
Neural Hybrid Automata: Learning Dynamics with
Multiple Modes and Stochastic Transitions

Michael Poli∗
NAVER AI Lab, DiffEqML

poli@stanford.edu

Stefano Massaroli∗
University of Tokyo, DiffEqML

massaroli@robot.t.u-tokyo.ac.jp

Luca Scimeca
NAVER AI Lab

Seong Joon Oh
NAVER AI Lab

Sanghyuk Chun
NAVER AI Lab

Atsushi Yamashita
University of Tokyo

Hajime Asama
University of Tokyo

Jinkyoo Park
KAIST

Animesh Garg
University of Toronto

Abstract

Effective control and prediction of dynamical systems require appropriate handling
of continuous–time and discrete, event–triggered processes. Stochastic hybrid
systems (SHSs), common across engineering domains, provide a formalism for
dynamical systems subject to discrete, possibly stochastic, state jumps and multi–
modal continuous–time flows. Despite the versatility and importance of SHSs
across applications, a general procedure for the explicit learning of both discrete
events and multi–mode continuous dynamics remains an open problem. This work
introduces Neural Hybrid Automata (NHAs), a recipe for learning SHS dynamics
without a priori knowledge on the number of modes and inter-modal transition
dynamics. NHAs provide a systematic inference method based on normalizing
flows, neural differential equations and self–supervision. We showcase NHAs on
several tasks, including mode recovery and flow learning in systems with stochastic
transitions, and end–to–end learning of hierarchical robot controllers.

1 Introduction

Behaviors emerging from the interaction of continuous and discrete–time dynamics in the presence
of uncertainty are described through the language of stochastic hybrid systems (SHSs). Such discrete
events can bring along abrupt changes in the state, and in complex multi–mode systems, may also
cause a switch between system modes, and corresponding underlying continuous dynamics [1].
Communication networks [2], [3], where changes in communication protocol can happen at certain
levels of traffic congestion, and biological systems [4]–[6] are example domains where the SHS
modeling paradigm has proven fruitful.

Data–driven identification and learning of hybrid systems are known to be challenging due to the
entanglement of continuous flows and discrete events [7]; finding a generally applicable technique
remains an open problem, particularly in the common scenarios where no a priori knowledge on
the number and type of system modes is given. The aim of this work is to apply continuous neural
models [8]–[10] to the learning SHSs. We introduce a compact descriptive language for this task,
decomposing the system into a set of core primitives. Prior work is integrated into the framework,
highlighting in the process limiting assumptions and areas of further improvement.

∗Equal contribution. Author order was decided by flipping a coin.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



To address the shortcomings of existing techniques, we introduce Neural Hybrid Automata (NHA)
as a general procedure designed to enable learning and simulation of SHSs from data. NHAs are
comprised of three components: a dynamics module, taking the form of an neural differential equation
(NDE) [8]–[10] capable of approximating a different vector field for each mode, a discrete latent
state tracking the internal mode of the target system, and an event module determining the time to
next event. In particular, our approach does not require prior knowledge on the number of modes.
The synergy among NHA components ensures a broader range of applicability compared to previous
attempts, which in example do not directly tackle multi–mode hybrid systems [11]–[14]. NHAs are
shown to enable mode recovery and learning of systems with stochastic transitions, with additional
applications in end–to–end learning of hierarchical robot controllers.

2 Background

We introduce required background on the formalism of stochastic hybrid systems (SHSs) and event
handling for their numerical simulation. We then provide further contextualization on previous
approaches, introducing in the process a unified language for SHS learning tasks.

2.1 Stochastic Hybrid Systems

A stochastic hybrid system (SHS) [2], [15] is a right-continuous stochastic process Xt taking values
in X ⊆ Rnx with a latent mode process Zt conditioning the dynamics of Xt, where t ≥ 0. Zt is
another right-continuous stochastic process that takes values in a finite set M of size m. In this
context, the set M contains identifiers of internal system modes. An event is defined as either a mode
switch or a state discontinuity (a jump in Xt), which can in some cases occur simultaneously. We
refer to times at which events z → z′ occur as random variables tk ∈ T , with associated intensity
functions [16]

λz→z′(t|Ht) ≥ 0.

where Ht := {tk ∈ T : tk < t} is the history of event times. Intensity, as defined in the classical
temporal point process (TPP) sense, can be interpreted as the expected number of events z → z′

within the time interval [t, t+ dt]. The dynamics for Xt when Zt = z is defined by

flow dynamics : ẋt = Fz(t, xt). (z, t, xt) ∈M× T× X

When a jump event z → z′ is triggered, Xt can instantaneously jump according to

jump dynamics : x+t = ψz→z′(t, xt). (z, z′, t, xt) ∈M2 × T× X

Jump maps ψz→z′ and intensities λz→z′ describe the behavior during events z → z′.

2.2 Event Handling for Hybrid Systems

Following [17], to enable forward simulation of SHSs, a convenient mathematical representation of
an event is a function g : T× X→ R which nullifies only at any event time t∗, thus providing the
differential equation integration algorithm with a termination or restart condition i.e.

t∗ is an event ⇔ g(t∗, xt∗) = 0. (2.1)

The particular form of g induces a jump set on D ⊂ T × X, D := {t, x : g(t, xt) = 0}, and
determines transitions from roots of g to regions of the state–space X where g 6= 0. Notably, this
construct enables utilization of root finding methods [18] in a neighborhood of t∗ to accurately zero
in on the event time.

