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ABSTRACT

Cryo-electron microscopy (cryo-EM) is an indispensable technique for determin-
ing the 3D structures of dynamic biomolecular complexes. While typically ap-
plied to image a single molecular species, cryo-EM holds great potential for struc-
ture determination of many targets simultaneously in a high-throughput fashion.
However, existing methods typically focus on modeling conformational hetero-

geneity within a single or a few structures and are not designed to resolve composi-

tional heterogeneity arising from mixtures of many distinct molecular species. To
address this challenge, we propose CryoHype, a transformer-based hypernetwork
for cryo-EM reconstruction that dynamically adjusts the weights of an implicit
neural representation conditioned on each particle image. CryoHype establishes
a new state-of-the-art on the challenging Tomotwin-100 dataset for compositional
heterogeneity in CryoBench. We further introduce Sim2Struct-1000, a new syn-
thetic dataset for compositional heterogeneity with 10 times more structures than
previous datasets, where CryoHype improves FSCAUC by 67%. Together, these
advances establish transformer hypernetworks as a scalable approach for extreme
heterogeneity in cryo-EM reconstruction.

1 INTRODUCTION

Single particle cryo-electron microscopy (cryo-EM) has emerged as an essential tool to resolve the
3D structures of macromolecular complexes at atomic resolution (Nakane et al., 2018; Yip et al.,
2020). Unlike other structure determination methods or structure prediction methods, cryo-EM can
experimentally probe the dynamics of large macromolecular complexes in near-native states.

In cryo-EM imaging, an aqueous solution of biomolecular complexes is flash frozen and imaged
using an electron microscope. Each image contains an extremely noisy, low signal-to-noise ratio
(SNR) projection of a complex in an unknown orientation, making the inverse problem of 3D re-
construction especially challenging. Traditionally, cryo-EM is typically used to resolve a single or
a few structures from a purified sample. Yet the technique can, in principle, be used to capture
more complex scenarios, including heterogeneous mixtures, unpurified samples, or cellular lysates
to determine multiple structures in a high-throughput fashion (Ho et al., 2020; Rabuck-Gibbons
et al., 2022; Jeon et al., 2024). Resolving this discrete heterogeneity due to the presence of multiple
structures, termed compositional heterogeneity, is a major challenge for cryo-EM reconstruction al-
gorithms. In this work, we focus on expanding the capabilities of cryo-EM imaging by tackling the
computational challenge of capturing extreme, large-scale compositional heterogeneity.

Classical reconstruction algorithms handle compositional heterogeneity by using algorithms such as
expectation-maximization to sort images into a small, predefined number of discrete classes, typ-
ically fewer than 10. However, these approaches struggle to handle large-scale heterogeneity due
to computational limitations. Neural-based lines of work use either an autoencoding (Zhong et al.,
2020; 2021) or encoder-free autodecoding (Punjani & Fleet, 2021; Levy et al., 2024a;b) approach.
Volumes are representing using linear combinations of voxel arrays (Punjani & Fleet, 2021; Kima-
nius et al., 2022) or neural representations (Zhong et al., 2020; 2021; Levy et al., 2024a;b). While
these methods may be sufficient for modeling a small number of structures or compositional het-
erogeneity found within a single biomolecular complex, excessive parameter sharing between the
representations of different structures causes them to inadequately capture extreme compositional
heterogeneity, limiting the resolution and diversity of the reconstructed structures.
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To overcome these limitations, we introduce CryoHype, an autoencoding transformer-based hyper-
network method that can resolve extreme compositional heterogeneity. Using a hypernetwork (Ha
et al., 2016) encoder allows the model to dynamically adapt the weights of the neural represen-
tations to different structures, reducing parameter sharing and increasing expressivity compared
to past methods. The vision transformer (Dosovitskiy, 2020) (ViT) architecture for the hypernet-
work provides scalable and parameter-efficient weight generation. In order to robustly evaluate
CryoHype, we introduce Sim2Struct-1000, a dataset for extreme compositional heterogeneity
with 10 times more structures than previous datasets for compositional heterogeneity (Jeon et al.,
2024), and propose new real-space metrics from 3D shape analysis that complement traditional
Fourier Shell Correlation (FSC)-based metrics. We demonstrate that our method scales neural-based
methods to extreme compositional heterogeneity with state-of-the-art performance on a variety of
metrics. We therefore make the following contributions:

