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Abstract

Masked graph modeling (MGM) is a promising approach for molecular representa-
tion learning (MRL). However, extending the success of re-mask decoding from 2D
to 3D MGM is non-trivial, primarily due to two conflicting challenges: avoiding 2D
structure leakage to the decoder, while still providing sufficient 2D context for re-
constructing re-masked atoms. To address these challenges, we propose 3D-GSRD:
a 3D Molecular Graph Auto-Encoder with Selective Re-mask Decoding. The core
innovation of 3D-GSRD lies in its Selective Re-mask Decoding (SRD), which
re-masks only 3D-relevant information from encoder representations while pre-
serving the 2D graph structures. This SRD is synergistically integrated with a 3D
Relational-Transformer (3D-ReTrans) encoder alongside a structure-independent
decoder. We analyze that SRD, combined with the structure-independent decoder,
enhances the encoder’s role in MRL. Extensive experiments show that 3D-GSRD
achieves strong downstream performance, setting a new state-of-the-art on 7 out of
8 targets in the widely used MD17 molecular property prediction benchmark. The
code is released at https://github.com/WuChang0124/3D-GSRD.

1 Introduction

Molecular representation learning (MRL) [1–3] is fundamental to a wide range of downstream tasks,
including de novo drug design [4], molecular dynamics simulation [5], and molecular property
prediction [6, 7]. Given the abundance of unlabeled molecular data in this field, self-supervised
pretraining has emerged as a key strategy for learning effective molecular representations. Previous
works have primarily focused on 1D molecular strings [8, 9] and 2D molecular graphs [10–12],
achieving promising results. However, they often neglect critical 3D structural information, which is
crucial for capturing molecular properties such as the highest occupied molecular orbital, molecular
dynamics, and energy functions [13]. This limitation has led to a growing interest in incorporating
3D molecular coordinates into pretraining frameworks.

Masked graph modeling (MGM) has emerged as a leading paradigm for 3D molecular pretraining,
aiming to learn data distributions by reconstructing randomly masked graph features [14, 15]. As
illustrated in Figure 1, its 3D variant typically consists of three key components: (1) 3D graph
masking, which perturbs the original 3D molecular graph by randomly masking features such as 3D
coordinates, atom types, and chemical bonds [14, 16]; (2) a 3D graph encoder, which processes the
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Figure 1: Illustration of 3D MGM with re-mask
decoding and 2D structure leakage.

Figure 2: Reconstruction loss across two pre-
training settings. We compare settings using
frozen encoders (3D-ReTrans) and structure-
independent (Transformer) versus structure-
dependent (3D-ReTrans) decoders.

masked graph to generate molecular representations; and (3) a 3D graph decoder, which reconstructs
the masked features from the encoded representations. After pretraining via reconstruction, the 3D
graph encoder is finetuned on downstream tasks to enhance performance.

However, a long-standing challenge in MGM, mirroring similar issues in masked image modeling
[17], is the misalignment between the reconstruction objective and representation learning [18].
Specifically, minimizing the reconstruction error often leads models to focus on low-level graph
features, such as atom types and 3D coordinates, rather than learning high-level graph semantics
required for property prediction [19]. To mitigate this, re-mask decoding is introduced for MGM
pretraining on 2D molecular graphs [15, 20, 18]. This method re-masks the encoder’s representation
of previously masked atoms before feeding them to the decoder (Figure 1). In this way, the encoder
is prevented from reconstructing the masked atoms directly and is encouraged to focus on generating
high-quality representations of the unmasked graph regions, which the decoder then uses for recon-
struction. This approach shifts the encoder’s focus from graph reconstruction to MRL and yields
substantial downstream improvements for 2D MGM.

To adapt re-mask decoding for 3D MGM, we identify two seemingly contradictory challenges:

• Leaking 2D structure to decoder weakens encoder’s MRL capability. The decoder should rely
solely on the encoder representations to reconstruct masked features. Exposing the decoder directly
to 2D molecular structures (e.g., chemical bond connections) diminishes the encoder’s role in MRL,
as the decoder can recover masked features using the provided 2D molecular structures, even with
poor encoder representations. For example, Figure 2 shows that a frozen randomly-initialized
encoder with a trainable structure-dependent decoder can achieve relatively low reconstruction loss
when predicting masked atomic coordinates. Consequently, the encoder focuses less on capturing
structures, leading to suboptimal MRL performance. However, existing re-mask decoding methods
[15, 18, 20] typically use structure-dependent decoders like graph neural networks [21], which
exacerbate this issue.

• Structure-independent decoding can prevent structure leakage, but hinders reconstruction of
re-masked atoms. A naive solution to prevent structure leakage is to use a structure-independent
decoder, which consumes no 2D structure input. However, this approach fails to account for the
relative positions and contextual relationships of re-masked atoms within the 2D graph, making it
challenging to distinguish between re-masked atoms during reconstruction. To address this, we
propose leveraging the 3D graph encoder to generate 2D structural contexts for re-masked atoms.
This ensures that the encoder is effectively trained for structural representation while preventing
structure leakage beyond the encoder’s representations.

