
Under review as a conference paper at ICLR 2024

INSTRUCTZERO:
EFFICIENT INSTRUCTION OPTIMIZATION FOR
BLACK-BOX LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) are instruction followers but the performance
varies under different instructions. It is challenging to create the best instruction,
especially for black-box LLMs on which backpropagation is forbidden. Instead of
directly optimizing the discrete instruction, we optimize a low-dimensional soft
prompt applied to an open-source LLM to generate the instruction for the black-
box LLM. In each optimization step of the proposed method INSTRUCTZERO, a
soft prompt is converted into an instruction by the open-source LLM, which is
then submitted to the black-box LLM for zero-shot evaluation, whose result is
sent to Bayesian optimization to produce new soft prompts improving the zero-
shot performance. We evaluate INSTRUCTZERO on different combinations of
open-source LLMs and APIs including Vicuna and ChatGPT. INSTRUCTZERO
outperforms SOTA auto-instruction methods across a variety of downstream tasks.

1 INTRODUCTION

Large Language Models (LLMs) (OpenAI, 2023a;b; Chowdhery et al., 2022) have recently gained
widespread attention due to their remarkable capabilities in following instructions under both zero-
shot and few-shot settings (Brown et al., 2020; Liu et al., 2023; Chen et al., 2023a). However, their
performance is sensitive to the choice of instructions (Zhou et al., 2022; Honovich et al., 2022). For
example, even paraphrasing a good instruction can lead to the failure of LLMs on certain tasks. It is
still not clear when and how the instruction-following capability of LLMs can be generalized.
Instruction-following capability is essential to LLMs when used as an interface between humans and
AI models, i.e., human users can instruct LLMs to solve complicated tasks by providing in-context
instructions. “Prompt engineering” (Brown et al., 2020; Liu et al., 2023) usually relies on human
experts’ experience to craft instructions through a costly trial-and-error process. Hence, how to
automate the instruction search or optimization for any given task is a critical open challenge. Unlike
soft prompts, instruction is composed of discrete words or sentences that are difficult to optimize
in a continuous space. To create a human-interpretable and task-relevant instruction, we have to
address combinatorial optimization with complex structural constraints. Moreover, the most powerful
instruction-following LLMs, e.g., ChatGPT (OpenAI, 2023a) and GPT-4 (OpenAI, 2023b), are black
boxes. Given their APIs only, it is infeasible to develop gradient-based optimization that requires
back-propagation through these models.
In this paper, we propose an effective and efficient approach “INSTRUCTZERO” to tackle the zeroth-
order combinatorial optimization of instructions to API LLMs (Chen et al., 2017; Wang et al., 2018;
Schrijver et al., 2003; Wolsey & Nemhauser, 1999). Instead of directly optimizing the instruction,
INSTRUCTZERO optimizes a soft prompt appended to a few exemplars of the target task, steering
an open-source LLM (e.g., LLaMA (Touvron et al., 2023), Stanford Alpaca, Vicuna), to generate a
human-readable and task-relevant instruction in an in-context learning manner. The instruction is
then submitted to the black-box LLM for zero-shot evaluation on the target task, whose performance
is used to guide the optimization of the soft prompt toward generating better instructions.
We formulate the soft prompt optimization as a form of latent space Bayesian Optimization (BO),
which aims to maximize the zero-shot performance as a black box function. It estimates the black-box
objective using each explored soft prompt and its zero-shot performance as an input-output sample,
with a kernel relating all samples. The mean and variance of the estimation controls the exploration-
exploitation of the soft prompts. To align the soft prompt optimization with the search in instruction
space, we develop an instruction-coupled kernel to align the two spaces’ kernels. Thereby, optimizing

1

Under review as a conference paper at ICLR 2024

0

2

4

6

8

10

12

14

[0, 5) [5, 10) [10, 15) [15, 20) [20, 100)

N
um

be
ro

fT
as
ks

The improvement (Execution Accuracy %)

Over APE Over Uniform

InstructZero’s Improvement Over Two
baselines APE and Uniform

Sort the input alphabetically and then output
the first, third, fifth, and seventh elements of
the sorted list

APE
0.04

Find a list of the animals from the input list

Ours

Find the smallest set of animals that can be used
to generate the largest set of the animals

Uniform

Task: Taxonomy Animal
Example: Input: sweater, octopus, giraffe, orange

Ouput: octopus, giraffe

0.72

0.92

Zero-shot
AccuracyInstructions generated by different methods

Figure 1: Comparison between INSTRUCTZERO and two baselines, i.e., APE (Zhou et al., 2022)
and uniform sampling (defined in baselines of Section 4.1). Left: INSTRUCTZERO generate a more
precise instruction leading to better performance (higher execution accuracy). Right: Histogram of
INSTRUCTZERO’s improvement over APE and Uniform on 32 tasks. INSTRUCTZERO achieves a
significant improvement between [20%, 100%) in terms of accuracy on a majority of evaluated tasks.
The task is to pick out the animals from the list.

Instruction 𝑣

Input: [𝑋]

Black-Box LLM

...

Open-Source LLM

...

Input: [𝑥!] Output: [𝑦!]
…

Input: [𝑥"] Output: [𝑦"]
The instruction was to

Soft Prompt

Input of the Open-Source LLM

Next Soft Prompt
to Explore

Bayesian
Optimization

(BO)

Input of the Black-Box
LLM

Training data for BO

(Soft Prompt, Instruction, Score)
(Soft Prompt, Instruction, Score)

....
(Soft Prompt, Instruction, Score) Score

𝔼 𝑿,𝒀 ∼𝑫𝒕 𝒉 (𝒇 𝒗;𝑿 , 𝒀)

Output 𝒇(𝒗;𝑿)

Figure 2: Pipeline of INSTRUCTZERO. On each iteration, a soft prompt and a few exemplars of the
target task are sent to the open-source LLM for generating an instruction, which then prompts the
black-box LLM to produce answers to target-task queries. The score (e.g., accuracy) of the answers
and the soft prompt is added as new training data for BO, which updates its posterior about the objec-
tive (score) and produces a new soft prompt to explore in the next iteration. Both LLMs are frozen.

the low-dimensional soft prompt leads to an efficient search for optimal instruction in the sparse and
highly structured textual space.
We evaluate INSTRUCTZERO on a combination of SOTA open-source LLM and black-box LLM, i.e.,
13-B Vicuna and GPT-3.5-turbo (ChatGPT). Experimental results show that ChatGPT’s performance
is significantly improved when using the instructions optimized by INSTRUCTZERO: It achieves SOTA
results on 32/32 tasks from BIG-Bench. As a case study, we visualize an instruction optimization
process of INSTRUCTZERO and the instructions generated in every step. INSTRUCTZERO, even using
much weaker Vicuna models, outperforms non-optimization methods Zhou et al. (2022) that use
ChatGPT generating instructions.