• We identify excessive parameter sharing as a limitation of current neural methods, and
propose CryoHype, a transformer-based hypernetwork model for heterogeneous cryo-EM
reconstruction;

• We demonstrate that our method can reconstruct datasets containing extreme large-scale
compositional heterogeneity up to 1000 distinct structures;

• We propose Sim2Struct-1000, a new large-scale dataset for compositional hetero-
geneity that is an order of magnitude larger than previous datasets;

• We propose two new metrics from 3D shape analysis that complement traditional FSC-
based metrics to provide a more comprehensive assessment of reconstruction performance.

2 RELATED WORK

Cryo-EM heterogeneous reconstruction. Current methods for cryo-EM heterogeneous reconstruc-
tion can be broadly divided into non-neural and neural network-based approaches . 3D Classifica-
tion (Scheres et al., 2007; Scheres, 2012; 2016; Punjani et al., 2017; Grant et al., 2018) employs
the Expectation-Maximization algorithm to sort images into a predefined number of discrete classes
(typically < 10) and is highly sensitive to initialization. Non-neural methods for continuous het-
erogeneity typically utilize linear models to address heterogeneity (Tagare et al., 2015; Andén &
Singer, 2018; Punjani & Fleet, 2021; Gilles & Singer, 2023). 3DVA (Punjani & Fleet, 2021) and
RECOVAR (Gilles & Singer, 2023) are PCA-based methods that use probabilistic PCA and regular-
ized covariance estimation, respectively. These methods learn a linear subspace describing structural
heterogeneity, but are limited in expressivity for diverse compositional heterogeneity settings (Jeon
et al., 2024).

Neural network-based methods typically operate entirely in Fourier space, leveraging the Fourier
slice theorem (Bracewell, 1956) for greater computational efficiency. CryoDRGN (Zhong et al.,
2020) and Opus-DSD (Luo et al., 2023) are variational autoencoder (Kingma, 2013) (VAE)-based
approaches that use MLP and CNN encoders and INR decoders, respectively, while SFBP (Kimanius
et al., 2022) is a VAE whose decoder is a linear combination of voxel arrays. 3DFlex (Punjani &
Fleet, 2023), DRGN-AI (Levy et al., 2024a), and Hydra (Levy et al., 2024b) are encoder-free auto-
decoder methods where each object has a learnable latent code. These existing methods mainly
focus on conformational heterogeneity with one or two different species and share almost all of
their decoder weights among all reconstructed structures. In contrast, our method focuses on extreme
compositional heterogeneity and solves this problem by reducing parameter sharing via conditioning
the INR by a hypernetwork, which dynamically adjusts the weights in every layer of the INR using
a more powerful and scalable ViT (Dosovitskiy, 2020) encoder.