To address the challenges above, we introduce 3D Molecular Graph Auto-Encoder with Selective
Re-mask Decoding (3D-GSRD), a 3D MGM framework with three key elements: (1) the Selective Re-
mask Decoding (SRD) that re-masks only 3D-relevant information from the encoder representations
while preserving its 2D structural context; (2) a structure-independent decoder that derives all
structural information exclusively from the encoder; and (3) 3D Relational-Transformer (termed
as 3D-ReTrans) as 3D graph encoder, effectively integrating 3D molecular features (e.g., atomic
coordinates) and 2D features (e.g., bonding connections) for MRL.
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Specifically, SRD ensures the preservation of 2D graph structures during re-masking by reintroducing
2D information through a 2D graph Position Encoder (2D-PE). Crucially, this 2D-PE is trained via
distillation from the 3D graph encoder’s representations, ensuring its information is fully contained
within the 3D encoder, as demonstrated in Section 5. The distillation process also allows the 2D-
PE’s structural encoding capability to improve alongside the 3D encoder’s advancements during
pretraining. To complement SRD, we employ a structure-independent Transformer [22] decoder that
derives 2D graph structure exclusively from the 3D encoder and the 2D-PE. Together with SRD, our
decoder provides the re-masked atoms with rich 2D graph contexts that are distilled from the 3D
graph encoder, while preventing 2D structure leakage.

Encoding 3D molecules is challenging due to their multi-modal nature (e.g., discrete atom types vs.
continuous coordinates) and multi-granular structure (e.g., atom-wise vs. pair-wise features). Prior
works like PaiNN [23] and TorchMD-NET [24] address this by using equivariant architectures that
separately process scalar features (e.g., atom types, distances) and vector features (e.g., directional
geometry). Building on these insights, we introduce 3D-ReTrans as our 3D graph encoder, extending
the Relational-Transformer [25] to incorporate both scalar and vector features while maintaining its
scalability and flexibility to process both atom-wise and pair-wise features. Specifically, we introduce
a tailored attention mechanism that incorporates pairwise distances and interactions directly into
attention weights, along with a 3D Update Layer that jointly updates scalar and vector features. This
design yields strong performance on MRL and serves as a robust backbone for 3D MGM pretraining.

Finally, we include in-depth analysis to showcase the inner mechanism of SRD and our structure-
independent decoder, demonstrating our key claims of shifting the encoder’s focus to MRL while
preventing structure leakage in the decoder. Based on these revealed advantages in MGM pretrain-
ing, 3D-GSRD demonstrates superior performance when being fine-tuned on downstream datasets,
achieving new state-of-the-art on 7 out of 8 molecules for MD17 [26].

2 Related Work

Molecular pretraining has emerged as a fundamental approach for molecular representation learning
[27–29], critical for various downstream tasks, such as molecule property prediction.

3D Molecular Denoising and Masked Graph Modeling. Recent advances in 3D molecular
pretraining have focused on 3D structure learning through coordinate denoising and masking. For
example, [30–32] introduce noise to atomic coordinates and then reconstruct them. SubGDiff [2]
adds distinct Gaussian noise to different substructures of 3D molecular conformation and performs
denoising via a diffusion process. MolSpectra [33] uses the energy spectra to enhance 3D molecular
representation learning during denoising. As for masking, Uni-Mol [14] and Uni-Mol2 [16] employ
masked coordinates prediction as one of the self-supervised tasks, while other works like [1] focus on
masking and predicting bond lengths and angles.

Other 3D Molecular Pretraining Methods. EPT [34] proposes a multi-domain 3D pretraining
approach by combining atom-level features for small molecules and residue-level features in proteins.
3D PGT [35] designs three generative pretraining tasks, including predicting bond length, bond angle,
and dihedral angle, and introduces an adaptive fusion strategy for these tasks, using total energy as
a surrogate metric to optimize their combination weight. GraphMVP [36] and 3D Infomax [7] use
contrastive learning to transfer knowledge from the 3D encoder into the 2D graph encoder.

Graph Position Encoding and Structure Encoding. Position Encoding (PE) encodes the spatial
position of a given node within a graph [37]. Some methods [38, 39] use adjacency, Laplacian, or
distance matrices to represent PE. Other approaches like [40–42] leverage shortest paths, heat kernels,
or Green’s function to compute pair-wise distance, capturing the distance and directional relationships
between nodes. Currently, in MOL-AE [19], SMILES strings are used to provide PE to the decoder
as an identifier. Structure Encoding (SE) encodes the structural information of graphs and subgraphs.
Common methods include node degree [43], Laplacian matrices [38], and Boolean indicators that
specify whether two nodes belong to the same substructure [44]. Unlike these methods, we propose
using a 2D graph position encoder distilled from a 3D graph encoder to produce SE, which provides
rich and effective context information.

2D Molecular Graph Pretraining. Previous methods primarily focus on leveraging 2D molecular
graphs to learn molecular representation. A popular technique is masked graph modeling [15, 8, 10],
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Figure 3: Overview of 3D-GSRD. It contains three key elements: (1) a 3D-ReTrans encoder; (2) the
SRD that re-masks only 3D-relevant information from the encoder representations while preserving
its 2D structure information via 2D-from-3D distillation; (3) a structure-independent decoder.

typically comprising three key components [18]: graph tokenizer [11, 3], graph masking [45, 46],
and graph autoencoder [47–49]. Another prominent line of work is contrastive learning [50, 12, 51],
which aims to pull positive pairs and push negative pairs apart in the representation space. Notably,
methods such as GeomGCL [6], GraphMVP [36], and 3D Infomax [7] incorporate 3D molecular
conformations as auxiliary information to enhance 2D graph representations via contrastive objectives.
While effective for 2D molecular pretraining, these methods overlook 3D features, which are crucial
for molecular representation learning. Moreover, directly extending these methods to 3D molecular
pretraining is non-trivial due to the increased complexity and spatial nature of 3D molecular data.