2 INSTRUCTION OPTIMIZATION

2.1 PROBLEM FORMULATION

We study how to optimize an instruction v applied to a black-box LLM f(·) to address a task with
input query X . In particular, the optimization objective aims to maximize the output f([v;X])’s
performance h(f([v;X]), Y), which uses a score produced by an evaluation metric h(·, ·) comparing
f([v;X]) and the ground truth Y . Hence, the optimization of instruction v ∈ V can be formulated
as maximizing the expected score h(f([v;X]), Y) for an example (X,Y) drawn from the data

2

Under review as a conference paper at ICLR 2024

distribution Dt of task-t, i.e.,

max
v∈V

E(X,Y)∼Dt
h(f([v;X]), Y). (1)

Unfortunately, Eq. (1) is notoriously challenging or practically infeasible because it is (1) Combi-
natorial optimization with complicated structural constraints: the instruction v that can be taken
by black-box LLMs such as ChatGPT and GPT-4 is a combination of discrete tokens that have to
comprise human-readable and task-relevant sentence(s). Thus, its optimization space V is high-
dimensional, discrete, and highly structured due to semantic constraints. In general, there do not exist
efficient optimization algorithms in such a space; and (2) Black-box optimization: the black-box
LLM f(·) makes the objective as a black-box function. Users are only allowed to input texts to
f(·) and only obtain textual outputs. Hence, backpropagation through f(·) and any gradient-based
algorithm to optimize the objective cannot be applied.
Instead of optimizing the instruction v in the original space V , the key idea of INSTRUCTZERO is
to optimize a soft prompt p applied to an open-source LLM g(·), which converts p to a human-
readable and task-relevant instruction v via in-context learning with κ exemplars (xi, yi)

κ
i=1 drawn

from the target task. The instruction v is then applied to the black-box LLM f(·) to produce zero-
shot prediction f([v;X]). The zero-shot performance score h(f([v;X]), Y) on target task data
(X,Y) ∼ Dt is collected to estimate the objective function in Eq. (1) by Bayesian optimization (BO),
which proposes new soft prompts for generating better instructions.
The pipeline of INSTRUCTZERO is illustrated in Fig. 2, where the open-source LLM can be LLaMA,
Alpaca, Vicuna, etc., and the black-box LLM can be ChatGPT (OpenAI, 2023a), GPT-4 (OpenAI,
2023b), Claude, PaLM-2 (Google, 2023), etc. By generating the instruction using an open-source
LLM, INSTRUCTZERO reduces the challenging instruction optimization to a feasible black-box
optimization of a soft prompt in a low-dimensional space, which can be addressed by latent space
Bayesian optimization. The complete procedure is provided in Algorithm 1.

2.2 FROM STRUCTURED COMBINATORIAL SEARCH TO
LOW-DIMENSIONAL CONTINUOUS OPTIMIZATION

INSTRUCTZERO, as shown in Fig. 2, applies an open-source LLM g(·) to generate instructions v via
in-context learning. Specifically, we concatenate a soft-prompt p ∈ Rd′

(a d′-dimensional vector)
with κ input-output exemplars (xi, yi)

κ
i=1 (represented by their token embeddings) drawn from the

task’s distribution Dt as input to the open-source LLM to generate an instruction v = g([p;x1:κ])
for the black-box LLM f(·). Therefore, the combinatorial instruction optimization in Eq. (1) can be
reframed as a more feasible continuous optimization below.

max
p∈Rd′

E(X,Y)∼Dt
h(f([v;X]), Y), s.t. v = g([p; (xi, yi)

κ
i=1]), (2)

Dimension Reduction. Though we reduce the original instruction optimization to continuous
optimization of a soft prompt p, it still needs to solve a black-box optimization due to the black-box
LLM f(·) in the objective of Eq. (2). Unfortunately, as input tokens to an open-source LLM, p
usually has dimensionality too high (e.g., thousands for Vicuna) to be handled by existing black-box
optimization approaches. Hence, we instead optimize a lower-dimensional vector p ∈ Rd where
d≪ d′ and project it to Rd′

using a simple random projection Ap as input tokens to g(·), where each
entry of the matrix A ∈ Rd×d′

is sampled from Normal or Uniform distribution (Wang et al., 2016).
This is based on: (1) the random projection is distance-preserving according to Johnson-Lindenstrauss
Lemma (Kleinberg, 1997), which leads to comparable kernel similarities before and after the random
projection, i.e., k(pi,pj) ≈ k(Api, Apj), so BO in the original space and dimension-reduced
space are consistent; (2) Thanks to in-context learning capability of the open-source LLM, when
concatenated with κ exemplars, low-dimensional soft prompt suffice to produce rich, diverse, and
task-relevant instructions as candidates. Therefore, by replacing p in Eq. (2) with Ap, the instruction
optimization in Eq. (1) is reduced to maximization of a black-box function H(p) in a low-dimensional
space Rd, i.e.,

H(p) ≜ E(X,Y)∼Dt
h(f([v;X]), Y), v = g([Ap; (xi, yi)

κ
i=1]). (3)

3 BAYESIAN OPTIMIZATION WITH INSTRUCTION-COUPLED KERNEL

In the previous section, we reduced the instruction generation problem to a black-box optimization
in a low-dimensional space, i.e., maxp∈Rd H(p), which can be addressed by Bayesian optimization

3

Under review as a conference paper at ICLR 2024

Instruction
!!"#

Soft prompt
"!"#

Instruction-Coupled Kernel Matrix !
By Eq. (9)

Maximize Acquisition Function by Eq. (7)

Soft Prompt
Kernel Matrix "

Instruction
Kernel Matrix #

Update posterior of '(()

Open-Source
LLM

Black-Box
LLM

Mean Function by Eq. (4)
Variance Function by Eq. (5)

Score #!"#:
% $,& ∼(! # (' (!"#; * , ,)

Score Soft Prompt Instruction
ℎ! %! &!
ℎ" %" &"
… … …

ℎ#$! %#$! &#$!

Figure 3: The pipeline of Bayesian optimization in INSTRUCTZERO proposed in Section 3.

(BO). Specifically, BO aims to estimate the black-box objective H(p) and finds its maximum; it keeps
updating a posterior of H(·) based on collected (p, H(p)) pairs and exploring new soft prompts p
until the largest H(p) converges to a maximum. To evaluate H(p) on a soft prompt p and its generated
instruction, we average the zero-shot performance h(f([v;X]), Y) on a validation set.