Hypernetworks and INRs. A hypernetwork (Ha et al., 2016) is a neural network gω that produces
or modifies the weights of another neural network fε, sometimes called the primary network or
hyponetwork, typically an MLP, with the goal of learning the hypernetwork weights ω. This ar-
chitecture allows the weights of the primary network to be dynamically adapted to different tasks.
Most forms of INR conditioning are equivalent to having a hypernetwork producing a subset of its
weights (Xie et al., 2022). An important example is concatenation, the conditioning approach of
most neural cryo-EM reconstruction methods, which is equivalent to defining an affine function that
maps latent codes to the biases of the first layer of the network (Sitzmann et al., 2020a; Dumoulin
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et al., 2018; Mehta et al., 2021), making concatenation a special case of a hypernetwork with low
expressivity and high parameter sharing. In between the expressivity of full hypernetworks and con-
catenation are methods that predict feature-wise transformations (Dumoulin et al., 2018; Chan et al.,
2021; Mehta et al., 2021), also called FiLM (Perez et al., 2018) conditioning, which predict a per-
layer scale and bias. Our method uses a hypernewtork architecture that predicts the weights (but not
the biases) of each layer, making it more expressive than conditioning by concatenation or FiLM.
Hypernetworks that produce the weights of the primary network directly are difficult to train (Ortiz
et al., 2023), so often the weights of the primary network are modified using a residual learning
approach (Chen & Wang, 2022; Ortiz et al., 2023). Hypernetworks have been widely used to con-
dition INRs (Sitzmann et al., 2019; 2020b; 2021; Chen & Wang, 2022; Gu et al., 2023; Kim et al.,
2023; Lee et al., 2024; Gu & Yeung-Levy, 2025), especially generalizable INRs (Chen & Wang,
2022; Kim et al., 2023; Gu et al., 2023; Lee et al., 2024; Gu & Yeung-Levy, 2025), where they
outperform alternative methods of conditioning INRs such as gradient-based meta-learning (Tancik
et al., 2021). In particular, Chen & Wang (2022) proposed a transformer-based hypernetwork archi-
tecture that uses a ViT encoder to modify the weights of an INR decoder via masking. Our insight is
that these methods are designed to handle extreme compositional heterogeneity in shapes, with our
method building on Chen & Wang (2022) by adapting it to the task of cryo-EM reconstruction.

Heterogeneous benchmarks for cryo-EM. The main heterogeneous benchmark for cryo-EM re-
construction is CryoBench (Jeon et al., 2024), which proposes five new datasets with varying types
of heterogeneity and degrees of difficulty. Among these, Tomotwin-100 is the only CryoBench
dataset that tackles extreme compositional heterogeneity with 100 distinct structures. We extend
this further by proposing Sim2Struct-1000, a large-scale and challenging dataset for com-
positional heterogeneity derived from Giri et al. (2024) that has 10 times as many structures as
Tomotwin-100. Additionally, the standard volume-based metric for cryo-EM is Fourier shell
correlation (FSC), which can be misleading for heterogeneous structures (Gilles & Singer, 2023).
To provide a more complete evaluation of reconstruction quality, we propose two complementary
real-space metrics that can capture heterogeneity missed by FSC.

3 METHODS

In this section, we introduce the cryo-EM image formation model (Section 3.1), motivation (Sec-
tion 3.2), and our transformer-based hypernetwork method, CryoHype (Section 3.3).

3.1 CRYO-EM IMAGE FORMATION MODEL

The cryo-EM reconstruction task is to recover structures Vi : R3 → R, 1 ↑ i ↑ N of a set of
noisy 2D projections X1, . . . , XN of the structures Vi. In each projection Xi, the particle is in an
unknown pose ωi, consisting of a rotation R ↓ SO(3) and in-plane translation t ↓ R2. Each image
Xi is generated according to the following model:

Xi = Ci ↔ P(ωi)Vi + ε (1)

where Ci is the Contrast Transfer Function (CTF), P is the projection operator that transforms Vi

by rotation by Ri and translation by ti, and ε ↗ N (0,ϑ2) models additive isotropic Gaussian noise.
Additional details are provided in the Appendix.

3.2 MOTIVATION

Previous neural volume representation methods in cryo-EM captured heterogeneity through either
providing a latent code as additional input to an implicit neural representation (INR) volume rep-
resentation (Zhong et al., 2020) or as as the coefficients of a linear combination of a shared basis
of voxel arrays (Kimanius et al., 2022). In either of these approaches, almost all parameters of the
neural volume representations are shared among all the different structures, limiting the diversity of
the structures that can be captured and limiting the ability of the model to generate structure-specific
high-resolution details. Hypernetworks overcome this problem by increasing the expressiveness of
conditioning and reducing parameter sharing, since it can be proven that conditioning a network !
by concatenation is equivalent to having a linear hypernetwork produce the biases of the first layer
of ! (Sitzmann et al., 2020a; Dumoulin et al., 2018; Mehta et al., 2021). Two observations stem
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naturally from this result: first, that a general hypernetwork generalizes conditioning by concatena-
tion and can be much more expressive if the hypernetwork is more expressive than a linear layer.
Second, conditioning by concatenation is equivalent to sharing all hyponetwork (i.e. INR decoder)
weights among all data points except its biases. Thus, hypernetwork approaches can dynamically
adapt a significantly higher proportion of decoder weights than either conditioning-by-concatenation
or linear combinations of voxel arrays.

