

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 META-AWARENESS ENHANCES REASONING MODELS: SELF-ALIGNMENT REINFORCEMENT LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent studies on reasoning models explore the meta-awareness of language models, the ability to know ‘how to think’ by itself. We argue that large reasoning models lack this meta-awareness property by proving severe misalignment between true rollouts and predicted meta information. We posit that aligning meta-prediction with true rollouts will lead to significant performance gains. To verify this hypothesis, we design a training pipeline that boosts Meta-Awareness via Self-Alignment (MASA), and prove that enhanced meta-awareness directly translates to improved accuracy. Unlike existing meta-cognitive reasoning models, our method does not require external training sources but leverages *self-generated signals to train meta-awareness*. Moreover, our method enables efficient training by i) filtering out zero-variance prompts that are either trivial or unsolvable and ii) cutting off lengthy rollouts when they are unlikely to lead to correct answers. The results are inspiring: our strategy yields significant improvements in both accuracy and training efficiency on in-domain tasks and shows strong generalization to out-of-domain benchmarks. More specifically, our method can speed up GRPO training by over $1.28\times$ to reach the same performance, and achieve a 19.3% gain in accuracy on AIME25, and a 6.2% average gain over six mathematics benchmarks. Training with meta-cognitive guidance enhances out-of-domain generalization, giving a 3.87 % boost on GPQA-Diamond and a 2.08 % overall accuracy gain across 13 benchmarks spanning logical, scientific, and coding domains.

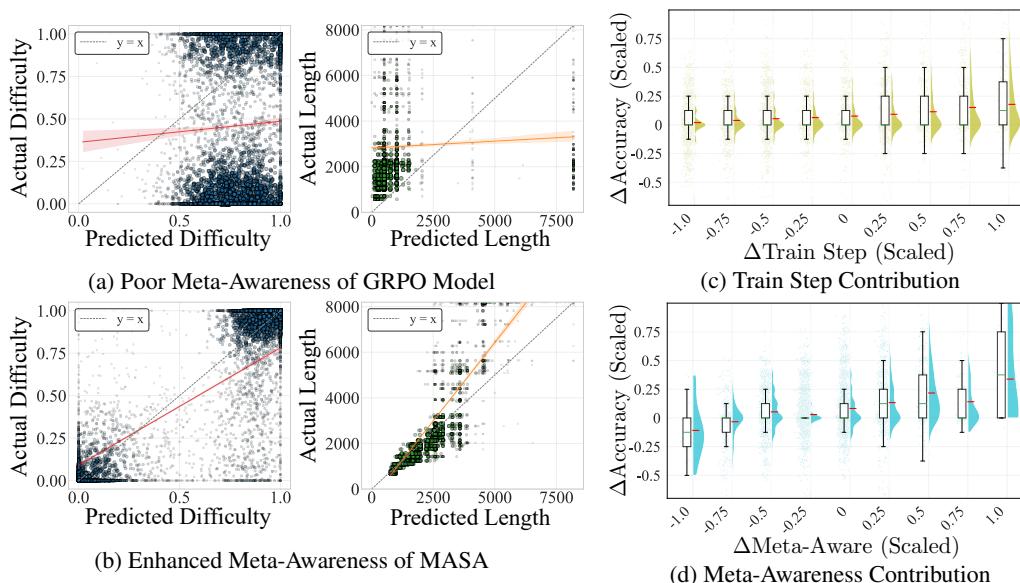


Figure 1: (a) Existing large reasoning models lack meta-awareness. (b) MASA significantly improves meta-awareness, as shown by the alignment between meta-predictions and the actual rollout statistics (difficulty and length). (c) Training step has limited impact on accuracy. (d) Meta-awareness directly translates to increased accuracy.

054

1 INTRODUCTION

055
 056 Recent studies have confirmed that applying RL-based post-training to large language models
 057 (LLMs) (Brown et al., 2020; Yang et al., 2025a; Touvron et al., 2023) can significantly enhance
 058 their reasoning ability. In particular, methods such as GRPO (Shao et al., 2024), which efficiently
 059 train large reasoning models (LRMs) (Guo et al., 2025a; Chen et al., 2025b) without an explicit critic
 060 model, have recently attracted considerable attention. By directly incentivizing behaviors aligned
 061 with task-desirable outcomes, this training paradigm has gained prominence as an effective mech-
 062 anism for attaining state-of-the-art performance on reasoning-intensive tasks such as mathematics
 063 and code generation.

064 Beyond the success of LRM, the paradigm of meta-awareness, which is the ability to recognize
 065 it's own knowledge and ignorance, has drawn increasing attention from the research community
 066 (Sui et al., 2025; Ha et al., 2025; De Sabbata et al., 2024; Chen et al., 2025a; Liu et al., 2025b;
 067 Zhang et al., 2025a; Shen et al., 2025; Tu et al., 2025; Shi et al., 2025; Qu et al., 2025). However,
 068 existing approaches remain constrained by their reliance on external model, curated dataset and
 069 human-designed reasoning pipelines where meta-cognitive actions are only conditionally rewarded
 070 based on the success of the solution trajectory.

071 To this end, we propose a novel RL framework, Meta-Awareness via Self-Alignment (MASA),
 072 that strengthens the meta-awareness of reasoning models by rewarding the alignment within self-
 073 generated signals, eliminating the need for external sources. Our method further introduces parallel
 074 rollouts for meta-predictions and solution paths, separating them into distinct reward pipelines. We
 075 show that MASA improves reasoning performance by leveraging meta-awareness of solution length,
 076 problem difficulty, and underlying mathematical concepts, outperforming even the gains achieved
 077 by simply increasing training steps (Figure 1c, Figure 1d).

078 To strengthen the alignment between actual rollout statistics and meta-predictions, we introduce
 079 supervised fine-tuning on dynamically collected expert meta-trajectories, following a DAgger-style
 080 imitation learning approach (Ross et al., 2011). The improved meta-predictions make training more
 081 efficient through *predictive gating*, which identifies and filters out zero-variance prompts that are
 082 either trivial or unsolvable, and *early cutoff*, which terminates long rollouts that are predicted to
 083 be incorrect. In addition, the meta-predictions enrich prompts with auxiliary hints that facilitate
 084 reasoning.

085 Building on this foundation, we evaluate the effectiveness of our approach by combining with GRPO
 086 and DAPO (Yu et al., 2025; Shao et al., 2024), showing that our method is not dependent on specific
 087 policy gradient algorithm. Remarkably, MASA achieves substantial improvements in in-domain
 088 mathematical benchmarks showing average accuracy gains of 6.2%. Furthermore, boosting meta-
 089 awareness also enhances generalization, as evidenced by improvements across logical, coding, and
 090 scientific reasoning benchmarks. These results demonstrate that equipping reasoning models with
 091 meta-awareness not only strengthens in-domain performance but also broadens general reasoning
 092 capabilities. Finally, predictive gating and early cutoff deliver significant efficiency gains, attaining
 093 baseline performance 1.28 times faster than the GRPO training.

094 The contributions of this paper can be summarized as follows:

095 • We demonstrate that enhancing meta-awareness directly translates into measurable performance
 096 gains on complex reasoning tasks.

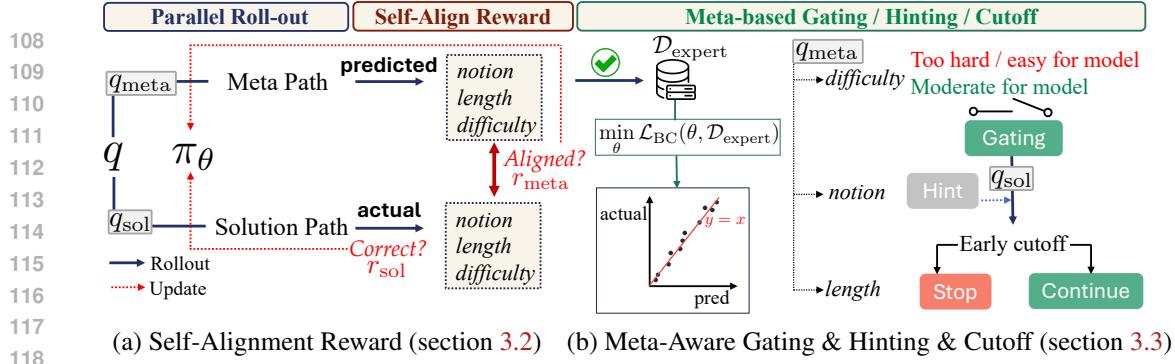
097 • We demonstrate that incentivizing meta-awareness improves both in-domain and out-of-domain
 098 generalization across logical, scientific, and coding benchmarks.

099 • We show the efficacy of meta-prediction based post-training via predictive gating and early cutoff,
 100 speeding up the time to reach baseline performance by 1.28×.

