K'_{il}]) \\ \Sigma_{ij}^{(l)} = \operatorname{Cov}_{a' \sim \pi(\cdot | s_l)} [K'_{il}, K'_{jl}] \end{cases}$$

In these expressions, the kernel terms are $K_{il} = K((s_i, a_i), (s_l, a_l))$ and $K'_{il} = K((s_i, a_i), (s_l, a'))$.

270 The detailed derivation for Theorem 3.3 is presented in Appendix B. It is observed from this theorem
 271 that the Policy Newton in RKHS is similar to the traditional Policy Newton method, but the complexity
 272 of the Optimization Problem 7 is dependent on the volume of data, i.e., $N \times T$, which possesses
 273 the same property of other RKHS methods like support vector machine (Burges, 1998) and radial
 274 basis function networks (Park & Sandberg, 1991). We show in the next section the suboptimality and
 275 convergence rate for the proposed Policy Newton in RKHS.

276
 277
 278
 279 **Intuitive Interpretation of the Reduction.** Before proceeding to the convergence analysis, we
 280 briefly clarify the physical meaning of the terms in the finite-dimensional optimization problem
 281 7. The vector v represents the projection of the functional gradient $\nabla_h \hat{J}$ onto the data-dependent
 282 subspace spanned by $\{K((s_t^i, a_t^i), \cdot)\}$. The matrix H encapsulates the curvature information: the
 283 term $\frac{T^2}{N} bc^\top$ corresponds to the outer product of first-order gradients (the first term in Equation 8),
 284 while the term involving $\Sigma^{(l)}$ captures the covariance structure of the policy’s action distribution (the
 285 second term).

286 4 THE SUBOPTIMALITY AND CONVERGENCE RATE OF POLICY NEWTON IN 287 RKHS

291 In this section, we first detail the Policy Newton in RKHS algorithm. We then analyze its convergence
 292 properties, demonstrating that despite optimizing via a surrogate function, the resulting policy
 293 converges to a local optimum. Furthermore, we show that our proposed Policy Newton in RKHS
 294 exhibits a second-order convergence rate, in contrast to the first-order rate achieved by Policy Gradient
 295 in RKHS.

298 4.1 THE POLICY NEWTON IN RKHS METHOD

300 The Optimization Problem 6 admits two primary solution approaches:

- 301 (1) Directly computing the derivative of the objective function, setting it to zero, and solving for the
 302 critical points.
- 303 (2) Optimizing it using various classic optimization methods, including gradient descent, the Newton
 304 method, and the conjugate gradient method (Lasdon et al., 2003).

306 While the analytic method (1) is conceptually simple and direct, it can introduce significant instability
 307 into the training process. In complex environments, this instability can lead to exponential error
 308 growth. Consequently, method (2) represents a more practical optimization approach. We select the
 309 conjugate gradient method as our optimization method. More settings are detailed in Appendix H.

311 **Algorithm 1** Policy Newton RKHS Method

312 **Input:** Number of iterations M , trajectory batch size N , learning rate η

- 313 1: Initialize RKHS function $h_1 \leftarrow 0$, actor policy π_{h_1} based on h_1 , trajectory set τ .
- 314 2: **for** $m = 1, \dots, M$ **do**
- 315 3: Sample N trajectories using the current policy π_{h_m} , store in τ .
- 316 4: Estimate the first-order coefficient vector v and second-order coefficient matrix H using τ
 317 (according to Theorem 3.3).
- 318 5: Solve the Optimization Problem 7 using conjugate gradient descent method, output the
 319 optimization result $\bar{\alpha}$.
- 320 6: Construct the RKHS update step Δh using $\bar{\alpha}$ via Lemma 3.2.
- 321 7: Update the RKHS function: $h_{m+1} \leftarrow h_m + \eta \Delta h$ and the actor policy $\pi_{h_{m+1}}$ based on h_{m+1} .
- 322 8: **end for**
- 323 9: **return** final policy $\pi_{h_{M+1}}$.

324 4.2 SUBOPTIMALITY ANALYSIS OF THE PROPOSED ALGORITHM
325326 Theoretically, we assume that the optimal solution to Problem 7 is consistently achieved by Algo-
327 rithm 1. To establish the convergence properties of our algorithm, we introduce the following lemmas
328 and assumptions.329 **Lemma 4.1 (Monte Carlo convergence rate (C.1))** *Assuming $\mathbb{E}_{\omega \sim p(\omega; \pi_h)}[\|\mathcal{Z}_h(\omega; \pi_h)\|^2] \leq \sigma_0^2$ and $\mathbb{E}_{\omega \sim p(\omega; \pi_h)}[\|H_h(\omega; \pi_h)\|^2] \leq \sigma_1^2$, the Monte Carlo estimation of first and second-order Fréchet derivative, namely $\nabla_h \hat{J}(h_k)$ and $\nabla_h^2 \hat{J}(h_k)$, achieve the convergence rate of $O(\frac{1}{\sqrt{N}})$:*

330
$$\mathbb{E}_{\omega \sim p(\omega; \pi_h)} \left[\|\nabla_h \hat{J}(h_k) - \nabla_h J(h_k)\|^2 \right] \leq \frac{\sigma_0^2}{N}, \quad \mathbb{E}_{\omega \sim p(\omega; \pi_h)} \left[\|\nabla_h^2 \hat{J}(h_k) - \nabla_h^2 J(h_k)\|^2 \right] \leq \frac{\sigma_1^2}{N}.$$

331

332 The proof is straightforward by using the property of expectation, which we show in the Appendix
333 C.1. Establishing convergence also requires a Lipschitz continuity assumption for the Hessian, similar
334 to other gradient-based methods (Xiao, 2022; Zhang et al., 2020).335 **Assumption 4.1 (Lipschitz continuous)** *The Hessian operator $\nabla_h^2 J(h)$ is Lipschitz continuous
336 with constant $0 \leq L \leq \beta$, i.e., for all $h_1, h_2 \in \mathcal{H}_K$: (we discuss the validation of this assumption in
337 Appendix E)*

338
$$\|\nabla_h^2 J(h_1) - \nabla_h^2 J(h_2)\| \leq L\|h_1 - h_2\|.$$

339

340 Through this assumption, we could establish the upper bound for $J(h)$ with respect to the Hessian
341 and step norm:342 **Lemma 4.2 (Taylor upper bound (C.2))** *Under Assumption 4.1, for any $h_1, h_2 \in \mathcal{H}_K$:*

343
$$J(h_2) \leq J(h_1) + \langle \nabla_h J(h_1), h_2 - h_1 \rangle + \frac{1}{2} \langle \nabla_h^2 J(h_1) \circ (h_2 - h_1), h_2 - h_1 \rangle + \frac{L}{6} \|h_2 - h_1\|^3.$$

344

345 The fundamental approach to proving convergence centers on establishing a relationship between
346 the expected gradient norm, $\mathbb{E}\|\nabla_h J(h_k)\|$, and a function denoted by $L(\beta, \sigma_0^2, \sigma_1^2, N)$. Following
347 standard techniques in convergence analysis, the norm of the update step, $\|h_{k+1} - h_k\|$, is employed
348 as an intermediate quantity to construct this relationship. To this end, an upper bound for this step
349 norm is derived in Lemma 4.3.350 **Lemma 4.3 (Step norm upper bound (C.3))** *Denoting the updating times for Policy Newton in
351 RKHS as M , and the number of trajectories sampled in each updating as N , the updating step can
352 be upper bounded as:*

353
$$\mathbb{E} [\|h_{R+1} - h_R\|^3] \leq \frac{36(J(h_1) - J^*)}{\beta M} + \frac{48\sqrt{3}}{\beta^{3/2}} \frac{\sigma_0^{3/2}}{N^{3/4}} + \frac{864}{\beta^3} \frac{\sigma_1^3}{N^{3/2}},$$

354

355 where R is a random variable uniformly distributed on $\{1, \dots, M\}$, such that $P(R = k) = 1/M$.356 This lemma provides an upper bound on the expected cubed norm of the update step involving a
357 randomly selected iteration R , which is a key quantity used subsequently to establish convergence
358 bounds in expectation for the Policy Newton in RKHS. Next, we establish the lower bound of the
359 norm for the update step, which relates it to the RKHS gradient.360 **Lemma 4.4 (Step norm lower bound (C.4))** *The updating step can be lower bounded as:*

361
$$\mathbb{E}[\|h_{k+1} - h_k\|^2] \geq \frac{1}{L + \beta} \left(\mathbb{E}[\|\nabla J(h_{k+1})\|] - \frac{\sigma_0}{\sqrt{N}} - \frac{\sigma_1^2}{2N(L + \beta)} \right).$$

362

363 Having established both lower and upper bounds for the step norm, we can now use these results to
364 construct the main convergence theorem.365 **Theorem 4.5 (Convergence property (C.5))** *Given Lemmas 4.3 and 4.4, let R be a random vari-
366 able uniformly distributed on $\{1, \dots, M\}$. The sequence $\{h_k\}$ generated by iterative optimization in
367 Theorem 3.3 satisfies*

368
$$\lim_{M, N \rightarrow \infty} \mathbb{E}[\|\nabla J(h_{R+1})\|] = 0.$$

369

370 This theorem indicates that the expected gradient norm at a randomly chosen iteration converges to
371 zero, implying convergence towards a stationary point.

378 4.3 THE SECOND-ORDER CONVERGENCE RATE
379

380 Establishing the convergence rate for stochastic Policy Newton methods typically requires specific
381 assumptions regarding problem structure. While the convergence properties of Newton’s method in
382 finite-dimensional Euclidean spaces are well-established (Furnston et al., 2016), extending these
383 guarantees to the infinite-dimensional RKHS setting—specifically with the cubic regularization auxil-
384 iary function—requires rigorous verification. We demonstrate that the finite-dimensional reduction
385 derived in Theorem 3.3 preserves the desirable quadratic convergence properties of the original
386 **operator-theoretic problem**. To establish baseline performance characteristics, this section analyzes
387 the convergence rate under idealized conditions, while a comprehensive analysis under more realistic
388 stochastic assumptions remains for future work. Specifically, we assume access to the true gradient
389 $\nabla_h J(h_k)$ and Hessian $\nabla_h^2 J(h_k)$ at each iteration k , effectively setting $\nabla_h \hat{J}(h_k) = \nabla_h J(h_k)$ and
390 $\nabla_h^2 \hat{J}(h_k) = \nabla_h^2 J(h_k)$. Under this deterministic scenario, we prove that the method achieves a local
391 quadratic convergence rate.

392 Our analysis relies on a key assumption: that the inverse of the regularized Hessian is uniformly
393 bounded. This is a standard condition in the analysis of Newton-type methods, required to ensure the
394 update step is well-defined by excluding potential singularities (Nesterov & Polyak, 2006a; Nocedal
395 & Wright, 2006a).

396 **Theorem 4.6 (Local Quadratic Convergence (D))** *Consider the deterministic Policy Newton
397 RKHS method (Algorithm 1 with $\nabla_h \hat{J}(h_k) = \nabla_h J(h_k)$ and $\nabla_h^2 \hat{J}(h_k) = \nabla_h^2 J(h_k)$). Assuming the
398 norm of the inverse operator $\|(\nabla_h^2 J(h_k) + \frac{\beta}{2} \|\Delta h_k\| \mathcal{I})^{-1}\|$ is bounded by some constant B , and we
399 assume that the update step is sufficiently small that $\|\Delta h_k\| \leq L\|e_k\|$.*

400 *If the initial iterate h_0 is sufficiently close to h^* , the sequence $\{h_k\}$ converges quadratically to h^* .
401 That is, there exists a constant $C_q > 0$ such that*

$$402 \|h_{k+1} - h^*\| \leq C_q \|h_k - h^*\|^2$$

403 *for all k sufficiently large. The validation of the assumptions is discussed in Appendix E.*

404 5 NUMERICAL EXPERIMENT
405

406 This section presents an empirical evaluation of our proposed Policy Newton method in Reproducing
407 Kernel Hilbert Space (RKHS) across two distinct experimental settings: (a) a simplified Asset Alloca-
408 tion environment designed specifically to demonstrate the quadratic convergence properties of Policy
409 Newton in RKHS (Yoo et al., 2023), and (b) complex control tasks from the Gymnasium framework
410 (Towers et al., 2024), including CartPole and Lunar Lander. **Throughout all experiments, we utilize a**
411 **standard Gaussian kernel for the RKHS representations.** The Asset Allocation environment serves to
412 empirically validate the theoretical convergence guarantees established in Section 4. Additionally, we
413 benchmark Policy Newton in RKHS against several baseline methods in complex environments to
414 demonstrate its superior performance characteristics.

415 5.1 QUADRATIC CONVERGENCE TESTED IN THE TOY EXPERIMENT
416

417 We empirically validate the quadratic convergence properties of Policy Newton in RKHS using a
418 simplified Asset Allocation environment (Lee et al., 2004; Yoo et al., 2023). While the complete asset
419 allocation problem presents substantial analytical challenges, we utilize a reduced-complexity variant
420 (detailed in Appendix F) where the global optimal policy can be explicitly represented, enabling
421 precise quantification of convergence properties for both the policy and cumulative reward $J(\pi)$.

422 For comparative analysis, we implemented four distinct methodologies. The conventional Policy Gradient
423 and Policy Newton methods (Maniyar et al., 2024) utilize discrete policies with parameterized
424 action probabilities. The Policy Gradient in RKHS implementation follows the approach described in
425 (Lever & Stafford, 2015), while our Policy Newton in RKHS method is implemented according to
426 Algorithm 1. All policies were initialized with uniform distributions.

427 The experimental results presented in Figure 1 reveal several important findings. Figure 1a demon-
428 strates that both Policy Gradient in RKHS and Policy Newton in RKHS converge rapidly toward
429 the maximum expected episodic reward. Notably, Policy Newton in RKHS exhibits clear quadratic

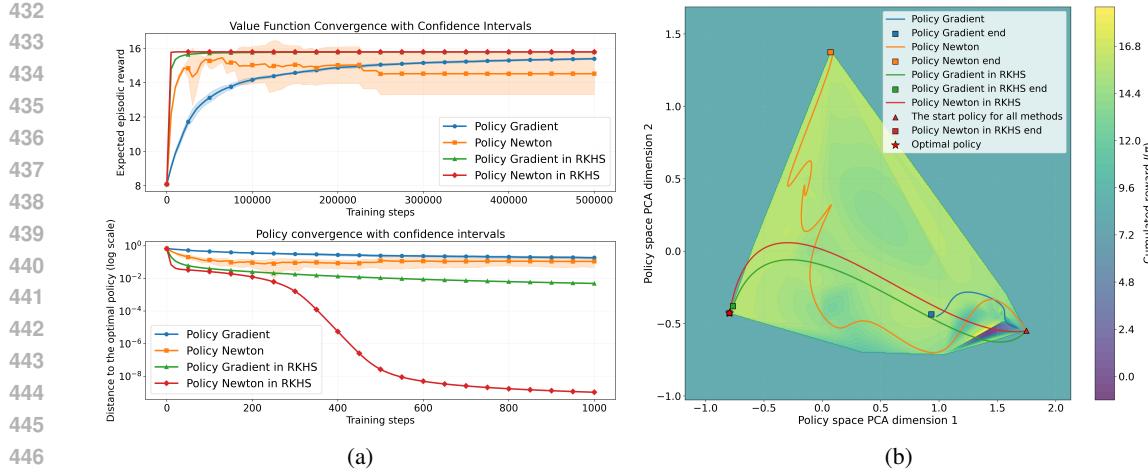


Figure 1: Experimental results demonstrating the quadratic convergence of Policy Newton in RKHS within the simplified Asset Allocation environment. Three benchmark methods are compared: conventional Policy Gradient, Policy Newton, and Policy Gradient in RKHS. 1a illustrates the convergence metrics during training. 1b visualizes the optimization trajectories of all methods in a PCA-projected policy space, where the background surface is an interpolated return landscape. This plot highlights how different algorithms move through the policy space toward the optimal policy.

convergence behavior as it approaches the optimal policy. In contrast, the conventional methods show different characteristics—while the standard Policy Newton method converges more rapidly than conventional Policy Gradient (as shown in Figures 1a and 1b), its training trajectory exhibits greater instability and ultimately converges to a suboptimal local maximum. It is important to note that in this toy environment all four compared methods share the same representational capacity: the state and action spaces are finite, and each algorithm directly optimizes the probability value assigned to every (state, action) pair. Thus, all methods are able to exactly represent the optimal policy. The differences observed in Figure 1b therefore arise purely from the optimization geometry rather than the expressiveness of the policy class. In particular, RKHS-based updates span the data-dependent kernel basis, which yields a richer set of descent directions and enables the optimizer to move out of suboptimal attraction regions that trap parametric methods.