3.3 CRYOHYPE ARCHITECTURE
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Figure 1: CryoHype architecture. First, the input image is tokenized using a ViT tokenizer Embed.
They are concatenated with learnable weight tokens and processed by a ViT encoder. Using only the
output (blue) tokens corresponding to the weight tokens, we apply linear heads Headi (not shown
for clarity) and then dynamically adjust the base parameters of an INR decoder, which reconstructs
the volume in Fourier space, using elementwise matrix multiplication ↘. Finally, an inverse Fourier
transform is applied to get the reconstruction in real space (not shown).

The CryoHype architecture consists of five main components: (1) a ViT encoder g, consisting of a
tokenizer Embed and Transformer encoder Enc, (2) extra learnable weight tokens {wi}qi=1 (3) an
INR f , a ReLU MLP with residual connections, with a shared set of base parameters {ϖi}Lj=1 where
L is the number of layers, and (4) learnable linear heads {Headj}Lj=1 for each layer Lj in f (see
Figure 1). Reconstruction is done completely in the Fourier domain. A forward pass of our model
works as follows: first, an input projection X̂ tokenized into T tokens {tk}Tk=1 by Embed. These
T tokens are then concatenated along with the learnable weight tokens wi and processed by Enc,
the Transformer part of the ViT encoder, to produce the final tokens [tF1 , . . . , tFT , w

F
1 , . . . , w

F
q ]. The

output tokens corresponding to the weight tokens wF
i are then divided into L groups consisting of aj

tokens wF,j
q , . . . , w

F,j
aj

, 1 ↑ j ↑ L, with
∑

i aj = q. The jth group [wF,j
a1

, . . . , w
F,j
aj

] is transformed
by the linear head Headj and normalized. The output of the previous step is multiplied elementwise
by the jth layer’s base parameter ϖj to produce the final parameters ϖFj of the jth layer::

ϖ
F
i = Norm(Headj([w

F,i
a1

, . . . , w
F,i
aj

]))↘ ϖj (2)

Finally, the final INR parameters ϖFi are used to instantiate the INR f , which parametrizes the struc-
ture V̂ . The INR f maps Fourier space coordinates (kx, ky, kz) to the Fourier-transformed electron
scattering potential at that coordinate, producing a clean (i.e., not noisy and CTF-free) prediction
X̃ . X̃ is then multiplied by the CTF (see Section 3.1), and a reconstruction loss (mean-square
error, MSE) is computed between the ground truth views and predicted views, and gradients are
backpropagated to the hypernetwork. Note that CryoHype is trained end-to-end, with the learnable
parameters being (1) the ViT encoder g, (2) the extra learnable weight tokens wi, 1 ↑ i ↑ q, (3) the
decoder’s base parameters ϖj , 1 ↑ j ↑ L, where L is the number of layers in the decoder, and (4)
the learnable linear heads Headj , 1 ↑ j ↑ L.

Latent space embeddings. Unlike autoencoder and autodecoder-based reconstruction methods,
CryoHype does not have a canonical low-dimensional latent space. For our latent space analysis, we
use the tokens wF

1 , . . . , w
F
q (blue tokens of Fig. 1). These tokens have total dimension qd where q is

4
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Figure 2: Sim2Struct-1000. Example atomic models, density maps, and projected images from
Sim2Struct-1000, containing 1000 distinct structures.

the number of weight tokens and d is the dimension of the ViT and are extremely high-dimensional.
To get an interpretable latent space, we perform dimensionality reduction in two stages: first, we use
principal component analysis (PCA) to reduce to a smaller dimension d1 ≃ qd, with d1 = 100. We
then use UMAP (McInnes et al., 2018) to further reduce the dimension to 2 for visualization.