102

2 RELATED WORKS

103 **Meta-Cognitive Learning** Meta-cognition is viewed as a prerequisite for self-improving LLMs
 104 (Liu & van der Schaar, 2025). Existing methods rely on extrinsic mechanisms with fixed action
 105 loops, limiting adaptability. Self-improving agents that plan, regulate, and reflect (Dong et al., 2025;
 106 Didolkar et al., 2025) or refine prompts via past reasoning (Qiu et al., 2025; Liu et al., 2025b)



(a) Self-Alignment Reward (section 3.2) (b) Meta-Aware Gating & Hinting & Cutoff (section 3.3)

Figure 2: **Overall Framework of MASA** (a) Parallel rollout of meta prediction path and solution path. Meta predictions are rewarded by self-alignment from statistics collected from solution rollouts. (b) Meta-based predictive gating, early cutoff and notion hinting from meta-predictions.

entangle control with reasoning, often causing interference. In contrast, our approach disentangles the meta and solution path separately for stable training on meta-awareness.

Other works require curated datasets (Ha et al., 2025), or delegate control to external verifiers (Ma et al., 2025; He et al., 2025) or multi-agent systems (Wan et al., 2025; Yang & Thomason, 2025; Bilal et al., 2025; Khandelwal et al., 2025), reducing scalability of meta-cognitive training. Training-free heuristics such as confidence-based stopping (Yang et al., 2025b; Qiao et al., 2025; Lu et al., 2025) or correctness checks (Ma et al., 2025) offer efficiency but lack genuine language-level meta-cognition. In contrast, our approach do not rely on human-curated reasoning pipelines, external verifiers/PRMs, or specialized datasets targeting meta-cognitive ability, but rather leverage the *self-generated signals to encourage alignment* between the meta-prediction and primary thinking process.

Self-Control for Efficient Training Another direction that leverages meta-cognition is to regulate reasoning efficiency by allocating budgets via difficulty assessment (Chen et al., 2025a; Tu et al., 2025; Shi et al., 2025; Qu et al., 2025; Huang et al., 2025; Ji et al., 2025; Di & JoyJiaoW, 2025; Han et al., 2024b; Fang et al., 2025; Yang et al., 2025c; Zhang et al., 2025b; Wang et al., 2025; Zhang et al., 2025a; Shen et al., 2025), constraining output length with penalties or fixed limits (Aggarwal & Welleck, 2025; Li et al., 2025; Xiang et al., 2025; Zhang & Zuo, 2025), and adaptively stopping, continuing, or reflecting for compact reasoning (Ha et al., 2025; Zhang et al., 2025c; Dai et al., 2025). While these methods improve inference-time efficiency, they focus on making reasoning shorter or faster at inference time, often at the expense of reasoning performance drop. In contrast, we target *post-training efficiency*, achieving both efficiency and improved performance during model training rather than the inference.

3 MASA: META-AWARENESS VIA SELF-ALIGNMENT AND MASA-efficient

We first provide background on group relative policy optimization (GRPO) variants (Section 3.1). Then we show our method: (i) MASA, which endows the LLM with the capability to perform accurate meta-predictions (Section 3.2); and (ii) MASA-efficient, an efficiency-enhanced version that accelerates MASA through predictive gating, early cutoff, and prompt hinting (Section 3.3).

3.1 PRELIMINARIES

We present an overview on GRPO, which is a popular RL algorithm for post-training reasoning models. Given a task q drawn from the distribution \mathcal{Q} , the policy model $\pi_{\theta_{\text{old}}}$ produces a group of G responses, which are referred to as rollouts, $\{o_1, \dots, o_G\}$. Each response is assigned with a reward $\{r_1, \dots, r_G\}$ based on the match between the ground truth answer and the extracted answer from the response. This is formalized as

$$\mathcal{L}_{\text{RL}}(\theta) = \mathbb{E}_{q \sim \mathcal{Q}, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot|q)} \left[\frac{1}{G} \sum_i^G \frac{1}{|o_i|} \sum_t^{|o_i|} \left\{ \min \left[\Gamma_{i,t}(\theta) \hat{A}_{i,t}, \text{clip}_{1-\epsilon}^{1+\epsilon}(\Gamma_{i,t}(\theta)) \hat{A}_{i,t} \right] - \beta D_{\text{KL}}(\pi_{\theta} \parallel \pi_{\text{ref}}) \right\} \right],$$

162 where the importance sampling ratio between the current policy π_θ and the old policy $\pi_{\theta_{\text{old}}}$ is defined
 163 as $\Gamma_{i,t}(\theta) = \pi_\theta(o_{i,t} \mid q, o_{i,<t}) / \pi_{\theta_{\text{old}}}(o_{i,t} \mid q, o_{i,<t})$, and $\text{clip}(\cdot)$ restricts the importance sampling
 164 ratio between $[1 - \epsilon, 1 + \epsilon]$. Advantage calculation is formulated as $\hat{A}_{i,t} = \frac{r_i - \text{mean}(\{r_i\}_{i=1}^G)}{\text{std}(\{r_i\}_{i=1}^G)}$. Following
 165 the practice of recent RL algorithms proposed in recent GRPO variants (Liu et al., 2025a; Zhang &
 166 Zuo, 2025; Zheng et al., 2025; Yu et al., 2025), we set $\beta = 0$ to ignore the KL divergence term.
 167

168 3.2 MASA: META-AWARENESS VIA SELF-ALIGNMENT

170 The policy model π_θ is prompted with the task q with two variants of instruction templates, meta-
 171 prediction template and solution template, creating q_{meta} and q_{sol} ¹. The policy model outputs meta-
 172 prediction rollouts $\{\mathbf{o}_i^{\text{meta}}\}_{i=1}^M$ given q_{meta} and solution rollouts $\{\mathbf{o}_i^{\text{sol}}\}_{i=1}^G$ given q_{sol} in parallel. The
 173 solution rollouts are equivalent to the rollouts in regular GRPO algorithm explained in Section 3.1,
 174 while meta rollouts are structured responses that consist of predicted length, predicted difficulty, and
 175 the list of mathematical notions.

176 The rollout and reward assignment for solution rollouts and meta-predictions are separated as de-
 177 scribed in Figure 2(a). For solution, the reward is assessed by the agreement between model’s
 178 solution and the ground truth solution, which we denote as $\{r_i^{\text{sol}}\}_{i=1}^G$. For meta-prediction rollouts,
 179 we rely on three rewarding criteria: self-alignment of length, pass-rate, and math notions, averaged
 180 into $r_{\text{meta}} = (r_{\text{length}} + r_{\text{difficulty}} + r_{\text{notion}}) / 3$.
 181

182 **Length Reward.** The length alignment reward assigns 1 if the prediction belongs in the range of
 183 rollout lengths of correct solution paths. More formally, we define the length reward as
 184

$$185 r_{\text{length}} = \mathbb{1}[\min(\mathbf{l}_{\text{correct}}) \leq l_{\text{pred}} \leq \max(\mathbf{l}_{\text{correct}})], \quad (1)$$

186 where $\mathbf{l}_{\text{correct}}$ is a list of correct response lengths from solution rollouts $\{\mathbf{o}_i^{\text{sol}}\}$ and l_{pred} is the
 187 predicted length from meta rollout. In cases where correct responses do not exist for the task q
 188 ($|\mathbf{l}_{\text{correct}}| = 0$), then the reward assigned becomes 0.
 189

190 **Difficulty Reward.** The difficulty alignment reward is computed as exponentially decaying reward
 191 by the factor of difference between the predicted pass-rate d_{pred} and the true pass-rate d_{sol} as
 192

$$193 r_{\text{difficulty}} = b^{|d_{\text{pred}} - d_{\text{sol}}|} \quad (2)$$

195 where $b < 1$. We choose an exponentially decaying reward to ensure that the reward becomes 1 if
 196 $|d_{\text{pred}} - d_{\text{sol}}| = 0$ and rapidly approach to 0 as the difficulty difference becomes larger.
 197

198 **Notion Reward.** The notion reward is defined for the list of notions, $\mathbf{n}_{\text{pred}} = [n_1, \dots, n_p]$, which
 199 are mathematical concepts that are predicted to be used in solution rollout that yields correct answer.
 200 We count the ratio of notions that appear more frequently in correct solution rollouts than in incorrect
 201 ones. Formally we define notion reward as
 202

$$203 r_{\text{notion}} = \frac{1}{|\mathbf{n}_{\text{pred}}|} \sum_{n \in \mathbf{n}_{\text{pred}}} \mathbb{1}[f_{\text{count}}(n, 1) - f_{\text{count}}(n, 0) > 0], \quad (3)$$

206 where f_{count} is a function that counts the number of notion appearance in correct or incorrect solu-
 207 tion rollouts. The counting function is defined as follows,
 208

$$209 f_{\text{count}}(n, t) = |\{i \in \{1, \dots, G\} : n \in \mathbf{o}_i^{\text{sol}}, r_i^{\text{sol}} = t\}|, \quad t \in \{0, 1\}, \quad (4)$$

210 to reward a notion n that is more frequently included in correct solutions ($t = 1$) than in incorrect
 211 ones ($t = 0$). In detail, the notions included in the problem itself is excluded in the counting process
 212 to avoid reward hacking and the predicted notions are lemmatized to properly find inclusion in the
 213 solution rollouts via exact matching.
 214

215 ¹The average token length of meta-predictions are 36% of average solution rollout length. The meta-
 216 prediction template is deferred to Appendix A.