5.2 TRAINING PERFORMANCE IN RL TESTING ENVIRONMENT

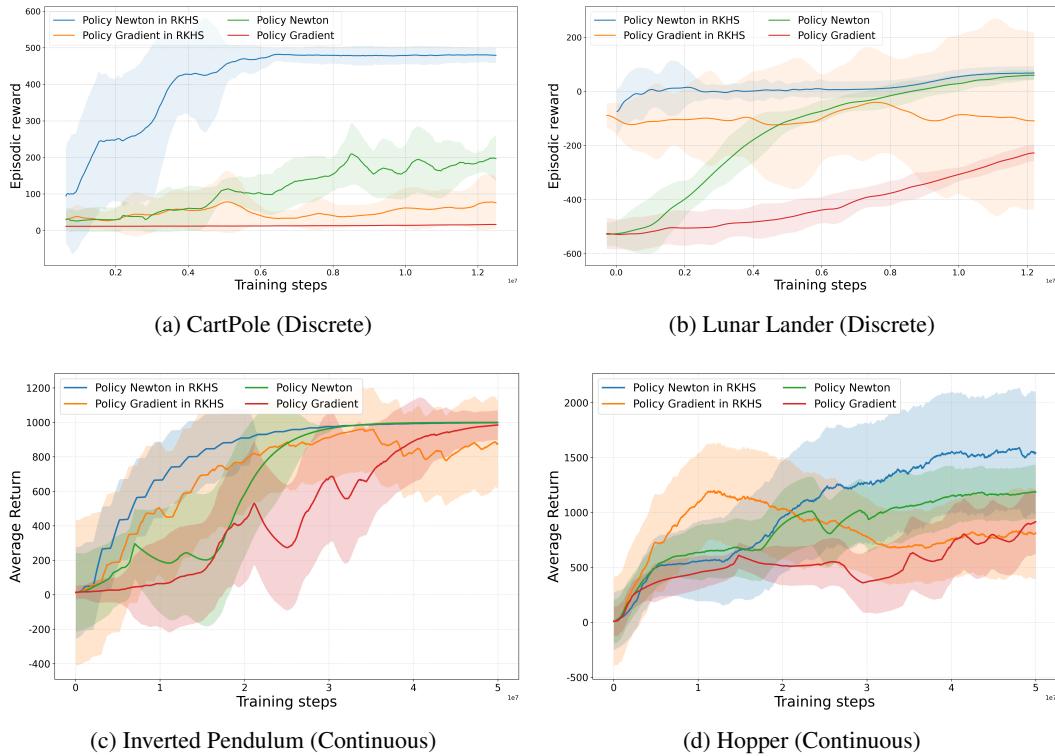
To evaluate the efficacy and universality of the proposed Policy Newton in RKHS algorithm, we conduct experiments utilizing standard RL environments from the Gymnasium suite (Towers et al., 2024), covering both discrete and continuous action spaces.

Discrete Control Tasks. We first evaluate the method on CartPole and Lunar Lander. These environments feature discrete action spaces, directly utilizing the theoretical framework established in Section 3. The baseline policies (Policy Gradient and Policy Newton) are parameterized using a linear model augmented with a polynomial transformation (Maniyar et al., 2024) to ensure fair comparison in representational power.

Continuous Control Tasks. To demonstrate the method’s scalability to high-dimensional continuous control, we further evaluate it on Inverted Pendulum and Hopper. For these tasks, we implement the Policy Newton in RKHS using the continuous Gaussian policy formulation. The rigorous theoretical derivation for the second-order RKHS step in the Gaussian policy is provided in Appendix I. The baselines utilize the same polynomial feature expansion as in the discrete case but map to continuous action outputs.

Performance Analysis. The experimental results are summarized in Figure 2. In the discrete tasks (Figs. 2a and 2b), Policy Newton in RKHS exhibits rapid convergence and superior sample efficiency, significantly outperforming the first-order RKHS baseline and the parametric Policy Newton method.

486 In the continuous tasks (Figs. 2c and 2d), the advantage of our method is equally pronounced. In
 487 Inverted Pendulum, our method stabilizes quickly. In the challenging Hopper environment, Policy
 488 Newton in RKHS demonstrates superior sample efficiency, achieving high rewards with fewer
 489 iterations than the baselines. We attribute this performance to the effective utilization of curvature
 490 information via the Hessian operator, which aids in navigating complex optimization landscapes, and
 491 the flexible representational capacity of the RKHS.



540 ETHICS STATEMENT
541

542 This study uses only a synthetic toy Asset Allocation environment (Appendix F) and public Gymna-
543 sium benchmarks (CartPole, Lunar Lander) (Towers et al., 2024); no human subjects, personal data,
544 or sensitive attributes are involved, and no proprietary datasets are introduced. We caution against de-
545 ploying the method in high-stakes settings (e.g., financial decision systems) without domain-specific
546 governance, distribution-shift monitoring, and independent validation. The compute footprint is
547 modest. The authors disclose no conflicts of interest and no external sponsorship that could bias the
548 work.

549
550 REPRODUCIBILITY STATEMENT
551

552 We provide an anonymous supplementary archive containing the full implementation, dependency
553 specifications, and runnable scripts to reproduce all figures. The algorithmic procedure is given in
554 Algorithm 1; the finite-dimensional reduction and coefficient construction appear in Theorem 3.3,
555 with derivations in Appendix B and RKHS second-order calculus in Appendix A. Experimental
556 settings, hyperparameters, and random seeds are documented in Appendix H; the toy environment is
557 fully specified in Appendix F. These materials enable end-to-end reproduction of the reported results.

558
559 REFERENCES
560

561 André MS Barreto, Doina Precup, and Joelle Pineau. Practical kernel-based reinforcement learning.
562 *Journal of Machine Learning Research*, 17(67):1–70, 2016.

563 Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
564 learning. *SIAM Review*, 60(2):223–311, 2018.

565 Corentin Boyer and Antoine Godichon-Baggioni. On the asymptotic rate of convergence of stochastic
566 newton algorithms. *Computational Optimization and Applications*, 85(2):589–631, 2023.

567 Christopher JC Burges. A tutorial on support vector machines for pattern recognition. *Data Mining
568 and Knowledge Discovery*, 2(2):121–167, 1998.

569
570 Daniele Calandriello, Alessandro Lazaric, and Michal Valko. Second-order kernel online convex
571 optimization with adaptive sketching. In *International Conference on Machine Learning*, pp.
572 645–653, 2017a.

573
574 Daniele Calandriello, Alessandro Lazaric, and Michal Valko. Efficient second-order online kernel
575 learning with adaptive embedding. *Advances in Neural Information Processing Systems*, 30, 2017b.

576
577 Nikita Doikov, Konstantin Mishchenko, and Yurii Nesterov. Super-universal regularized newton
578 method. *SIAM Journal on Optimization*, 34(1):27–56, 2024.

579
580 Thomas Furmston, Guy Lever, and David Barber. Approximate newton methods for policy search in
581 markov decision processes. *Journal of Machine Learning Research*, 17(226):1–51, 2016.

582
583 Devesh K Jha, Arvind U Raghunathan, and Diego Romeres. Quasi-newton trust region policy
584 optimization. In *Conference on Robot Learning*, pp. 945–954, 2020.

585
586 Erwin Kreyszig. *Introductory functional analysis with applications*. 1991.

587 Carlos S Kubrusly and Paulo CM Vieira. Convergence and decomposition for tensor products of
588 hilbert space operators. *Operators and Matrices*, 2(3):407–416, 2008.

589
590 Rani Kumari, Jaydeb Sarkar, Srijan Sarkar, and Dan Timotin. Factorizations of kernels and reproduc-
591 ing kernel hilbert spaces. *Integral Equations and Operator Theory*, 87(2):225–244, 2017.

592
593 L Lasdon, S Mitter, and A Waren. The conjugate gradient method for optimal control problems.
594 *IEEE Transactions on Automatic Control*, 12(2):132–138, 2003.

595 Quoc Le, Tamás Sarlós, Alex Smola, et al. Fastfood-approximating kernel expansions in loglinear
596 time. In *International Conference on Machine Learning*, pp. 244–252, 2013.

594 Jae Won Lee, Jongwoo Lee, Byoung-Tak Zhang, et al. Dynamic asset allocation exploiting predictors
 595 in reinforcement learning framework. In *European Conference on Machine Learning*, pp. 298–309,
 596 2004.

597 Suyoung Lee, Myungsik Cho, and Youngchul Sung. Parameterizing non-parametric meta-
 598 reinforcement learning tasks via subtask decomposition. In *Advances in Neural Information
 599 Processing Systems*, volume 36, 2023.

600 Guy Lever and Ronnie Stafford. Modelling policies in mdps in reproducing kernel hilbert space. In
 601 *Artificial intelligence and statistics*, pp. 590–598, 2015.

602 Haoya Li, Samarth Gupta, Hsiangfu Yu, Lexing Ying, and Inderjit Dhillon. Approximate newton
 603 policy gradient algorithms. *SIAM Journal on Scientific Computing*, 45(5):A2585–A2609, 2023.

604 Jing Lu, Steven CH Hoi, Jialei Wang, Peilin Zhao, and Zhi-Yong Liu. Large scale online kernel
 605 learning. *Journal of Machine Learning Research*, 17(47):1–43, 2016.

606 Mizhaan P Maniyar, LA Prashanth, Akash Mondal, and Shalabh Bhatnagar. A cubic-regularized
 607 policy newton algorithm for reinforcement learning. In *International Conference on Artificial
 608 Intelligence and Statistics*, pp. 4708–4716. PMLR, 2024.

609 Peter R Mcgillivray and DW Oldenburg. Methods for calculating fréchet derivatives and sensitivities
 610 for the non-linear inverse problem: A comparative study 1. *Geophysical Prospecting*, 38(5):
 611 499–524, 1990.

612 Jean-Marc Mercier, Aguirre Max, et al. A scalable kernel approach to reinforcement learning. *SSRN*,
 613 2025.

614 Tetsuro Morimura, Masashi Sugiyama, Hisashi Kashima, Hirotaka Hachiya, and Toshiyuki Tanaka.
 615 Nonparametric return distribution approximation for reinforcement learning. In *International
 616 Conference on Machine Learning*, pp. 799–806, 2010.

617 Yurii Nesterov and Boris T. Polyak. Cubic regularization of newton method and its global performance.
 618 *Mathematical Programming*, 108(1):177–205, 2006a.

619 Yurii Nesterov and Boris T. Polyak. Cubic regularization of newton method and its global performance.
 620 *Mathematical Programming*, 108(1):177–205, 2006b.

621 Jorge Nocedal and Stephen J. Wright. *Numerical Optimization*. 2006a.

622 Jorge Nocedal and Stephen J. Wright. *Numerical Optimization*. Springer, 2006b.

623 Jooyoung Park and Irwin W Sandberg. Universal approximation using radial-basis-function networks.
 624 *Neural Computation*, 3(2):246–257, 1991.

625 Santiago Paternain, Juan Andrés Bazerque, Austin Small, and Alejandro Ribeiro. Stochastic policy
 626 gradient ascent in Reproducing Kernel Hilbert Spaces. *IEEE Transactions on Automatic Control*,
 627 66(8):3429–3444, 2020.

628 Santiago Paternain, Juan Andrés Bazerque, and Alejandro Ribeiro. Policy gradient for continuing
 629 tasks in discounted markov decision processes. *IEEE Transactions on Automatic Control*, 67(9):
 630 4467–4482, 2022.

631 Matteo Pirotta, Marcello Restelli, and Luca Bascetta. Policy gradient in lipschitz markov decision
 632 processes. *Machine Learning*, 100(2-3):449–479, 2015.

633 Bernhard Schölkopf, Ralf Herbrich, and Alex J Smola. A generalized representer theorem. In
 634 *International Conference on Computational Learning Theory*, pp. 416–426, 2001.

635 Zebang Shen, Alejandro Ribeiro, Hamed Hassani, Hui Qian, and Chao Mi. Hessian aided policy
 636 gradient. In *International conference on machine learning*, pp. 5729–5738. PMLR, 2019.

637 Richard S. Sutton and Andrew G. Barto. *Reinforcement learning: an introduction*. 2018.

648 Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for
 649 reinforcement learning with function approximation. *Advances in Neural Information Processing*
 650 *Systems*, 12, 1999.

651 Zoltán Szabó and Bharath K Sriperumbudur. Characteristic and universal tensor product kernels.
 652 *Journal of Machine Learning Research*, 18(233):1–29, 2018.

653 Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
 654 In *2012 IEEE/RSJ International Conference on Intelligent Robots and Systems*, pp. 5026–5033,
 655 2012.

656 Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
 657 Manuel Goulao, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
 658 interface for reinforcement learning environments. *arXiv preprint arXiv:2407.17032*, 2024.

659 Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
 660 learning. *Machine learning*, 8(3):229–256, 1992.

661 Lin Xiao. On the convergence rates of policy gradient methods. *Journal of Machine Learning*
 662 *Research*, 23(282):1–36, 2022.

663 Seong Joon Yoo, Yeong Hyeon Gu, et al. Safety aarl: Weight adjustment for reinforcement-learning-
 664 based safety dynamic asset allocation strategies. *Expert Systems with Applications*, 227:120297,
 665 2023.

666 Kaiqing Zhang, Alec Koppel, Hao Zhu, and Tamer Basar. Global convergence of policy gradient
 667 methods to (almost) locally optimal policies. *SIAM Journal on Control and Optimization*, 58(6):
 668 3586–3612, 2020.

669 Yixian Zhang, Huaze Tang, Huijing Lin, and Wenbo Ding. Residual kernel policy network: Enhancing
 670 stability and robustness in rkhs-based reinforcement learning. In *International Conference on*
 671 *Learning Representations*, 2025.

672

A THE DERIVATION OF THE SECOND-ORDER FRÉCHET DERIVATIVE IN RKHS

673 This section details the derivation of second-order Fréchet derivatives of the log-policy, $\log \pi_h(a_t | s_t)$,
 674 with respect to the function $h \in \mathcal{H}_K$. The first-order Fréchet derivative is introduced in (Mercier
 675 et al., 2025), for convenience’s sake, we also detail it in this section. The policy is defined as
 676 $\pi_h(a_t | s_t) = \frac{1}{Z} e^{\mathcal{T}h(s_t, a_t)}$, where $Z = \sum_{a' \in \mathcal{A}} e^{\mathcal{T}h(s_t, a')}$ is the normalization constant. For brevity
 677 in this section, we will denote (s_t, a_t) as (s, a) when the context is clear for a single state-action pair
 678 for which the log-policy is being differentiated. The kernel section $K((s, a), \cdot)$ is an element in \mathcal{H}_K .

679 We first derive the first-order Fréchet derivative $\nabla_h \log \pi_h(a | s)$. The log-policy is $\log \pi_h(a | s) =$
 680 $\mathcal{T}h(s, a) - \log Z$.