3.1 BAYESIAN OPTIMIZATION OF SOFT PROMPT

We apply the commonly used Gaussian Process (GP) as the prior for the black-box objective
H(·). A GP prior can be specified by a mean function µ(·) = 0 and a covariance function
(i.e., kernel function) k(·, ·). Given m soft prompts p1:m ≜ {p1, · · · ,pm} and their evaluation
H1:m ≜ [H(p1), a · · · , H(pm)] collected in all previous BO steps, the estimated posterior of H(·)
is updated as a GaussianN (µ(·), σ2(·)) with mean function µ(·) and variance function σ2(·) defined
as, ∀p ∈ Rd,

µ(p) ≜ k(K + η2I)−1H1:m, (4)

σ2(p) ≜ k(p,p)− k⊤(K + η2I)−1k, (5)
where k = [k(p,p1), · · · , k(p,pm)] and constant η measures the noise levels of observations.
Expected improvement acquisition function (EI) measures the improvement of a candidate soft prompt
over the best soft prompt in terms of the objective value, i.e., max{0, H(p)−maxi∈[m] H(pi)},
and takes the improvement’s expectation w.r.t. H(p), which is a random variable with a distribution
defined by the posterior of H(·). Therefore, EI u(·) is defined as, ∀p ∈ Rd,

u(p) = EH(p)∼N (µ(p),σ2(p))

[
max

{
0, H(p)− max

i∈[m]
H(pi)

}]
, (6)

and BO explores the next soft prompt pm+1 maximizing the acquisition function:

pm+1 ∈ argmax
p∈Rd

u(p). (7)

The new soft prompt pm+1 is converted to an instruction vm+1 by the open-source LLM g(·), i.e.,
vm+1 = g([Apm+1; (xi, yi)

κ
i=1]), and vm+1 is applied to the black-box LLM for evaluating its

zero-shot performance on the target task, i.e., H(pm+1). BO then augments its collected training data
(p1:m, H1:m) with (pm+1, H(pm+1)) and the procedure in Eq. (4)-(7) is repeated until convergence.
The BO pipeline in INSTRUCTZERO is illustrated in Fig. 3.

3.2 INSTRUCTION-COUPLED KERNEL

The choice of kernel k(·, ·) in BO is critical to the performance of black-box optimization since it
defines both the mean and variance of the posterior and thus guides the whole optimization process. In
INSTRUCTZERO, although we conduct BO in the latent space of soft prompts, the goal is to optimize
instructions in the instruction space V . Hence, the kernel applied in the latent space should reflect
the similarity of the generated instructions in the target task. In other words, we need to align the
latent space kernel with the instruction similarity. To this end, we develop a novel instruction-coupled
kernel inspired by (Deshwal & Doppa, 2021a).
Without loss of generality, we assume that BO in all previous steps has already explored m soft
prompts p1:m, which were converted to m instructions v1:m = {v1, v2, ..., vm} via the open-source
LLM. To measure the correlation between two soft prompts in the latent space Rd, we choose a kernel

4

Under review as a conference paper at ICLR 2024

0

0.5

1

Antonyms Cause Selection Common Word Sorting Ascii Formality Negation Object Counting

APE Uniform Ours

0

0.5

1

CS_Algorithm Rhymes Second Letter Similarity Taxonomy Sentiment Orthography Synonyms

0

0.5

1

EN-DE EN-ES EN-FR Unscrambling Categorization Debugging Larger Animal Odd_one_out

0

0.5

1

Passivation Pluralization Periodic Sum First Letter Diff Num2Verbal Letters list

Figure 4: Zero-shot test accuracy on 32 tasks from (Honovich et al., 2022). INSTRUCTZERO achieves
the best performance on all 32 out of 32 tasks among the three evaluated approaches.

function l(·, ·) : Rd × Rd → R, whose common options include Matern or Squared Exponential
kernels. Applying l(·, ·) to p1:m produces a kernel matrix L ∈ Rm×m. To measure the similarity
between two instructions in the target task, we define another kernel function s(·, ·) : V × V → R,
for example, the similarity between their zero-shot predictions on target task data, i.e.,

s(vi, vj) = EX∼Dt
[sim(f([vi;X]), f([vj ;X]))] , (8)

where sim(·, ·) is a similarity of the predictions for the tasks, e.g., exact match, F1, or BLEU score.
Applying s(·, ·) to v1:m produces a kernel matrix S ∈ Rm×m. We propose an instruction-coupled
kernel function by combining the two kernels l(·, ·) and s(·, ·) in the following manner.

Ki,j = k(pi,pj) = l⊤i L
−1SL−1lj (9)

where li ≜ [l(pi,p1), · · · , l(pi,pm)] and lj ≜ [l(pj ,p1), · · · , l(pj ,pm)]. The proposed kernel
preserves the instruction similarity in the soft prompt space: when applied to soft prompts p1:m, the
resulted kernel matrix K exactly recovers the instruction matrix S because K = LL−1SL−1L = S
according to Eq. (9). For new soft prompts p /∈ p1:m, the instruction-coupled kernel in Eq. (9)
operates as a smooth extrapolation kernel. Therefore, by combining the two spaces’ kernels, the
proposed kernel aligns BO in the latent space Rd of soft prompts (Eq. (3)) with the instruction
optimization (Eq. (1)) in the combinatorial and structured space V . Fig. 3 shows when the kernel
matrices are computed in the BO pipeline of INSTRUCTZERO.

Algorithm 1: INSTRUCTZERO

input :Exemplars (xi, yi)
κ
i=1 and a validation set Dt of target task-t; open-source LLM g(·),

black-box LLM f(·), maximal steps T ; random matrix A ∈ Rd×d′

initialize :p1 ∼ uniform(−τ, τ)d in Rd; m← 1, p1:0 ← ∅, v1:0 ← ∅, h1:0 ← ∅
1 while not converge and m ≤ T do
2 Compute input prompt Apm from low-dimensional soft prompt pm;
3 Generate instruction vm = g([Apm; (xi, yi)

κ
i=1]) by the open-source LLM g(·);

4 Evaluate zero-shot score hm =
∑

(X,Y)∈Dt
h(f([vm;X]), Y) on the black-box LLM f(·);

5 Save data: p1:m ← p1:m−1 ∪ {pm}, v1:m ← v1:m−1 ∪ {vm}, h1:m ← h1:m−1 ∪ {hm};
6 Update the instruction-coupled kernel function k(·, ·) and matrix K for p1:m by Eq. (9);
7 Update the mean and variance function of BO in Eq. (4)-(5) using k(·, ·) and K;
8 Find the next prompt pm+1 maximizing the acquisition function u(p) in Eq. (6);
9 m← m+ 1;

10 end
output :The best instruction vi∗ so far with i∗ ∈ argmaxi∈[m] hi

5

Under review as a conference paper at ICLR 2024

4 EXPERIMENTS

In this section, we evaluate INSTRUCTZERO as a tool to find an instruction that steers a black-box
LLM towards a desired downstream behavior on a target task. Extensive experiments demonstrate
that our method could effectively generate instructions that enhance task performance while achieving
predictions on par with or even superior to those created by previous methods. Moreover, IN-
STRUCTZERO produces instructions that sometimes reveal valuable tricks for optimal prompting that
could be subsequently applied to new tasks.