The same simulation technique can be extended to the many jump sets case typical of multi–mode
systems, by equipping the condition function with identifiers z, z′ (gz→z′ ) which induces jump sets
Dz→z′ .

Simulating stochastic events While the event function approach appears to be limited to the
deterministic setting, it also subsumes stochastic events whose aleatoric uncertainty is encoded by
an intensity λ(t|Ht) [1], [13]. Without loss of generality let us consider a single intensity function
which is henceforth denoted as λ∗t := λ(t|Ht). Recalling that the cumulative distribution function

2



z0start z1

z2

pz0→z1

pz0→z2 pz2→z2

pz1→z1

pz2→z1

ẋt = Fz(t, xt), t ∈ [tk, tk + τ)

Latent z

z0 z1

z2

pz0→z1

pz0→z2 pz1→z2

pz1→z1

pz2→z1

ẋt = Fz(t, xt), t ∈ [tk+1, tk+1 + τ)

Latent z

Dynamics module Event module Dynamics module

Event

tk+1 ← tk + τ

x+t ← ψz→z′(t, xt)

τ, z′ ← NextEvent(z)

Figure 1: Schematic of a Neural Hybrid Automata (NHA). The mode–conditioned Neural ODE Fz drives the
system forward until an event time tk+1 determined by a previous call to the event module. Then, the event
module determines time to next event and corresponding mode target z′ through sampling from normalizing
flow pz→z′ approximating densities of interevent times. A jump function is then applied to the state x, and
simulation continues with flow Fz′ .

(CDF) of inter–event times is 1− exp
{
−
∫ t∗
t0
λ∗tdt

}
, standard inverse transform sampling [1], [19]

yields

t∗ : 0 = s− log

∫ t∗

t0

λ∗tdt, s ∼ Uniform(0, 1) (2.2)

as a special case of (2.1). Approaches developed for learning TPPs, including in the context of Neural
ODEs [8], [11], [20], introduce a parametric formulation for the intensity λ∗θ and optimize via direct
TPP likelihood objectives. The integral is in general intractable, thus these methods require either a
numerical approximation or the augmentation of additional states to compute it alongside the ODE.

2.3 Core primitives for SHS learning

At minimum, a learning model for SHSs necessitates several modules, each mirroring an element of
the formulation in 2.1. More specifically:

i. Dynamics module, to approximate continuous dynamics Fz conditioned on mode z.
ii. Discrete latent selector, to identify at each event time the latent mode z of the system.
iii. Event module, to determine when events happen, and how state x and latent state z are updated

after the transition.

Prior work considers specific instantiations of SHSs, leading to simplifying choices for each module
defined above. In example, switching systems without jumps, where iii. does not require jumps
[21], single mode systems, where ii. is not required and iii. does not need to determine latent
mode transitions [11], [13], [14], systems with known dynamics, where i. is not trained [13], or
systems with only deterministic events [7]. We note some of these works suffer from more than a
single of these limitations, including additional ones consequence of specific model choices. Direct
parametrization of the intensity, while a reasonable choice for single mode systems, requires state
augmentation scaling in the worst case as

(
m
2

)
[22] for a SHS with m modes. More importantly,

training parameters θ for such direct approaches is affected by the accuracy of the numerical method
employed for the solution of the integral in (2.2).

In this work, we introduce a modelling framework SHSs that does not rely on any of the simplifying
assumption on i., ii. and iii. outlined above.

3



3 Neural Hybrid Automata

We introduce Neural Hybrid Automata (NHA), a model for learning of SHSs. A NHA is comprised
of a dynamics module, a discrete latent state and an event predictor. A general overview of a NHA is
depicted in Figure 1. We start with a description of each module and their interconnections, followed
by a step–by–step procedure for NHA training.

Event module Intensity–free parametrizations for stochastic mode transitions allows NHAs to
sample next event times without solving integrals

∫
λ∗tdt for all target modes z′ reachable from

current z. From event k at time tk, NHAs determine next event times tk+1 through a conditional
normalizing flow modeling, for each possible pair of (z, z′), the density of corresponding inter–event
times τkz→z′ = tk+1 − tk, tk ∈ Tz→z′ . Let the intensity be a simple timer i.e λ̇ = 1. Further, let
pz→z′ be the parametrized conditional density obtained by the normalizing flow and let T (z, z′, tk)
be a collection of conditional samples from pz→z′ (one for each pair z, z′), i.e.

T (z, z′, tk) =
{
τkz→z′ ∼ pz→z′(τ |Htk)

}
z,z′∈Z

.

Using (2.2), we can thus sample an event given the current mode z and the previous event time tk as:

tk+1 = tk +min
z′∈Z

T (z, z′, tk). (3.1)

Note that the next mode z′ after the event is simultaneously obtained as z′ = argminT (z, z′, tk).
Sampling strategy (3.1), differently from (2.2), relies on the normalizing flow to explicitly model
the density rather than defining it implicitly through

∫
λ∗tdt. When event time tk is reached, a

parametrized jump map conditioned on (z, z′) is applied to the state x+ = ψz→z′(tk, x). Normalizing
flow pz→z′ and jump map ψz→z′ together define the full event module of an NHA.