681 The Fréchet derivative of the first term is:

$$\nabla_h(\mathcal{T}h(s, a)) = \mathcal{T}K((s, a), \cdot)$$

682 For the second term, $-\log Z$:

$$\nabla_h(-\log Z) = -\frac{1}{Z} \nabla_h Z$$

683 We compute $\nabla_h Z$:

$$Z = \sum_{a' \in \mathcal{A}} e^{\mathcal{T}h(s, a')}$$

$$\nabla_h Z = \sum_{a'} \nabla_h(e^{\mathcal{T}h(s, a')}) = \sum_{a'} e^{\mathcal{T}h(s, a')} \mathcal{T} \nabla_h h(s, a') = \mathcal{T} \sum_{a'} e^{\mathcal{T}h(s, a')} K((s, a'), \cdot)$$

684 Substituting this back:

$$\nabla_h(-\log Z) = -\frac{1}{Z} \mathcal{T} \sum_{a'} e^{\mathcal{T}h(s, a')} K((s, a'), \cdot)$$

702 Recognizing that $\frac{e^{\mathcal{T}h(s, a')}}{Z} = \pi_h(a' | s)$, we simplify:
 703

704
$$\nabla_h(-\log Z) = -\mathcal{T} \sum_{a'} \pi_h(a' | s) K((s, a'), \cdot) = -\mathcal{T} \mathbb{E}_{a' \sim \pi_h(\cdot | s)} [K((s, a'), \cdot)]$$

 705
 706

707 Combining the derivatives of both terms, we obtain the first-order Fréchet derivative of the log-policy:
 708

709
$$\nabla_h \log \pi_h(a | s) = \mathcal{T} K((s, a), \cdot) - \mathcal{T} \mathbb{E}_{a' \sim \pi_h(\cdot | s)} [K((s, a'), \cdot)]$$

 710

711 Factorizing \mathcal{T} :
 712

713
$$\nabla_h \log \pi_h(a | s) = \mathcal{T} (K((s, a), \cdot) - \mathbb{E}_{a' \sim \pi_h(\cdot | s)} [K((s, a'), \cdot)]) \quad (9)$$

 714

715 This expression forms the core of the Policy Gradient in RKHS as shown in Equation 4 of the main
 716 paper when appropriately weighted and summed.

717 Next, we derive the second-order Fréchet derivative (Hessian operator) of the log-policy with respect
 718 to h , denoted as $\nabla_h^2 \log \pi_h(a | s)$. This is obtained by differentiating Equation 9:
 719

720
$$\nabla_h^2 \log \pi_h(a | s) = \nabla_h \left[\mathcal{T} \left(K((s, a), \cdot) - \sum_{a' \in \mathcal{A}} \pi_h(a' | s) K((s, a'), \cdot) \right) \right]$$

 721
 722

723 Since \mathcal{T} is a constant and $K((s, a), \cdot)$ is a fixed element in \mathcal{H}_K (not depending on h for this
 724 differentiation), its derivative is zero:
 725

726
$$\nabla_h^2 \log \pi_h(a | s) = \mathcal{T} \nabla_h \left(- \sum_{a' \in \mathcal{A}} \pi_h(a' | s) K((s, a'), \cdot) \right)$$

 727
 728

729 Applying the product rule for Fréchet derivatives (treating $K((s, a'), \cdot)$ as a constant vector in \mathcal{H}_K
 730 for each a'):
 731

732
$$\nabla_h^2 \log \pi_h(a | s) = -\mathcal{T} \sum_{a' \in \mathcal{A}} (\nabla_h \pi_h(a' | s)) \otimes K((s, a'), \cdot)$$

 733
 734

735 Here, \otimes denotes the outer product as defined in Definition 3.1.
 736

737 Now, we compute $\nabla_h \pi_h(a' | s)$. Recall $\pi_h(a' | s) = \frac{e^{\mathcal{T}h(s, a')}}{Z}$. Using the quotient rule $\nabla_h(\frac{N}{D}) =$
 738 $\frac{(\nabla_h N)D - N(\nabla_h D)}{D^2}$: Let $N_{a'} = e^{\mathcal{T}h(s, a')}$, so $\nabla_h N_{a'} = \mathcal{T} e^{\mathcal{T}h(s, a')} K((s, a'), \cdot)$. Let $D = Z =$
 739 $\sum_{a''} e^{\mathcal{T}h(s, a'')}$, so $\nabla_h D = \mathcal{T} \sum_{a''} e^{\mathcal{T}h(s, a'')} K((s, a''), \cdot)$.
 740

741
$$\nabla_h \pi_h(a' | s) = \frac{(\mathcal{T} e^{\mathcal{T}h(s, a')} K((s, a'), \cdot)) Z - e^{\mathcal{T}h(s, a')} (\mathcal{T} \sum_{a''} e^{\mathcal{T}h(s, a'')} K((s, a''), \cdot))}{Z^2}$$

 742
 743

$$= \mathcal{T} \frac{e^{\mathcal{T}h(s, a')}}{Z} K((s, a'), \cdot) - \mathcal{T} \frac{e^{\mathcal{T}h(s, a')} \sum_{a''} e^{\mathcal{T}h(s, a'')} K((s, a''), \cdot)}{Z}$$

 744

$$= \mathcal{T} \pi_h(a' | s) K((s, a'), \cdot) - \mathcal{T} \pi_h(a' | s) \sum_{a''} \pi_h(a'' | s) K((s, a''), \cdot)$$

 745

$$\nabla_h \pi_h(a' | s) = \mathcal{T} \pi_h(a' | s) (K((s, a'), \cdot) - \mathbb{E}_{a'' \sim \pi_h(\cdot | s)} [K((s, a''), \cdot)])$$

 746
 747

748 Substituting this expression for $\nabla_h \pi_h(a' | s)$ back into the equation for $\nabla_h^2 \log \pi_h(a | s)$.
 749 To align with the result in Lemma 3.1 of the main paper, which states $\nabla_h^2 \log \pi_h(a_t | s_t) =$
 750

756 $-\mathcal{T} \text{Cov}_{a' \sim \pi_h(\cdot|s_t)}[K((s_t, a'), \cdot)]$, the substitution effectively uses $\nabla_h \pi_h(a' | s) / \mathcal{T}$:
757

758 $\nabla_h^2 \log \pi_h(a | s) = -\mathcal{T} \sum_{a' \in \mathcal{A}} \pi_h(a' | s) (K((s, a'), \cdot) - \mathbb{E}_{a'' \sim \pi_h(\cdot|s)} [K((s, a''), \cdot)]) \otimes K((s, a'), \cdot)$
759
760
761
762
763

$$= -\mathcal{T} \left(\sum_{a' \in \mathcal{A}} \pi_h(a' | s) K((s, a'), \cdot) \otimes K((s, a'), \cdot) \right.$$

764 $- \sum_{a' \in \mathcal{A}} \pi_h(a' | s) (\mathbb{E}_{a'' \sim \pi_h(\cdot|s)} [K((s, a''), \cdot)]) \otimes K((s, a'), \cdot) \left. \right)$
765
766
767
768
769
770

$$= -\mathcal{T} (\mathbb{E}_{a' \sim \pi_h(\cdot|s)} [K((s, a'), \cdot) \otimes K((s, a'), \cdot)]$$

771 $- (\mathbb{E}_{a'' \sim \pi_h(\cdot|s)} [K((s, a''), \cdot)]) \otimes \left(\sum_{a' \in \mathcal{A}} \pi_h(a' | s) K((s, a'), \cdot) \right) \right)$
772
773

$$= -\mathcal{T} (\mathbb{E}_{a' \sim \pi_h(\cdot|s)} [K((s, a'), \cdot) \otimes K((s, a'), \cdot)] - \mathbb{E}_{a' \sim \pi_h(\cdot|s)} [K((s, a'), \cdot)] \otimes \mathbb{E}_{a'' \sim \pi_h(\cdot|s)} [K((s, a''), \cdot)]) \quad (10)$$

774 This can be compactly written using the covariance operator as defined in Lemma 3.1 (using s_t, a_t
775 for generality):

776 $\nabla_h^2 \log \pi_h(a_t | s_t) = -\mathcal{T} \text{Cov}_{a' \sim \pi_h(\cdot|s_t)} [K((s_t, a'), \cdot)]$
777

778 This expression for $\nabla_h^2 \log \pi_h(a_t | s_t)$ is the component used in constructing the Hessian operator in
779 Lemma 3.1 and the estimated Hessian $\nabla_h^2 \hat{J}(h_k)$ in the paper. By substituting the first and second
780 derivative in 1 with $\nabla_h \log \pi_h(a_t | s_t)$ and $\nabla_h^2 \log \pi_h(a_t | s_t)$, the Lemma 3.1 is proved.
781

782 B THE DERIVATION OF THEOREM 3.3

783 Theorem 3.3 transforms the RKHS optimization problem for the Newton step Δh (Equation 5)
784 into an equivalent finite-dimensional optimization problem (Equation 7). The RKHS update step
785 is $\Delta h = \bar{h}_{\alpha}(\cdot) = \sum_{k=1}^{NT} \alpha_k K(x_k, \cdot)$, where $x_k = (s_k, a_k)$ are state-action pairs from the $N \times T$
786 trajectory data points (k is a flattened index from 1 to $M = NT$), and $\bar{\alpha} \in \mathbb{R}^{NT}$ is the coefficient
787 vector.

788 The objective function in Equation 5 is:

789
$$L(\bar{\alpha}) = \left\langle \nabla_h \hat{J}(h_k), \bar{h}_{\alpha} \right\rangle + \frac{1}{2} \left\langle \nabla_h^2 \hat{J}(h_k) \circ \bar{h}_{\alpha}, \bar{h}_{\alpha} \right\rangle + \frac{\beta}{6} \|\bar{\alpha}\|_2^3$$

790

791 We derive the forms for the first two terms. The third term, $\frac{\beta}{6} \|\bar{\alpha}\|_2^3$, directly uses the Euclidean norm
792 of $\bar{\alpha}$ as stated in Equation 7.

793 Let $M = NT$. The set of basis functions is $\{K(x_k, \cdot)\}_{k=1}^M$. The perturbation is $\bar{h}_{\alpha}(\cdot) =$
794 $\sum_{i=1}^M \alpha_i K(x_i, \cdot)$. We use index i (or j) for the coefficients α_i and the basis functions $K(x_i, \cdot)$.
795 We use index l (or l') for data points from the batch of M samples when defining the gradient and
796 Hessian operators.

802 B.1 FIRST-ORDER TERM: $\langle \nabla_h \hat{J}(h_k), \bar{h}_{\alpha} \rangle$

803 The estimated first-order Fréchet derivative $\nabla_h \hat{J}(h_k)$ (denoted g_{op} for operator form) is given by
804 adapting Equation 4 for the empirical average over N trajectories, or $M = NT$ total samples:
805

806
$$g_{op}(\cdot) = \nabla_h \hat{J}(h_k)(\cdot) = \frac{\mathcal{T}}{N} \sum_{l=1}^M \Psi_l(\omega) (K(x_l, \cdot) - \mathbb{E}_{a' \sim \pi(\cdot|s_l)} [K((s_l, a'), \cdot)])$$

807

810 where $x_l = (s_l, a_l)$ is the l -th data point in the batch, and $\Psi_l(\omega)$ is its associated cumulative reward.
 811 The inner product is:

$$\begin{aligned} 813 \quad \langle \nabla_h \hat{J}(h_k), \bar{h}_\alpha \rangle &= \left\langle \nabla_h \hat{J}(h_k), \sum_{i=1}^M \alpha_i K(x_i, \cdot) \right\rangle \\ 814 \\ 815 \\ 816 \quad &= \sum_{i=1}^M \alpha_i \langle \nabla_h \hat{J}(h_k), K(x_i, \cdot) \rangle \quad (\text{by linearity of inner product}) \\ 817 \\ 818 \end{aligned}$$

819 Let $v_i = \langle \nabla_h \hat{J}(h_k), K(x_i, \cdot) \rangle$. Using the reproducing property and the expression for $\nabla_h \hat{J}(h_k)$:

$$\begin{aligned} 820 \quad v_i &= \frac{\mathcal{T}}{N} \sum_{l=1}^M \Psi_l(\omega) \langle K(x_l, \cdot) - \mathbb{E}_{a' \sim \pi(\cdot | s_l)} [K((s_l, a'), \cdot)], K(x_i, \cdot) \rangle \\ 821 \\ 822 \\ 823 \quad &= \frac{\mathcal{T}}{N} \sum_{l=1}^M \Psi_l(\omega) (K(x_l, x_i) - \mathbb{E}_{a' \sim \pi(\cdot | s_l)} [K((s_l, a'), x_i)]) \\ 824 \\ 825 \\ 826 \end{aligned}$$

827 Thus, $\langle \nabla_h \hat{J}(h_k), \bar{h}_\alpha \rangle = \sum_{i=1}^M \alpha_i v_i = v^\top \bar{\alpha}$. This definition of v_i matches Theorem 3.3.

829 B.2 SECOND-ORDER TERM: $\frac{1}{2} \langle \nabla_h^2 \hat{J}(h_k) \circ \bar{h}_\alpha, \bar{h}_\alpha \rangle$

830 Let $H_{op}^{est} = \nabla_h^2 \hat{J}(h_k)$. Based on the updated Lemma 3.1 and Equation 1, the estimated Hessian
 831 operator $\nabla_h^2 \hat{J}(h_k)$ includes two components:

$$832 \quad \frac{1}{N} \left[\left(\sum_{l=1}^M \Psi_l(\omega) \nabla_h \log \pi_h(x_l) \right) \otimes \left(\sum_{l'=1}^M \nabla_h \log \pi_h(x_{l'}) \right) - \sum_{l=1}^M \Psi_l(\omega) \mathcal{T} \text{Cov}_{a' \sim \pi(\cdot | s_l)} [K(x_l, a')] \right]$$

833 Let $H_{op}^{(1)}$ be the operator for the first part (outer product) and $H_{op}^{(2)}$ for the second part (covariance
 834 sum), such that $\nabla_h^2 \hat{J}(h_k) = \frac{1}{N} (H_{op}^{(1)} - H_{op}^{(2)})$.

835 **1. Contribution from $H_{op}^{(1)}$:** Let $\nabla_h \log \pi_h(x_l)(\cdot) = \mathcal{T} (K(x_l, \cdot) - \mathbb{E}_{a' \sim \pi(\cdot | s_l)} [K((s_l, a'), \cdot)])$. Let
 836 $X_l(\bar{h}_\alpha) = \langle \nabla_h \log \pi_h(x_l), \bar{h}_\alpha \rangle$.

$$837 \quad X_l(\bar{h}_\alpha) = \mathcal{T} \sum_{i=1}^M \alpha_i (K(x_l, x_i) - \mathbb{E}_{a' \sim \pi(\cdot | s_l)} [K((s_l, a'), x_i)])$$

838 The quadratic form from $H_{op}^{(1)}$ is $\langle H_{op}^{(1)} \circ \bar{h}_\alpha, \bar{h}_\alpha \rangle = \left(\sum_{l=1}^M \Psi_l(\omega) X_l(\bar{h}_\alpha) \right) \left(\sum_{l'=1}^M X_{l'}(\bar{h}_\alpha) \right)$.