Our method is similar to GraphMVP [36] in leveraging both 2D and 3D molecular graphs but
differs in objective and design. While GraphMVP transfers 3D information into a 2D encoder to
enhance 2D graph representations, our method distills 3D representation into 2D-PE, ensuring the
2D-PE’s embedding is fully contained within the 3D encoder to avoid structure leakage in decoding.
Additionally, GraphMVP aligns the 2D and 3D views of the same molecule and contrasts views of
different molecules using contrastive losses. Our method instead uses a cosine similarity loss that
encourages 2D-PE to generate structural encodings closely aligned with the 3D encoder. This offers a
simpler and more efficient framework for 2D structure-informed decoding without structure leakage.

3 Preliminary: 3D Masked Graph Modeling

Notations. A 3D molecular graph is represented as G = (x,a, e), where x ∈ RN×3 denotes the 3D
atomic coordinates, a ∈ RN×∗ represents the atom types, and e ∈ RN×N×∗ captures the atomic pair
features, such as inter-atomic distances and bonds. N is the number of atoms.

Graph Masking. Given a molecular graph G, the 3D coordinates {xi ∈ R3|i ∈ Vm} of a randomly
selected subset of atoms Vm are masked. For each masked atom i ∈ Vm, its original coordinates xi

is replaced by a learnable special token mx ∈ R3. The coordinate matrix x after masking is denoted
as x̃, and the masked graph is denoted as G̃ = (x̃,a, e). Some prior works [19] instead remove all
information corresponding to the masked atoms, including their 3D coordinates, atom types, and
pairwise features, which results in a masked graph G̃ = (x̃, ã, ẽ). In this work, we adopt this latter
masking strategy, fully excluding the masked atoms from the input graph.

3D Graph Auto-Encoder and 2D Structure Leakage. The 3D graph auto-encoder comprises a graph
encoder ϕe(·) and a graph decoder ϕd(·). The encoder processes the masked graph G̃ to produce
graph representations h = ϕe(G̃) ∈ RN×∗. The decoder then predicts the masked coordinates
{x̂i|i ∈ Vm} using ϕd(h), and optionally incorporating the pair features ϕd(h, e). However, using
pair features e introduces 2D structure leakage, as the decoder relies on additional information
beyond the encoder’s representation h. This weakens the encoder’s role in MRL, because the decoder
can leverage pair features to compensate for any deficiencies in the encoder’s representations. Despite
this drawback, such leakage is common in previous MGM works [15, 20, 18] that utilize Graph
Neural Networks [21] as decoders. In contrast, methods that avoid 2D structure leakage [14, 16]
mostly use weak decoders, such as MLPs, which can lead to suboptimal MGM pretraining.

Re-mask Decoding. Before passing h into the decoder, re-mask decoding replaces the representations
of the previously masked atoms Vm with a learnable token mh, preventing the encoder from directly

4



Atomfeats𝒏

L
ay

er
 N

o
rm

[𝒏𝑖, 𝒆𝑖𝑗] q

c
k

𝑑𝑘c
c

c
c

𝒓𝑖𝑗

𝜎(∙)

𝜎(∙)

v

𝜎(∑)

c
L

in
ea

r(
∑
)

3
D

 R
el

at
io

n
al

 

A
tt

en
ti

onPair feats 𝒆

Pair distance 𝒓

R
B

F

(a) 3D-ReTrans (b) 3D Relational-Attention

M
L

P

[𝒏𝑗, 𝒆𝑖𝑗]

[𝒏𝑗, 𝒆𝑖𝑗]U
pd

at
e 

L
ay

er

𝑑𝑣

.

.

.

Vector feats 𝒗𝒆𝒄 𝑠𝑖𝑗
1

𝑠𝑖𝑗
2

𝑜𝑖
1

𝑜𝑖
2

𝑜𝑖
3

(c) 3D Update Layer

3
D

 R
el

at
io

n
al

A
tt

en
ti

o
n

𝒙𝑖
𝒓𝑖𝑗

𝑠𝑖𝑗
2

𝑜𝑖
1

𝑜𝑖
2

𝑜𝑖
3

𝑠𝑖𝑗
1

𝒓
𝒊
−
𝒓
𝒋

𝒓
𝒊
−
𝒓
𝒋

𝒗𝒆𝒄𝑖 c
L

in
ea

r 𝑢𝑖
3

𝑢𝑖
2

𝑢𝑖
1 c(∙)

.
.

. ∆𝒙𝑖

c∑𝑗

.