It should be noted that (3.1) always samples the quickest–to–occur event from the normalizing flow,
which implies that no other event occurs between tk and tk+1. While the history can be compressed
into a fixed–length vector following [23] through application of sequence models e,g. RNNs, we note
that for hybrid systems equipped with deterministic events, providing (xtk , tk) as conditioning inputs
for pz→z′(τ) is sufficient since ODE solutions with deterministic transitions are uniquely determined
by the initial condition. Finally, deterministic events are a special case of stochastic events [2] that
can be well–represented with a Dirac δ function, of which the normalizing flow learns a smooth
approximation with continuous support.

Dynamics module To enable approximation of different mode–dependent vector fields, we
parametrize the flow map Fz(t, xt) of a SHS as a data–controlled neural ordinary differential
equation (Neural ODE) [9] with parameters ω, driven between each pair of event times tk, tk+1 by
discrete latent mode z

ẋt = Fz(t, xt, ω) t ∈ [tk, tk+1) (3.2)
Finiteness of admissible values in the latent mode state i.e. m ensures F is capable of approximating
a finite number of different vector fields, one for each mode. In particular, we consider one–hot
representations for latents z ∈ Rm. In batched data settings, (3.2) can be integrated in parallel
across nb batches of initial conditions xtk ∈ Rnb×nx with different modes, provided the latent is also
batched z ∈ Rnb×m.

The combination of a given dynamics and event module, applied in turn as depicted in Figure 1,
enables simulation of trajectories of a SHS. We now describe their training procedure.

4 Neural Hybrid Automata Module Training

Here, we detail the training procedure for each NHA component. Our only assumption is availability
to a trajectory segmentation routine tasked with separating the trajectories, or flows, into a collection
of subtrajectories Xi of potentially of different length, each produced by the system in a different
mode. The routine can be as simple as detection of discontinuities in the solution by inspecting finite–
differences of observations across timestamps [24], or involve additional steps such as change–point
detection [25]. Providing exact event times to NHAs is not required; the segmentation routine need
only partition the full dataset in n disjoint sets Xi s.t.

⋃
iXi = X and

⋂
iXi = ∅. In addition, no

knowledge of the number of modes, or topology of transitions between modes is made available to
NHAs, as these are rarely available in practice.

4



Flow Segmentation
identify events and segment flows

Flow and Mode Self–Supervision
flow–parallel self–supervised mode recovery

via flow reconstruction

Train Event and Jump
supervised training of parametrized

intervent time densities and jump maps.
Data labeled following transitions z → z′

determined during mode recovery

Simulate
simulate – predict

Eθ

z
Fz

Lr

τz→z′

(x, x+)

pz→z′

ψz→z′

system
trajectories

Figure 2: NHA training blueprint. Segmenting the trajectories enables self–supervised mode recovery via
trajectory reconstruction. The recovered mode labels are then used for NHA event module supervised training.

Self–supervised mode recovery The first stage of learning an NHA is designed to approximate the
continuous dynamics under each SHS mode while simultaneously identifying modes z. We achieve
this by framing subtrajectory reconstruction as a pretext task for mode recovery, via a reconstruction
objective Lr = 1

n

∑n
i=0 `r(Xi, X̂i), being X̂i subtrajectories reconstructed by the flow decoder Fz

via the model
z ∼ E(X, θ) t = tk
ẋ = Fz(t, xt, ω) t ∈ [tk, tk+1).

(4.1)

Here, a latent encoder E with parameters θ is tasked with extracting a latent mode state z ∈ M to
steer the decoder Fz towards a more accurate reconstruction. Representation limitations of Neural
ODEs [9], [26] ensure that to fit the above objective the the encoder E has to cluster the trajectories to
enable the data–control decoder to represent different vector fields for each system mode. Finiteness
of admissible values in the latent state is enforced by defining z as one–hot encoded sample from a
parametrized categorical distribution. Backpropagating through the sampling procedure is performed
via straight–through gradients [27]. System (4.1) can be regarded as an ODE trajectory autoencoder
with a categorical bottleneck.

Finally, we note that trajectory segmentation serves multiple purposes during NHA training. Forward
integration is significantly sped up since the ODE solves can now be parallelized across subtrajectories
Xi as independent samples of a batch of data, avoiding a sequential solve on full SHS trajectories.
The speedups can be dramatic for multi–mode SHSs2, the focus of this work, where data trajectories
may need to be longer to sufficiently explore different modes.

∇ω0L ∇ω0L ∇ω1L

t∗k t̂k
t

ẋ = Fz=0(t, xt, ω) ẋ = Fz=1(t, xt, ω)

Figure 3: Conflicting gradients in an idealized 2–mode
hybrid system due to overestimation of event time.

Event and jump supervision In addition to
the learning of mode dynamics, self–supervised
mode recovery objectives provides direct super-
vision for normalizing flows pz→z′ and jump
maps ψz→z′ . More specifically, we collect times
τkz→z′ and jump state pairs (x, x+) for each pair
of modes (z, z′) corresponding to a transition
between pairs of subtrajectories clustered as z
(first) and z′ (second) by the encoder E . We
then train the jump maps ψz→z′ to approximate
x 7→ x+, and the mode conditional normalizing
flow to approximate the density pz→z′(τ).