4 SIM2STRUCT-1000

We introduce Sim2Struct-1000, a large-scale simulated cryo-EM dataset for extreme compositional
heterogeneity derived from the Cryo2StructData collection (Giri et al., 2024). Cryo2StructData
comprises experimentally obtained cryo-EM density maps paired with atomic models from the Pro-
tein Data Bank (PDB) (Berman et al., 2000). Experimental cryo-EM maps from the original collec-
tion exhibited inconsistent resolution, noise levels, and grid dimensions due to diverse experimental
parameters, potentially introducing confounding downstream biases. To avoid training models that
learn these experimental settings, we instead selected a subset of 1000 atomic models filtered by par-
ticle size for Sim2Struct-1000. Each atomic model was converted to a density map and subsequently
projected to create 1000 simulated images (256 ⇐ 256, 3.0 Å/pix, downsampled to 128 ⇐ 128), re-
sulting in a dataset of 1M total particle images (Figure 2). Sim2Struct-1000 thus allows evaluation
of our method’s robustness under challenging conditions of compositional heterogeneity at scale.

5 EXPERIMENTAL SETTINGS
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Tomotwin-100 Sim2Struct-1000(a) (b)

Figure 3: Qualitative results of Tomotwin-100 and Sim2Struct-1000. Representative density
volumes and the corresponding ground truth volume.
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Figure 4: Per-Image FSC. Each curve shows the average FSC curve across all conformations with
error bars indicating the standard deviation. The full FSC curves are shown in Appendix.
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Figure 5: Latent Visualization for Tomotwin-100 and Sim2Struct-1000. (a) Latent embeddings
from cryoDRGN visualized by UMAP and colored by the 10, 100, 200, 500, and 1000 G.T proteins.
(b) Latent embeddings for CryoHype.

5.1 DATASETS

We evaluate our method on two heterogeneous synthetic datasets containing extreme compositional
heterogeneity: Tomotwin-100 (Jeon et al., 2024) and our new challenging Sim2Struct-1000
dataset. We further demonstrate our method on one experimental dataset of the assembling ribo-
some (Davis et al., 2016). More details are in the Appendix.

Tomotwin-100. Tomotwin-100 (Jeon et al., 2024) evaluates the capability of cryo-EM recon-
struction algorithms to address extreme compositional heterogeneity. This dataset was generated
by simulating the cryo-EM image formation process for 100 of the 120 distinct cellular complexes
included in the TomoTwin dataset (Rice et al., 2023), curated to contain diverse and dissimilar pro-
teins. Notably, Tomotwin-100 represents the most challenging dataset in (Jeon et al., 2024), with
most methods failing to achieve successful reconstructions. We also find that higher FSCs do not
necessarily result in higher Chamfer Distance or volumetric IoU, indicating that our new metrics are
capturing differences in structure that are not being captured by FSC.

Sim2Struct-1000. Sim2Struct-1000 evaluates model scalability to datasets containing a large
degree of compositional heterogeneity. Sim2Struct-1000 is a synthetic dataset dervied from
Cryo2Struct (Giri et al., 2024) (see Sec. 4). In our experiments, we examine four subsets of this
dataset, representing different amounts of compositional heterogeneity, consisting of 10, 100, 200,
500, and all 1000 structures. Each structure has 1000 simulated projection images.

EMPIAR-10076. We also evaluate our method on an experimental dataset,
EMPIAR-10076 (Davis et al., 2016), which is known to exhibit significant compositional

Table 1: Quantitative performance on Tomotwin-100 (Noiseless), measured by FSCAUC, CD,
and vIoU. Metrics computed on backprojected images for each G.T. structure as an upper bound.