216 **Algorithm 1** MASA-*efficient*: Efficient Meta-Aware Training with SFT on Expert Trajectories.

217 **Require:** Task distribution \mathcal{Q} , expert dataset buffer $\mathcal{D}_{\text{expert}}$, initial policy parameters θ , efficient start step k

218 **Ensure:** Optimized policy parameters θ

219 $\theta_{\text{old}} \leftarrow \theta$

220 **for** step $= 1, \dots, N$ **do**

221 Sample task prompt $q \sim \mathcal{Q}$ ▷ or a minibatch

222 Sample meta-trajectories $\{\mathbf{o}_i^{\text{meta}}\}_{i=1}^M \sim \pi_{\theta_{\text{old}}}(\cdot | q_{\text{meta}})$

223 **if** step $> k$ **then**

224 Efficient sampling with predictive gating, early cutoff, and notion hinting

225 **else**

226 Sample reasoning trajectories $\{\mathbf{o}_i^{\text{sol}}\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot | q_{\text{sol}})$

227 **end if**

228 $\theta \leftarrow \theta - \alpha \nabla_{\theta} \mathcal{L}_{\text{RL}}(\theta)$

229 Extract expert trajectory $\{\mathbf{o}_{\text{expert}}\}$ from $\{\mathbf{o}_i^{\text{sol}}\}_{i=1}^G$ and $\{\mathbf{o}_i^{\text{meta}}\}_{i=1}^M$

230 $\mathcal{D}_{\text{expert}} \leftarrow \mathcal{D}_{\text{expert}} \cup \{\mathbf{o}_{\text{expert}}\}$

231 **if** $|\mathcal{D}_{\text{expert}}| \geq N_{\text{expert}}$ **then**

232 $\theta \leftarrow \theta - \beta \nabla_{\theta} \mathcal{L}_{\text{BC}}(\theta, \mathcal{D}_{\text{expert}})$ ▷ Equation (5)

233 $\mathcal{D}_{\text{expert}} \leftarrow \emptyset$

234 **end if**

235 $\theta_{\text{old}} \leftarrow \theta$

236 **end for**

3.3 MASA-*efficient*: META-BASED ACTIVE CONTROL FOR EFFICIENT POST-TRAINING

237 MASA-*efficient* is a variant of MASA that can further boost training efficiency by leveraging the
 238 length and difficulty predictions from meta-predictions. From the observation that early step meta-
 239 predictions are unstable, we encourage the behavior cloning of the policy model on the ideal meta-
 240 prediction trajectories that are gathered throughout each RL step, inspired by behavior cloning (BC)
 241 (Mendonca et al., 2019; Silver et al., 2017; Schick et al., 2023). We denote these ideal meta-
 242 predictions as expert dataset, $\mathcal{D}_{\text{expert}}$, which are meta-predictions that scored high notion score
 243 and the predictions on pass-rate and length are substituted by the true statistics gathered from the
 244 solution rollouts. Once the expert dataset size reaches N_{expert} , we minimize cross-entropy loss on
 245 $\mathcal{D}_{\text{expert}}$ on the current policy model as

$$\min_{\theta} \mathcal{L}_{\text{BC}}(\theta - \alpha \nabla_{\theta} \mathcal{L}_{\text{RL}}(\theta), \mathcal{D}_{\text{expert}}), \quad (5)$$

246 where α is the learning rate for RL training. Formally, the behavior cloning loss is defined as
 247 $\mathcal{L}_{\text{BC}}(\theta, \mathcal{D}_{\text{expert}}) = \mathbb{E}_{\mathbf{o} \sim \mathcal{D}_{\text{expert}}} \left[-\sum_{t=1}^{|\mathbf{o}|} \log \pi_{\theta}(\mathbf{o}_t | \mathbf{o}_{<t}) \right]$.

248 Note that we gather samples from the current policy model prediction and accumulate up to a batch
 249 size of N_{expert} , as outdated trajectories do not reflect the current policy model behavior, and the
 250 outdated expert meta trajectories are evicted from $\mathcal{D}_{\text{expert}}$ following DAgger (Ross et al., 2011).
 251 We prove the boundedness of cost-to-go of this algorithm to ensure that the policy model improves
 252 stably in Appendix C.

253 **Non-Parallel Efficient Training with Gating and Cutoff** As MASA-*efficient* is the efficient variant
 254 of MASA. To encourage meta-awareness before accelerating the training phase, we first perform
 255 self-alignment based policy updates for the early k steps following MASA pipeline², until the policy
 256 model shows stable meta-prediction alignment with the true solution rollouts. From this point, we
 257 alter into non-parallel pipeline that executes meta-predictions first, for **predictive gating**, followed
 258 by solution rollouts, applying **early length cutoff**. We also utilize the predicted notions to provide
 259 additional hint for the model in solving the questions as illustrated in Figure 2(b).

260 Predictive gating filters out zero-variance tasks, that exceeds or under-reaches the model’s current
 261 capacity. Unlike DAPO that performs pruning after doing lengthy and inefficient solution rollouts,
 262 our method saves computation by using short meta-predictions as a gate on whether to rollout the
 263 lengthy solution beforehand³. In detail, the predictive gating is activated only if the standard devi-
 264 ation over M predicted pass-rates is below 0.1 to ensure confident meta-prediction. The length

²The selection of training step k is explained in Figure 3.

³The length difference between the meta and solution rollouts is analyzed in Table 3.

270 Table 1: **Performance of GRPO and MASA across In-domain Math benchmarks.**
271

272 273 274 275 Benchmark	276 277 278 279 GRPO		280 281 282 GRPO w/ MASA	
	283 Pass@1	284 Pass@32	285 Pass@1	286 Pass@32
Qwen3-14B Base Model				
AIME'24	38.54	70.00	40.10 (+ 4.04%)	73.33 (+ 4.76%)
AIME'25	27.91	56.67	29.90 (+ 7.13%)	56.67 (-)
AMC'23	81.56	97.50	84.61 (+ 3.74%)	97.50 (-)
MATH500	88.61	97.60	88.54 (- 0.08%)	97.80 (+ 0.20%)
Minerva	44.84	71.32	45.37 (+ 1.18%)	74.63 (+ 4.64%)
Olympiad	58.65	77.74	59.94 (+ 2.20%)	77.15 (- 0.76%)
Average	56.69	78.47	58.08 (+ 2.45%)	79.51 (+ 1.33%)
Qwen3-8B Base Model				
AIME'24	28.54	66.67	33.75 (+ 18.26%)	70.00 (+ 5.00%)
AIME'25	22.18	46.67	26.46 (+ 19.30%)	50.00 (+ 7.14%)
AMC'23	73.67	97.50	76.88 (+ 4.36%)	100.00 (+ 2.56%)
MATH500	85.75	96.80	87.36 (+ 1.88%)	96.80 (-)
Minerva	42.46	69.85	45.35 (+ 6.81%)	72.06 (+ 3.16%)
Olympiad	53.61	76.11	55.41 (+ 3.36%)	78.48 (+ 3.11%)
Average	51.04	75.60	54.20 (+ 6.20%)	77.89 (+ 3.03%)

293 prediction is used as a early cutoff threshold to stop the rollout that exceeds more than $2 \times$ of the
294 predicted length, as such lengths are highly likely to lead to incorrect rollout due to notion reward
295 design. The precision and F1 score of predictive gating and early length cutoff in predicting the true
296 zero-variance and incorrect rollouts are analyzed in Figure 3.

4 EXPERIMENTS

300 **Implementation Details.** We use VeRL with the DeepScalerR (Luo et al., 2025) dataset, batch
301 size 128, learning rate 1e-6, 10% weight decay, maximum response length 8K, and GRPO without
302 KL. Training runs for one epoch (314 steps) using AdamW (Loshchilov & Hutter) with 20 warm-
303 up steps, gradient clipping 1.0, and clipping range $[\epsilon_{\text{low}} = 0.2, \epsilon_{\text{high}} = 0.28]$. The rollouts use
304 temperature 1.0 and top-p value of 1.0. Both actual (G) and meta-prediction (M) rollouts are 16.
305 Expert SFT uses 5 gradient updates per outer RL loop. The difficulty-reward base is $b = 0.01$, and
306 gating/cutoff begins at $k = 120$ and the batch size for expert dataset is also set as 128.