839 Using the definitions of b_i and c_i from Theorem 3.3 (with $K_{il} = K(x_i, x_l)$ and $K'_{il} = K(x_i, (s_l, a'))$,
 840 and summation index l for data points):

$$\begin{aligned} 841 \quad b_i &= \sum_{l=1}^M \Psi_l(\omega) (K(x_i, x_l) - \mathbb{E}_{a' \sim \pi(\cdot | s_l)} [K(x_i, (s_l, a'))]) \\ 842 \\ 843 \quad c_i &= \sum_{l=1}^M (K(x_i, x_l) - \mathbb{E}_{a' \sim \pi(\cdot | s_l)} [K(x_i, (s_l, a'))]) \\ 844 \\ 845 \end{aligned}$$

846 Then, $\sum_{l=1}^M \Psi_l(\omega) X_l(\bar{h}_\alpha) = \mathcal{T} \sum_{i=1}^M \alpha_i b_i = \mathcal{T}(\bar{\alpha}^\top b)$. And, $\sum_{l'=1}^M X_{l'}(\bar{h}_\alpha) = \mathcal{T} \sum_{j=1}^M \alpha_j c_j =$
 847 $\mathcal{T}(\bar{\alpha}^\top c)$. So, the contribution to $\langle \nabla_h^2 \hat{J}(h_k) \circ \bar{h}_\alpha, \bar{h}_\alpha \rangle$ from this first part is:

$$848 \quad \frac{1}{N} \langle H_{op}^{(1)} \circ \bar{h}_\alpha, \bar{h}_\alpha \rangle = \frac{1}{N} (\mathcal{T} \bar{\alpha}^\top b) (\mathcal{T} c^\top \bar{\alpha}) = \bar{\alpha}^\top \left(\frac{\mathcal{T}^2}{N} b c^\top \right) \bar{\alpha}$$

849 **2. Contribution from $H_{op}^{(2)}$:** $H_{op}^{(2)} \circ u = \sum_{l=1}^M \Psi_l(\omega) \mathcal{T} \text{Cov}_{a' \sim \pi(\cdot | s_l)} [K((s_l, a'), \cdot)] \circ u$. The
 850 quadratic form is $\langle H_{op}^{(2)} \circ \bar{h}_\alpha, \bar{h}_\alpha \rangle = \sum_{l=1}^M \Psi_l(\omega) \mathcal{T} \langle \text{Cov}_{a' \sim \pi(\cdot | s_l)} [K((s_l, a'), \cdot)] \circ \bar{h}_\alpha, \bar{h}_\alpha \rangle$.

The inner term is $\text{Var}_{a' \sim \pi(\cdot|s_l)}[(K((s_l, a'), \cdot), \bar{h}_\alpha)] = \bar{\alpha}^\top \Sigma^{(l)} \bar{\alpha}$, where $\Sigma_{ij}^{(l)} = \text{Cov}_{a' \sim \pi(\cdot|s_l)}[K((s_l, a'), x_i), K((s_l, a'), x_j)]$. Using $K'_{il} = K(x_i, (s_l, a'))$, this is $\Sigma_{ij}^{(l)} = \text{Cov}_{a' \sim \pi(\cdot|s_l)}[K'_{il}, K'_{jl}]$, matching Theorem 3.3. So, the contribution to $\langle \nabla_h^2 \hat{J}(h_k) \circ \bar{h}_\alpha, \bar{h}_\alpha \rangle$ from this second part is:

$$-\frac{1}{N} \langle H_{op}^{(2)} \circ \bar{h}_\alpha, \bar{h}_\alpha \rangle = -\frac{1}{N} \bar{\alpha}^\top \left(\mathcal{T} \sum_{l=1}^M \Psi_l(\omega) \Sigma^{(l)} \right) \bar{\alpha} = \bar{\alpha}^\top \left(-\frac{\mathcal{T}}{N} \sum_{l=1}^M \Psi_l(\omega) \Sigma^{(l)} \right) \bar{\alpha}$$

Combining terms for the matrix H : The full quadratic form for the second-order term in the objective function is $\frac{1}{2} \bar{\alpha}^\top H \bar{\alpha}$, where the matrix H is given by:

$$H = \frac{\mathcal{T}^2}{N} bc^\top - \frac{\mathcal{T}}{N} \sum_{l=1}^M \Psi_l(\omega) \Sigma^{(l)}$$

This matches Equation 8 in Theorem 3.3.

C THE PROOF OF THE CONVERGENCE

C.1 PROOF FOR MONTE CARLO CONVERGENCE

Let the Monte Carlo estimates be defined as the average of N independent and identically distributed (i.i.d.) samples, denoted by $g_h^{(i)}$ and $H_h^{(i)}$, corresponding to trajectories $\omega_i \sim p(\omega; \pi)$.

$$\begin{aligned} \nabla_h \hat{J}(h_k) &= \frac{1}{N} \sum_{i=1}^N g_h^{(i)} \\ \nabla_h^2 \hat{J}(h_k) &= \frac{1}{N} \sum_{i=1}^N H_h^{(i)} \end{aligned}$$

The true Fréchet derivatives are the expectations of these samples (we use $\mathbb{E}[\cdot]$ as shorthand for $\mathbb{E}_{\omega \sim p(\omega; \pi)}[\cdot]$):

$$\begin{aligned} \nabla_h J(h_k) &= \mathbb{E}[g_h] \\ \nabla_h^2 J(h_k) &= \mathbb{E}[H_h] \end{aligned}$$

Consider the expected squared norm for the first-order derivative estimate. Since the Monte Carlo estimator is unbiased ($\mathbb{E}[\nabla_h \hat{J}(h_k)] = \nabla_h J(h_k)$), the expected squared norm equals the variance:

$$\mathbb{E} \left[\left\| \nabla_h \hat{J}(h_k) - \nabla_h J(h_k) \right\|^2 \right] = \text{Var}(\nabla_h \hat{J}(h_k))$$

The variance of the mean of N random variables is $1/N$ times the variance of a single variable:

$$\text{Var}(\nabla_h \hat{J}(h_k)) = \text{Var} \left(\frac{1}{N} \sum_{i=1}^N g_h^{(i)} \right) = \frac{1}{N^2} \sum_{i=1}^N \text{Var}(g_h^{(i)}) = \frac{1}{N} \text{Var}(g_h)$$

The variance of g_h is defined as:

$$\text{Var}(g_h) = \mathbb{E}[\|g_h - \mathbb{E}[g_h]\|^2]$$

Using the property $\text{Var}(X) = \mathbb{E}[\|X\|^2] - \|\mathbb{E}[X]\|^2$ (which holds according to the definition of RKHS) and the fact that $\|\mathbb{E}[X]\|^2 \geq 0$:

$$\text{Var}(g_h) = \mathbb{E}[\|g_h\|^2] - \|\mathbb{E}[g_h]\|^2 \leq \mathbb{E}[\|g_h\|^2]$$

Applying the assumption $\mathbb{E}[\|g_h\|^2] \leq \sigma_0^2$:

$$\text{Var}(g_h) \leq \sigma_0^2$$

918 Substituting this back, we find the standard convergence rate for the expected squared norm:
 919

$$920 \quad \mathbb{E} \left[\left\| \nabla_h \hat{J}(h_k) - \nabla_h J(h_k) \right\|^2 \right] \leq \frac{\sigma_0^2}{N}$$

922
 923 Similarly, for the second-order derivative estimate:

$$924 \quad \mathbb{E} \left[\left\| \nabla_h^2 \hat{J}(h_k) - \nabla_h^2 J(h_k) \right\|^2 \right] = \text{Var}(\nabla_h^2 \hat{J}(h_k))$$

$$925 \quad \text{Var}(\nabla_h^2 \hat{J}(h_k)) = \text{Var} \left(\frac{1}{N} \sum_{i=1}^N H_h^{(i)} \right) = \frac{1}{N} \text{Var}(H_h)$$

$$926 \quad \text{Var}(H_h) = \mathbb{E}[\|H_h - \mathbb{E}[H_h]\|^2] \leq \mathbb{E}[\|H_h\|^2]$$

927 Applying the assumption $\mathbb{E}[\|H_h\|^2] \leq \sigma_1^2$:

$$928 \quad \text{Var}(H_h) \leq \sigma_1^2$$

929 Substituting back, the standard convergence rate for the expected squared norm is:
 930

$$931 \quad \mathbb{E} \left[\left\| \nabla_h^2 \hat{J}(h_k) - \nabla_h^2 J(h_k) \right\|^2 \right] \leq \frac{\sigma_1^2}{N}$$

932 This completes the proof.
 933

934 C.2 PROOF FOR TAYLOR UPPER BOUND

935 Let $\Delta h = h_2 - h_1$. Define the auxiliary function $\phi : [0, 1] \rightarrow \mathbb{R}$ by $\phi(t) = J(h_1 + t\Delta h)$. By the
 936 chain rule for Fréchet derivatives:
 937

$$938 \quad \phi'(t) = \langle \nabla_h J(h_1 + t\Delta h), \Delta h \rangle$$

$$939 \quad \phi''(t) = \langle \nabla_h^2 J(h_1 + t\Delta h) \circ \Delta h, \Delta h \rangle$$

940 Using Taylor's theorem with integral remainder for $\phi(t)$:

$$941 \quad \phi(1) = \phi(0) + \phi'(0) + \int_0^1 (1-t)\phi''(t)dt$$

942 Substituting the expressions for ϕ , ϕ' , and ϕ'' :

$$943 \quad J(h_2) = J(h_1) + \langle \nabla_h J(h_1), \Delta h \rangle + \int_0^1 (1-t)\langle \nabla_h^2 J(h_1 + t\Delta h) \circ \Delta h, \Delta h \rangle dt$$

944 We introduce the second-order term at h_1 . Note that $\int_0^1 (1-t)dt = 1/2$. Thus,
 945

$$946 \quad \frac{1}{2} \langle \nabla_h^2 J(h_1) \circ \Delta h, \Delta h \rangle = \int_0^1 (1-t) \langle \nabla_h^2 J(h_1) \circ \Delta h, \Delta h \rangle dt$$

947 Adding and subtracting this term within the integral expression for $J(h_2)$:

$$948 \quad J(h_2) = J(h_1) + \langle \nabla_h J(h_1), \Delta h \rangle + \frac{1}{2} \langle \nabla_h^2 J(h_1) \circ \Delta h, \Delta h \rangle$$

$$949 \quad + \int_0^1 (1-t) \langle \nabla_h^2 J(h_1 + t\Delta h) \circ \Delta h, \Delta h \rangle dt$$

$$950 \quad - \int_0^1 (1-t) \langle \nabla_h^2 J(h_1) \circ \Delta h, \Delta h \rangle dt$$

$$951 \quad = J(h_1) + \langle \nabla_h J(h_1), \Delta h \rangle + \frac{1}{2} \langle \nabla_h^2 J(h_1) \circ \Delta h, \Delta h \rangle$$

$$952 \quad + \int_0^1 (1-t) \langle [\nabla_h^2 J(h_1 + t\Delta h) - \nabla_h^2 J(h_1)] \circ \Delta h, \Delta h \rangle dt$$

972 Let R_2 be the remainder term:

$$974 \quad R_2 = \int_0^1 (1-t) \langle [\nabla_h^2 J(h_1 + t\Delta h) - \nabla_h^2 J(h_1)] \circ \Delta h, \Delta h \rangle dt$$

976 Through Cauchy-Schwarz inequality, the quadratic form $\langle Av, v \rangle \leq \|A\| \|v\|^2$:

$$978 \quad \langle [\nabla_h^2 J(h_1 + t\Delta h) - \nabla_h^2 J(h_1)] \circ \Delta h, \Delta h \rangle \leq \|\nabla_h^2 J(h_1 + t\Delta h) - \nabla_h^2 J(h_1)\| \|\Delta h\|^2$$

979 Using the Lipschitz continuity of the Hessian in Assumption 4.1:

$$980 \quad \|\nabla_h^2 J(h_1 + t\Delta h) - \nabla_h^2 J(h_1)\| \leq L\|(h_1 + t\Delta h) - h_1\| = L\|t\Delta h\| = Lt\|\Delta h\| \quad (\text{since } t \geq 0)$$

982 Substituting this bound into the integral for R_2 :

$$\begin{aligned} 983 \quad R_2 &\leq \int_0^1 (1-t)(Lt\|\Delta h\|)\|\Delta h\|^2 dt \\ 984 \quad &= L\|\Delta h\|^3 \int_0^1 (1-t)tdt \\ 985 \quad &= L\|\Delta h\|^3 \int_0^1 (t-t^2)dt \\ 986 \quad &= \frac{L}{6}\|\Delta h\|^3 \end{aligned}$$

993 Substituting this upper bound for R_2 back into the expression for $J(h_2)$ and replacing Δh with
994 $h_2 - h_1$:

$$995 \quad J(h_2) \leq J(h_1) + \langle \nabla_h J(h_1), h_2 - h_1 \rangle + \frac{1}{2} \langle \nabla_h^2 J(h_1) \circ (h_2 - h_1), h_2 - h_1 \rangle + \frac{L}{6} \|h_2 - h_1\|^3$$

997 This completes the proof.

999 C.3 PROOF FOR THE UPPER BOUND OF THE STEP NORM

1001 To prove this upper bound, we first need to introduce a lemma to show the optimality conditions of
1002 the iteration step:

1003 **Lemma C.1** (Optimality conditions) Let

$$1005 \quad \Delta h = \underset{\bar{h} \in \mathcal{H}_K}{\operatorname{argmin}} \left\{ \left\langle \nabla_h \hat{J}(h_k), \bar{h} \right\rangle + \frac{1}{2} \left\langle \nabla_h^2 \hat{J}(h_k) \circ \bar{h}, \bar{h} \right\rangle + \frac{\beta}{6} \|\bar{h}\|^3 \right\}$$

1008 , then it satisfies that:

$$1009 \quad \nabla_h \hat{J}(h_k) + \nabla_h^2 \hat{J}(h_k) \circ \Delta h + \frac{\beta}{2} \|\Delta h\| \Delta h = 0 \text{ (necessary condition),}$$

$$1011 \quad \langle (\nabla_h^2 \hat{J} \circ u, u) \rangle + \langle \frac{\beta}{2} \|\Delta h\| I \circ u, u \rangle \geq 0 \quad \forall u \in \mathcal{H}_K \text{ (sufficient condition),}$$

1013 where I is the identity operator on $\mathcal{H}_K \otimes \mathcal{H}_K \rightarrow \mathcal{H}_K$.

1015 **Proof:** To simplify the notation in the proof, we denote $g = \nabla J(h_k) \in \mathcal{H}_K$, $H_k = \nabla^2 J(h_k)$ and
1016 the objective function $M : \mathcal{H}_K \rightarrow \mathbb{R}$:

$$1017 \quad M(\bar{h}) = \langle g, \bar{h} \rangle + \frac{1}{2} \langle (H_k \circ \bar{h}), \bar{h} \rangle + \frac{\beta}{6} \|\bar{h}\|^3.$$

1020 The first Fréchet derivative of M at \bar{h} is given by:

$$1022 \quad \nabla M(\bar{h}) = g + H_k \circ \bar{h} + \frac{\beta}{2} \|\bar{h}\| \bar{h}$$

1024 Since Δh is a minimizer, it must satisfy the necessary condition $\nabla M(\Delta h) = 0$:

$$1025 \quad g + H_k \circ \Delta h + \frac{\beta}{2} \|\Delta h\| \Delta h = 0.$$

1026

We now prove the standard second-order necessary condition for Δh .