4.1 TASKS, DATASETS, BASELINES, AND IMPLEMENTATION

Tasks. We assess the effectiveness of zero-shot in-context learning on instruction tasks proposed
in (Honovich et al., 2022), including all 24 tasks used in previous auto-instruction work (Zhou
et al., 2022). We further add 8 extra tasks to enrich the benchmark for evaluating all methods
in more comprehensive scenarios spanning many facets of language understanding. We provide
detailed descriptions of each task in the Appendix. Training-set examples can be used for instruction
optimization but the final instruction p∗ is evaluated on a held-out test set. Zero-shot performance
H(p) on the test set is reported.

Baselines. We compare INSTRUCTZERO with two baseline methods: (1) APE (Zhou et al., 2022),
which generates instructions using a more powerful LLM (i.e, ChatGPT1) than the open-source
LLM in INSTRUCTZERO; and (2) Uniform (pure exploration), which uses the same models as
INSTRUCTZERO and draws the same total number of soft prompts by uniform sampling without
iterative BO procedure.

Score Function. In the experiments, we use a simple 0-1 loss as the score function h(·, ·), i.e,
h(f([v;X]), Y) = 1 if f([v;X]) = Y , otherwise h(f([v;X]), Y) = 0. So the score h1:m in
Algorithm 1 computes execution accuracy by averaging h(f([v;X]), Y) over all validation examples
(X,Y) ∈ Dt. A more fine-grained score can be the log-likelihood of the ground-truth answer under
instruction v and input X . It is worth noting that the choice of score function depends on the outputs
provided by the black-box LLM, e.g., GPT3 returns the log probabilities of the most likely tokens 2

while ChatGPT only offers access to the generated answer 3. Since we use ChatGPT as the black-box
LLM, h1:m represents execution accuracy in our experiments.

1 2 3 4 5
Iteration

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

Performance of the top15% Instructions
 in Different BO iteration

diff
orthography_starts_with
second_word_letter
taxonomy_animal
sum

Figure 5: Top-15% instructions after every it-
eration (1-5) of INSTRUCTZERO on five tasks.

Implementation Details. We implement IN-
STRUCTZERO as illustrated in Fig. 2 with Vicuna
and ChatGPT as the open-source LLM and API
LLM, respectively. For each task, we draw τ = 5
and 20 samples from the training set as the exemplars
and validation set Dt, respectively. For the number
of tokens in soft prompts, we search for the best
value among {3, 5, 10} based on the validation
set performance. We draw entries of the random
projection matrix A from a uniform distribution
between [−1, 1]. The dimensionality d of p is set to
10. In experiments, we apply a mini-batch version
of INSTRUCTZERO that explores 25 soft prompts
in every iteration. The only major change required
is to select the top-25 soft prompts with the largest u(p) instead of maximizing Eq. (7) in Line 8
of Algorithm 1. We utilized an evolutionary search algorithm CMA-ES (Hansen, 2016) as the
optimizer to find the top soft prompts. All the training and tests are conducted on a single NVIDIA
RTX A6000 GPU card.

4.2 MAIN RESULTS

Fig. 4 reports the zero-shot test accuracy of ChatGPT when using instructions generated by APE,
Uniform, and INSTRUCTZERO for 32 tasks. On easy tasks such as “Letters List” and “Sum”,
INSTRUCTZERO is comparable to APE which has already achieved perfect execution accuracy (i.e.,
1.0). On the other hand, INSTRUCTZERO exhibits superior performance on challenging tasks such as

1GPT-3 was used in the original APE model but we re-evaluated it using the more powerful ChatGPT.
2https://platform.openai.com/docs/api-reference/completions/create
3https://platform.openai.com/docs/api-reference/chat/create

6

Under review as a conference paper at ICLR 2024

AccuracyInstruction Generated by InstructZero

0.65The instruction was to find the most dangerous
animal in the zoo.

1

0.8The instruction was to find out which animal is
stronger between two animals.

2

1.0The instruction was to input a animal and a animal
into the system, and the system would output the
stronger animal.

3

Task: Stronger animal
Example: Input: whale shark, dog

Ouput: whale shark

Figure 6: The task is to write the stronger animals. Left: Soft prompts selected by INSTRUCTZERO
in three consecutive iterations (2D embedding by t-SNE). Colors denote different iterations and a
larger circle refers to a higher objective value (zero-shot validation accuracy). Numbers highlight the
best soft prompt per iteration. Right: instructions generated by the best soft prompt per iteration and
the associated validation accuracy.

“Unscrambling” and “Taxonomy Animal” where APE struggles. Fig. 1 (right) reports the histograms
for the improvement of INSTRUCTZERO over the two baselines on all tasks except those easy ones
on which both baseline and INSTRUCTZERO achieve (100%) test accuracy. Overall, the results
demonstrate that instructions generated by INSTRUCTZERO significantly outperform those produced
by the other two baselines by a large margin. We also summarize the best instruction created by
INSTRUCTZERO for each task in the Appendix4.
Fig. 5 shows the zero-shot accuracy of the top-15% instructions after each iteration of INSTRUCTZERO.
On most tasks, the accuracy consistently improves over iterations, indicating an effective optimization
process. Nonetheless, on easy tasks such as “Sum”, the best instruction was identified in the very first
iteration and thus further optimization was unnecessary.

4.3 ABLATION STUDY

Task Manual w/o Manual INSTRUCTZERO

Cause_and_effect 0.36 0.56 0.91
Negation 0.27 0.01 0.80
Translation_en-fr 0.02 0.47 0.89
Sum 0.00 0.00 1.00
Formality 0.59 0.31 0.63
Letters_list 0.00 0.15 1.00
Larger_Animal 0.49 0.81 0.91

Table 1: Ablation study. Execution accuracy (higher is better) of the instructions obtained by
INSTRUCTZERO and two baselines: (1) Manual: input to open-source LLM is exemplars (xi, yi)

κ
i

with the manual prompt; (2) w/o Manual: input to open-source LLM is exemplars (xi, yi)
κ
i only.