307 **Evaluation Configuration.** We use the provided math scoring function in VeRL to measure the
308 accuracy of the predicted answer and ground truth answer sampling 32 responses, 16k maximum
309 response length and temperature 0.6.

310 **Baselines.** The baseline of our method is GRPO and DAPO. Throughout the experiment section,
311 MASA refers to the model that is trained with our Meta-Awareness via Self-Alignment. **MASA-**
312 **efficient** indicates the version of a model that includes the gating & cutoff applied from MASA at
313 step 120.

4.1 OBSERVATIONS

315 We analyze the performance of MASA through validation on mathematical benchmarks and gener-
316 alized reasoning benchmarks.

317 **MASA Excels in In-Domain Mathematical Benchmarks** MASA excels the baseline in six math
318 benchmarks, AIME24, AIME25, AMC23, MATH500 (Hendrycks et al.), Minerva, and Olympiad-
319 Bench (He et al., 2024) (Table 1). Across all mathematical datasets, our method MASA shows great
320 improvement over the baseline GRPO performance, showing an average of 6.2% improvement in
321 Qwen3-8B model, and an average of 2.45% in 14B model.

324 **Table 2: Performance of GRPO and MASA in Out-of-Domain benchmarks.** Results are reported
 325 as pass@1 score.

Logical Reasoning			Scientific Reasoning			Coding		
Benchmark	GRPO	w/ MASA	Benchmark	GRPO	w/ MASA	Benchmark	GRPO	w/ MASA
ProntoQA	90.56	93.74	GPQA Diamond	51.72	53.72	EvalPlus	77.32	77.66
ProofWriter	72.27	73.23	R-Bench	60.69	61.68	CRUX-O	72.72	73.39
FOLIO	69.16	69.24	ARC-Challenge	93.10	93.13	MBPP	71.84	72.97
Logi. Deduct	80.81	81.03	SciBench	28.33	29.64	LiveCodeBench	31.49	31.61
AR-LSAT	37.00	38.00						
Avg.	69.96	71.05	Avg.	58.46	59.54	Avg.	63.34	63.91

337 **MASA Generalizes to Out-of-Domain Reasoning Benchmarks** The meta-awareness also
 338 benefits generalization ability of the reasoning model in out-of-domain logical & scientific & coding
 339 benchmarks as shown in Table 2. For logical reasoning domain, we follow the setup of (Pan et al.,
 340 2023) and test on ProntoQA (Saparov & He), ProofWriter (Tafjord et al., 2021), FOLIO (Han et al.,
 341 2024a), LogicalDeduction (Srivastava et al.), and AR-LSAT (Zhong et al., 2022). For scientific rea-
 342 soning, we use GPQA Diamond (Rein et al., 2024), R-Bench (Guo et al., 2025b), ARC-Challenge
 343 (Clark et al., 2018), and SciBench (Wang et al., 2024). For coding, we evaluate on EvalPlus (Liu
 344 et al., 2023), CRUX-O (Gu et al., 2024), MBPP (Austin et al., 2021), and LiveCodeBench (Jain et al.,
 345 2025). Although MASA is not explicitly trained for generalization, strengthening meta-awareness
 346 consistently enhances out-of-domain performance.

347 4.2 ANALYSIS ON COMPONENT

349 **Implicit Meta-Awareness Reward Explicitly Changes the Model Output.** How does the par-
 350 allel rollout of meta-predictions influence the solution rollouts? We classify notions that appear
 351 more often in correct responses as positive notions and those that appear more often in incorrect
 352 responses as negative notions. After reward-based gradient updates, positive notions should be-
 353 come more common in correct solution rollouts, whereas negative notions should be suppressed.
 354 As shown in Figure 3a, positive notions from earlier steps consistently increase in correct rollouts
 355 (notion score > 0 indicates higher frequency in correct compared to incorrect), whereas negative
 356 notions are reduced in correct rollouts but amplified in incorrect ones (notion score < 0).

357 **Expert Trajectories Increases Meta-Awareness in Early Train Steps.** Predictive gating aims
 358 to identify zero-variance prompts before rollout, while early cutoff predicts rollouts that will yield
 359 incorrect answer despite excessive token length. Adding expert trajectory supervised finetuning to
 360 MASA improves the precision of both mechanisms, as shown in Figure 3b and Figure 3c. Without
 361 expert SFT, MASA (green) shows unstable precision that drops sharply around step 80 and score
 362 F1 score of 0.411 and 0.732 in predictive gating and early cutoff, respectively. In contrast, with
 363 expert trajectories stabilizes the improvement, yielding final F1 score of 0.485 and 0.836 at training
 364 step 120. Based on this analysis, we begin to apply gating and cutoff only after step 120, once the
 365 predictions are stable in terms of both precision and F1 score.

366 **MASA-efficient reaches higher performance faster with faster train time.** Table 3 shows the
 367 effectiveness of MASA-*efficient* in reducing the train time compared to MASA. The train time dras-
 368 tically reduces by 34.5%, while closely retaining the performance of MASA in intermediate level of
 369 math reasoning tasks such as AMC23 and MATH500. On the other hand, MASA-*efficient* shows at
 370 most 3.9% of performance drop in AIME, which consists of Olympiad level math problems, proving
 371 the need for less efficient but stronger MASA for complex reasoning tasks.

373 We observe efficiency in terms of number of training tasks, number of generated tokens, and train
 374 time in Figure 4. MASA-*efficient* reaches the performance of the baseline model GRPO with notably
 375 smaller number of tasks, total generated tokens, and train time. As shown in the figure, the accuracy
 376 consistently outperforms the baseline under same budget condition, proving that MASA-*efficient* is
 377 highly effective in reducing the train time and compute resource. It is important to note that though
 our method MASA requires doubled rollouts for solution and meta-prediction paths, the average

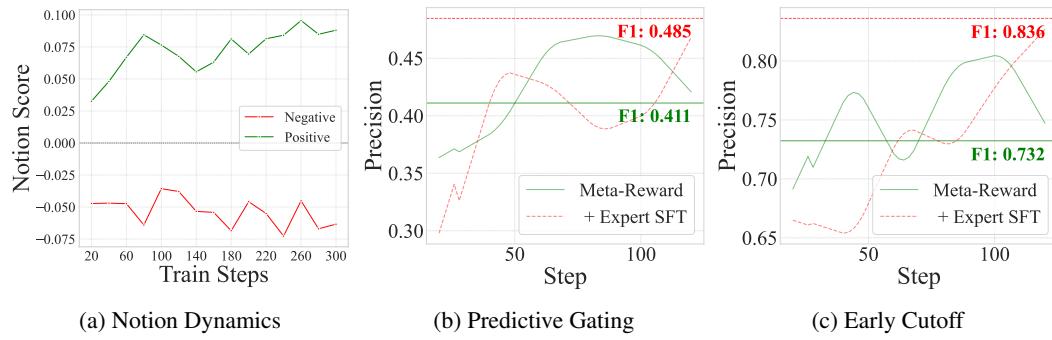


Figure 3: (a) Notion score of positive / negative notions from earlier train step. (b) Precision Score of Predictive Gating on true zero variance prompts. (c) Precision Score of Early Cutoff on true incorrect roll-outs. Precisions are smoothed by a moving average over 5 steps.

Table 3: Analysis on MASA-*efficient* performance and average token length of two trajectories with MASA.

	MASA	MASA- <i>efficient</i>	Perf. Gap
AIME'25	33.75	32.71	-3.1%
AIME'24	26.46	25.42	-3.9%
AMC23	76.88	76.88	-
MATH500	87.36	87.68	+0.4%
Avg	56.11	55.67	-0.7%
Train Time (hrs)	52.50	34.93	-34.5%

(a) Performance and efficiency comparison.

meta length of 2293 is 2.73 times smaller than the average solution path of average length 6251. By adding predictive gating and length cutoff, the total train time becomes much shorter since the gating happens before the lengthy solution path.

Figure 5 shows the average proportion of prompts filtered by gating. On average, about 37% of prompts are removed before the model begins its full solution rollout, with the gating rate typically staying between 20–40%. Early in the process, up to 80% of prompts remain after gating, but this quickly drops to a stable, lower level. Although the baseline and MASA process the same number of tasks up to step 120, only 56% of tasks remain after filtering when using MASA-*efficient* after step 120 until step 314, compared to GRPO. Finally, note that we cannot measure the exact amount of rollout length saved by early cutoffs, since truncated rollouts do not reach an EOS token and thus their full length is unknown.