1027

1028 Let Δh be a minimizer of $M(\bar{h})$ and let $\frac{\beta}{2}\|\Delta h\| = \frac{\beta}{2}\|\Delta h\|$. Then the operator $H_k + \frac{\beta}{2}\|\Delta h\|I$ must
1029 be positive semi-definite, i.e.,

1030

$$\langle (H_k \circ u, u) + \frac{\beta}{2}\|\Delta h\|I \circ u, u \rangle \geq 0 \rightarrow H_k + \frac{\beta}{2}\|\Delta h\|I \succeq 0$$

1032

1033 We proceed by contradiction. Assume that $H_k + \frac{\beta}{2}\|\Delta h\|I$ is not positive semi-definite ($H_k + \frac{\beta}{2}\|\Delta h\|I \not\succeq 0$). This implies that there exists a direction $u \in \mathcal{H}_K$ with $\|u\| = 1$ such that its
1034 associated quadratic form is negative:
1035

1036

$$\mu := \langle (H_k + \frac{\beta}{2}\|\Delta h\|I) \circ u, u \rangle < 0$$

1038

1039 Consider the Taylor expansion of M around the minimizer Δh along the direction u for a small step
1040 $\epsilon \in \mathbb{R}$. Using Taylor's theorem in Hilbert spaces:

1041

$$M(\Delta h + \epsilon u) = M(\Delta h) + \epsilon \langle \nabla M(\Delta h), u \rangle + \frac{\epsilon^2}{2} \langle (\nabla^2 M(\Delta h)) \circ u, u \rangle + O(\epsilon^3)$$

1042

1043 Since $\nabla M(\Delta h) = 0$ from the first-order condition, this simplifies to:

1044

$$M(\Delta h + \epsilon u) = M(\Delta h) + \frac{\epsilon^2}{2} \langle (\nabla^2 M(\Delta h)) \circ u, u \rangle + O(\epsilon^3)$$

1045

1046 The second Fréchet derivative (Hessian operator) of M at \bar{h} is calculated as:

1047

$$\nabla^2 M(\bar{h}) = H_k + \frac{\beta}{2} \frac{\bar{h} \otimes \bar{h}}{\|\bar{h}\|} + \frac{\beta}{2} \|\bar{h}\| I$$

1048

1049 Evaluating at Δh (assuming $\Delta h \neq 0$, which implies $\frac{\beta}{2}\|\Delta h\| > 0$; the case $\Delta h = 0$ requires separate,
1050 simpler verification) and substituting $\frac{\beta}{2}\|\Delta h\| = \frac{\beta}{2}\|\Delta h\|$ yields:

1051

$$\nabla^2 M(\Delta h) = H_k + \frac{\beta}{2} \frac{\Delta h \otimes \Delta h}{\|\Delta h\|} + \frac{\beta}{2} \|\Delta h\| I = (H_k + \frac{\beta}{2}\|\Delta h\|I) + \frac{\beta}{2} \frac{\Delta h \otimes \Delta h}{\|\Delta h\|}$$

1052

1053 Now, substitute this Hessian back into the Taylor expansion. The quadratic term is:

1054

$$\langle (\nabla^2 M(\Delta h)) \circ u, u \rangle = \langle (H_k + \frac{\beta}{2}\|\Delta h\|I) \circ u, u \rangle + \frac{\beta}{2\|\Delta h\|} \langle \langle \Delta h, u \rangle \Delta h, u \rangle$$

1055

1056 Using the definition of μ and properties of the inner product, this becomes:

1057

$$\langle (\nabla^2 M(\Delta h)) \circ u, u \rangle = \mu + \frac{\beta}{2\|\Delta h\|} \langle \Delta h, u \rangle^2$$

1058

1059 The Taylor expansion for the difference is thus:

1060

$$M(\Delta h + \epsilon u) - M(\Delta h) = \frac{\epsilon^2}{2} \left(\mu + \frac{\beta}{2\|\Delta h\|} \langle \Delta h, u \rangle^2 \right) + O(\epsilon^3)$$

1061

1062 Let $K = \mu + \frac{\beta}{2\|\Delta h\|} \langle \Delta h, u \rangle^2$. By assumption, $\mu < 0$. The second term $\frac{\beta}{2\|\Delta h\|} \langle \Delta h, u \rangle^2$ is non-
1063 negative. Since the assumption $H_k + \frac{\beta}{2}\|\Delta h\|I \not\succeq 0$ leads to a contradiction in all cases, the assumption
1064 must be false. Therefore, we must conclude that $H_k + \frac{\beta}{2}\|\Delta h\|I \succeq 0$, which complete the proof.

1065

1066 Now we continue the proof for the upper bound of the step norm. Through the Taylor upper bound in
1067 lemma 4.2 we know that:

1068

$$J(h_2) \leq J(h_1) + \langle \nabla_h J(h_1), h_2 - h_1 \rangle + \frac{1}{2} \langle \nabla_h^2 J(h_1) \circ (h_2 - h_1), h_2 - h_1 \rangle + \frac{L}{6} \|h_2 - h_1\|^3.$$

1069

1070 For $\Delta h = h_2 - h_1$ that satisfies the optimality conditions, we can use the necessary condition to
1071 establish that:

1072

$$\begin{aligned} J(h_2) &\leq J(h_1) + \langle \nabla_h J(h_1) - \nabla_h \hat{J}(h_k), \Delta h \rangle + \frac{1}{2} \langle (\nabla_h^2 J(h_1) - \nabla_h^2 \hat{J}(h_1)) \circ (\Delta h), \Delta h \rangle + \\ &\quad \frac{L}{6} \|\Delta h\|^3 - \frac{1}{2} \langle (\nabla_h^2 \hat{J}(h_1)) \circ (\Delta h), \Delta h \rangle - \frac{\beta}{2} \|\Delta h\|^3. \end{aligned} \tag{11}$$

1080 For $L \leq \beta$ and the sufficient condition in Lemma C.1, we could find that
 1081

$$\begin{aligned} 1083 \quad \frac{L}{6} \|\Delta h\|^3 &\leq \frac{\beta}{6} \|\Delta h\|^3 \\ 1084 \quad -\frac{1}{2} \langle (\nabla_h^2 \hat{J}(h_1)) \circ (\Delta h), \Delta h \rangle &\leq \frac{\beta}{4} \|\Delta h\|^3 \end{aligned}$$

1087 Substituting back into the inequality 11, we can find that:

$$\begin{aligned} 1088 \quad \frac{\beta}{12} \|\Delta h\|^3 &\leq J(h_1) - J(h_2) \\ 1089 \quad + \langle \nabla_h J(h_1) - \nabla_h \hat{J}(h_k), \Delta h \rangle + \frac{1}{2} \langle (\nabla_h^2 J(h_1) - \nabla_h^2 \hat{J}(h_1)) \circ (\Delta h), \Delta h \rangle & \quad (12) \\ 1090 \quad 1091 \quad 1092 \quad 1093 \quad 1094 \quad 1095 \quad 1096 \quad 1097 \quad 1098 \quad 1099 \quad 1100 \quad 1101 \quad 1102 \quad 1103 \quad 1104 \quad 1105 \quad 1106 \quad 1107 \quad 1108 \quad 1109 \quad 1110 \quad 1111 \quad 1112 \quad 1113 \quad 1114 \quad 1115 \quad 1116 \quad 1117 \quad 1118 \quad 1119 \quad 1120 \quad 1121 \quad 1122 \quad 1123 \quad 1124 \quad 1125 \quad 1126 \quad 1127 \quad 1128 \quad 1129 \quad 1130 \quad 1131 \quad 1132 \quad 1133 \end{aligned}$$

For the gradient error term, applying Cauchy-Schwarz and Young's inequality ($ab \leq C_1 a^{3/2} + \epsilon b^3$ with $a = \|\nabla_h J(h_k) - \nabla_h \hat{J}(h_k)\|$, $b = \|\Delta h_k\|$, $p = 3/2$, $q = 3$, and $\epsilon = \beta/36$):

$$\begin{aligned} \langle \nabla_h J(h_k) - \nabla_h \hat{J}(h_k), \Delta h_k \rangle \\ \leq \|\nabla_h J(h_k) - \nabla_h \hat{J}(h_k)\| \|\Delta h_k\| \\ \leq \frac{4\sqrt{3}}{3\sqrt{\beta}} \|\nabla_h J(h_k) - \nabla_h \hat{J}(h_k)\|^{3/2} + \frac{\beta}{36} \|\Delta h_k\|^3. \end{aligned}$$

For the Hessian error term, applying generalized Cauchy-Schwarz and Young's inequality ($cd^2 \leq C_2 c^3 + \epsilon d^3$ with $c = \frac{1}{2} \|\nabla_h^2 J(h_k) - \nabla_h^2 \hat{J}(h_k)\|$, $d = \|\Delta h_k\|$, $p = 3$, $q = 3/2$, and $\epsilon = \beta/36$):

$$\begin{aligned} \frac{1}{2} \langle (\nabla_h^2 J(h_k) - \nabla_h^2 \hat{J}(h_k)) \circ (\Delta h_k), \Delta h_k \rangle \\ \leq \frac{1}{2} \|\nabla_h^2 J(h_k) - \nabla_h^2 \hat{J}(h_k)\| \|\Delta h_k\|^2 \\ \leq \frac{24}{\beta^2} \|\nabla_h^2 J(h_k) - \nabla_h^2 \hat{J}(h_k)\|^3 + \frac{\beta}{36} \|\Delta h_k\|^3. \end{aligned}$$

Substituting these bounds back into 12:

$$\begin{aligned} \frac{\beta}{12} \|\Delta h_k\|^3 &\leq J(h_k) - J(h_{k+1}) \\ &+ \frac{4\sqrt{3}}{3\sqrt{\beta}} \|\nabla_h J(h_k) - \nabla_h \hat{J}(h_k)\|^{3/2} + \frac{\beta}{36} \|\Delta h_k\|^3 \\ &+ \frac{24}{\beta^2} \|\nabla_h^2 J(h_k) - \nabla_h^2 \hat{J}(h_k)\|^3 + \frac{\beta}{36} \|\Delta h_k\|^3. \end{aligned}$$

Rearranging terms yields:

$$\begin{aligned} \left(\frac{\beta}{12} - \frac{\beta}{36} - \frac{\beta}{36} \right) \|\Delta h_k\|^3 &\leq J(h_k) - J(h_{k+1}) + \\ \frac{4\sqrt{3}}{3\sqrt{\beta}} \|\nabla_h J(h_k) - \nabla_h \hat{J}(h_k)\|^{3/2} + \frac{24}{\beta^2} \|\nabla_h^2 J(h_k) - \nabla_h^2 \hat{J}(h_k)\|^3, \end{aligned}$$

which simplifies to:

$$\frac{\beta}{36} \|\Delta h_k\|^3 \leq J(h_k) - J(h_{k+1}) + \frac{4\sqrt{3}}{3\sqrt{\beta}} \|\nabla_h J(h_k) - \nabla_h \hat{J}(h_k)\|^{3/2} + \frac{24}{\beta^2} \|\nabla_h^2 J(h_k) - \nabla_h^2 \hat{J}(h_k)\|^3. \quad (13)$$

Now, we take the total expectation $\mathbb{E}[\cdot]$ over all randomness. Using Lemma C.1 and properties of expectation (Jensen's inequality), we bound the expected error terms:

$$\mathbb{E} \left[\|\nabla_h J(h_k) - \nabla_h \hat{J}(h_k)\|^{3/2} \right] \leq \left(\mathbb{E} \left[\|\nabla_h J(h_k) - \nabla_h \hat{J}(h_k)\|^2 \right] \right)^{3/4} \leq \left(\frac{\sigma_0^2}{N} \right)^{3/4} = \frac{\sigma_0^{3/2}}{N^{3/4}}.$$

$$\mathbb{E} \left[\|\nabla_h^2 J(h_k) - \nabla_h^2 \hat{J}(h_k)\|^3 \right] \leq \left(\frac{\sigma_1}{\sqrt{N}} \right)^3 = \frac{\sigma_1^3}{N^{3/2}}. \quad (\text{See note below})$$

1134 Substituting these bounds into the expectation of 13:
 1135

$$\begin{aligned} 1136 \quad & \frac{\beta}{36} \mathbb{E} [\|\Delta h_k\|^3] \leq \mathbb{E}[J(h_k)] - \mathbb{E}[J(h_{k+1})] \\ 1137 \quad & + \frac{4\sqrt{3}}{3\sqrt{\beta}} \left(\frac{\sigma_0^{3/2}}{N^{3/4}} \right) + \frac{24}{\beta^2} \left(\frac{\sigma_1^3}{N^{3/2}} \right). \\ 1138 \quad & \\ 1139 \quad & \\ 1140 \quad & \end{aligned}$$

1141 Summing this inequality over the total iterations $k = 1, \dots, M$:

$$\begin{aligned} 1142 \quad & \frac{\beta}{36} \sum_{k=1}^M \mathbb{E} [\|h_{k+1} - h_k\|^3] \leq \sum_{k=1}^M (\mathbb{E}[J(h_k)] - \mathbb{E}[J(h_{k+1})]) \\ 1143 \quad & + \sum_{k=1}^M \left(\frac{4\sqrt{3}}{3\sqrt{\beta}} \frac{\sigma_0^{3/2}}{N^{3/4}} + \frac{24}{\beta^2} \frac{\sigma_1^3}{N^{3/2}} \right). \\ 1144 \quad & \\ 1145 \quad & \\ 1146 \quad & \\ 1147 \quad & \\ 1148 \quad & \end{aligned}$$

1149 The first sum on the right-hand side telescopes to $\mathbb{E}[J(h_1)] - \mathbb{E}[J(h_{M+1})]$. Assuming h_1 is determin-
 1150 $J(h) \geq J^*$ for some minimum value J^* , this sum is bounded by $J(h_1) - J^*$. The second
 1151 sum consists of terms independent of the summation index k :

$$\begin{aligned} 1152 \quad & \sum_{k=1}^M (\dots) = M \left(\frac{4\sqrt{3}}{3\sqrt{\beta}} \frac{\sigma_0^{3/2}}{N^{3/4}} + \frac{24}{\beta^2} \frac{\sigma_1^3}{N^{3/2}} \right). \\ 1153 \quad & \\ 1154 \quad & \end{aligned}$$

1155 Combining these results:

$$\begin{aligned} 1156 \quad & \frac{\beta}{36} \sum_{k=1}^M \mathbb{E} [\|h_{k+1} - h_k\|^3] \leq J(h_1) - J^* + M \left(\frac{4\sqrt{3}}{3\sqrt{\beta}} \frac{\sigma_0^{3/2}}{N^{3/4}} + \frac{24}{\beta^2} \frac{\sigma_1^3}{N^{3/2}} \right). \\ 1157 \quad & \\ 1158 \quad & \\ 1159 \quad & \end{aligned}$$

1160 Let R be a random variable uniformly distributed on $\{1, \dots, M\}$, such that $P(R = k) = 1/M$.
 1161 Then $\mathbb{E}[\|h_{R+1} - h_R\|^3] = \frac{1}{M} \sum_{k=1}^M \mathbb{E} [\|h_{k+1} - h_k\|^3]$. Dividing the inequality by M :

$$\begin{aligned} 1162 \quad & \frac{\beta}{36} \mathbb{E} [\|h_{R+1} - h_R\|^3] \leq \frac{J(h_1) - J^*}{M} + \left(\frac{4\sqrt{3}}{3\sqrt{\beta}} \frac{\sigma_0^{3/2}}{N^{3/4}} + \frac{24}{\beta^2} \frac{\sigma_1^3}{N^{3/2}} \right). \\ 1163 \quad & \\ 1164 \quad & \\ 1165 \quad & \end{aligned}$$

1166 Finally, multiplying by $36/\beta$ isolates the expected cubic step norm for a randomly chosen iteration
 1167 R :

$$\begin{aligned} 1168 \quad & \mathbb{E} [\|h_{R+1} - h_R\|^3] \leq \frac{36(J(h_1) - J^*)}{\beta M} + \frac{36}{\beta} \left(\frac{4\sqrt{3}}{3\sqrt{\beta}} \frac{\sigma_0^{3/2}}{N^{3/4}} + \frac{24}{\beta^2} \frac{\sigma_1^3}{N^{3/2}} \right) \\ 1169 \quad & \\ 1170 \quad & \\ 1171 \quad & \\ 1172 \quad & \leq \frac{36(J(h_1) - J^*)}{\beta M} + \frac{48\sqrt{3}}{\beta^{3/2}} \frac{\sigma_0^{3/2}}{N^{3/4}} + \frac{864}{\beta^3} \frac{\sigma_1^3}{N^{3/2}}. \\ 1173 \quad & \end{aligned} \tag{14}$$