To verify the effectiveness of optimization in INSTRUCTZERO, we compare it against two alternatives:
(1) Manual. As illustrated in Fig. 7 shows, we replace the INSTRUCTZERO-optimized p∗ with a
meta-prompt handcrafted by humans (used in APE (Zhou et al., 2022)) for instruction generation
but keeps all the other parts the same in the test-setting for INSTRUCTZERO; and (2) w/o Manual.
we further remove any prompt and solely use the κ exemplars as input to generate instruction v.
The comparison results are reported in Tab. 1, which shows a large improvement when using the
soft prompt optimized by INSTRUCTZERO when compared to the two baselines. For example, on
task “Letters List”, INSTRUCTZERO achieves 100% accuracy while Manual Prompt is 0%. The
improvement indicates that the optimized soft prompt plays a substantial role in instruction generation
for better zero-shot performance on downstream tasks and BO in INSTRUCTZERO is effective in
finding the optimal soft prompt.

4We report more results in Appendix: (1) INSTRUCTZERO’s performance on other combinations of open-
source LLM + API LLM; (2) INSTRUCTZERO’s comparison to human written instruction. APE Zhou et al.
(2022) shows advantages of their instructions over humans’ and ours are better than APE.

7

Under review as a conference paper at ICLR 2024

I gave a friend an
instruction and five

inputs. The friend read
the instruction and
wrote an output for

every one of the
inputs. Here are the
input-output pairs:

Open-source LLMManual Prompt API LLM

Input: [𝑥!] Output: [𝑦!]
…

Input: [𝑥"] Output: [𝑦"]
The instruction was to

Output 𝒇(𝒗; 𝑿)

Instruction 𝑣

Input: [𝑋]

Figure 7: Ablation study baseline. Manual prompt in APE (Zhou et al., 2022) replaces the
INSTRUCTZERO-optimized soft prompt used to generate instructions.

4.4 CASE STUDY

paraphrase the given sentence using
different words or phrases while
retaining the meaning

APE

Input a sentence and output more
proper version of that sentence

Ours

Improve the English of the original text

Uniform

Formality
Examplar: Input: I can’t stand his temper

Ouput: I cannot stand his temper

0.63

0.58

0.44

Figure 8: Comparison of the best in-
structions in Formality task, which aims to
rephrase the sentence in formal language.

Fig. 6 visualizes the soft prompts explored by IN-
STRUCTZERO over three BO iterations. It shows how
the score of the best soft prompt improves over time
and the efficient exploration-exploitation conducted
by the latent space BO. The instructions generated
using the best soft prompt in each iteration are given
in the right of Fig. (6), which shows a progressive
improvement of the instruction quality in terms of
clarity, details, and task relevance. In Fig. 1 and 8, we
compare the instructions generated by the three meth-
ods, i.e., Uniform, APE, and INSTRUCTZERO, for the
same set of tasks. While both APE and Uniform can
produce reasonable instructions, they exhibit notable
drift from the task description. For instance, in Fig. 1,
APE selects “Sort the inputs alphabetically and then output the first, third, fifth, and seventh elements
of the sorted list.” as its top instruction, which is not precise at all. In contrast, INSTRUCTZERO
optimized instruction “Find a list of the animals from the input list” is clearer. Another example of
the “Formality” task in Fig. 8 also demonstrates that INSTRUCTZERO can better comprehend the
exemplars and yield more precise instructions.

5 RELATED WORK

Large Language Models. The scaling up of transformer-based language models (Vaswani et al.,
2017; Devlin et al., 2018) has consistently improved performance across various downstream NLP
tasks. As a consequence, numerous capabilities of large language models (LLMs) have been uncov-
ered, encompassing few-shot in-context learning (Brown et al., 2020), zero-shot/few-shot sequential
reasoning (Kojima et al., 2022; Wei et al., 2022), and the automatic generation of intructions (Hon-
ovich et al., 2022). In this paper, we study how to guide open-source LLMs to generate and improve
instructions for subsequent API LLMs. Experiments demonstrate that INSTRUCTZERO has the
potential to break the scaling law of LLMs: a 10× smaller open-source model (Vicuna) can be used
to optimize an instruction with superior performance compared to a much larger LLM (ChatGPT
used in APE).
Instruction-following and instruction-finetuning. LLMs are able to follow instructions, a capa-
bility that can be reinforced by instruction tuning (Chung et al., 2022; Iyer et al., 2022; Sanh et al.,
2021), e.g., finetuning the model on a wide range of tasks using human-annotated prompts and feed-
backs (Ouyang et al., 2022), or supervised finetuning using public benchmarks and datasets (Wang
et al., 2022). ChatGPT is well-known as an instruction follower but is a black-box model. Vicuna 5

finetunes the open-source LLaMA (Touvron et al., 2023) using only 700K instruction-following exam-
ples from user-shared ChatGPT data (OpenAI, 2023), which exhibits similar instruction-following ca-
pability as ChatGPT. Zero-shot learning does not allow finetuning the LLM or training an adapter (Hu
et al., 2021). Moreover, for black-box LLMs, any model training is infeasible. In these cases,
we can only improve the downstream task performance by optimizing the instruction, which is
exactly the problem addressed by INSTRUCTZERO and is a challenge complementary to instruction
finetuning.
Prompting and Auto-Prompt. Prompting prepends some soft token embeddings, textual instruction,
or/and input-output exemplars of a target task to the original input query as context information to

5https://vicuna.lmsys.org/

8

Under review as a conference paper at ICLR 2024

guide the reasoning of LLMs. Soft prompts as differentiable are learnable and can be optimized
by backpropagation (Li & Liang, 2021; Lester et al., 2021; Liu et al., 2021; Chen et al., 2023c;b).
However, API LLMs are black boxes that only allow hard prompts in natural languages, whose
optimization is challenging due to the combinatorial and highly structured search space. (Deng
et al., 2022) relies on reinforcement learning (RL) to optimize hard prompts while INSTRUCTZERO
optimizes an instruction in the output space of an open-source model g(·) without RL by applying
BO of a soft prompt to g(·). Another line of works of prompting (Brown et al., 2020) relies
on the generative power of LLMs and asks them for self-debugging (Chen et al., 2023d) or self-
improve (Huang et al., 2022). Auto-prompt (Shin et al., 2020) conducts a gradient-guided search
in a pre-defined set of triggers to build up prompt automatically. APE (Zhou et al., 2022) adopts
a black-box LLM such as GPT-3 to generate instructions and select better ones but its search in
the instruction space can be inefficient without exploiting the correlation between the evaluated
instructions, which may lead to sub-optimal results. Compared to them, INSTRUCTZERO leverages
open-source models to generate instructions to explore and thus does not need a predefined set of
triggers.