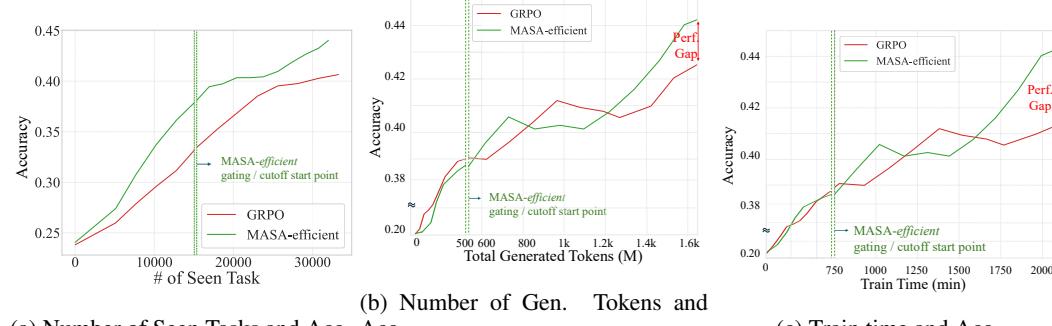


Figure 4: Comparison of MASA-*efficient* and GRPO on same train budgets: number of seen train tasks, total generation tokens, and train time. Accuracy is calculated as the average of AIME'24, AIME'25, and AMC'23. All accuracy curves are smoothed with a 3-window moving average.

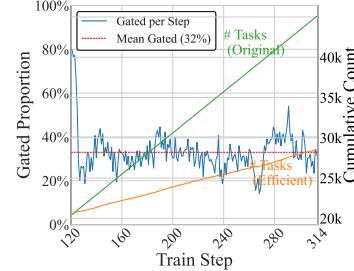


Figure 5: Analysis on Gating.

432 4.3 ABLATION STUDIES
433

434 **Ablation on RL Algorithm** We test the applicability of our method MASA on DAPO in Table 4,
435 which is a variant of GRPO that introduces several technical changes in the optimization process.
436 DAPO uses dynamic sampling to filter out tasks that yield zero-variance prompts to stabilize the
437 gradient update and assigns penalty on overlong responses. We observed that applying the overlong
438 penalty adversely affected accuracy under the 8k maximum response length setting. Accordingly,
439 we adopted DAPO without the overlong penalty as the baseline. For DAPO, we conducted training
440 for one epoch, consistent with the GRPO setup, and report the performance of the final model.
441 Combined with DAPO, our method MASA outperforms all six mathematical benchmarks, reaching
442 18.61% of gain on Pass@1 in AIME’24.

443 Table 4: Performance comparison of MASA with DAPO, trained with Qwen3-8B base model.
444

445 446 447 Benchmark	448 449 450 451 452 453 454 DAPO		455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 DAPO + MASA	
	450 451 452 453 454 455 Pass@1	450 451 452 453 454 455 Pass@32	450 451 452 453 454 455 Pass@1	450 451 452 453 454 455 Pass@32
AIME’24	23.54	63.33	27.92 (+ 18.61%)	70.00 (+ 10.53%)
AIME’25	18.75	46.67	20.63 (+ 10.03%)	60.00 (+ 28.56%)
AMC’23	67.11	97.50	69.22 (+ 3.14%)	97.50(-)
MATH500	81.67	96.80	82.99 (+ 1.62%)	96.20 (- 0.62%)
Minerva	35.53	68.01	39.66 (+ 11.62%)	71.69 (+ 5.41%)
Olympiad	49.30	75.07	50.93 (+ 3.31%)	76.71 (+ 2.18%)
Average	45.98	74.56	48.56 (+ 5.61%)	78.68 (+ 5.53%)

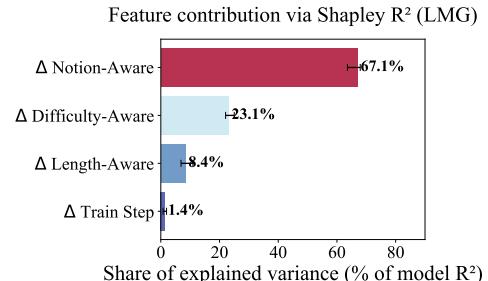
456 **Meta-Component Contribution.** Here we analyze which component among the three meta-
457 predictions contribute the most to the performance
458 increase. The contribution of length, difficulty, and
459 notion prediction for meta-awareness is shown in
460 Figure 6. In specific, we analyze the Shapley R^2
461 share⁴ of each feature - the three meta components
462 (notion-aware, difficulty-aware, length-aware), and
463 the train step - on the contribution to the increase in
464 model performance. The results show that notion-
465 awareness is by far the most dominant factor, ex-
466 plaining over two-thirds of the variance in perfor-
467 mance increase. Difficulty-awareness and length-
468 awareness plays smaller role while the effect of
469 training step is almost negligible.

471 5 CONCLUSION

472 We present MASA, a meta-aware reinforcement learning framework that fosters meta-cognitive abil-
473 ity by self-alignment. By incorporating expert meta-thinking trajectories into training, our method
474 enables stable and efficient optimization by integrating predictive gating and early cutoff. Empirically,
475 MASA accelerates RL-based post-training while improving both in-domain and out-of-
476 domain performance, demonstrating notable gains in accuracy and generalization. These results
477 highlight the promise of meta prediction as a principled avenue for enhancing reasoning models.

478 489 LIMITATION

480 While our approach to meta prediction can, in principle, be extended to a broader range of meta-
481 thinking strategies, in this work we focus on length, difficulty, and notion. The gating and cutoff
482 hyper-parameters are set offline based on the analysis, but it would be beneficial to search hyper-
483 parameters online during train time.

484 Figure 6: **Analysis on Meta-Components.**
485

⁴Calculated by LMG (Lindeman–Merenda–Gold) method.

486 REFERENCES
487

488 Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
489 reinforcement learning. 2025. doi: 10.48550/arXiv.2503.04697. URL <https://arxiv.org/abs/2503.04697>.

490

491 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
492 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
493 models. *arXiv preprint arXiv:2108.07732*, 2021.

494

495 Ahsan Bilal, Muhammad Ahmed Mohsin, Muhammad Umer, Muhammad Awais Khan Bangash,
496 and Muhammad Ali Jamshed. Meta-thinking in llms via multi-agent reinforcement learning: A
497 survey. *arXiv preprint arXiv:2504.14520*, 2025.

498 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
499 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
500 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

501

502 Qiguang Chen, Dengyun Peng, Jinhao Liu, HuiKang Su, Jiannan Guan, Libo Qin, and Wanxiang
503 Che. Aware first, think less: Dynamic boundary self-awareness drives extreme reasoning effi-
504 ciency in large language models. *arXiv preprint arXiv:2508.11582*, 2025a.

505 Yang Chen, Zhuolin Yang, Zihan Liu, Chankyu Lee, Peng Xu, Mohammad Shoeybi, Bryan Catan-
506 zaro, and Wei Ping. Acereason-nemotron: Advancing math and code reasoning through rein-
507 forcement learning. 2025b. doi: 10.48550/arXiv.2505.16400. URL <https://arxiv.org/abs/2505.16400>.

509

510 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
511 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
512 *arXiv preprint arXiv:1803.05457*, 2018. URL <https://arxiv.org/abs/1803.05457>.
513 Use the ARC-Challenge split for ARC-C results.

514 Muzhi Dai, Chenxu Yang, and Qingyi Si. S-grpo: Early exit via reinforcement learning in reasoning
515 models. *arXiv preprint arXiv:2505.07686*, 2025.

516

517 C Nicolò De Sabbata, Theodore R Sumers, Badr AlKhamissi, Antoine Bosselut, and Thomas L
518 Griffiths. Rational metareasoning for large language models. *arXiv preprint arXiv:2410.05563*,
519 2024.

520 Xinhan Di and JoyJiaoW. Enhancing math reasoning in small-sized llms via preview difficulty-
521 aware intervention. 2025. doi: 10.48550/arXiv.2508.01604. URL <https://arxiv.org/abs/2508.01604>.

523

524 Aniket Didolkar, Nicolas Balla, Sanjeev Arora, and Anirudh Goyal. Metacognitive reuse: Turning
525 recurring llm reasoning into concise behaviors. *arXiv preprint arXiv:2509.13237*, 2025.

526 Haonan Dong, Haoran Ye, Wenhao Zhu, Kehan Jiang, and Guojie Song. Meta-r1: Empowering
527 large reasoning models with metacognition. *arXiv preprint arXiv:2508.17291*, 2025.

528

529 Gongfan Fang, Xinyin Ma, and Xinchao Wang. Thinkless: Llm learns when to think. *arXiv preprint*
530 *arXiv:2505.13379*, 2025.