1174 We can box the final result for emphasis:

1175

1176

1177

$$\begin{aligned} 1178 \quad & \mathbb{E} [\|h_{R+1} - h_R\|^3] \leq \frac{36(J(h_1) - J^*)}{\beta M} + \frac{48\sqrt{3}}{\beta^{3/2}} \frac{\sigma_0^{3/2}}{N^{3/4}} + \frac{864}{\beta^3} \frac{\sigma_1^3}{N^{3/2}}. \\ 1179 \quad & \\ 1180 \quad & \end{aligned}$$

1181

1182

1183 C.4 PROOF FOR THE LOWER BOUND OF THE STEP NORM

1184 From the proof of the Taylor upper bound in Appendix C.2, we could similarly derive the first-order
 1185 Taylor upper bound as

$$\begin{aligned} 1186 \quad & \nabla J(h_2) \leq \nabla J(h_1) + \langle \nabla_h^2 J(h_1) \circ (h_2 - h_1), h_2 - h_1 \rangle + \frac{L}{2} \|h_2 - h_1\|^3. \\ 1187 \quad & \end{aligned} \tag{15}$$

1188 Through this, we could prove the lower bound by first constructing this auxiliary equation through
 1189 the optimality conditions in Lemma C.1:

$$\begin{aligned}
 1191 \nabla J(h_{k+1}) &= \nabla J(h_{k+1}) - (\nabla_h \hat{J}(h_k) + \nabla_h^2 \hat{J}(h_k) \circ \Delta h_k + \frac{\beta}{2} \|\Delta h_k\| \Delta h_k) \\
 1192 &= [\nabla J(h_{k+1}) - \nabla J(h_k) - \nabla^2 J(h_k) \circ \Delta h_k] \quad (\text{Term 1}) \\
 1193 &\quad + [\nabla J(h_k) - \nabla_h \hat{J}(h_k)] \quad (\text{Term 2}) \\
 1194 &\quad + [(\nabla^2 J(h_k) - \nabla_h^2 \hat{J}(h_k)) \circ \Delta h_k] \quad (\text{Term 3}) \\
 1195 &\quad - \frac{\beta}{2} \|\Delta h_k\| \Delta h_k \quad (\text{Term 4})
 \end{aligned}$$

1200 Taking norms and applying the triangle inequality:

$$\begin{aligned}
 1201 \|\nabla J(h_{k+1})\| &\leq \|\nabla J(h_{k+1}) - \nabla J(h_k) - \nabla^2 J(h_k) \circ \Delta h_k\| \\
 1202 &\quad + \|\nabla J(h_k) - \nabla_h \hat{J}(h_k)\| \\
 1203 &\quad + \|(\nabla^2 J(h_k) - \nabla_h^2 \hat{J}(h_k)) \circ \Delta h_k\| \\
 1204 &\quad + \|\frac{\beta}{2} \|\Delta h_k\| \Delta h_k\|
 \end{aligned}$$

1207 We bound the terms using Assumption 4.1 for Term 1, norm properties for Term 3, and direct
 1208 calculation for Term 4:

$$\begin{aligned}
 1209 \|\nabla J(h_{k+1})\| &\leq \frac{L}{2} \|\Delta h_k\|^2 + \|\nabla J(h_k) - \nabla_h \hat{J}(h_k)\| \\
 1210 &\quad + \|\nabla^2 J(h_k) - \nabla_h^2 \hat{J}(h_k)\| \|\Delta h_k\| + \frac{\beta}{2} \|\Delta h_k\|^2
 \end{aligned}$$

1214 Applying Young's inequality $ab \leq \frac{a^2}{2C} + \frac{Cb^2}{2}$ with $C = L + \beta$ to the term involving the Hessian
 1215 error:

$$\|\nabla^2 J(h_k) - \nabla_h^2 \hat{J}(h_k)\| \|\Delta h_k\| \leq \frac{\|\nabla^2 J(h_k) - \nabla_h^2 \hat{J}(h_k)\|^2}{2(L + \beta)} + \frac{(L + \beta) \|\Delta h_k\|^2}{2}$$

1218 Substituting this back and collecting terms with $\|\Delta h_k\|^2$:

$$\begin{aligned}
 1220 \|\nabla J(h_{k+1})\| &\leq \left(\frac{L}{2} + \frac{L + \beta}{2} + \frac{\beta}{2} \right) \|\Delta h_k\|^2 \\
 1221 &\quad + \|\nabla J(h_k) - \nabla_h \hat{J}(h_k)\| + \frac{\|\nabla^2 J(h_k) - \nabla_h^2 \hat{J}(h_k)\|^2}{2(L + \beta)} \\
 1222 &\quad = (L + \beta) \|\Delta h_k\|^2 \\
 1223 &\quad + \|\nabla J(h_k) - \nabla_h \hat{J}(h_k)\| + \frac{\|\nabla^2 J(h_k) - \nabla_h^2 \hat{J}(h_k)\|^2}{2(L + \beta)}
 \end{aligned}$$

1228 Now, take the total expectation $\mathbb{E}[\cdot]$. Using Lemma C.1 and Jensen's inequality:

$$\begin{aligned}
 1230 \mathbb{E} [\|\nabla J(h_k) - \nabla_h \hat{J}(h_k)\|] &\leq \sqrt{\mathbb{E} [\|\nabla J(h_k) - \nabla_h \hat{J}(h_k)\|^2]} \leq \frac{\sigma_0}{\sqrt{N}} \\
 1231 \mathbb{E} [\|\nabla^2 J(h_k) - \nabla_h^2 \hat{J}(h_k)\|^2] &\leq \frac{\sigma_1^2}{N}
 \end{aligned}$$

1235 Applying expectation to the inequality for $\|\nabla J(h_{k+1})\|$:

$$\begin{aligned}
 1236 \mathbb{E} [\|\nabla J(h_{k+1})\|] &\leq (L + \beta) \mathbb{E} [\|\Delta h_k\|^2] \\
 1237 &\quad + \mathbb{E} [\|\nabla J(h_k) - \nabla_h \hat{J}(h_k)\|] + \frac{\mathbb{E} [\|\nabla^2 J(h_k) - \nabla_h^2 \hat{J}(h_k)\|^2]}{2(L + \beta)} \\
 1238 &\leq (L + \beta) \mathbb{E} [\|\Delta h_k\|^2] + \frac{\sigma_0}{\sqrt{N}} + \frac{\sigma_1^2}{2N(L + \beta)}
 \end{aligned}$$

1242 Rearranging to isolate the expected squared step norm:
 1243

$$(L + \beta) \mathbb{E}[\|\Delta h_k\|^2] \geq \mathbb{E}[\|\nabla J(h_{k+1})\|] - \frac{\sigma_0}{\sqrt{N}} - \frac{\sigma_1^2}{2N(L + \beta)}$$

$$\mathbb{E}[\|h_{k+1} - h_k\|^2] \geq \frac{1}{L + \beta} \left(\mathbb{E}[\|\nabla J(h_{k+1})\|] - \frac{\sigma_0}{\sqrt{N}} - \frac{\sigma_1^2}{2N(L + \beta)} \right)$$

1244 This completes the proof for the lower bound based on the gradient norm, using the corrected
 1245 regularization term.

1252 C.5 PROOF FOR CONVERGENCE THEOREM

1253 From Lemma 4.3, the upper bound on the expected cubic step norm for $R \sim \text{Uniform}\{1, \dots, M\}$ is:
 1254

$$\mathbb{E}[\|h_{R+1} - h_R\|^3] \leq \frac{36(J(h_1) - J^*)}{\beta M} + \frac{48\sqrt{3}}{\beta^{3/2}} \frac{\sigma_0^{3/2}}{N^{3/4}} + \frac{864}{\beta^3} \frac{\sigma_1^3}{N^{3/2}}.$$

1255 As the number of iterations $M \rightarrow \infty$ and the batch size $N \rightarrow \infty$, the right-hand side approaches
 1256 zero. Thus,
 1257

$$\lim_{M, N \rightarrow \infty} \mathbb{E}[\|h_{R+1} - h_R\|^3] = 0. \quad (16)$$

1258 Using Lyapunov's inequality, $\mathbb{E}[\|h_{R+1} - h_R\|^2] \leq (\mathbb{E}[\|h_{R+1} - h_R\|^3])^{2/3}$. Taking the limit as
 1259 $M, N \rightarrow \infty$ and using 16:
 1260

$$\lim_{M, N \rightarrow \infty} \mathbb{E}[\|h_{R+1} - h_R\|^2] = 0. \quad (17)$$

1261 From Lemma 4.4, we rearrange the inequality which holds for any iteration k :
 1262

$$\mathbb{E}[\|\nabla J(h_{k+1})\|] \leq (L + \beta) \mathbb{E}[\|h_{k+1} - h_k\|^2] + \frac{\sigma_0}{\sqrt{N}} + \frac{\sigma_1^2}{2N(L + \beta)}.$$

1263 Now, we take the expectation over the random index $R \sim \text{Uniform}\{1, \dots, M\}$. Since R selects one
 1264 of the iterations $k \in \{1, \dots, M\}$ uniformly, taking the expectation of the inequality with respect to
 1265 R effectively averages it:
 1266

$$\mathbb{E}_R [\mathbb{E}[\|\nabla J(h_{R+1})\|]] \leq \mathbb{E}_R \left[(L + \beta) \mathbb{E}[\|h_{R+1} - h_R\|^2] + \frac{\sigma_0}{\sqrt{N}} + \frac{\sigma_1^2}{2N(L + \beta)} \right].$$

1267 Here, \mathbb{E}_R denotes the expectation over the choice of R . Let $\mathbb{E}[\cdot]$ denote the total expectation (over the
 1268 process history and R). The inequality becomes:
 1269

$$\mathbb{E}[\|\nabla J(h_{R+1})\|] \leq (L + \beta) \mathbb{E}[\|h_{R+1} - h_R\|^2] + \frac{\sigma_0}{\sqrt{N}} + \frac{\sigma_1^2}{2N(L + \beta)}.$$

1270 Taking the limit as $M \rightarrow \infty$ and $N \rightarrow \infty$:
 1271

$$\begin{aligned} \lim_{M, N \rightarrow \infty} \mathbb{E}[\|\nabla J(h_{R+1})\|] &\leq \lim_{M, N \rightarrow \infty} \left((L + \beta) \mathbb{E}[\|h_{R+1} - h_R\|^2] + \frac{\sigma_0}{\sqrt{N}} + \frac{\sigma_1^2}{2N(L + \beta)} \right) \\ &= (L + \beta) \lim_{M, N \rightarrow \infty} \mathbb{E}[\|h_{R+1} - h_R\|^2] + \lim_{N \rightarrow \infty} \frac{\sigma_0}{\sqrt{N}} + \lim_{N \rightarrow \infty} \frac{\sigma_1^2}{2N(L + \beta)} \\ &= (L + \beta) \times 0 + 0 + 0 \quad (\text{Using 17}) \\ &= 0. \end{aligned}$$

1272 Since $\mathbb{E}[\|\nabla J(h_{R+1})\|] \geq 0$, we conclude that:
 1273

$$\lim_{M, N \rightarrow \infty} \mathbb{E}[\|\nabla J(h_{R+1})\|] = 0.$$

1274 As $\mathbb{E}[\|\nabla J(h_R)\|]$ differs from $\mathbb{E}[\|\nabla J(h_{R+1})\|]$ by terms that vanish as $M \rightarrow \infty$ (typically
 1275 $\frac{1}{M}(\mathbb{E}[\|\nabla J(h_{M+1})\|] - \mathbb{E}[\|\nabla J(h_1)\|])$), we can equivalently state:
 1276

$$\lim_{M, N \rightarrow \infty} \mathbb{E}[\|\nabla J(h_R)\|] = 0.$$

1277 This proves that the expected gradient norm at a randomly chosen iteration converges to zero.
 1278

1296 **D PROOF FOR QUADRATIC CONVERGENCE**
1297

1298 Let the error at iteration k be $e_k = h_k - h^*$. The update gives $h_{k+1} - h^* = h_k - h^* + \Delta h_k$, so
1299 $e_{k+1} = e_k + \Delta h_k$. The update step satisfies the optimal condition C.1, which is given by:

$$1300 \quad 1301 \quad \nabla J(h_k) + \nabla^2 J(h_k) \circ \Delta h_k + \frac{\beta}{2} \|\Delta h_k\| \Delta h_k = 0.$$

1302 Rearranging yields:

$$1303 \quad 1304 \quad (\nabla^2 J(h_k) + \frac{\beta}{2} \|\Delta h_k\| \mathcal{I}) \circ \Delta h_k = -\nabla J(h_k)$$

1305 where \mathcal{I} is the identity operator.

1306 We expand $\nabla J(h_k)$ around h^* using Taylor's theorem (similar to the derivation in Appendix C.2):

$$1308 \quad \nabla J(h_k) = \nabla J(h^*) + \nabla^2 J(h^*) \circ (h_k - h^*) + \mathcal{R}_1(h_k, h^*)$$

1309 where $\nabla J(h^*) = 0$ and the remainder term satisfies $\|\mathcal{R}_1(h_k, h^*)\| \leq \frac{L}{6} \|h_k - h^*\|^2 = \frac{L}{6} \|e_k\|^2$ for
1310 some constant $\frac{L}{6}$ when h_k is near h^* . Thus,

$$1311 \quad 1312 \quad \nabla J(h_k) = \nabla^2 J(h^*) \circ e_k + \mathcal{R}_1(h_k, h^*)$$

1313 Substitute this into the rearranged update equation:

$$1314 \quad 1315 \quad (\nabla^2 J(h_k) + \frac{\beta}{2} \|\Delta h_k\| \mathcal{I}) \circ \Delta h_k = -\nabla^2 J(h^*) \circ e_k - \mathcal{R}_1(h_k, h^*)$$

1316 Let $H_k = \nabla^2 J(h_k)$ and $H^* = \nabla^2 J(h^*)$. Let $A_k = H_k + \frac{\beta}{2} \|\Delta h_k\| \mathcal{I}$. The equation is $A_k \circ \Delta h_k = -H^* \circ e_k - \mathcal{R}_1(h_k, h^*)$. Assuming the norm of the inverse operator $\|A_k^{-1}\|_{op}$ will be bounded by
1317 some constant B , and we assume that the update step is sufficiently small that $\|\Delta h_k\| \leq L \|e_k\|$.