Method
Noiseless Tomotwin-100

→ Mean FSCAUC (std) Median ↑ Mean CD (std) Med → Mean vIoU (std) Med

CryoDRGN Zhong et al. (2021) 0.328 (0.022) 0.327 1.9750 (0.4450) 1.9165 0.6513 (0.0540) 0.6534

CryoHype 0.384 (0.019) 0.387 1.8663 (0.2514) 1.9002 0.6564 (0.0375) 0.6512

Backprojection 0.406 (0.018) 0.406 1.1931 (0.1987) 1.2130 0.7527 (0.0406) 0.7500
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Table 2: Quantitative performance on Tomotwin-100 (Noisy), measured by FSCAUC, CD, and

vIoU. † indicates that the result is from Jeon et al. (2024).
Method

Tomotwin-100

→ Mean FSCAUC (std) Median ↑ Mean CD (std) Med → Mean vIoU (std) Med

CryoDRGN (Zhong et al., 2021) 0.316 (0.046)† 0.321† 2.26 (1.59) 1.98 0.63 (0.08) 0.65

DRGN-AI-fixed (Levy et al., 2024a) 0.202 (0.044)† 0.207† 32.60 (18.45) 29.52 0.13 (0.09) 0.12
Opus-DSD (Luo et al., 2023) 0.237 (0.049)† 0.251† 33.48 (0.1378) 28.92 0.14 (0.08) 0.13
SFBP (Kimanius et al., 2022) 0.036 (0.011) 0.036 18.52 (8.33) 17.32 0.16 (0.06) 0.16
3DVA (Punjani & Fleet, 2021) 0.088 (0.040)† 0.077† 25.52 (17.90) 21.40 0.18 (0.09) 0.18

RECOVAR (Gilles & Singer, 2023) 0.258 (0.109)† 0.254† 27.22 (18.86) 23.14 0.16 (0.08) 0.15
3D Class (Punjani et al., 2017) 0.046 (0.026)† 0.037† - - - -

CryoHype 0.346 (0.033) 0.353 2.18 (0.46) 2.11 0.61 (0.06) 0.62

Backprojection 0.364 (0.023) 0.364 1.50 (0.20) 1.50 0.71 (0.03) 0.71

Table 3: All Sim2Struct-1000 metrics. Metrics are computed with standard deviations per method
in parentheses. Chamfer distance is given in angstroms (Å). Isosurface levels are set at 220 for all
subsets of Sim2Struct-1000.

Method Structures
Sim2Struct-1000

→ Mean FSCAUC (std) Median ↑ Mean CD (std) Median → Mean vIoU (std) Median

CryoDRGN 10 0.434 (0.012) 0.437 1.9898 (0.3010) 2.0468 0.4853 (0.0524) 0.4806
CryoHype 0.464 (0.006) 0.465 1.7781 (0.1702) 1.7890 0.5005 (0.0336) 0.4939

CryoDRGN 100 0.361 (0.039) 0.357 2.3389 (0.6433) 2.2417 0.4731 (0.0602) 0.4664
CryoHype 0.409 (0.024) 0.407 1.9916 (0.4040) 1.9488 0.4897 (0.0516) 0.4849

CryoDRGN 200 0.334 (0.047) 0.334 2.4428 (1.0553) 2.2273 0.4765 (0.0673) 0.4766

CryoHype 0.377 (0.028) 0.375 2.0748 (0.3363) 2.0489 0.4726 (0.0484) 0.4697

CryoDRGN 500 0.216 (0.069) 0.213 4.6358 (4.2948) 3.1548 0.3866 (0.1293) 0.4101
CryoHype 0.305 (0.065) 0.322 2.4069 (0.7773) 2.2336 0.4529 (0.0773) 0.4565

CryoDRGN 1000 0.139 (0.054) 0.140 9.0656 (7.6560) 5.9439 0.2647 (0.1406) 0.2608
CryoHype 0.232 (0.079) 0.216 3.0179 (1.2470) 2.6512 0.4181 (0.1088) 0.4394

heterogeneity, comprising 13 discrete structures of the assembling 50S ribosome organized into
four major assembly states. The data is preprocessed according to Zhong et al. (2021).