531

532 Alex Gu, Baptiste Roziere, Hugh James Leather, Armando Solar-Lezama, Gabriel Synnaeve, and
533 Sida Wang. CRUXEval: A benchmark for code reasoning, understanding and execution. In
534 Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scar-
535 lett, and Felix Berkenkamp (eds.), *Proceedings of the 41st International Conference on Machine*
536 *Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp. 16568–16621. PMLR,
537 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/gu24c.html>.

538 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
539 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025a.

540 Meng-Hao Guo, Jiajun Xu, Yi Zhang, Jiaxi Song, Haoyang Peng, Yi-Xuan Deng, Xinzhi Dong,
 541 Kiyohiro Nakayama, Zhengyang Geng, Chen Wang, Bolin Ni, Guo-Wei Yang, Yongming
 542 Rao, Houwen Peng, Han Hu, Gordon Wetzstein, and Shi-min Hu. R-bench: Graduate-level
 543 multi-disciplinary benchmarks for llm & mllm complex reasoning evaluation. *arXiv preprint*
 544 *arXiv:2505.02018*, 2025b. URL <https://arxiv.org/abs/2505.02018>.

545 Rui Ha, Chaozhuo Li, Rui Pu, and Sen Su. From "aha moments" to controllable thinking: Toward
 546 meta-cognitive reasoning in large reasoning models via decoupled reasoning and control. 2025.
 547 doi: 10.48550/arXiv.2508.04460. URL <https://arxiv.org/abs/2508.04460>.

548 Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou, James
 549 Coady, David Peng, Yujie Qiao, Luke Benson, et al. Folio: Natural language reasoning with first-
 550 order logic. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language*
 551 *Processing*, pp. 22017–22031, 2024a.

552 Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
 553 budget-aware llm reasoning. *arXiv preprint arXiv:2412.18547*, 2024b.

554 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
 555 Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for promoting
 556 agi with olympiad-level bilingual multimodal scientific problems. In *Proceedings of the 62nd*
 557 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 558 3828–3850, 2024.

559 Tao He, Rongchuan Mu, Lizi Liao, Yixin Cao, Ming Liu, and Bing Qin. Good learners think their
 560 thinking: Generative prm makes large reasoning model more efficient math learner. *arXiv preprint*
 561 *arXiv:2507.23317*, 2025.

562 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
 563 Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
 564 In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks*
 565 *Track (Round 2)*.

566 Shijue Huang, Hongru Wang, Wanjun Zhong, Zhaochen Su, Jiazhan Feng, Bowen Cao, and Yi R.
 567 Fung. Adactrl: Towards adaptive and controllable reasoning via difficulty-aware budgeting. 2025.
 568 doi: 10.48550/arXiv.2505.18822. URL <https://arxiv.org/abs/2505.18822>.

569 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
 570 mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamina-
 571 tion free evaluation of large language models for code. In *The Thirteenth International Confer-
 572 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=chfJJYC3iL>.

573 Yunjie Ji, Sitong Zhao, Xiaoyu Tian, Haotian Wang, Shuaiting Chen, Yiping Peng, Han Zhao, and
 574 Xiangang Li. How difficulty-aware staged reinforcement learning enhances llms' reasoning ca-
 575 pabilities: A preliminary experimental study. 2025. doi: 10.48550/arXiv.2504.00829. URL
 576 <https://arxiv.org/abs/2504.00829>.

577 Gregory Kahn, Tianhao Zhang, Sergey Levine, and Pieter Abbeel. Plato: Policy learning using adap-
 578 tive trajectory optimization. In *2017 IEEE International Conference on Robotics and Automation*
 579 (*ICRA*), pp. 3342–3349. IEEE, 2017.

580 Vedant Khandelwal, Francesca Rossi, Keerthiram Murugesan, Erik Miehling, Murray Campbell,
 581 Karthikeyan Natesan Ramamurthy, and Lior Horesh. Language models coupled with metacogni-
 582 tion can outperform reasoning models. *arXiv preprint arXiv:2508.17959*, 2025.

583 Gengxu Li, Tingyu Xia, Yi Chang, and Yuan Wu. Length-controlled margin-based preference op-
 584 timization without reference model. 2025. doi: 10.48550/arXiv.2502.14643. URL <https://arxiv.org/abs/2502.14643>.

585 Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chat-
 586 gpt really correct? rigorous evaluation of large language models for code generation. *Advances*
 587 *in Neural Information Processing Systems*, 36:21558–21572, 2023.

594 Tennison Liu and Mihaela van der Schaar. Position: Truly self-improving agents require intrinsic
 595 metacognitive learning. In *Forty-second International Conference on Machine Learning Position*
 596 *Paper Track*, 2025. URL <https://openreview.net/forum?id=4KhDd0Ozqe>.

597

598 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
 599 Lin. Understanding r1-zero-like training: A critical perspective. 2025a. doi: 10.48550/arXiv.
 600 2503.20783. URL <https://arxiv.org/abs/2503.20783>.

601

602 Ziru Liu, Cheng Gong, Xinyu Fu, Yaofang Liu, Ran Chen, Shoubo Hu, Suiyun Zhang, Rui Liu,
 603 Qingfu Zhang, and Dandan Tu. Ghpo: Adaptive guidance for stable and efficient llm reinforce-
 604 ment learning. *arXiv preprint arXiv:2507.10628*, 2025b.

605

606 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-
 607 ence on Learning Representations*.

608

609 Jinghui Lu, Haiyang Yu, Siliang Xu, Shiwei Ran, Guozhi Tang, Siqi Wang, Bin Shan, Teng Fu,
 610 Hao Feng, Jingqun Tang, et al. Prolonged reasoning is not all you need: Certainty-based adaptive
 routing for efficient llm/mllm reasoning. *arXiv preprint arXiv:2505.15154*, 2025.

611

612 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Tang, Manan Roongta, Colin Cai,
 613 Jeffrey Luo, Tianjun Zhang, Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing
 614 o1-preview with a 1.5b model by scaling rl, 2025. Notion Blog.

615

616 Ziyang Ma, Qingyue Yuan, Zhenglin Wang, and Deyu Zhou. Large language models have intrinsic
 617 meta-cognition, but need a good lens. *arXiv preprint arXiv:2506.08410*, 2025.

618

619 Russell Mendonca, Abhishek Gupta, Rosen Kralev, Pieter Abbeel, Sergey Levine, and Chelsea Finn.
 620 Guided meta-policy search. *Advances in Neural Information Processing Systems*, 32, 2019.

621

622 Liangming Pan, Alon Albalak, Xinyi Wang, and William Wang. Logic-lm: Empowering large lan-
 623 guage models with symbolic solvers for faithful logical reasoning. In *Findings of the Association
 624 for Computational Linguistics: EMNLP 2023*, pp. 3806–3824, 2023.

625

626 Ziqing Qiao, Yongheng Deng, Jiali Zeng, Dong Wang, Lai Wei, Fandong Meng, Jie Zhou, Ju Ren,
 627 and Yaoxue Zhang. Concise: Confidence-guided compression in step-by-step efficient reasoning.
 628 *arXiv preprint arXiv:2505.04881*, 2025.

629

630 Zishang Qiu, Xinan Chen, Long Chen, and Ruibin Bai. Mela: A metacognitive llm-driven architec-
 631 ture for automatic heuristic design. *arXiv preprint arXiv:2507.20541*, 2025.

632

633 Yuxiao Qu, Matthew YR Yang, Amirth Setlur, Lewis Tunstall, Edward Emanuel Beeching, Ruslan
 634 Salakhutdinov, and Aviral Kumar. Optimizing test-time compute via meta reinforcement fine-
 635 tuning. *arXiv preprint arXiv:2503.07572*, 2025.

636

637 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
 638 Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a
 639 benchmark. In *First Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=Ti67584b98>.

640

641 Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
 642 tured prediction to no-regret online learning. In *Proceedings of the fourteenth international con-
 643 ference on artificial intelligence and statistics*, pp. 627–635. JMLR Workshop and Conference
 644 Proceedings, 2011.

645

646 Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
 647 of chain-of-thought. In *The Eleventh International Conference on Learning Representations*.

648

649 Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro,
 650 Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
 651 teach themselves to use tools. *Advances in Neural Information Processing Systems*, 36:68539–
 68551, 2023.

648 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 649 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of math-
 650 ematical reasoning in open language models. 2024. doi: 10.48550/arXiv.2402.03300. URL
 651 <https://arxiv.org/abs/2402.03300>.

652 Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wenjing Zhang, Jiangze Yan, Ning Wang, Kai
 653 Wang, Zhaoxiang Liu, and Shiguo Lian. Dast: Difficulty-adaptive slow-thinking for large reason-
 654 ing models. *arXiv preprint arXiv:2503.04472*, 2025.