∆
𝒗
𝒆
𝒄
𝑖

𝑠𝑖𝑗
3

Figure 4: Illustration of 3D-ReTrans. (a) 3D-ReTrans is constructed by stacking multiple 3D
Relational-Attention and 3D Update Layers. (b) 3D Relational-Attention that processes both atom-
wise and pair-wise features. (c) 3D Update Layer that includes a residual connection.

predicting the masked coordinates. This encourages the encoder to focus on learning meaningful
representations for the unmasked graph regions. The re-masked representation h̃ is defined as:

h̃i = re-mask(hi) =

{
mh, ∀i ∈ Vm,

hi, otherwise.
(1)

MGM Loss. The pretraining objective minimizes the mean squared error between the ground truth
coordinates {xi|i ∈ Vm} of the masked atoms and the decoder’s predicted coordinates {x̂i|i ∈ Vm}:

LMGM =
∑
i∈Vm

∥x̂i − xi∥2. (2)

4 Methodology: 3D-GSRD

In this section, we present our method 3D Molecular Graph Auto-Encoder with Selective Re-mask
Decoding (3D-GSRD) (Figure 3). Below, we start by elaborating on the Selective Re-mask Decoding
and the pretraining objective of 3D-GSRD. We then describe the encoder of 3D-ReTrans.

4.1 SRD: Selective Re-mask Decoding

Here we introduce SRD to improve 3D MGM. Re-mask decoding is proposed to address the mismatch
between the reconstruction objective of 2D MGM and MRL [15, 18]. Our SRD extends this approach
to 3D MGM while overcoming issues such as 2D structure leakage and providing 2D contexts to
re-masked atoms.

Re-mask Decoding with 2D Graph Position Encoder. As Figure 3 shows, given the encoder
representation h = ϕe(x̃, ã, ẽ) of G̃, SRD can be defined as:

SRD(h, G̃) = re-mask(h) + stop-grad(ϕ2d(a, e)), (3)

where SRD(h, G̃) is directly fed into the decoder for masked prediction; re-mask(·) is the standard
re-mask; and stop-grad(·) stops the gradient flow to the 2D graph position encoder ϕ2d, which
generates G̃’s 2D representation ϕ2d(a, e) ∈ RN×∗.

Building a 2D Graph Position Encoder without Structure Leakage via 2D-from-3D Distillation.
The 2D graph position encoder ϕ2d(a, e) is the key component of SRD. For unmasked atoms, ϕ2d

conveys the same information as the 3D graph encoder ϕe, preventing any information leakage
beyond what ϕe has captured. For re-masked atoms, ϕ2d offers the necessary 2D contexts that would
have been available from ϕe without re-masking, enabling the decoder to distinguish the relative
positions of re-masked atoms. To prevent information leakage, ϕ2d is trained exclusively through
knowledge distillation from the 3D encoder, without any gradient updates from the MGM loss. This
is enforced by the stop-grad(·), which blocks the gradient flow from the MGM loss into ϕ2d. Further,
the knowledge distillation loss for ϕ2d can be written as:

Ldistill = −
∑
i/∈Vm

cos(ϕ2d(a, e)i, stop-grad(ϕe(x,a, e)i)), (4)
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where cos(·, ·) denotes cosine similarity. The loss applies only to unmasked atoms for the consistency
of ϕ2d’s training objective. We employ stop-grad(·) to prevent updating the 3D graph encoder ϕe,
allowing it to focus on MRL.

While the 2D graph position encoder can be any graph encoder, we implement it as a 2D-ReTrans,
a simplified version of the 3D-ReTrans that excludes 3D coordinates and distance inputs. Our
experiments demonstrate the effectiveness of this design.

4.2 Pretraining 3D-GSRD

3D Graph Auto-Encoder. We employ the 3D-ReTrans as encoder and employ SRD with a structure-
independent decoder of transformer [22]. In this way, we avoid structure leakage to the decoder
beyond the encoder’s information and provide strong 2D structural contexts for the re-masked atoms.

Pretraining Loss. We combine the MGM loss and 2D-from-3D distillation loss for pretraining:
Lpretrain = LMGM + Ldistill. (5)

4.3 3D Relational-Transformer

Encoding 3D molecular graphs G = (x,a, e) presents significant challenges of processing 3D
coordinates x while preserving 3D equivariance and integrating the pairwise features e, whose shape
(N,N, ∗) differs from the atomic features (N, ∗). Prior works have primarily focused on ensuring 3D
equivariance while processing the 3D coordinates x [24, 52], but have paid less attention to effectively
incorporating pair features e. Most existing methods [14, 52, 53] incorporate pairwise representations
of scalar values in self-attention layers [22], limiting their ability to capture the high-dimensional
nature of inter-atomic interactions. While TorchMD-NET [24] models distances as high-dimensional
pairwise features, extending it to include chemical bonds remains challenging.

To address the challenges, we propose 3D-ReTrans as our encoder, leveraging the Relational-
Transformer’s [25] scalability and flexibility to incorporate pair features, while enabling it to process
3D coordinates. Draw inspiration from prior works [24, 23, 54], a core design is to explicitly separate
and jointly process two types of features: (1) scalar features, which encode scalar information like
atom types and distances; (2) vector features, which capture directional geometric information. Based
on this, our key enhancements focus on improving its attention mechanism and incorporating a 3D
update layer. More details about 3D-ReTrans are provided in Appendix B.