Gradient pathologies in joint learning of flows and events When attempting simultaneous learn-
ing on the full trajectory, the parameters of flow Fz can be subjected to wrong gradients from
reconstruction objectives, arising from overreliance or underreliance of the flow model on certain

2While speedups are dependent on full trajectory and average subtrajectory lengths, in our experiment we
observe at least an order of magnitude (more than 20x) in wall–clock speedups for a single training iteration.

5



modes. This phenomenon can bias training, and provides strong motivation behind our segmentation–
first approach, since each subtrajectory Xi is associated only to a single mode3.

A visualization is provided in Figure 3, through an idealized learning task of a two–mode system.
Overreliance of the flow model on mode z = 0, due to overestimation of event time tk, leads to a
decomposition of gradients∇w0

Lr; in green, gradients pushing the trajectory closer to the solution, in
red, incorrect gradients pushing the mode 0 trajectory further away from the ground–truth and closer
to a solution belonging to a different mode. Appendix A further develops theoretical considerations
on the nature of these gradients.

5 Results and Discussion

We evaluate Neural Hybrid Automata (NHA) through extensive experiments, with a focus on investi-
gating the performance and robustness of each NHA module. A summary of experiments, objectives
and ablations is provided here for clarity:

• Reno TCP: we carry out a quantitative evaluation on quality of learned flows (mean squared
error) and quality of mode clusters recovered during self–supervision (v–measure). We also verify
the robustness of NHAs to overclustering and amount of data required for event module training.

• Mode mixing in switching systems: we highlight and varify robustness against mode mix-
ing, a phenomenon occurring during learning of multi–mode systems through alternative soft
parametrization of latent z, such as through softmax instead of categorical samples.

• Behavioral control of wheeled robots: NHAs enable task–based behavioral control. We investi-
gate a point–to–point navigation task where a higher level reinforcement learning (RL) planner
determines mode switching for a lower–level optimal controller.

5.1 System with Stochastic Transitions

ẋ1 = 0

ẋ2 = 0
start

ẋ1 = 1
ηnack

ẋ2 = x1
η

ẋ1 =
(log 2)x1
ηnack

ẋ2 = x1
η

1
τoff

pdropx1

η

κx1

η

κx1

η

pdropx1

η

(1)

(2)

(3)
(4)

(5)

Jumps (1) : {x1, x2} 7→ {0.693, 0}
(2) : {x1, x2} 7→ {0, 0}
(3) : {x1, x2} 7→ {0.5x1, x2}
(4) : {x1, x2} 7→ {0.5x1, x2}
(5) : {x1, x2} 7→ {0, 0}

Figure 4: Automata representation of TCP Reno,
where η, pdrop, κ > 0 and we set nack = 2. On
each edge is the corresponding intensity λz→z′ .

We apply NHAs to a dataset of internal state trajecto-
ries of a network transmission controller (TCP), the
Reno TCP scheme [2]. The system has two states,
five stochastic transitions and three modes as shown
through an automata representation in Figure 4. Here,
we qualitatively validate the performance of dynam-
ics and event modules of NHAs. We simulate 40
trajectories of the system, each 200 seconds long,
and segment them. No a priori knowledge on the
mode of each subtrajectory is provided to the model.
We perform self–supervised mode recovery to train
Fz and E , in the process labeling the subtrajectories,
then train event module normalizing flows and jump
functions with the mode labels obtained. Training
and evaluation are performed using a 5–fold cross–
validation strategy, with a final test fold of 15. More
details on the system, architectures and data genera-
tion are reported in the Appendix B.

Mode recovery results First, we perform self–supervised mode recovery and verify (i) whether
the mode conditioned NHA decoder Fz offers test–time TCP trajectory reconstruction of equal or
better quality than other Neural ODE variants, and (ii) quality of the mode label clusters assigned by
the NHA encoder and robustness to different mumber of latent modes m. We measure (i) via test
mean squared error (MSE) on reconstructed trajectories, and (ii) via v–measure [28], a metric taking
values in [0, 1], computed as the harmonic mean between cluster completeness and homogeneity. A
v–measure of 1 indicates perfect clustering. As baselines, we collect for (i) the performance of 3
Neural ODE (NODE) variants, a zero–augmented NODE, a data–controlled NODE (DC–NODE) [9]
where the latent z is the output of a multi–layer encoder, and a Latent NODE where z is sampled

3Due to inaccuracies or noise in the segmentation algorithm, these partitions might not be perfectly separated
into different modes. We experimentally investigate these effects on NHA training in Appendix B.