655 Taiwei Shi, Yiyang Wu, Linxin Song, Tianyi Zhou, and Jieyu Zhao. Efficient reinforcement finetun-
 656 ing via adaptive curriculum learning. *arXiv preprint arXiv:2504.05520*, 2025.

657 David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
 658 Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi
 659 by self-play with a general reinforcement learning algorithm. *arXiv preprint arXiv:1712.01815*,
 660 2017.

661 Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
 662 Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
 663 imitation game: Quantifying and extrapolating the capabilities of language models. *Transactions
 664 on Machine Learning Research*.

665 Yuan Sui, Yufei He, Tri Cao, Simeng Han, Yulin Chen, and Bryan Hooi. Meta-reasoner: Dy-
 666 namic guidance for optimized inference-time reasoning in large language models. *arXiv preprint
 667 arXiv:2502.19918*, 2025.

668 Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. Proofwriter: Generating implications, proofs, and
 669 abductive statements over natural language. In *Findings of the Association for Computational
 670 Linguistics: ACL-IJCNLP 2021*, pp. 3621–3634, 2021.

671 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 672 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 673 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

674 Songjun Tu, Jiahao Lin, Qichao Zhang, Xiangyu Tian, Linjing Li, Xiangyuan Lan, and Dongbin
 675 Zhao. Learning when to think: Shaping adaptive reasoning in r1-style models via multi-stage rl.
 676 *arXiv preprint arXiv:2505.10832*, 2025.

677 Ziyu Wan, Yunxiang Li, Xiaoyu Wen, Yan Song, Hanjing Wang, Linyi Yang, Mark Schmidt, Jun
 678 Wang, Weinan Zhang, Shuyue Hu, et al. Rema: Learning to meta-think for llms with multi-agent
 679 reinforcement learning. *arXiv preprint arXiv:2503.09501*, 2025.

680 Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R
 681 Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. Scibench: Evaluating college-level sci-
 682 entific problem-solving abilities of large language models. In *Forty-first International Conference on
 683 Machine Learning*, 2024. URL <https://openreview.net/forum?id=bq1JEgioLr>.

684 Yunhao Wang, Yuhao Zhang, Tinghao Yu, Can Xu, Feng Zhang, and Fengzong Lian. Adaptive deep
 685 reasoning: Triggering deep thinking when needed. *arXiv preprint arXiv:2505.20101*, 2025.

686 Violet Xiang, Chase Blagden, Rafael Rafailov, Nathan Lile, Sang Truong, Chelsea Finn, and Nick
 687 Haber. Just enough thinking: Efficient reasoning with adaptive length penalties reinforcement
 688 learning. 2025. doi: 10.48550/arXiv.2506.05256. URL <https://arxiv.org/abs/2506.05256>.

689 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 690 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
 691 arXiv:2505.09388*, 2025a.

692 Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Qiaowei Li, Zheng Lin, Li Cao,
 693 and Weiping Wang. Dynamic early exit in reasoning models. *arXiv preprint arXiv:2504.15895*,
 694 2025b.

702 Junjie Yang, Ke Lin, and Xing Yu. Think when you need: Self-adaptive chain-of-thought learning.
 703 *arXiv preprint arXiv:2504.03234*, 2025c.
 704

705 Wei Yang and Jesse Thomason. Learning to deliberate: Meta-policy collaboration for agentic llms
 706 with multi-agent reinforcement learning. *arXiv preprint arXiv:2509.03817*, 2025.

707 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 708 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
 709 at scale. *arXiv preprint arXiv:2503.14476*, 2025.

710

711 Jiajie Zhang, Nianyi Lin, Lei Hou, Ling Feng, and Juanzi Li. Adaptthink: Reasoning models can
 712 learn when to think. *arXiv preprint arXiv:2505.13417*, 2025a.

713 Jixiao Zhang and Chunsheng Zuo. Grpo-lead: A difficulty-aware reinforcement learning approach
 714 for concise mathematical reasoning in language models. 2025. doi: 10.48550/arXiv.2504.09696.
 715 URL <https://arxiv.org/abs/2504.09696>.

716

717 Xingjian Zhang, Siwei Wen, Wenjun Wu, and Lei Huang. Edge-grpo: Entropy-driven grpo with
 718 guided error correction for advantage diversity. *arXiv preprint arXiv:2507.21848*, 2025b.

719

720 Zijing Zhang, Ziyang Chen, Mingxiao Li, Zhaopeng Tu, and Xiaolong Li. Rlvmr: Reinforcement
 721 learning with verifiable meta-reasoning rewards for robust long-horizon agents. 2025c. doi:
 722 10.48550/arXiv.2507.22844. URL <https://arxiv.org/abs/2507.22844>.

723

724 Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
 725 Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. *arXiv preprint
 726 arXiv:2507.18071*, 2025.

727

728 Wanjun Zhong, Siyuan Wang, Duyu Tang, Zenan Xu, Daya Guo, Yining Chen, Jiahai Wang, Jian
 729 Yin, Ming Zhou, and Nan Duan. Analytical reasoning of text. In Marine Carpuat, Marie-
 730 Catherine de Marneffe, and Ivan Vladimir Meza Ruiz (eds.), *Findings of the Association for
 731 Computational Linguistics: NAACL 2022*, pp. 2306–2319, Seattle, United States, July 2022.
 732 Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-naacl.177. URL
 733 <https://aclanthology.org/2022.findings-naacl.177/>.

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A DEFAULT META-PREDICTION PROMPT FOR MASA
757
758759 **Prompt**
760761 **[System]:**
762 You are a helpful assistant.
763 **[User]:**
764 Think step-by-step between <meta> and </meta>, ensuring comprehensive and de-
765 tailed reasoning especially for determining the pass_rate and solution_length values.
766 For each component (math_notion, pass_rate, solution_length), provide a com-
767 prehensive illustration or example during your reasoning in the <meta> section to clarify
768 how each value is decided. When determining math_notion, ensure that the notions
769 listed do not directly include the notions already written in the problem statement.
770 After </meta>, return a JSON object with three keys:
771 - math_notion (list[str])
772 - pass_rate (integer from 0 to 8)
773 - solution_length (integer from 128 to {max_response_length})
774
775 Problem: {problem}
776777 B EFFECT OF NOTION FEED-IN FOR MASA INFERENCE
778

779 During training of MASA-*efficient*, we provided hints to the model through meta-predictions,
780 whereas evaluation was conducted using only the actual rollout. Nevertheless, it is also possible
781 to incorporate the notions predicted by the meta-prediction rollout into the prompt during inference,
782 mirroring the training procedure. To examine the impact of such notion feed-in on performance, we
783 performed the following experiment.

784 We extended the training pipeline of MASA with Expert SFT by appending the notions predicted
785 by meta-prediction to the original prompt as additional context. We then compared the final model’s
786 performance with and without notion feed-in at inference time. The results are presented in table 5.
787

788 As shown in the table, although the improvements are modest, incorporating notion feed-in con-
789 sistently yields slightly higher Pass@1 scores on most benchmarks. This finding suggests that the
790 predicted notions can serve as useful cues for problem solving and may enable further performance
791 gains when leveraged during inference.

792 **Table 5: Performance of GRPO and MASA on Qwen3-8B across In-domain Math benchmarks.**
793 All metrics are Pass@1. “NF” denotes Notion-FeedIn.
794

Benchmark	GRPO Pass@1	GRPO w/ MASA Pass@1	MASA + Expert (No NF) Pass@1	MASA + Expert (NF) Pass@1
Qwen3-8B Base Model				
AIME’24	28.54	33.75	32.92	33.85
AIME’25	22.18	26.46	26.04	26.46
AMC’23	73.67	76.88	76.64	78.98
MATH500	85.75	87.36	87.65	87.72
Minerva	42.46	45.35	46.43	45.86
Olympiad	53.61	55.41	55.07	55.59
Average	51.04	54.20	54.13	54.74

810 C BOUNDED RETURN-TO-GO OF EXPERT SFT 811

812 Let \mathcal{Q} be a distribution over tasks q . Each task is a finite-horizon process of length H that produces
813 an output sequence $O = (o_1, \dots, o_H)$ over a finite vocabularies \mathcal{V} . Write $o_{<t} := (o_1, \dots, o_{t-1})$ for
814 the history (prefix) at step t . GRPO objective over tasks is defined as
815

$$816 \mathcal{L}_{\text{RL}}(\theta) = \mathbb{E}_{q \sim \mathcal{Q}, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}(\cdot|q)}} \\ 817 \left[\frac{1}{H} \sum_{t=1}^H \underbrace{\left\{ \min \left[\Gamma_{i,t}(\theta) \hat{A}_{i,t}, \text{clip}_{1-\epsilon}^{1+\epsilon}(\Gamma_{i,t}(\theta)) \hat{A}_{i,t} \right] \right\}}_{r_t(\pi_\theta)} \right], \quad (6)$$