3D Relational-Attention. Each atom is represented by concatenating its types and coordinates:
ni = [ai;xi]. The interaction between atoms i and j is captured by the pair feature eij ∈ Rd and
their Euclidean distance rij . 3D Relational-Attention is defined as:

qij = [ni, eij ]W
q, (6) [kij ;vij ] = [nj ; eij ][W

k;Wv], (7)

[dk
ij ;d

v
ij ] = SiLU

(
[Wdk;Wdv]eRBF(rij)

)
, (8) [s1ij , s

2
ij , s

3
ij ] = vij ⊙ dv

ij , (9)

αij = SiLUj(
qij · (kij ⊙ dk

ij)√
d

), (10) [o1
i ,o

2
i ,o

3
i ] = Wf (

N∑
j=1

αijs
3
ij), (11)

where eRBF(·) : [0,∞) → Rd is a distance expansion function to encode the distance variable into a
d-dimensional vector [24] (see Appendix B). The terms Wq, Wk, Wv, Wdk, Wdv, and Wf are
learnable linear projectors, and ⊙ denotes element-wise product. The output scalar features o1

i , o2
i ,

and o3
i encode pairwise interactions and interatomic distances. Moreover, the attention mechanism

facilitates the integration of distance information into the vector features via scalar filters s1ij and s2ij
within the subsequent 3D Update Layer.

3D Update Layer. The 3D Update Layer facilitates information exchange between scalar and vector
features. Vector features veci ∈ R∗×3 are initialized as zeros and jointly updated with scalar features
xi. The update ∆xi and ∆veci are defined as:

[u1
i ,u

2
i ,u

3
i ] = Wv (veci) , (12) wj =

N∑
j=1

(
vecj ⊙ s1ij

)
+s2ij⊙

ri − rj
∥ri − rj∥

, (13)

∆xi = o2
i + o3

i ⊙ (u1
i · u2

i ), (14) ∆veci = u3
i ⊙ o1

i +wj , (15)
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Figure 5: Reconstruction loss
across four pretraining settings.

Figure 6: Probe encoder for
masked atom coordinates when
pretrained with/without SRD.

Figure 7: Reconstructing 2D-PE
representation using 3D encoder
representation.

where Wv are learnable linear projectors. Scalar features incorporate vector information via element-
wise multiplication with the scalar product of vector components, while vector features are updated
using both directional features wj and a scalar filter o1

i .

As shown in Figure 4, the 3D-ReTrans is constructed by stacking multiple 3D Relational-Attention
and 3D Update Layers. Each layer performs residual updates on both scalar features ∆xi and vector
features ∆veci, allowing the model to simultaneously capture scalar properties (e.g., atom types,
distances) and expressive directional geometric information. For pretraining, the final outputs xi and
veci are fed into the decoder, while for finetuning, they are passed to the prediction head.

Learning 3D Equivariance and Invariance by Data Augmentations. Considering that our model
lacks built-in 3D equivariance or invariance, we leverage data augmentations to instill these sym-
metries, following AlphaFold3 [53]. During MGM pretraining, atomic coordinates x are randomly
rotated using transformations sampled from the SO(3) group and translated with offsets drawn from
t ∼ N (0, 0.01I3). These augmentations encourage the model to adjust its predictions equivariantly
with any rotations and small translations. During fine-tuning for property prediction, the same
augmentations are applied, but the model is trained to predict consistent properties, thereby learning
invariance to rotations and translations.

We favor data-augmented equivariance with relational attention over fully E(3)-equivariant message
passing. While built-in equivariant architectures offer formal guarantees, they often restrict how pair
features are parameterized and incur non-trivial computational overhead (e.g., tensor bases, spherical
harmonics), which can hinder scaling and complicate integration with diverse molecular cues. In
contrast, our approach instills rotational and translation robustness through augmentations, allowing
encoder to operate with lightweight vector and scalar updates and to flexibly ingest high-dimensional
pair features without architectural surgery. This yields a plug-and-play backbone that is easier to
optimize, accommodates sparsity and density variations, and remains representation-rich: relational
attention can expand or swap pair features as downstream tasks evolve, while maintaining competitive
robustness to pose changes at a substantially lower training and inference cost.

5 Analyzing Selective Re-mask Decoding and Structure-Independent Decoder

In this section, we conduct extensive experiments to evaluate the components of 3D-GSRD, focusing
on the structure-independent decoder and SRD, including its key part 2D-from-3D distillation. We
analyze their effects on the overall performance of the 3D-GSRD framework and how they contribute
to 3D MGM pretraining.

Analysis 1. The structure-dependent decoder can diminish the encoder’s role in MRL. We
pretrain the auto-encoder framework under four settings, all using 3D-ReTrans as the encoder: (1)
a frozen encoder with a Transformer decoder; (2) a frozen encoder with a 3D-ReTrans decoder;
(3) a trainable encoder with a Transformer decoder; and (4) a trainable encoder with a 3D-ReTrans
decoder. Figure 5 reports the reconstruction loss of masked atom coordinates, averaged over every 50
batches. When the encoder is frozen, the Transformer decoder (i.e., structure-independent decoder)
struggles to reconstruct masked atoms coordinates, yielding high reconstruction loss due to poor
input representations and the absence of 2D molecular structural information. In contrast, with the
3D-ReTrans decoder (i.e., structure-dependent decoder), which leverages 2D molecular structures as
input, the loss decreases rapidly during pretraining, even with a frozen encoder. This demonstrates
that a powerful, structure-dependent decoder can compensate for weak encoder representations,
diminishing the encoder’s role in MRL.
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The structure-independent decoder heavily relies on high-quality encoder representations.
When paired with a trainable encoder, the structure-independent decoder achieves a much lower
reconstruction loss, indicating that it relies heavily on the encoder to provide informative representa-
tions. In contrast, with a structure-dependent decoder, the loss remains low regardless of the encoder
representation’s quality, highlighting that such decoders reduce the learning pressure on the encoder
and can hinder its ability to learn meaningful molecular features.