5.2 METRICS

We measure reconstruction quality with three metrics. The first, Fourier Shell Correlation (FSC),
is a standard metric for comparing volumes in cryo-EM, computing correlation between Fourier
shells at various thresholds and is a global measure of resolution, but can be misleading in the
heterogeneous case (Gilles & Singer, 2023). We follow (Jeon et al., 2024) and evaluate methods
using the area under the FSC curve per image (FSCAUC). In addition, we propose two metrics from
3D shape analysis that measure reconstruction quality in real space and thus are more sensitive to
local structural heterogeneity.The first is volumetric intersection-over-union (IoU), which measures
the volumetric overlap between volumes, and the second is Chamfer distance (CD), which captures
pointwise differences between point clouds. We convert the voxel-based data to point clouds by
extracting the coordinates of occupied voxels above a specified density threshold and scaling these
to world coordinates based on voxel size and grid dimensions. Further analyses of our new metrics
and details on the density threshold selection can be found in the Appendix.
5.3 BASELINES

In Table 2, we examine a variety of state-of-the-art fixed-pose methods for cryo-EM reconstruc-
tion, including VAE-based reconstruction algorithms (Zhong et al., 2021; Kimanius et al., 2022;
Luo et al., 2023), autodecoder-based algorithms (Levy et al., 2024a), and non-deep learning based
algorithms (Punjani et al., 2017; Gilles & Singer, 2023; Punjani & Fleet, 2021). For other experi-
ments, we only compare against CryoDRGN (Zhong et al., 2021), the only method that demonstrates
reasonable performance in the case of extreme compositional heterogeneity (Jeon et al., 2024).

6 RESULTS

We evaluate our model on Tomotwin-100 and our new Sim2Struct-1000 dataset. For syn-
thetic datasets with ground truth, quantitative results including FSCAUC, Chamfer Distance, and

7
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volumetric IoU are found in Tables 1, 2, and 3. Qualitative results for the Tomotwin-100 and
Sim2Struct-1000 datasets are found in Figure 3.

Tomotwin-100. In the noiseless case, we find that CryoHype greatly outperforms CryoDRGN in
FSCAUC, approaching the performance of backprojection, and is better or comparable in all real
space 3D shape metrics (Table 1). In the standard noisy (SNR 0.01) case, we note that all baselines
except CryoDRGN are unable to handle extreme compositional heterogeneity and fail to produce
reasonable reconstructions (Jeon et al., 2024) (Table 2). Here, we find that CryoHype clearly out-
performs all baselines, including CryoDRGN, in the standard FSCAUC metric, but exhibits more
mixed performance in 3D shape metrics when compared to CryoDRGN. Qualitatively, we find that
CryoHype captures the global shape more precisely and more fine-grained details than CryoDRGN,
resulting in higher resolution (Figure 3(a)), which is also reflected in the FSC curves (Figure 4).
We attribute this to the more expressive conditioning of the CryoHype’s hypernetwork architecture.
Both CryoHype and CryoDRGN produce reasonable looking latent spaces (Figure 5). We also find
that CryoHype has much less variability, as indicated by smaller standard deviations for all metrics.

Sim2Struct-1000. Quantitatively, we find that CryoHype significantly outperforms CryoDRGN at
all levels of compositional heterogeneity (10, 100, 200, 500, and 1000 structures) in virtually all met-
rics, including our proposed 3D shape metrics (Table 3). As shown by the FSC curves, CryoHype
captures all frequencies better than CryoDRGN across all levels of compositional heterogeneity
(Figure 4). Qualitatively, we see the same behavior as Tomotwin-100, where CryoHype produces
high resolution reconstructions due to its more expressive conditioning of the INR decoder, while
CryoDRGN is oversmoothing (Figure 3). We also find that CryoHype’s performance advantage
over CryoDRGN increases as the compositional heterogeneity gets more extreme, showing the bet-
ter scaling of our ViT encoder vs CryoDRGN’s MLP encoder. This trend is also reflected in the
latent spaces (Figure 5). We find that while the latent spaces for both methods look reasonable at
lower levels of heterogeneity, the latent space of CryoDRGN starts to degrade at high levels of het-
erogeneity (500 structures and 1000 structure), indicating that CryoDRGN can no longer completely
resolve the heterogeneity in the dataset. In contrast, the latent space of CryoHype remains clustered
for views of the same structure and disentangled for different structures, even at the most extreme
amounts of compositional heterogeneity.