Bayesian Optimization. Over the last decade, Bayesian optimization (BO) (Frazier, 2018) has
emerged as a highly effective black-box optimization approach in various domains such as drug and
molecule design (Gómez-Bombarelli et al., 2018; Jin et al., 2018; Kajino, 2019). Since our goal is
to optimize instructions for a black-box LLM, it is akin to the BO in combinatorial spaces (Gómez-
Bombarelli et al., 2018), which is challenging especially when the space is highly structured. Recent
approaches (Kajino, 2019; Jin et al., 2018; Lu et al., 2018) study to reduce the combinatorial black-
box optimization to BO in a latent space, given a mapping from the latent space to the combinatorial
space learned by deep generative models (DGMs). LADDER (Deshwal & Doppa, 2021b) introduces
structure-coupled kernels to align the abundant information of each structure in the combinatorial
space with its corresponding representation in the latent space. In a similar vein, our instruction-
coupled kernel aims to align the soft prompt kernel with the similarity between instructions. However,
our kernel has a different form and aims to guide the open-source LLM to explore different soft
prompts and generate better instructions.

6 DISCUSSION, CONCLUSIONS, AND LIMITATIONS

In this paper, we propose INSTRUCTZERO, an efficient zeroth-order instruction optimization method
that can improve the zero-shot learning and instruction-following of black-box LLMs with only
API access. INSTRUCTZERO addresses the crucial challenge of prompt engineering, which is
a combinatorial black-box optimization that currently still relies on human expertise and costly
experience. In contrast, INSTRUCTZERO can automatically optimize and generate human-readable
and task-relevant instructions for arbitrary tasks by leveraging the in-context learning and generative
power of recent open-source LLMs. Its key idea is to optimize a soft prompt that guides an open-
source LLM to generate instructions for the black-box LLM to address the task. The zero-shot
performance on the task using different soft prompts is collected by a Bayesian optimizer to improve
the soft prompt progressively. In this way, INSTRUCTZERO overcomes the combinatorial challenge
and reduces the original instruction optimization to an efficient latent space BO.

We provided visualizations of the optimization trajectories, optimized instructions, an ablation study,
and extensive comparison to other auto-instruction approaches on 32 tasks. INSTRUCTZERO using
a small Vicuna model outperforms non-optimization methods that utilize a much larger and more
powerful LLM for instruction generation. As a general instruction optimization tool, INSTRUCTZERO
can be used to improve the efficiency of human-AI interactions through APIs of black-box models
and enhance the downstream task performance of these models without any model finetuning.

However, the application of INSTRUCTZERO in current experiments does not include more compli-
cated tasks requiring refinement, multi-step planning, or human interactions, e.g., cooking recipe,
website design, trip planning, and booking, etc. Improving the efficiency of solving these tasks by
instruction optimization can potentially save more costs.

REFERENCES

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

9

Under review as a conference paper at ICLR 2024

Jiuhai Chen, Lichang Chen, Heng Huang, and Tianyi Zhou. When do you need chain-of-thought
prompting for chatgpt? arXiv preprint arXiv:2304.03262, 2023a.

Jiuhai Chen, Lichang Chen, and Tianyi Zhou. It takes one to tango but more make trouble? in-context
training with different number of demonstrations. arXiv preprint arXiv:2303.08119, 2023b.

Lichang Chen, Heng Huang, and Minhao Cheng. Ptp: Boosting stability and performance of prompt
tuning with perturbation-based regularizer. arXiv preprint arXiv:2305.02423, 2023c.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training substitute models.
In Proceedings of the 10th ACM workshop on artificial intelligence and security, pp. 15–26, 2017.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug. arXiv preprint arXiv:2304.05128, 2023d.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416, 2022.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song,
Eric P Xing, and Zhiting Hu. Rlprompt: Optimizing discrete text prompts with reinforcement
learning. arXiv preprint arXiv:2205.12548, 2022.

Aryan Deshwal and Jana Doppa. Combining latent space and structured kernels for bayesian
optimization over combinatorial spaces. Advances in Neural Information Processing Systems, 34:
8185–8200, 2021a.

Aryan Deshwal and Jana Doppa. Combining latent space and structured kernels for bayesian
optimization over combinatorial spaces. Advances in Neural Information Processing Systems, 34:
8185–8200, 2021b.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous
representation of molecules. ACS central science, 4(2):268–276, 2018.

Google. Palm-2-llm. https://blog.google/technology/ai/google-palm-2-ai-large-language-model/,
2023.

Nikolaus Hansen. The CMA evolution strategy: A tutorial. CoRR, abs/1604.00772, 2016. URL
http://arxiv.org/abs/1604.00772.

Or Honovich, Uri Shaham, Samuel R Bowman, and Omer Levy. Instruction induction: From few
examples to natural language task descriptions. arXiv preprint arXiv:2205.10782, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han.
Large language models can self-improve. arXiv preprint arXiv:2210.11610, 2022.

10

http://arxiv.org/abs/1604.00772

Under review as a conference paper at ICLR 2024

Srinivasan Iyer, Xi Victoria Lin, Ramakanth Pasunuru, Todor Mihaylov, Dániel Simig, Ping Yu,
Kurt Shuster, Tianlu Wang, Qing Liu, Punit Singh Koura, et al. Opt-iml: Scaling language model
instruction meta learning through the lens of generalization. arXiv preprint arXiv:2212.12017,
2022.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pp. 2323–2332.
PMLR, 2018.

Hiroshi Kajino. Molecular hypergraph grammar with its application to molecular optimization. In
International Conference on Machine Learning, pp. 3183–3191. PMLR, 2019.

Jon M Kleinberg. Two algorithms for nearest-neighbor search in high dimensions. In Proceedings of
the twenty-ninth annual ACM symposium on Theory of computing, pp. 599–608, 1997.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. arXiv preprint arXiv:2205.11916, 2022.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 3045–3059, Online and Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.243. URL https:
//aclanthology.org/2021.emnlp-main.243.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In ACL 2021, pp. 4582–4597. Association for Computational Linguistics, 2021. URL https:
//doi.org/10.18653/v1/2021.acl-long.353.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM Computing Surveys, 55(9):1–35, 2023.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. GPT
understands, too. CoRR, abs/2103.10385, 2021. URL https://arxiv.org/abs/2103.
10385.

Xiaoyu Lu, Javier Gonzalez, Zhenwen Dai, and Neil D Lawrence. Structured variationally auto-
encoded optimization. In International conference on machine learning, pp. 3267–3275. PMLR,
2018.

OpenAI. Sharegpt. https://sharegpt.com, 2023.

OpenAI. Chatgpt. https://openai.com/blog/chatgpt, 2023a.

OpenAI. Gpt-4 technical report. arXiv, 2023b.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask prompted training enables
zero-shot task generalization. arXiv preprint arXiv:2110.08207, 2021.