1318 Now, substitute $\Delta h_k = e_{k+1} - e_k$ into the equation $A_k \circ \Delta h_k = -H^* \circ e_k - \mathcal{R}_1(h_k, h^*)$:

$$1320 \quad A_k \circ (e_{k+1} - e_k) = -H^* \circ e_k - \mathcal{R}_1(h_k, h^*) \\ 1321 \quad A_k \circ e_{k+1} = A_k \circ e_k - H^* \circ e_k - \mathcal{R}_1(h_k, h^*) \\ 1322 \quad A_k \circ e_{k+1} = (H_k + \frac{\beta}{2} \|\Delta h_k\| \mathcal{I} - H^*) \circ e_k - \mathcal{R}_1(h_k, h^*) \\ 1323 \quad A_k \circ e_{k+1} = (H_k - H^*) \circ e_k + \frac{\beta}{2} \|\Delta h_k\| e_k - \mathcal{R}_1(h_k, h^*)$$

1324 Applying the inverse A_k^{-1} :

$$1325 \quad 1326 \quad e_{k+1} = A_k^{-1} \circ \left[(H_k - H^*) \circ e_k + \frac{\beta}{2} \|\Delta h_k\| e_k - \mathcal{R}_1(h_k, h^*) \right]$$

1327 Taking norms and using the triangle inequality:

$$1328 \quad \|e_{k+1}\| \leq \|A_k^{-1}\|_{op} \left\| (H_k - H^*) \circ e_k + \frac{\beta}{2} \|\Delta h_k\| e_k - \mathcal{R}_1(h_k, h^*) \right\| \\ 1329 \quad \leq \|A_k^{-1}\|_{op} \left(\|H_k - H^*\|_{op} \|e_k\| + \frac{\beta}{2} \|\Delta h_k\| \|e_k\| + \|\mathcal{R}_1(h_k, h^*)\| \right)$$

1330 Substitute the bounds: $\|A_k^{-1}\|_{op} \leq B$, $\|H_k - H^*\|_{op} \leq L \|e_k\|$, $\|\Delta h_k\| \leq L \|e_k\|$, and
1331 $\|\mathcal{R}_1(h_k, h^*)\| \leq \frac{L}{6} \|e_k\|^2$.

$$1332 \quad \|e_{k+1}\| \leq B \left((L \|e_k\|) \|e_k\| + \frac{\beta}{2} (L \|e_k\|) \|e_k\| + \frac{L}{6} \|e_k\|^2 \right) \\ 1333 \quad \leq B \left(L \|e_k\|^2 + \frac{\beta L}{2} \|e_k\|^2 + \frac{L}{6} \|e_k\|^2 \right) \\ 1334 \quad \leq B \left(L + \frac{\beta L}{2} + \frac{L}{6} \right) \|e_k\|^2$$

1335 Setting $C_q = B(L + \frac{\beta L}{2} + \frac{L}{6})$, which is a positive constant independent of k , we have shown that

$$1336 \quad \|h_{k+1} - h^*\| \leq C_q \|h_k - h^*\|^2$$

1337 This demonstrates local quadratic convergence for the deterministic version of the algorithm, provided
1338 h_k is sufficiently close to h^* .

1350 E VALIDITY OF THE ASSUMPTIONS
13511352 E.1 VALIDITY OF ASSUMPTION 4.1 (LIPSCHITZ CONTINUITY OF THE HESSIAN)
13531354 **Claim.** Under mild regularity conditions standard in second-order analysis (Nesterov & Polyak,
1355 2006b; Nocedal & Wright, 2006b) and in Lipschitz MDPs (Pirotta et al., 2015), the RKHS Hessian
1356 operator $\nabla_h^2 J(h)$ is Lipschitz on a neighborhood $\mathcal{N} \subset \mathcal{H}_K$; i.e., there exists $L > 0$ such that
1357

1358
$$\|\nabla_h^2 J(h_1) - \nabla_h^2 J(h_2)\|_{\text{op}} \leq L \|h_1 - h_2\| \quad \forall h_1, h_2 \in \mathcal{N}.$$

1359

1360 **Sufficient conditions.** It suffices that the following hold:
13611362 1. *Bounded horizon and rewards.* Finite horizon $T < \infty$ (as in our experiments) or a discounted
1363 infinite horizon with $\gamma < 1$, and $|r(s, a)| \leq R_{\max}$.
1364 2. *Lipschitz MDP.* The transition and reward are Lipschitz in a metric d (cf. (Pirotta et al.,
1365 2015)):
1366
$$W_1(P(\cdot|s, a), P(\cdot|s', a')) \leq L_P d((s, a), (s', a')), \text{ and } |r(s, a) - r(s', a')| \leq$$

1367
$$L_r d((s, a), (s', a')).$$

1368 3. *Kernel boundedness and smoothness.* The kernel sections satisfy $\|K((s, a), \cdot)\| \leq \kappa$ and
1369 the map $(s, a) \mapsto K((s, a), \cdot)$ is Lipschitz in RKHS norm with constant L_K .
1370 4. *Softmax RKHS policy with Lipschitz log-policy.* For $\pi_h(a|s) \propto \exp(\mathcal{T}h(s, a))$ with finite \mathcal{T}
1371 and h restricted to $\|h\| \leq B$, the log-policy and its first two Fréchet derivatives are Lipschitz
1372 in h .
1373 5. *Uniform integrability.* The trajectory weights $\Psi_t(\omega)$ admit finite moments ensuring inter-
1374 change of expectation and differentiation (dominated convergence).
13751376 **Sketch.** By Lemma 3.2,

1377
$$\nabla_h^2 J(h) = \mathbb{E} \left[\left(\sum_t \Psi_t \nabla_h \log \pi_h^t \right) \otimes \left(\sum_{t'} \nabla_h^\top \log \pi_h^{t'} \right) \right] - \mathbb{E} \left[\sum_t \Psi_t \mathcal{T} \text{Cov}_{a' \sim \pi_h(\cdot|s_t)} [K((s_t, a'), \cdot)] \right].$$

1378

1379 For the outer-product term, $\nabla_h \log \pi_h(a|s) = \mathcal{T}(K((s, a), \cdot) - \mathbb{E}_{a' \sim \pi_h}[K((s, a'), \cdot)])$. Because
1380 $(s, a) \mapsto K((s, a), \cdot)$ is Lipschitz (Assumption 3) and $h \mapsto \pi_h$ is smooth and Lipschitz on $\|h\| \leq B$, the map $h \mapsto \nabla_h \log \pi_h$ is Lipschitz; bilinearity of the outer product then yields a Lipschitz
1381 bound on the first expectation. For the covariance term, the maps $h \mapsto \mathbb{E}_{a' \sim \pi_h}[K((s, a'), \cdot)]$ and
1382 $h \mapsto \mathbb{E}_{a' \sim \pi_h}[K((s, a'), \cdot) \otimes K((s, a'), \cdot)]$ are Lipschitz by the same reasoning, hence $h \mapsto \Sigma_h(s) =$
1383 $\text{Cov}_{a' \sim \pi_h(\cdot|s)} [K((s, a'), \cdot)]$ is Lipschitz. Multiplying by bounded $|\Psi_t|$ and taking expectations over
1384 bounded-horizon (or discounted) trajectories preserves Lipschitzness. Therefore there exists $L > 0$
1385 such that $\|\nabla_h^2 J(h_1) - \nabla_h^2 J(h_2)\|_{\text{op}} \leq L \|h_1 - h_2\|$. This mirrors the Lipschitz-gradient results for
1386 value functions in Lipschitz MDPs (Pirotta et al., 2015) and the smoothness assumptions used in
1387 cubic-regularized/Newton methods (Nesterov & Polyak, 2006b; Nocedal & Wright, 2006b).
13881389 E.2 VALIDITY OF THE ASSUMPTIONS IN THEOREM 4.6 (LOCAL QUADRATIC CONVERGENCE)
13901391 The theorem rests on three local assumptions. Below we give standard sufficient conditions and why
1392 they hold in our setting.
13931394 B.1 Bounded inverse of the regularized Hessian. We require
1395

1396
$$\|(\nabla_h^2 J(h_k) + \frac{\beta}{2} \|\Delta h_k\| \mathcal{I})^{-1}\| \leq B.$$

1397

1398 If h^* is a strict local minimizer, then $H^* = \nabla_h^2 J(h^*)$ is positive definite. By continuity (Assump-
1399 tion 4.1), there exists a neighborhood \mathcal{N} that $\lambda_{\min}(\nabla_h^2 J(h) + \frac{\beta}{2} \|\Delta h\| \mathcal{I}) \geq \mu$, so the inverse is
1400 uniformly bounded by $B \leq 1/\mu$. The cubic regularizer only enlarges the spectrum, a standard
1401 safeguard in cubic-regularized Newton analyses (Nesterov & Polyak, 2006b; Nocedal & Wright,
1402 2006b).
1403

1404
 1405 **B.2 Step-error proportionality** $\|\Delta h_k\| \leq K\|e_k\|$. Let $e_k = h_k - h^*$. The step solves $(\nabla_h^2 J(h_k) +$
 1406 $\frac{\beta}{2}\|\Delta h_k\|\mathcal{I})\Delta h_k = -\nabla_h J(h_k)$. By Taylor's theorem with Lipschitz Hessian (Assumption 4.1),
 1407 $\nabla_h J(h_k) = \nabla_h^2 J(h^*)e_k + r_k$ with $\|r_k\| \leq c\|e_k\|^2$. Multiplying by the bounded inverse from B.1
 1408 gives

$$\|\Delta h_k\| \leq \|A_k^{-1}\|(\|H^*\|\|e_k\| + \|r_k\|) \leq B(\|H^*\| + c\|e_k\|)\|e_k\| \leq K\|e_k\|$$

1409 for $\|e_k\|$ small enough, establishing the proportionality in the local region.

1410
 1411 **B.3 Initialization inside the local basin.** Quadratic convergence for Newton-type methods is
 1412 inherently *local*: starting sufficiently close to h^* ensures the Newton map is a contraction and that
 1413 iterates remain in \mathcal{N} . This basin-of-attraction requirement is standard (Nocedal & Wright, 2006b)
 1414 and is precisely the regime where cubic regularization attains its classical rates (Nesterov & Polyak,
 1415 2006b).

1416
 1417 **B.4 Deterministic scope of Section 4.3.** Rates for *stochastic* Newton-type methods depend on
 1418 curvature, noise, and step-size policies and typically require separate concentration and bias-variance
 1419 controls; see, e.g., (Boyer & Godichon-Baggioni, 2023; Bottou et al., 2018). Our Section 4.3 therefore
 1420 establishes the baseline local quadratic rate in the deterministic setting—the hallmark behavior of
 1421 Newton's method—providing a principled rationale for a second-order approach to RKHS policies
 1422 and a foundation for future stochastic analysis.

1423 F ASSET ALLOCATION EXPERIMENT

1424 In our investment planning MDP, we formulate a state-action framework that models investment
 1425 decisions under varying market conditions and resource constraints. This model captures the fundamental
 1426 trade-offs between risk and return across different market states while accounting for resource
 1427 dynamics.

1428 **The state** $s \in \mathcal{S}$ is characterized by a tuple (r, m) where:

- 1429 • $r \in \{0, 1, \dots, R_{max} - 1\}$ represents the discrete resource level, with R_{max} being the
 1430 maximum possible resource level
- 1431 • $m \in \{0, 1, 2\}$ corresponds to market conditions (recession, stability, and prosperity, respectively)

1432 The cardinality of the state space is $|\mathcal{S}| = R_{max} \times 3$.

1433 **The action space** \mathcal{A} comprises three distinct investment strategies:

- 1434 • $a = 0$: Conservative investment (low risk/low return)
- 1435 • $a = 1$: Balanced investment (moderate risk/moderate return)
- 1436 • $a = 2$: Aggressive investment (high risk/high return)

1437 **The state transition function** $P(s_{t+1} \mid s_t, a_t)$ models the stochastic evolution of both resource
 1438 levels and market conditions:

- 1439 1. Resource Dynamics: The probability of resource level transitions depends on the chosen
 1440 action:
 - 1441 • Conservative strategy: $P(r_{t+1}|r_t, a_t = 0) = [0.1, 0.8, 0.1, 0.0, 0.0]$ for $\Delta r \in$
 $\{-1, 0, +1, +2, +3\}$
 - 1442 • Balanced strategy: $P(r_{t+1}|r_t, a_t = 1) = [0.2, 0.2, 0.4, 0.2, 0.0]$ for $\Delta r \in$
 $\{-1, 0, +1, +2, +3\}$
 - 1443 • Aggressive strategy: $P(r_{t+1}|r_t, a_t = 2) = [0.4, 0.1, 0.1, 0.2, 0.2]$ for $\Delta r \in$
 $\{-1, 0, +1, +2, +3\}$
- 1444 2. Market Dynamics: Market state transitions follow a Markov chain with the following
 1445 probabilities:
 - 1446 • Recession: $P(m_{t+1}|m_t = 0) = [0.6, 0.3, 0.1]$ for $m_{t+1} \in \{0, 1, 2\}$

1458 • Stability: $P(m_{t+1}|m_t = 1) = [0.3, 0.4, 0.3]$ for $m_{t+1} \in \{0, 1, 2\}$
 1459 • Prosperity: $P(m_{t+1}|m_t = 2) = [0.1, 0.3, 0.6]$ for $m_{t+1} \in \{0, 1, 2\}$
 1460

1461 The joint transition probability is computed as:

$$1462 \quad P((r_{t+1}, m_{t+1})|(r_t, m_t), a_t) = P(r_{t+1}|r_t, a_t) \cdot P(m_{t+1}|m_t)$$

1464 **The reward function** $r(s_t, a_t)$ captures the expected immediate return for taking action a_t in state
 1465 $s_t = (r_t, m_t)$:

$$1468 \quad r((r_t, m_t), a_t) = B(m_t, a_t) \cdot \frac{r_t + 1}{R_{max}}$$

1470 where $B(m_t, a_t)$ is the base reward that depends on the market state and chosen action:

- 1472 • Conservative strategy ($a_t = 0$):
 - 1473 – Base reward = 1.0 for all market states, except
 - 1474 – Base reward = 0.5 in prosperity ($m_t = 2$) to represent opportunity cost
- 1475 • Balanced strategy ($a_t = 1$):
 - 1477 – Base reward = 0.5 in recession ($m_t = 0$)
 - 1478 – Base reward = 2.0 in stability ($m_t = 1$)
 - 1479 – Base reward = 1.5 in prosperity ($m_t = 2$)
- 1480 • Aggressive strategy ($a_t = 2$):
 - 1482 – Base reward = -1.0 in recession ($m_t = 0$)
 - 1483 – Base reward = 1.0 in stability ($m_t = 1$)
 - 1484 – Base reward = 3.0 in prosperity ($m_t = 2$)

1485 The resource scaling factor $\frac{r_t + 1}{R_{max}}$ ensures that higher resource levels amplify rewards.

1487 **The initial state distribution** $\rho(s_0)$ is typically set to start with a medium resource level and a
 1488 randomly selected market state:

$$1490 \quad \rho((r_0 = \lfloor R_{max}/2 \rfloor, m_0 = m)) = \frac{1}{3} \text{ for } m \in \{0, 1, 2\}$$

1492 In our experiment, R_{max} is set as 5, balancing sufficient environmental complexity with simplicity
 1493 for visualization and optimal policy calculation.

1495 G VISUALIZATION OF POLICY LANDSCAPES

1497 To visualize the optimization behavior of different algorithms in Figure 1(b), we project the high-
 1498 dimensional policy space onto a two-dimensional plane and overlay an approximate value landscape
 1499 and the optimization trajectories.

1501 **PCA projection of policy space.** Let $\theta_t^{(m)} \in \mathbb{R}^D$ denote the flattened policy parameter vector of
 1502 method m at iteration t , and let θ^* be the analytically known optimal policy in the toy asset allocation
 1503 setting. We collect all visited policies across all methods,

$$1505 \quad \mathcal{D} = \{\theta_t^{(m)} \mid \forall m, \forall t\} \cup \{\theta^*\},$$

1506 and form the data matrix $\mathbf{X} \in \mathbb{R}^{N \times D}$ with $N = |\mathcal{D}|$. We apply PCA to \mathbf{X} , obtain the first two
 1507 principal components $\mathbf{w}_1, \mathbf{w}_2 \in \mathbb{R}^D$, and project any policy θ to

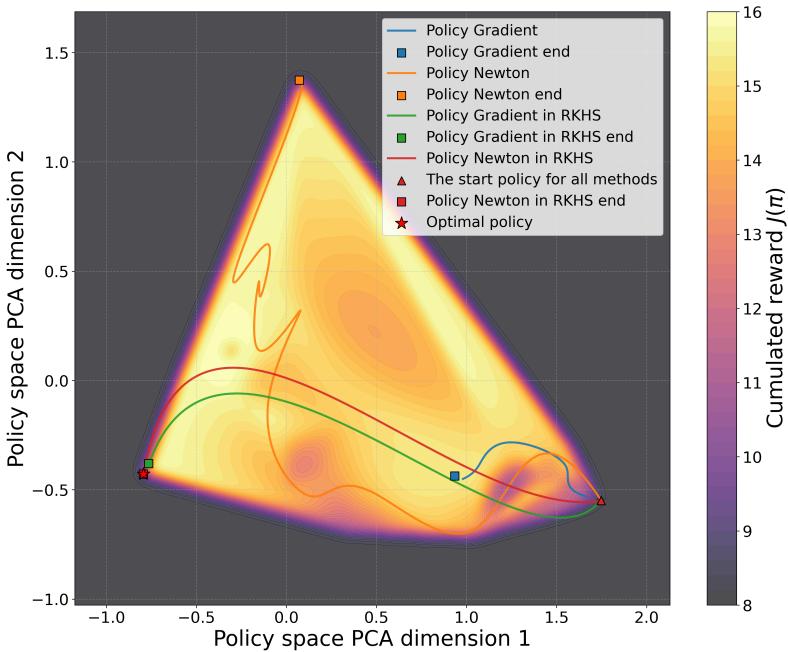
$$1508 \quad \mathbf{z}(\theta) = [\mathbf{w}_1^\top(\theta - \bar{\theta}), \mathbf{w}_2^\top(\theta - \bar{\theta})] \in \mathbb{R}^2,$$

1510 where $\bar{\theta}$ is the empirical mean of \mathcal{D} . This 2D plane captures the dominant variation of all policies
 1511 and makes their relative positions (initial policies, intermediate iterates, and the optimum) directly
 comparable.