Analysis 2. Structure-independent decoder improves downstream performance compared to
structure-dependent decoder. We pretrain the auto-encoder using either a structure-dependent or a
structure-independent decoder while keeping all other settings constant, then finetune the pretrained
encoder on molecular property prediction tasks. As Table 1 shows, the structure-independent decoder
achieves better performance, outperforming the structure-dependent decoder by 5% in Toluene.
This demonstrates that using a structure-independent decoder encourages the encoder to learn more
informative representations, leading to improved performance on downstream tasks.

Table 1: Analyzing the decoder and SRD. Perfor-
mance (MAE ↓) on MD17. The variant without
SRD and Ldistill corresponds to the model ablated
without 2D-PE.

Decoder SRD Ldistill Salicylic Toluene Uracil

Structure-dependent ✓ ✓ 0.0401 0.0291 0.0334
Structure-independent ✗ ✗ 0.0404 0.0292 0.0328
Structure-independent ✓ ✗ 0.0416 0.0293 0.0329
Structure-independent ✓ ✓ 0.0387 0.0275 0.0315

Analysis 3. 2D-PE and 2D-from-3D distillation
boost downstream performance. We pretrain
the auto-encoder with and without 2D-PE and
2D-from-3D distillation, followed by finetuning
the encoder on MD17 datasets. As shown in
Table 1, combining 2D-PE and distillation consis-
tently improves performance. In contrast, using
2D-PE alone leads to degradation, likely due to
unintended leakage of 2D structural information
into the decoder. Moreover, 2D-from-3D distil-
lation guides the 2D-PE to focus on encoding
positional information for re-masked tokens, rather than learning molecular representation, which
allows the 3D graph encoder to better specialize in MRL.

Analysis 4. SRD prevents the encoder representation from containing information about 3D
coordinates. To examine whether the encoder captures detailed 3D coordinate information, we
train an MLP probe to predict masked atom coordinates from the encoder’s representations. We
compare the reconstruction loss for encoders pretrained with and without SRD. As shown in Figure 6,
the reconstruction loss for the encoder pretrained with SRD is much higher, suggesting that SRD
suppresses direct encoding of 3D coordinate details. This forces the encoder to focus on learning
higher-level molecular representations that are better aligned with downstream tasks.

Analysis 5. 2D-PE produces 2D structural context without introducing information leakage.
To assess whether 2D-PE introduces additional information beyond what the 3D graph encoder
already captures, we train an MLP to reconstruct the 2D-PE representation from the 3D graph encoder
representation and compute the reconstruction error, measured by the cosine similarity between the
two representations. During this process, both the 3D graph encoder and 2D-PE are frozen, and only
the MLP is trainable. Figure 7 shows that the cosine similarity is very close to 1.0, indicating that the
context 2D-PE provided is mostly contained by the 3D graph encoder.

Analysis 6. 2D-PE encodes structural information for decoding. We probe whether the pretrained
2D-PE captures structural information required by the decoder. Specifically, we freeze the 2D-PE
and train two MLP classifiers to predict atom and bond types from its outputs. Both tasks achieve
prediction accuracy above 99.99%, demonstrating that the 2D-PE indeed encodes the structural
information necessary for decoding.

6 Experiments

6.1 Experimental Setup

Datasets. For pretraining, we use a large-scale molecular dataset PCQM4Mv2 [55], which contains
approximately 3.37 million equilibrium 3D molecular graph structures. For downstream tasks, we
evaluate our model on two widely used molecular property prediction datasets: QM9 [13] and MD17
[26]. Specifically, QM9 is a quantum chemistry dataset comprising 134k small molecules, each
with its equilibrium conformation and 12 molecular properties (e.g., homo, lumo, dipole moment
etc.) calculated using density functional theory (DFT). Following prior works [30, 31], we split
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Table 2: Performance (MAE ↓) on MD17 force prediction. The best results are bold. The second-best
results are underline. Results marked with * are reproduced by us.

Models Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

TorchMD-NET 0.1216 0.1479 0.0492 0.0695 0.0390 0.0655 0.0393 0.0484
3D-EMGP 0.1560 0.1648 0.0389 0.0737 0.0829 0.1187 0.0619 0.0773
3D-EMGP

(TorchMD-NET) 0.1124 0.1417 0.0445 0.0618 0.0352 0.0586 0.0385 0.0477

Frad* 0.0825 0.1355 0.0432 0.0535 0.0431 0.0569 0.0433 0.0482
3D-ReTrans 0.0726 0.1619 0.0556 0.0659 0.0423 0.0523 0.0417 0.0427

3D-GSRD 0.0583 0.1435 0.0355 0.0468 0.0266 0.0356 0.0274 0.0292

Table 3: Performance (MAE ↓) on QM9. The best results are bold. The second-best results are
underline. Results marked with * are reproduced by us.