6



predicted true

0

8

x
1

Flow and Mode recovery

0

30

x
2

0 20 40 60 80 100
time (s)

z

Model Test RMSE

NODE 3.57
DC–NODE 1.46
Latent NODE 1.55

NHA–3 1.66
NHA–5 1.21
NHA–10 0.56

Figure 5: [Left] Reconstruction of system trajectories through NHA vector field decoders Fz and corresponding
modes z encoded by E for Reno TCP. Although the encoder shown is initialized with more modes (10) than
there are in the underlying system (3), mode clustering is sparse and accurate. [Right] Flow reconstruction test
RMSE for different classes of decoders, selected via cross-validation on 10 runs. NHA decoders can reconstruct
the flows as well as other NODE baselines, with the added benefits of being able to recover mode labels during
training. NHA–m indicates NHA decoders initialized with m modes.

via reparametrization of a Normal [8]. We also provide baseline performance of a series of popular
clustering algorithms tasked to cluster the subtrajectories: k–means++ [29], hierarchical [30] and
DBSCAN [31]. Figure 5 provides qualitative and quantitative results for stage (i). As established by
Table 1, NHA mode recovery outperforms all baselines by a wide margin, with v–measure values
close to 1. Surprisingly, we observe providing the NHA encoder with a larger number of latent modes
than the 3 of the system improves clustering results and stabilizes training. Additional details on data
pre–processing, metrics and baseline design and tuning are provided in Appendix B.

v–measure ↑
Model m = 3 m = 5 m = 10

k–means++ 0.20± 0.02 0.24± 0.02 0.30± 0.06
hierarchical 0.23± 0.01 0.24± 0.01 0.31± 0.06
DBSCAN 0.66± 0.02 0.68± 0.02 0.69± 0.01

NHA 0.91± 0.09 0.95± 0.04 0.96± 0.03

Table 1: Quality of recovered mode clusters from NHA self–
supervised training and baseline clustering algorithms in the TCP
task. Hyperparameter m is the number of clusters provided to each
algorithm. For DBSCAN, values of m ∈ [3, 5, 10] map instead to
its primary parameter ε ∈ [0.1, 0.5, 1] [31].

Model Metric n = 1 n = 3 n = 5 n = 10

pz→z′ NLL ↓ 2.761 2.375 2.362 2.313
ψz→z′ MSE (10−3) ↓ 1.435 0.018 0.009 0.003

Table 2: Quality of fit for event module components, normalizing
flows p and jump maps ψ. Training performed with supervising mode
labels from n trajectories of TCP. We report test MSE and negative
log–likelihood (NLL) estimated from a base normalizing flow model
trained on ground–truth data from n = 500.

Event module results Next, we
leverage the mode labels recovered
as supervision for the event module
of an NHA. In all cases, we train
three–layer MLPs as jump maps and
two–layer spline flows [32] as nor-
malizing flows. Figure 6 visual-
izes the learned densities for each
stochastic transition for the standard
training regime of n = 5 trajec-
tories. We also perform an abla-
tive study on the quantity of data
required to extract sufficient super-
vision signal for both components
of the event module. The results are
included in Table 2. We find that a
single trajectory is sufficient, with
relative performance gains quickly
dropping off after n = 3.

Interevent τzi→zj densities learned from recovered mode clusters

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

t

D
en
si
ty

zi, zj = (0, 1)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

t

zi, zj = (1, 0)

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

t

zi, zj = (1, 2)

pzi→zj(τ )

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

t

zi, zj = (2, 0)

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

t

zi, zj = (2, 2)

Figure 6: Learned densities (black) for intervent times τzi→zj . The normalizing flows are trained on times
recovered during the mode recovery stage, by clustering τzi→zj according to the encoder mode labeling. The
histogram depicts the ground–truth empirical distribution for each class of event.

7



5.2 Deterministic Switching System

We investigate mode mixing in a three–mode switching linear system (SLS) [13]. The deterministic
nature of mode transitions, as well as the absence of state jumps enables direct training of NHAs on
data–trajectories without prior segmentation. This allows us to perform an ablative study on mode
mixing, a phenomenon arising from latent modes z produced by the encoder E via soft alternatives to
categorical samples, such as by using softmax activations.

Mode mixing and overclustering We train NHAs on reconstruction of SLS trajectories. Each
encoder is provided, at initialization, one additional latent mode over the three of the system. The
conditioned flow Fz is constructed with three–layer MLPs. Rather than segmenting the data, we repeat
sampling for z at each integration step. Figure 7 shows the state space switching boundaries and mode
vector fields learned by an NHA and a baseline producing z via softmax rather than as categorical
samples. The additional freedom provided by softmax latents z ∈ R4

+,
∑
zi = 1 allows fitting

the trajectories by nonlinearly mixing different vector fields to approximate a single one. Instead,
categorical samples cannot mix the vector fields; this ensures that the learned clustering is either
sparse as shown in the Fig.7, or latent values dedicated to the approximation of the same underlying
mode dynamics are forced to learn the same vector field. Appendix B contains a visualization and
analysis for this second case.

In general, categorical bottlenecks are effective when recovery of ground–truth system mode dynamics
is a primary objective, particularly as it allows pruning of redundant modes as discussed in Appendix
B. Softmax or other soft relaxations can be a viable choice if only black–box fitting of data is desired.