1512
 1513 **Value surface reconstruction.** Let $\mathbf{z}_i = \mathbf{z}(\theta_i)$ be the 2D projection of a policy $\theta_i \in \mathcal{D}$ and
 1514 $v_i = J(\theta_i)$ its corresponding expected return. We construct a dense grid over the convex hull of
 1515 $\{\mathbf{z}_i\}_{i=1}^N$ and approximate the value landscape by interpolating the pairs $\{(\mathbf{z}_i, v_i)\}_{i=1}^N$ using standard
 1516 scattered-data interpolation (cubic interpolation when possible, and linear interpolation in sparse
 1517 regions). This yields a smooth surrogate $\hat{J}(\mathbf{z})$ whose level sets define the background contour in
 1518 Figure 1(b).

1519
 1520 **Trajectory smoothing.** For each method m , the projected iterates $\{\mathbf{z}(\theta_t^{(m)})\}_{t=0}^T$ are connected into
 1521 a smooth curve using B-spline interpolation with a small smoothness penalty. This reduces visual
 1522 clutter due to small step-to-step fluctuations while preserving the global optimization trend towards
 1523 $\mathbf{z}(\theta^*)$, which is marked as the optimal policy in Figure 1(b).

1524
 1525 **Additional high-contrast visualization.** The main-panel Figure 1(b) was primarily designed to
 1526 highlight the geometric differences between optimization trajectories and their distances to the
 1527 optimal policy in the PCA-projected space. As noted by the reviewer, reward differences in the
 1528 high-return region can appear visually subtle due to the relatively flat landscape around the optimum.
 1529 To make these differences more apparent, we provide in Figure 3 an additional visualization with an
 1530 adjusted color scale (and identical trajectories), which enhances the contrast of the reward values
 1531 while keeping the underlying optimization paths unchanged.



1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554 Figure 3: Alternative visualization of the policy landscape with enhanced reward contrast. The
 1555 optimization trajectories are identical to Figure 1(b); only the color scale of the value surface is
 1556 adjusted.

H OPTIMIZATION DETAILS

1562 To solve the optimization problem formulated in Equation 7, we implemented a conjugate gradient
 1563 optimization framework based on the Newton-CG method. This approach combines the second-order
 1564 convergence properties of Newton's method with the computational efficiency of the conjugate
 1565 gradient algorithm, making it particularly suitable for our problem where the dimensionality of the
 Hessian matrix H scales with the volume of trajectory data $N \times T$.

1566 Specifically, we address the following optimization problem:
 1567

$$\bar{\alpha}^* = \underset{\bar{\alpha} \in \mathbb{R}^{NT}}{\operatorname{argmin}} \left\{ \langle v, \bar{\alpha} \rangle + \frac{1}{2} \langle H\bar{\alpha}, \bar{\alpha} \rangle + \frac{\beta}{6} \|\bar{\alpha}\|_2^3 \right\}$$

1571 This optimization problem incorporates a linear term $\langle v, \bar{\alpha} \rangle$, a quadratic term $\frac{1}{2} \langle H\bar{\alpha}, \bar{\alpha} \rangle$, and a cubic
 1572 regularization term $\frac{\beta}{6} \|\bar{\alpha}\|_2^3$. The objective function and its gradient are computed as:
 1573

$$f(\bar{\alpha}) = \langle v, \bar{\alpha} \rangle + \frac{1}{2} \langle H\bar{\alpha}, \bar{\alpha} \rangle + \frac{\beta}{6} \|\bar{\alpha}\|_2^3$$

$$\nabla f(\bar{\alpha}) = v + H\bar{\alpha} + \frac{\beta}{2} \|\bar{\alpha}\|_2 \bar{\alpha}$$

1578 In each Newton iteration, we determine the search direction by solving the linear system $(H + \frac{\beta}{2} \|\bar{\alpha}\|_2^2 \mathcal{I}) \Delta \bar{\alpha} = -\nabla f(\bar{\alpha})$. The conjugate gradient method is employed to efficiently solve this linear
 1579 system, avoiding the high computational cost of directly computing $(H + \frac{\beta}{2} \|\bar{\alpha}\|_2^2 \mathcal{I})^{-1}$. This method
 1580 constructs a set of conjugate directions $\{p_i\}$ and progressively approximates the optimal solution
 1581 through orthogonal projections. The algorithm proceeds as follows:
 1582

- 1584 1. Initialize residual $r_0 = -\nabla f(\bar{\alpha}_0) = -(v + H\bar{\alpha}_0 + \frac{\beta}{2} \|\bar{\alpha}_0\|_2 \bar{\alpha}_0)$ and initial search direction
 $p_0 = r_0$
 1585
- 1586 2. For each iteration k :
 - 1587 • Compute optimal step size $\alpha_k = \frac{r_k^T r_k}{p_k^T (H + \frac{\beta}{2} \|\bar{\alpha}_k\|_2^2 \mathcal{I}) p_k}$
 - 1588 • Update solution $\Delta \bar{\alpha}_{k+1} = \Delta \bar{\alpha}_k + \alpha_k p_k$
 - 1589 • Update residual $r_{k+1} = r_k - \alpha_k (H + \frac{\beta}{2} \|\bar{\alpha}_k\|_2^2 \mathcal{I}) p_k$
 - 1590 • Calculate conjugate direction update coefficient $\beta_k = \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k}$
 - 1591 • Update search direction $p_{k+1} = r_{k+1} + \beta_k p_k$

1595 In our implementation, we utilized the `minimize` function from the SciPy optimization library,
 1596 configured with the 'Newton-CG' method. To balance optimization accuracy and computational
 1597 efficiency, we set the convergence tolerance to 10^{-3} and the maximum number of iterations to 500.
 1598

1599 H.1 COMPUTATIONAL COST ANALYSIS

1600 To address the practical concerns regarding the computational overhead of second-order methods, we
 1601 present a comparison of the training time (wall-clock time) for the proposed method and baselines.
 1602

1603 All experiments reported in this subsection were conducted on the CartPole environment. The total
 1604 training duration corresponds to 1.2×10^7 training steps for each method. All runs were executed on
 1605 the same hardware infrastructure (Intel Xeon Gold 5218 CPU) to ensure a fair comparison.

1606 Table 1 summarizes the total wall-clock time required. We compare our Policy Newton in RKHS
 1607 against first-order RKHS methods, as well as parametric methods with varying model complexities
 1608 (Polynomial features of degree 1 and 3).
 1609

1610 **Analysis.** The results indicate that the Policy Newton in RKHS requires approximately $1.97 \times$ the
 1611 computation time of its first-order counterpart (Policy Gradient in RKHS). This overhead is primarily
 1612 attributed to the construction of the Hessian operator and the Conjugate Gradient (CG) iterations
 1613 required to solve the Newton step.

1614 However, it is crucial to interpret this cost in the context of sample efficiency:

1615 **Relative Overhead:** The $\sim 2 \times$ cost factor is consistent with the overhead observed in parametric
 1616 second-order methods (e.g., Policy Newton Poly-3 vs. Gradient Poly-3), suggesting that the RKHS
 1617 formulation does not introduce disproportionate computational burdens.
 1618

1619 Thus, while computationally more intensive per update, Policy Newton in RKHS remains practically
 feasible for standard RL benchmarks.

1620 Table 1: Comparison of total training time (in minutes) for 1.2×10^7 training steps on the CartPole
 1621 task. The RKHS methods utilize a non-parametric representation scaling with sample size. Poly-1
 1622 and Poly-3 denote parametric policies using polynomial feature representations of degree 1 and
 1623 degree 3, respectively. We note that the degree 3 is used in the experiment of the main paper.

Method	Optimization Type	Time (min)
Policy Newton in RKHS (Ours)	Second-Order (RKHS)	43.5
Policy Gradient in RKHS	First-Order (RKHS)	22.1
Policy Newton (Poly 3)	Second-Order (Parametric)	18.8
Policy Gradient (Poly 3)	First-Order (Parametric)	9.7
Policy Newton (Poly 1)	Second-Order (Parametric)	16.3
Policy Gradient (Poly 1)	First-Order (Parametric)	8.5

I EXTENSION TO CONTINUOUS ACTION SPACES

In the main text, we focused on discrete action spaces to establish the theoretical foundation of Policy Newton in RKHS. In this appendix, we demonstrate that our framework naturally extends to continuous action spaces. Specifically, we derive the second-order optimization steps for a Gaussian policy parameterized by a RKHS function.

I.1 GAUSSIAN POLICY IN RKHS

We consider a continuous action space $\mathcal{A} \subseteq \mathbb{R}^d$. The policy is modeled as a multivariate Gaussian distribution with a fixed covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$ and a state-dependent mean $\mu(s)$ represented by a function h in a Reproducing Kernel Hilbert Space (RKHS) \mathcal{H}_K^d . The policy is defined as:

$$\pi_h(a | s) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp\left(-\frac{1}{2}(a - h(s))^\top \Sigma^{-1}(a - h(s))\right). \quad (18)$$

Here, $h = [h_1, \dots, h_d]^\top$ where each component $h_j \in \mathcal{H}_K$ is a function in a scalar RKHS associated with kernel $K(\cdot, \cdot)$. The reproducing property implies $h(s) = \langle h, K(s, \cdot) \rangle_{\mathcal{H}_K^d}$ (component-wise).

The log-policy is given by:

$$\log \pi_h(a | s) = -\frac{1}{2}(a - h(s))^\top \Sigma^{-1}(a - h(s)) + C, \quad (19)$$

where C is a constant independent of h .

I.2 FRÉCHET DERIVATIVES IN RKHS

We derive the Fréchet derivatives of the expected return $J(\pi_h)$ with respect to the function h .

First-Order Derivative. The gradient of the log-policy with respect to h is simply the kernel function scaled by the score vector (Zhang et al., 2025):

$$\nabla_h \log \pi_h(a | s) = K(s, \cdot) [\Sigma^{-1}(a - h(s))] \in \mathcal{H}_K^d. \quad (20)$$

Note that this is a standard element in the RKHS. Consequently, the Policy Gradient in RKHS is:

$$\nabla_h J(\pi_h) = \mathbb{E}_{\omega \sim p(\omega; \pi_h)} \left[\sum_{t=0}^{T-1} \Psi_t(\omega) K(s_t, \cdot) [\Sigma^{-1}(a_t - h(s_t))] \right]. \quad (21)$$

Second-Order Derivative (Hessian Operator). Differentiating the log-policy again yields the Hessian operator. The Gauss-Newton approximation (outer product of gradients) involves the tensor product of the gradient element with itself. The curvature term arises from the second derivative of the log-likelihood. Specifically, the Hessian of the log-policy is the operator:

$$\nabla_h^2 \log \pi_h(a | s) = - (K(s, \cdot) \Sigma^{-1}) \otimes K(s, \cdot). \quad (22)$$

1674 This notation denotes an operator $T : \mathcal{H}_K^d \rightarrow \mathcal{H}_K^d$ such that for any $u \in \mathcal{H}_K^d$, $Tu =$
 1675 $K(s, \cdot) [\Sigma^{-1} \langle K(s, \cdot), u \rangle_{\mathcal{H}_K^d}] = K(s, \cdot) [\Sigma^{-1} u(s)]$.
 1676

1677 The full Hessian of the objective $J(\pi_h)$ is thus:
 1678

$$\begin{aligned} 1679 \nabla_h^2 J(\pi_h) &= \mathbb{E}_{\omega \sim p(\omega; \pi_h)} \left[\left(\sum_{t=0}^{T-1} \Psi_t(\omega) \nabla_h \log \pi_h^t \right) \otimes \left(\sum_{t'=0}^{T-1} \nabla_h \log \pi_h^{t'} \right) \right. \\ 1680 &\quad \left. + \sum_{t=0}^{T-1} \Psi_t(\omega) \left(-(K(s_t, \cdot) \Sigma^{-1}) \otimes K(s_t, \cdot) \right) \right]. \end{aligned} \quad (23)$$

1685 I.3 FINITE-DIMENSIONAL REDUCTION

1687 By applying the Representer Theorem, we seek the update step in the form:
 1688

$$1689 \Delta h(\cdot) = \sum_{l=1}^{NT} K(x_l, \cdot) \mathbf{w}_l, \quad (24)$$

1692 where $x_l = (s_l, a_l)$ corresponds to the l -th sample in the dataset, and $\mathbf{w}_l \in \mathbb{R}^d$ are coefficient vectors.
 1693 We define the full coefficient vector $\bar{\alpha} \in \mathbb{R}^{NTd}$ by stacking $\mathbf{w}_1, \dots, \mathbf{w}_{NT}$.
 1694

1695 **Theorem I.1** *For a continuous Gaussian policy, the optimization of the Policy Newton step in RKHS
 1696 is equivalent to minimizing:*

$$1697 L(\bar{\alpha}) = \langle v, \bar{\alpha} \rangle + \frac{1}{2} \langle H \bar{\alpha}, \bar{\alpha} \rangle + \frac{\beta}{6} \|\bar{\alpha}\|_2^3. \quad (25)$$

1700 The vector $v \in \mathbb{R}^{NTd}$ is composed of blocks $v_i \in \mathbb{R}^d$ ($i = 1 \dots NT$):

$$1701 v_i = \frac{1}{N} \sum_{l=1}^{NT} \Psi_l(\omega) K(s_l, s_i) \Sigma^{-1} (a_l - h(s_l)). \quad (26)$$

1704 The matrix $H \in \mathbb{R}^{NTd \times NTd}$ is given by:
 1705

$$1706 H = \frac{1}{N} \sum_{l=1}^{NT} \Psi_l(\omega) [G_l \otimes (\delta_l \delta_l^\top - \Sigma^{-1})], \quad (27)$$

1709 where $\delta_l = \Sigma^{-1} (a_l - h(s_l)) \in \mathbb{R}^d$, and $G_l = \mathbf{k}_l \mathbf{k}_l^\top \in \mathbb{R}^{NT \times NT}$ is the outer product of the kernel
 1710 column vector $\mathbf{k}_l = [K(s_l, s_1), \dots, K(s_l, s_{NT})]^\top$. The Kronecker product $A \otimes B$ here assumes the
 1711 standard block layout where A (the kernel matrix part) dictates the block structure and B (the action
 1712 dimension part) dictates the content of each block.
 1713

1714 J LLM USAGE DISCLOSURE

1717 We used a large language model solely for writing polish. Its assistance was limited to grammar and
 1718 style edits, wording suggestions for titles/abstract/captions, consistency of terminology, and minor
 1719 LaTeX phrasing (e.g., figure/table captions and cross-reference text).
 1720

1721
 1722
 1723
 1724
 1725
 1726
 1727