821 where $\Gamma_t(\theta) := \frac{\pi_\theta(o_t | q)}{\pi_{\theta_{\text{old}}}(o_t | q)}$ is the importance ratio, \hat{A}_t is an advantage estimator, and $r_t(\pi_\theta)$ is the
822 return of executing the policy π_θ at step t .
823

824 The proof below closely follows Kahn et al. (2017); Ross et al. (2011); Mendonca et al. (2019).
825

826 **Definition 1** (Expected Return). *For a fixed task (or a minibatch of tasks) q , the total cost of executing
827 π_θ for H steps is the negative return (cost)*
828

$$829 J^q(\pi_\theta) := -V_H(\pi_\theta | q) = -\mathbb{E} \left[\sum_{t=1}^H r_t(\pi_\theta | q) \right]. \quad (7)$$

832 Aggregating across tasks gives $J(\pi_\theta) := \mathbb{E}_{q \sim \mathcal{Q}}[J^q(\pi_\theta)] = -\mathbb{E}_{q \sim \mathcal{Q}}[V_H(\pi_\theta | q)]$.
833

834 **Definition 2** (Hybrid Cost). *For $t \in \{1, \dots, H\}$ and policies π_1, π_2 , define the hybrid cost*
835

$$836 J_t^q(\pi_1, \pi_2) := -\mathbb{E} \left[\sum_{s=1}^t r_s(\pi_1) + \sum_{s=t+1}^H r_s(\pi_2) \right],$$

838 so that $J^q(\pi) = J_H^q(\pi, \pi)$ and $J^q(\pi^*) = J_0^q(\pi, \pi^*)$. Intuitively, hybrid cost is the expected cost of
839 executing π_1 until t and executing π_2 from $t+1$ to H .
840

841 **Definition 3** (Cost-to-go). *Define*

$$843 Q_t(\pi_1, \pi_2) := -\mathbb{E} \left[r_1(\pi_1) + \sum_{s=2}^t r_s(\pi_2) \right],$$

846 as a cost to execute π_1 at initial state and execute π_2 at the remaining $t-1$ steps.
847

848 **Lemma C.1** (Policy discrepancy bound). *For $t \in \{1, \dots, H-1\}$ and policies π_1, π_2 ,*
849

$$J_{t+1}^q(\pi_1, \pi_2) - J_t^q(\pi_1, \pi_2) = \mathbb{E}_{o_{\leq t} \sim \pi_1} [Q_t(\pi_1, \pi_2) - Q_t(\pi_2, \pi_2)].$$

850 *Proof.* By definition of J_t^q and conditioning on the random history $o_{<t}$ generated by π_1 , the difference
851 between using π_1 vs. π_2 at time t (and π_2 thereafter) is exactly the displayed quantity. \square
852

853 **Assumption 1** (Training Error). *There exists $\delta < \infty$ such that for all tasks q , steps t , histories $o_{<t}$
854 and outputs $o_t \in \mathcal{O}$,*

$$855 Q_t(\pi_\theta, \pi_q^*) - Q_t(\pi_q^*, \pi_q^*) \leq \delta.$$

856 Note that for each task q , π_q^* is an expert actor.
857

858 **Assumption 2.** *Let $\hat{\pi}$ be the returned policy from supervised fine-tuning on $\mathcal{D}_{\text{expert}}$ dataset. The
859 supervised training error is bounded by ϵ ,*

$$860 D_{\text{KL}}(\pi_q^* \parallel \hat{\pi}) \leq \sqrt{\epsilon}.$$

862 **Theorem C.2** (Bounded suboptimality of the trained policy). *Under Assumptions 1 and 2,*
863

$$\mathbb{E}_{q \sim \mathcal{Q}}[V_H(\hat{\pi} | q)] \geq \mathbb{E}_{q \sim \mathcal{Q}}[V_H(\pi_q^* | q)] - \delta H \sqrt{\frac{1}{2}\epsilon}.$$

864 *Proof.* For any task q ,

$$\begin{aligned}
 866 \quad J^q(\hat{\pi}) &= J_H^q(\hat{\pi}, \pi_q^*) = J_0^q(\hat{\pi}, \pi_q^*) + \sum_{t=0}^{H-1} (J_{t+1}^q(\hat{\pi}, \pi_q^*) - J_t^q(\hat{\pi}, \pi_q^*)) \\
 867 \\
 868 \quad &= J^q(\pi_q^*) + \sum_{t=1}^H \mathbb{E}_{o_{\leq t} \sim \hat{\pi}} [Q_t(\hat{\pi}, \pi_q^*) - Q_t(\pi_q^*, \pi_q^*)] \quad (\text{Lemma C.1}) \\
 869 \\
 870 \quad &\leq J^q(\pi_q^*) + \delta \sum_{t=1}^H \mathbb{E}_{o_{\leq t} \sim \hat{\pi}} [\ell_{o_{\leq t}}(\hat{\pi}, \pi_q^*)].
 \end{aligned}$$

871 From Assumption 2, by Pinsker's inequality and Jensen's inequality we show

$$\mathbb{E}_{q \sim \mathcal{Q}} \mathbb{E}_{o_{\leq t} \sim \hat{\pi}} [\ell_{o_{\leq t}}(\hat{\pi}, \pi_q^*)] \leq \mathbb{E}_{q \sim \mathcal{Q}} \mathbb{E}_{o_{\leq t}} [\text{TV}(\hat{\pi}, \pi_q^*)] \quad (8)$$

$$\leq \sqrt{\frac{1}{2} D_{\text{KL}}(\pi_q^* \parallel \hat{\pi})} \quad (9)$$

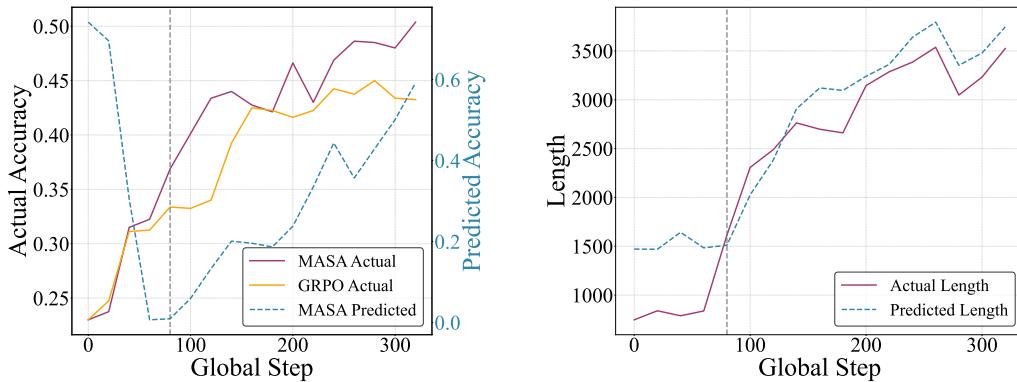
$$\leq \sqrt{\frac{1}{2} \varepsilon}. \quad (10)$$

882 Taking $\mathbb{E}_{q \sim \mathcal{Q}}$ yields

$$\mathbb{E}_{q \sim \mathcal{Q}} [J^q(\hat{\pi})] \leq \mathbb{E}_{q \sim \mathcal{Q}} [J^q(\pi_q^*)] + \delta H \sqrt{\frac{1}{2} \varepsilon}$$

883 and substituting cost J back to return V proves the claim. \square

884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918
919
920
921 **D META-PREDICTION DYNAMICS DURING MASA TRAINING**
922
923
924
925
926
927
928
929
930
931
932
933934 (a) Actual and meta-predicted accuracy over global (b) Actual and meta-predicted output length over
935 training steps. global training steps.936
937 Figure 7: Actual vs. meta-predicted statistics across training938 To analyze the training dynamics of meta-prediction, we tracked how the model’s meta-predictions
939 and actual performance changed over the course of training. As shown in fig. 7, the meta-predictions
940 initially differed greatly from the actual values, but the gap gradually narrowed as training pro-
941 gressed.942 We also observed an interesting pattern in accuracy meta-prediction. Early in training, the model
943 tended to predict excessively high pass rates for most problems, which created a large discrepancy
944 with the true accuracy, as shown in fig. 7a. This mismatch resulted in low rewards and a sharp drop
945 in the predicted values. Around step 80, the model began to distinguish between easy and hard
946 problems, and MASA’s performance improved rapidly.947 As we can see in fig. 7b, a similar trend appeared in the difficulty metric. At first, the model failed to
948 accurately estimate the token length of correct solutions, but after about step 80 it began to match the
949 actual lengths more closely. Notably, this timing coincided with the point at which MASA began to
950 outperform the baseline, supporting our hypothesis that meta-awareness contributes to performance
951 gains.952
953 **E USAGE OF LLM**
954955 We used LLM to polish writings and to search for related works.
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971