0 2

−2
0

2

x

y

z1(x, y)

0 1

0 2

−2
0

2

x

y

z2(x, y)

0 1

0 2

−2
0

2

x

y

z3(x, y)

0 1

0 2

−2
0

2

x

y

z4(x, y)

0 1

Discrete Mode Selector: Categorical Samples z ∼ Categorical(Eω(x, y))

0 2

−2
0

2

x

y

z1(x, y)

0 1

0 2

−2
0

2

x

y

z2(x, y)

0 1

0 2

−2
0

2

x

y

z3(x, y)

0 0.9

0 2

−2
0

2

x

y

z4(x, y)

0 0.5

Discrete Mode Selector: Softmax Weighting z = Eω(x, y)

Figure 7: Reconstructed conditional vector fields Fz and corresponding mode classification boundaries in the
state–space of the LSS. In white, the region of the state space assigned to mode zk. [Above] Categorical NHA
encoder. [Below] Mode classification performed by "soft" encoder E capped with a softmax activation. Soft
encoders mix vector fields to approximate trajectories, and are thus unable to recover the ground–truth dynamics
for each mode.

5.3 End–To–End Learning of Hierarchical Switching Controllers for Dynamical Systems

Beyond SHS identification, the NHA framework enables learning of task–based hierarchical con-
trollers comprising a low–level controller uz := u(t, xt, z) dependent on the discrete mode z provided
by a higher–level policy π. Each NHA module is adapted as:

dynamics module: ẋt = F (t, xt, uz) low–level controlled system

event module: z′ ← π(t, xt, z) high–level planner
(5.1)

Within this context, latent state z can be regarded as a system set–point (e.g. a desired value of state x)
determined by the planning policy π to achieve a certain task, which the low–level controller has then
to carry out. Both π and uz are parametrized by neural networks, and the training is done end–to–end.

8



x1

x
2

Hierarchical robot control, test map 1.

x1

x
2

Hierarchical robot control, test map 2.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

0

2

4

L
o
ss
L u

Training curves of low–level and planner controller losses.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

20

40

60

80

Episodes

R
e
w
a
rd

s
−
L π

Figure 8: [Above]: Test–time learned navigation of swarms of differential drive robots. The robots are initialized
at random locations and orientations. [Below]: Training loss curves of low–level controller u and planner π.

The obtained hierarchical control scheme is sample efficient, since system dynamics available a priori
are included in F . From the perspective of π, however, the dynamics are disentangled from the
planning objective. Indeed, the higher level policy need only learn how to set and switch between
objectives (z → z′), and not how to control the system to reach them. For this reason we train the
model using a loss function partitioned in two terms as L = Lu + Lπ .

Results We consider learning controllers for navigation of two-wheeled differential drive robots
[33]. The higher–level model–free policy π is here trained via REINFORCE gradients [34], [35] to
select the nearest resource target every 5 seconds. We set 5 different resources within a map, and train
all robots to: one, select the nearest resource target; two, drive the wheels to reach the target. The
training of both controllers is carried out concurrently, where target (or mode) selection is performed
by π, whereas the behavioural controller uz has to reach the target chosen by π via low–level steering
control inputs. As shown in Figure 8, convergence of both control policies occurs after around 4000
episodes of training. Figure 8 also visualizes the resulting navigation behavior at test–time on two
new resource layouts, where we alternate between two different sets of targets.

5.4 Generalizable Insights and Empirical Observations

The task of learning SHSs involves several moving components. Ablative experiments have been
performed to address specific questions on the robustness of NHAs. We detail heuristics that have
been observed to improve performance, and report areas of further improvement.

• Overclustering stabilizes training We empirically observe providing NHA with more latent
modes than the system stabilizes training. We conjecture the additional choice allows the model
to use different modes during exploration without always conflicting with other already "assigned"
modes, phenomenon which is more frequent, in example, when the number of modes exactly matches
that of the system. In these cases, dropout in the encoder E appears to improve performance.

• Decoder expressivity limitations improve mode recovery Effective mode clustering via the
trajectory autoencoder introduced in Section 4 relies on representational limitations of Neural ODEs
[9]. Ensuring a sufficient state–space density of subtrajectories improves quality of mode clusters.

• Noisy segmentation of trajectories We investigate, for the TCP experiment, robustness of mode
recovery to incorrect segmentation (Appendix B) and number of NHA latent modes m (Table 1).
Extending NHAs to include a finetuning step for trajectory segmentation, in example leveraging ideas
from [13] might improve robustness of the segmentation routine and thus the overall approach.

9



6 Related Work

Hybrid system identification and Markov models Hybrid system identification is a relatively
recent development in dynamical system theory [7]. A majority of existing literature focuses on
(linear) piecewise affine systems (PWA) [36], [37]. [38] proposes a clustered symbolic regression
algorithm for learning input–output maps rather than dynamics. Existing approaches involving
continuous optimization [21] do not consider event stochasticity and mode recovery. Identification of
SHSs is an even smaller field, with limited success outside specific cases [15].

Continuous–depth and contact models Neural differential equations and continuous–depth mod-
els, initially concerned with unimodal systems [8], [9], have seen preliminary application to the
learning of temporal point processes [11], [39]. Although some of these works tackle stochastic
events and marked point processes, multimodality and explicit learning of the flows is not considered.
[12] examine interventions as events, and develop a continuous architecture for modeling the lasting
effect of a given intervention on the dynamics. Differentiable contact approaches [14], [40] introduce
physics–compatible models designed to recover deterministic hybrid dynamics of mechanical systems
from data. [13] develops, through implicit differentiation, a method for direct optimization of event
times. Although Neural Event ODEs do not directly address multimodality, a potential synergy
between the approach of [13] and NHAs could preserve the advantage of our flow–parallel mode
recovery, namely integration speed and sidestepping of gradient pathologies outlined in Section IV.
Section 2.3 provides a summary of limitations for these existing methods.