Table 4: Ablation study on CryoHype exam-
ining the four main components of the model,
evaluated by FSCAUC.

Method
Tomotwin-100

Mean (std) Med

Concatenation 0.255 (0.076) 0.286

U-Net encoder 0.208 (0.031) 0.214
MLP encoder 0.234 (0.032) 0.240

CryoHype 0.346 (0.033) 0.353

EMPIAR-10076. Figure 6(a) illustrates recon-
structed volumes of the four major classes of
EMPIAR-10076 produced by CryoHype and
CryoDRGN. Due to the absence of ground truth
volumes for this dataset, direct comparison of
quality between the methods is challenging. In-
stead of quantitative metrics, we present latent
space visualizations colored by major and mi-
nor classes identified from the original publica-
tion (Fig. 6 (b)). Both methods successfully sep-
arate the major classes. However, for the minor
classes, CryoHype produces distinct clusters within each major class (e.g., D1, D2, D3, and D4),
while CryoDRGN shows considerable overlap and less distinct separation among the clusters.

6.1 ABLATION

In Table 5, we show the effectiveness of the hypernetwork architecture and ViT encoder of Cry-
oHype. We find that changing to a different encoder results in heavily degraded performance, con-
firming that the hypernetwork architecture is more expressive. To test the effectiveness of the ViT
encoder, we replace it with a convolutional U-Net (Ronneberger et al., 2015; Buda et al., 2019) en-
coder and MLP encoder (Sitzmann et al., 2021). Performance is again heavily degraded despite the
convolutional and MLP networks using more parameters, showing the importance of using a ViT
encoder in hypernetwork architectures for parameter efficiency and scalability. Additional experi-
ments comparing CryoHype against larger CryoDRGN variants as well full implementation details
can be found in the Appendix.
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(a)

(b)

Figure 6: Qualitative results on the EMPIAR-10076 dataset. (a) Density maps of the four major
ribosome assembly states from Davis et al. (2016). (b) Latent space representation, colored by major
and minor assembly states assigned from the 3D classification in Davis et al. (2016). CryoHype
produces a disentangled latent space in which major and minor classes are well-clustered, facilitating
clear separation and classification.

7 CONCLUSION

We introduce CryoHype, a novel transformer hypernetwork approach for cryo-EM reconstruc-
tion that can dynamically adapt the decoder to each input image, allowing our method to capture
large-scale compositional heterogeneity at high resolution. Across both synthetic and experimental
datasets, we show that CryoHype can more accurately recover compositional heterogeneity from
large-scale datasets over previous methods and produces more structured latent spaces. We also
introduce Sim2Struct-1000, a new dataset for compositional heterogeneity with 10 times more
structures than existing datasets, as well as two complementary real-space metrics for evaluating
cryo-EM reconstruction quality.

In this work, we focus on the architectural expressivity of hypernetworks for modeling extreme-
scale compositional heterogeneity, and we note that CryoHype currently requires known particle
poses. While this assumption is unrealistic in real experimental settings, it allows us to isolate
and study the benefits of transformer-based hypernetwork conditioning. Extending CryoHype to ab

initio reconstruction with joint pose estimation is an important next step, with natural integration into
existing pose-search frameworks. Beyond poses, future work could investigate datasets containing
both conformational and compositional heterogeneity, motion recovery within the latent space, and
multi-view extensions such as tilt-series imaging. Our two new metrics (CD, IoU) are sensitive
to isosurface levels, indicating a need for future metrics that are independent of isosurface or noise
factors. Together, these advances suggest that transformer-based hypernetworks, coupled with large-
scale heterogeneous datasets, offer a foundation for developing computational methods to enable
reconstructing diverse mixtures from cryo-EM at scale.

Ethics statement. Our method for reconstructing the conformations of biomolecules from cryo-
EM imaging should help increase the understanding of the biological functions of the reconstructed
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biomolecules. We do not believe that our method has any negative societal impacts. LLM usage was
limited to improving the writing of the paper.

Reproducibility statement. We will release the code and our new Sim2Struct-1000 dataset
upon publication.
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