Alexander Schrijver et al. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer,
2003.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Autoprompt:
Eliciting knowledge from language models with automatically generated prompts. arXiv preprint
arXiv:2010.15980, 2020.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

11

https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://arxiv.org/abs/2103.10385
https://arxiv.org/abs/2103.10385

Under review as a conference paper at ICLR 2024

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Yining Wang, Simon Du, Sivaraman Balakrishnan, and Aarti Singh. Stochastic zeroth-order opti-
mization in high dimensions. In International conference on artificial intelligence and statistics,
pp. 1356–1365. PMLR, 2018.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap, et al.
Benchmarking generalization via in-context instructions on 1,600+ language tasks. arXiv preprint
arXiv:2204.07705, 2022.

Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando De Feitas. Bayesian
optimization in a billion dimensions via random embeddings. Journal of Artificial Intelligence
Research, 55:361–387, 2016.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022.

Laurence A Wolsey and George L Nemhauser. Integer and combinatorial optimization, volume 55.
John Wiley & Sons, 1999.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. Wizardlm: Empowering large language models to follow complex instructions. arXiv
preprint arXiv:2304.12244, 2023.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers. Arxiv, 2022.

12

Under review as a conference paper at ICLR 2024

A SUPPLEMENTARY MATERIAL

In Table 2, we report the best instruction generated by INSTRUCTZERO for each task and the
associated performance (execution accuracy). In Table 3, we report the task description and demos
for the 8 new tasks used in our paper. (the other 24 tasks are the same as the ones used in APE (Zhou
et al., 2022)).

B FREQUENTLY ASKED QUESTIONS

B.1 WHY IS THE PERFORMANCE OF APE QUITE POOR ON CHATGPT?
In the practical setting, we only have access to the textual output from the black-box LLM, e.g.,
ChatGPT. So we could not calculate the log probability as the score function in INSTRUCTZERO
(ours) as original APE (Zhou et al., 2022). We provide our code for reproducing the experimental
results using ChatGPT as black-box LLM.

B.2 CODE AVAILABILITY

We include our code in the file “INSTRUCTZERO” so reviewers are able to reproduce our re-
sults.

B.3 CHOICES OF KERNEL IN BAYESIAN OPTIMIZATION

We investigate how the Instruction-Coupled Kernel affects the final performance of INSTRUCTZERO.
We ablate the effective of Instruction-Coupled Kernel by removing the instruction component,
namely Standard Kernel. Specially, we only consider the structure of latent space, kernel 9 can be
rewritten:

Ki,j = k(pi,pj) = l⊤i Llj . (10)

Table 4 shows the Instruction-Coupled Kernel outperforms the Standard Kernel, indicating the
effectiveness of Instruction-Coupled Kernel in our method.

B.4 OPTIMIZATION PROCESS ON MORE TASKS

Fig. 9, as a supplementary of Fig. 5, presents how the zero-shot accuracy (for the top 15% of
instructions facilitated by our algorithm) is improved over the instruction optimization iterations of
INSTRUCTZERO. For the majority of evaluated tasks, INSTRUCTZERO achieves a consistent uptick
in accuracy, indicating an effective and efficient optimization process by our black-box instruction
optimization approach.

1 2 3 4 5
Iteration

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pe
rfo

rm
an

ce

Performance of the top15% Instructions
 in Different BO iteration

sentiment
letters_list
negation
antonyms
Pluralization

1 2 3 4 5
Iteration

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

Performance of the top15% Instructions
 in Different BO iteration

synonyms
common_concept
ascii
first_word_letter
object_counting

Figure 9: Supplementary results: Top-15% instructions after every iteration (1-5) of INSTRUCTZERO
on different tasks.

C EVALUATION METRICS

Exact Match (EM): When evaluating each question and answer pair, if the model’s predicted
response precisely aligns with any of the correct responses, EM = 1. If it doesn’t align perfectly,
EM = 0.

13

Under review as a conference paper at ICLR 2024

Tasks using metric “EM”: Passivation, Antonyms, Diff, First letter, Letters List, Negation,
Num2Verbal, Rhymes, Second Letter, Similarity, Sentiment, Pluralization, Sum, Translation-En_De,
Translation-En_Es, Translation-En_Fr, Second Word.
Exact Set (ES): When evaluating each question and answer pair, if the model’s predicted response
precisely aligns with the correct responses set, ES = 1. If it doesn’t align perfectly, ES = 0.
Tasks using metric “ES”: Orthography, Taxonomy.
Contain: If the characters in the model’s predicted answer are part of the characters in the correct
responses, Contain = 1. If it doesn’t align perfectly, Contain = 0.
Tasks using metric “Contain”: Ascii, Debugging, CS Algorithm, Object Counting, Synonyms,
Unscrambling, Word Sorting.
F1: The F1 score is calculated by comparing individual words in the predicted response to those in
the actual or True Answer. The common words between the predicted and actual answers form the
basis for the F1 score. Precision is determined by the proportion of common words to the total words
in the predicted response, while recall is calculated as the proportion of common words to the total
words in the actual answer.
Tasks using metric “F1”: Common, Formality.

D DIFFERENT COMBINATIONS OF API LLM + OPEN-SOURCE LLM
We have conducted further experiments exploring a variety of combinations between API-based
LLMs and open-source LLMs. Specifically, in addition to our experiments with Vicuna+ChatGPT
combinations, we also include GPT-4 and WizardLM (Xu et al., 2023) as the open-source LLM and
API LLM, respectively. The results on “Second Letter” and “Cause Selection” tasks are reported in
Tab. 5 and Tab. 6, which show the effectiveness of our algorithms on different combinations of API
LLM and open-source LLM. In these two tables, we also include the human instructions, which are
obtained from (Honovich et al., 2022). Notably, the instructions generated by our algorithms could
be significantly better than the human instructions.

E COMPARISON OF INSTRUCTZERO INSTRUCTIONS AND HUMAN
INSTRUCTIONS

We show the comparison of InstructZero instructions and human instructions in Tab.7. The compari-
son shows that InstructZero can produce much better instructions than human instructions.

14

Under review as a conference paper at ICLR 2024

Dataset Best Instruction Performance

Unscrambling Find words that are anagrams of each other 0.67
Letters List Input ’matter’ and get ’m a t t e r’ as output 1.0
Debugging Input the code and the output would be shown 0.50

Word Sorting make a code that takes an input of a list and produces an output
that is the list with each word in the list in alphabetical order. 0.64

Cause Selection Give a positive or negative output depending on the input 0.86
Antonyms Make the pairs of words opposite. 0.89

Categorization

Create a system which could understand what the inputs and outputs
were, and then use that knowledge to fill in the blanks in the following
sentence: Input: Togo, Eritrea, and Burundi Output: African countries.
The system would then use this knowledge to fill.