7 Conclusion

Hybrid systems represent a versatile and general class of systems, with applications across engineering
disciplines [15]. In this work, we investigate challenges related to the learning of SHSs from limited
data and introduce Neural Hybrid Automata (NHA), a step–by–step method leveraging neural
differential equations, density estimation and self–supervised mode recovery. NHAs are shown to be
effective in various settings, including flow and event learning in systems with stochastic transitions.

Funding Statement

This work was financially supported by NAVER AI Lab, KAIST and University of Tokyo. All
experiments were run on GPUs provided by KAIST and University of Tokyo.

References

[1] C. G. Cassandras and J. Lygeros, Stochastic hybrid systems. CRC Press, 2018.
[2] J. P. Hespanha, “Stochastic hybrid systems: Application to communication networks,” in

International Workshop on Hybrid Systems: Computation and Control, Springer, 2004, pp. 387–
401.

[3] G. Sun, C. G. Cassandras, Y. Wardi, C. G. Panayiotou, and G. F. Riley, “Perturbation analysis
and optimization of stochastic flow networks,” IEEE Transactions on Automatic Control,
vol. 49, no. 12, pp. 2143–2159, 2004.

[4] R. Alur, C. Belta, F. Ivancic, V. Kumar, M. Mintz, G. Pappas, H. Rubin, J. Schug, and G. Pappas,
“Hybrid modeling and simulation of biological systems,” Hybrid Systems: Computation and
Control, vol. 2034, pp. 19–32, 2001.

[5] J. P. Hespanha and A. Singh, “Stochastic models for chemically reacting systems using
polynomial stochastic hybrid systems,” International Journal of Robust and Nonlinear Control:
IFAC-Affiliated Journal, vol. 15, no. 15, pp. 669–689, 2005.

[6] X. Li, O. Omotere, L. Qian, and E. R. Dougherty, “Review of stochastic hybrid systems with
applications in biological systems modeling and analysis,” EURASIP Journal on Bioinformatics
and Systems Biology, vol. 2017, no. 1, pp. 1–12, 2017.

[7] F. Lauer and G. Bloch, “Hybrid system identification,” in Hybrid System Identification,
Springer, 2019, pp. 77–101.

10



[8] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary differential
equations,” in Advances in neural information processing systems, 2018, pp. 6571–6583.

[9] S. Massaroli, M. Poli, J. Park, A. Yamashita, and H. Asama, “Dissecting neural odes,” arXiv
preprint arXiv:2002.08071, 2020.

[10] C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R. Supekar, D. Skinner, and A.
Ramadhan, “Universal differential equations for scientific machine learning,” arXiv preprint
arXiv:2001.04385, 2020.

[11] J. Jia and A. R. Benson, “Neural jump stochastic differential equations,” in Advances in Neural
Information Processing Systems, 2019, pp. 9843–9854.

[12] D. Gwak, G. Sim, M. Poli, S. Massaroli, J. Choo, and E. Choi, “Neural ordinary differential
equations for intervention modeling,” arXiv preprint arXiv:2010.08304, 2020.

[13] R. T. Chen, B. Amos, and M. Nickel, “Learning neural event functions for ordinary differential
equations,” arXiv preprint arXiv:2011.03902, 2020.

[14] Y. D. Zhong, B. Dey, and A. Chakraborty, “A differentiable contact model to extend la-
grangian and hamiltonian neural networks for modeling hybrid dynamics,” arXiv preprint
arXiv:2102.06794, 2021.

[15] C. G. Cassandras and J. Lygeros, “Stochastic hybrid systems,” Automation and Control
Engineering, vol. 24, 2007.

[16] D. J. Daley and D. Vere-Jones, An introduction to the theory of point processes: volume II:
general theory and structure. Springer Science & Business Media, 2007.

[17] L. Shampine and S. Thompson, “Event location for ordinary differential equations,” Computers
& Mathematics with Applications, vol. 39, no. 5-6, pp. 43–54, 2000.

[18] J. Nocedal and S. Wright, Numerical optimization. Springer Science & Business Media, 2006.
[19] J. G. Rasmussen, “Temporal point processes: The conditional intensity function,” Lecture

Notes, Jan, 2011.
[20] R. T. Chen, B. Amos, and M. Nickel, “Neural spatio-temporal point processes,” arXiv preprint

arXiv:2011.04583, 2020.
[21] F. Lauer, G. Bloch, and R. Vidal, “A continuous optimization framework for hybrid system

identification,” Automatica, vol. 47, no. 3, pp. 608–613, 2011.
[22] D. B. West et al., Introduction to graph theory. Prentice hall Upper Saddle River, 2001, vol. 2.
[23] O. Shchur, M. Biloš, and S. Günnemann, “Intensity-free learning of temporal point processes,”

arXiv preprint arXiv:1909.12127, 2019.
[24] S. Massaroli, F. Califano, A. Faragasso, M. Risiglione, A. Yamashita, and H. Asama, “Identifi-

cation of a class of hybrid dynamical systems,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 875–
882, 2020.