Models µ
(D)

α
(a30)

homo
(meV)

lumo
(meV)

gap
(meV)

< R2 >
(a20)

ZPVE
(meV)

U0

(meV)
U

(meV)
H

(meV)
G

(meV)
Cv

( cal
molK )

Uni-Mol2 0.089 0.305 - - - 5.26 - - - - - 0.144
SchNet 0.033 0.235 41.0 34.0 63.0 0.07 1.70 14.00 19.00 14.00 14.00 0.033
E(n)-GNN 0.029 0.071 29.0 25.0 48.0 0.11 1.55 11.00 12.00 12.00 12.00 0.031
DimeNet++ 0.030 0.043 24.6 19.5 32.6 0.33 1.21 6.32 6.28 6.53 7.56 0.023
PaiNN 0.012 0.045 27.6 20.4 45.7 0.07 1.28 5.85 5.83 5.98 7.35 0.024
SphereNet 0.025 0.045 22.8 18.9 31.1 0.27 1.12 6.26 6.36 6.33 7.78 0.022
ComENet 0.025 0.045 23.1 19.8 32.4 0.259 1.20 6.59 6.82 6.86 7.98 0.024
TorchMD-NET 0.011 0.059 20.3 18.6 36.1 0.033 1.84 6.15 6.38 6.16 7.62 0.026
3D-ReTrans 0.016 0.055 22.0 17.8 38.0 0.341 1.85 6.18 6.36 6.51 7.89 0.029

Transformer-M 0.037 0.041 17.5 16.2 27.4 0.075 1.18 9.37 9.41 9.39 9.63 0.022
SE(3)-DDM 0.015 0.046 23.5 19.5 40.2 0.122 1.31 6.92 6.99 7.09 7.65 0.024
3D-EMGP 0.020 0.057 21.3 18.2 37.1 0.092 1.38 8.60 8.60 8.70 9.30 0.026
Coord 0.016 0.052 17.7 14.7 31.8 0.450 1.71 6.57 6.11 6.45 6.91 0.020
Frad* 0.012 0.045 15.4 13.7 30.6 0.428 1.56 15.88 14.67 14.87 13.52 0.023
SliDe* 0.015 0.050 18.7 16.2 28.8 0.606 1.78 10.05 10.79 11.34 11.80 0.025
Mol-AE* 0.152 0.434 - - - 6.962 - - - - - 0.215
Uni-GEM 0.019 0.060 20.9 16.7 34.5 - - - - - - 0.023

3D-GSRD 0.009 0.038 18.0 14.5 31.1 0.047 1.38 5.48 5.67 5.84 6.90 0.020

the dataset into 11,000/1,000/10,831 molecules for training, validation, and testing, respectively.
MD17 provides simulated dynamical trajectories for 8 small molecules, including their energy,
forces, and conformations. During finetuning, our model first predicts the molecular energy and
subsequently derives the forces using the relationship F = −∇rE, where r represents the 3D
coordinates. For finetuning, we split the dataset into 9500/950 samples for training and validation,
and use the remaining samples for testing.

Baselines. To evaluate the effectiveness of our proposed framework, we adopt state-of-the-art 3D
molecular pretraining methods and supervised models for molecular property prediction as baselines.
For 3D molecular pretraining methods, we include Transformer-M [52], SE(3)-DDM [56], 3D-EMGP
[57], Coordinate Denoising [32], Fractional Denoising [30], Sliced Denoising [31], UniGEM [58],
Mol-AE [19]. For supervised models, we include SchNet [59], E(n)-GNN [60], DimeNet [61],
DimeNet++ [62], PaiNN [23], SphereNet [63], TorchMD-NET [24], Uni-Mol2 [16], ComENet [64].
We also include the results of training our backbone (i.e., 3D-ReTrans) from scratch to evaluate the
effectiveness of our pretraining methods. We reproduce the results for Frad, SliDe and Mol-AE,
while the results for other baselines are directly taken from the referenced papers. More details about
baselines and implementation are provided in Appendix D.

6.2 Results on MD17

The MD17 dataset contains diverse non-equilibrium molecular structures that are highly sensitive
to geometry, making it a challenging benchmark for 3D MRL. As shown in Table 2, 3D-ReTrans
achieves performance comparable to TorchMD-NET and surpasses 3D-EMGP on 7 of 8 molecules,
demonstrating its strength as a 3D graph encoder for 3D MGM. Moreover, 3D-GSRD attains state-of-
the-art results on 7 of 8 molecules except Benzene, exceeding the strongest baseline (i.e., Frad) by a
large margin. These results confirm the effectiveness of our pretraining method.
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Table 4: Ablation on 3D-ReTrans components.
Performance (MAE ↓) on QM9.

Model Components homo lumo zpve

Relational-Transformer 27.7 24.0 1.97
+ 3D Data Augmentation 24.6 23.2 1.92
+ 3D Relational-Attention 23.4 20.3 1.90
+ 3D Update Layer (3D-ReTrans) 22.0 17.8 1.85

Table 5: Analyzing SRD on the Relational-
Transformer. Performance (MAE ↓) on MD17.

Decoder SRD Ldistill Toluene Uracil

Structure-dependent ✓ ✓ 0.1144 0.0813
Structure-independent ✗ ✗ 0.1250 0.0828
Structure-independent ✓ ✗ 0.0998 0.0843
Structure-independent ✓ ✓ 0.0745 0.0733

6.3 Results on QM9

We also evaluate the effectiveness of 3D-ReTrans and our pretraining strategy on the QM9 dataset, as
shown in Table 3. 3D-ReTrans achieves performance comparable to TorchMD-NET, validating the
effectiveness of our proposed backbone architecture. Moreover, 3D-GSRD sets a new state-of-the-art
on 7 out of 12 properties, surpassing most baselines, including methods with and without pretraining.
These results demonstrate that 3D-GSRD is a highly effective pretraining strategy for MRL, offering
advantages over coordinate denoising based approaches.