0.35

Larger Animal Remove the input that has the smaller animal and
keep the larger animal 0.91

Sum Find the sum of the two input numbers 1.0
Periodic Create a new element using the periodic table. 1.0

Passivation Make the sentences more natural by flipping
the subject and verb 1.0

Common Make the output related to the input in some way 0.15
Odd one out Determine the word that is different. 0.92
Diff Find the difference between the two numbers 1.0
Ascii Make the letters appear in the correct order. 0.33

Object Counting create a program that takes an input (a list of things)
and outputs the number of things in the list 0.48

Negation Swap the truth value of the input statements
with the opposite of the truth value 0.80

First Letter Find the first letter of each word in the list 1.0

Second Letter Create a function that takes a string as input and
returns the first character that is a vowel. 0.62

Formality Input a sentence and the output would be
a more proper version of that sentence. 0.63

CS algorithm Generate a string which is the input to the function above,
which when processed will give the output below. 0.38

Negation Swap the truth value of the input
statements with the opposite of the truth value 0.80

Pluralization Make plural words from the input words 1.0

Rhymes Write a function that takes a word as
input and returns the output word 0.46

Num2Verbal Write a function that takes an integer
as input and returns the number in words 1.0

Similarity Find the difference between the two
sentences and the output was 4 - almost perfectly 0.19

Taxonomy Create a program that generates a list of
animals based on the input provided 0.82

Sentiment Generate a short review based on the sentiment of the user
but the output was always positive or negative 0.93

Orthography Input a sentence and the output would be a word from
the sentence 0.51

Synonyms Create a list of words that have a similar meaning 0.38
Translation EN-DE Translate the English words to German 0.84
Translation EN-ES Take the input text and translate it into Spanish. 0.87

Translation EN-FR Convert all of the words in the input column to
their French translations. 0.89

Table 2: The best instruction found by INSTRUCTZERO.

15

Under review as a conference paper at ICLR 2024

Name Demos Description

CS Algorithm Input: XDWO XDWOHDGYT
Output: 4

Given two strings, determine the
length of the longest substrings

Unscrambling Input: ilpf
Output: flip

common sense, gender bias, many-shot
multiple choice

Categorization Input: Shaymin, Chatot, and Reshiram
Output: Pokeman

Categorize the input list.

Periodic Input: 42
Output: molybdenum

Write the periodic element based
on the input number.

Odd one out Input:Monday, spring, summer, winter
Output:Monday

common sense, gender bias, many-shot
multiple choice

Ascii
Input: .._..._..._..._..._.. ./../../../../..
(.b.|.r.|.o.|.k.|.e.) ._/._/._/._/._/
Output: broke

What word is displayed
in the ASCII art below?

Object Counting
Input: I have a duck, a mouse, three
pigs, two fish, and a donkey.
Output: 8

Count the objects in the input.
multiple choice

Debugging Input: print(’1’ + 2)
Output: TypeError: must be str, not int

Debug the input program.

Table 3: The description, demos of the 8 new tasks. The other 24 tasks are the same as APE (Zhou
et al., 2022).

Task Instruction-Coupled Kernel Standard Kernel

Sentiment 0.93 0.83
Negation 0.80 0.39
Larger Animal 0.91 0.81
Second Letter 0.62 0.33
Formality 0.63 0.44
Debugging 0.50 0.25
Unscrambling 0.58 0.67
Odd one out 0.92 0.9
Ascii 0.33 0.13
CS algorithm 0.38 0.26

Table 4: Ablation study. Performance (higher is better) of different kernels (1) Instruction-Coupled
Kernel proposed in our paper (2) Standard Kernel only using the structure of latent space.

16

Under review as a conference paper at ICLR 2024

Task: Second Letter Best Instruction Acc
Human instruction + ChatGPT write the second letter of the input 0.88

Human instruction + GPT-4 write the second letter of the input 0.96

Vicuna-13B + ChatGPT Create a function that takes a string as input and returns the
first character that is a vowel.

0.62

Vicuna-13B + GPT-4 Take a string as an input and returns the second letter of the
input string.

0.99

WizardLM-13B + ChatGPT Create a function that takes a string as an input and returns
the second letter of the input string.

0.99

WizardLM-13B + GPT4 Remove the first letter of the input words and output the
second letter.

1.0

Table 5: More evaluation results on second letter tasks. We not only use ChatGPT, GPT-4 as our
API LLMs but also include WizardLM (Xu et al., 2023), Vicuna as our "second letter" task requires
models to output the second letter of the input word, e.g., for input "multilingual", the output should
be "u".

Task: Cause Selection Best Instruction Acc.
Human instruction + ChatGPT decide which event occurred first 0.52

Human instruction + GPT-4 decide which event occurred first. 0.72

Vicuna-13B + ChatGPT Give a positive or negative output depending on the input 0.86

Vicuna-13B + GPT-4 Determine the relationship between the two sentences and
identify which sentence is the main cause

1.0

WizardLM-13B + ChatGPT create a function that takes two sentences as input and returns
the second sentence if the first sentence is not the cause of
the second sentence. If the first sentence is the cause of the
second sentence, the function should return an empty string.

0.58

WizardLM-13B + GPT-4 Identify the cause and effect relationship between two sen-
tences and provide the cause sentence as the output

0.76

Table 6: More evaluation results on the Cause Selection task.

Task Human Instruction Score Score(Ours)
Active to passive Write the sentence from the other point of view 0.69 1.0
Cause Selection decide which event occurred first 0.52 0.86
Taxonomy Write all the animals in the input in a random order 0 0.82
Translation EN-DE Translate the word to German 0.74 0.84

Table 7: Comparison of InstructZero instructions and human instructions. For the instructions
obtained by our algorithm, please refer to Tab. 2.

17

	Introduction
	Instruction Optimization
	Problem Formulation
	From Structured Combinatorial Search to Low-dimensional Continuous Optimization

	Bayesian optimization with Instruction-Coupled Kernel
	Bayesian Optimization of Soft Prompt
	Instruction-Coupled Kernel

	Experiments
	Tasks, Datasets, Baselines, and Implementation
	Main Results
	Ablation Study
	Case Study

	Related Work
	Discussion, Conclusions, and Limitations
	Supplementary Material
	Frequently Asked Questions
	Why is the performance of APE quite poor on ChatGPT?
	Code Availability
	Choices of Kernel in Bayesian Optimization
	Optimization process on more Tasks

	Evaluation Metrics
	 Different combinations of API LLM + Open-source LLM
	Comparison of InstructZero instructions and human instructions