[25] S. Aminikhanghahi and D. J. Cook, “A survey of methods for time series change point
detection,” Knowledge and information systems, vol. 51, no. 2, pp. 339–367, 2017.

[26] E. Dupont, A. Doucet, and Y. W. Teh, “Augmented neural odes,” in Advances in Neural
Information Processing Systems, 2019, pp. 3134–3144.

[27] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating gradients through
stochastic neurons for conditional computation,” arXiv preprint arXiv:1308.3432, 2013.

[28] A. Rosenberg and J. Hirschberg, “V-measure: A conditional entropy-based external cluster
evaluation measure,” in Proceedings of the 2007 joint conference on empirical methods in
natural language processing and computational natural language learning (EMNLP-CoNLL),
2007, pp. 410–420.

[29] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful seeding,” Stanford,
Tech. Rep., 2006.

[30] F. Murtagh and P. Contreras, “Algorithms for hierarchical clustering: An overview,” Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 2, no. 1, pp. 86–97,
2012.

[31] D. Birant and A. Kut, “St-dbscan: An algorithm for clustering spatial–temporal data,” Data &
knowledge engineering, vol. 60, no. 1, pp. 208–221, 2007.

[32] C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios, “Neural spline flows,” arXiv preprint
arXiv:1906.04032, 2019.

11



[33] S. K. Malu and J. Majumdar, “Kinematics, localization and control of differential drive mobile
robot,” Global Journal of Research In Engineering, 2014.

[34] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.
[35] J. Peters and S. Schaal, “Policy gradient methods for robotics,” in 2006 IEEE/RSJ International

Conference on Intelligent Robots and Systems, IEEE, 2006, pp. 2219–2225.
[36] S. Paoletti, A. L. Juloski, G. Ferrari-Trecate, and R. Vidal, “Identification of hybrid systems a

tutorial,” European journal of control, vol. 13, no. 2-3, pp. 242–260, 2007.
[37] R. L. Westra, M. P. Ralf, and L. Peeters, “Identification of piecewise linear models of complex

dynamical systems,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 14 863–14 868, 2011.
[38] D. L. Ly and H. Lipson, “Learning symbolic representations of hybrid dynamical systems,”

The Journal of Machine Learning Research, vol. 13, no. 1, pp. 3585–3618, 2012.
[39] Y. Rubanova, T. Q. Chen, and D. K. Duvenaud, “Latent ordinary differential equations for

irregularly-sampled time series,” in Advances in Neural Information Processing Systems, 2019,
pp. 5321–5331.

[40] A. Hochlehnert, A. Terenin, S. Sæmundsson, and M. Deisenroth, “Learning contact dynam-
ics using physically structured neural networks,” in International Conference on Artificial
Intelligence and Statistics, PMLR, 2021, pp. 2152–2160.

[41] A. L. Mitchell, M. Engelcke, O. P. Jones, D. Surovik, S. Gangapurwala, O. Melon, I. Havoutis,
and I. Posner, “First steps: Latent-space control with semantic constraints for quadruped
locomotion,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE, 2020, pp. 5343–5350.

[42] Y. D. Zhong and N. Leonard, “Unsupervised learning of lagrangian dynamics from images for
prediction and control,” Advances in Neural Information Processing Systems, vol. 33, 2020.

[43] A. M. Johnson, S. A. Burden, and D. E. Koditschek, “A hybrid systems model for simple
manipulation and self-manipulation systems,” The International Journal of Robotics Research,
vol. 35, no. 11, pp. 1354–1392, 2016.

[44] P. Holmes, R. J. Full, D. Koditschek, and J. Guckenheimer, “The dynamics of legged lo-
comotion: Models, analyses, and challenges,” SIAM review, vol. 48, no. 2, pp. 207–304,
2006.

[45] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in 2009 IEEE conference on computer vision and pattern
recognition, Ieee, 2009, pp. 248–255.

[46] E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan, T. Karaletsos, R. Singh,
P. Szerlip, P. Horsfall, and N. D. Goodman, “Pyro: Deep universal probabilistic programming,”
The Journal of Machine Learning Research, vol. 20, no. 1, pp. 973–978, 2019.

[47] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R. Weiss, V. Dubourg, et al., “Scikit-learn: Machine learning in python,” the
Journal of machine Learning research, vol. 12, pp. 2825–2830, 2011.

[48] J. R. Dormand and P. J. Prince, “A family of embedded runge-kutta formulae,” Journal of
computational and applied mathematics, vol. 6, no. 1, pp. 19–26, 1980.

12



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 5.4 and Appendix

A for discussion on limitations and extensions. The assumptions required are
clearly stated in Section 4.

(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes] See the Appendix for details on
hardware and compute resources.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13


	Introduction
	Background
	Stochastic Hybrid Systems
	Event Handling for Hybrid Systems
	Core primitives for SHS learning

	Neural Hybrid Automata
	Neural Hybrid Automata Module Training
	Results and Discussion
	System with Stochastic Transitions
	Deterministic Switching System
	End–To–End Learning of Hierarchical Switching Controllers for Dynamical Systems
	Generalizable Insights and Empirical Observations

	Related Work
	Conclusion
	