6.4 Ablation Studies and Analysis

Ablation on Backbone. To assess the effectiveness of our improvements to the Relational-
Transformer [25], we perform ablation studies on each component of 3D-ReTrans, as summarized
in Table 4. The results show that 3D Relational-Attention, the 3D Update Layer, and 3D data
augmentation each enhance molecular property prediction, collectively boosting overall performance.

Generalization of SRD Across 3D Graph Encoders. To evaluate the generalization of SRD, we
replace 3D-ReTrans with the Relational-Transformer and conduct additional experiments. As shown
in Table 5, incorporating SRD consistently improves downstream performance, demonstrating its
effectiveness as a general pretraining strategy applicable to diverse 3D graph encoder architectures.

Table 6: Ablation on 2D graph po-
sition encoder. Performance (MAE
↓) on MD17.

2D Encoder Salicylic Uracil

RWSE 0.0368 0.0310
2D-PE 0.0356 0.0292

Ablation on 2D Graph Position Encoder. We compare our
2D-PE against alternative structural embeddings, such as those
in GraphGPS [37]. Following prior results, we adopt RWSE
[65] as a representative baseline due to its strong performance
on ZINC and PCQM4Mv2 with relatively low computational
cost. As shown in Table 6, replacing 2D-PE with RWSE leads
to consistently lower performance, confirming the advantage
of 2D-PE in providing 2D structural context.

7 Conclusion and Future Works

In this work, we introduce 3D-GSRD, a 3D MGM framework with three key components: (1) the
Selective Re-mask Decoding that selectively re-masks 3D-relevant information while preserving
2D graph structures; (2) a structure-independent decoder that eliminates all structural information
by relying solely on encoder representation; and (3) 3D-ReTrans as the 3D graph encoder for
MRL. Our detailed analysis reveals the internal mechanisms of SRD and the structure-independent
decoder. Extensive experiments demonstrate that 3D-GSRD significantly outperforms baselines on
downstream datasets such as QM9 and MD17.

Despite promising results, several limitations remain. Our pretraining is conducted on PCQM4Mv2
[55] with 3.37M molecules, which is smaller than large-scale datasets such as PubChemQC [66] with
230M molecules, potentially constraining performance. Scaling to larger and more diverse datasets
is an important direction. In addition, we focus on molecular property prediction, while other tasks
like 3D molecule generation [67–70] and multi-modal molecule–text modeling [71–74] could also
benefit from our pretrained autoencoder. Beyond molecular applications, our pretraining paradigm
can be extended to broader biological modalities such as single-cell [75] and protein [76].
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have included the paper’s contributions and scope in the abstract and
introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are included in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The information needed to reproduce the main experimental results is provided
in Section 6.1 and Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

17



Answer: [Yes]
Justification: The code of the paper is released at https://github.com/WuChang0124/
3D-GSRD and the data used are publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental settings are provided in Section 6.1 and Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We follow the experimental design of previous works, which did not involve
repeated runs and did not report error bars. And due to limited computational resources, we
are unable to afford the overhead of running multiple trials for each experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information about compute resources are provided in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research in this paper conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the societal impacts of the work performed in Appendix A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The PCQM4Mv2 dataset are used by https://ogb.stanford.edu/docs/
lsc/pcqm4mv2/ under CC BY 4.0 License. The QM9 dataset are used via https://
deepchemdata.s3-us-west-1.amazonaws.com/ under the MIT License.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Broader Impacts

This work advances molecular representation learning and has the potential to accelerate downstream
applications such as molecular property prediction, drug discovery, molecular dynamics simulation,
and material design, helping reduce the cost and time of wet-lab experiments. However, there is a
risk of over-reliance on model predictions without sufficient interpretability or domain validation.
Additionally, models trained on biased datasets may produce structural or chemical biases, limiting
the model’s generalization across molecular spaces. We encourage the community to test our models
strictly before applying them in scientific scenarios.

B More Details on Methodology

In this section, we describe the embedding layer preceding the attention mechanism in 3D-ReTrans.
The input 3D molecule graph is defined as G = (x,a, e), where x denotes atomic coordinates, a
represents atom types, and e denotes pairwise edge features. Our goal is to obtain atomic and edge
embeddings that encode both chemical and geometric context.

The initial node embedding enode jointly encodes atom coordinates and types:

enode = Embednode([x,a]). (16)

To incorporate local geometric context, we compute the neighborhood embedding eneigh
i for each

atom i based on the radial distances dij to neighbors atom j. The radial basis function is given by:

eRBF(dij) = ϕ(dij) exp
(
−β (exp(−dij)− µ)

2
)

(17)

ϕ(dij) =

{
1
2

(
cos

(
πdij

dcut

)
+ 1

)
, if dij ≤ dcut

0, if dij > dcut
(18)

where ϕ(dij) is a smooth cutoff function ensuring locality and β and µ are fixed parameters.

The neighborhood embedding eneigh
i for atom i is then defined as:

eneigh
i =

N∑
j=1

Embedneigh([x,a])⊙WreRBF(dij), (19)

where ⊙ denotes element-wise product and Wr is a learnable projector. We set the cutoff distance
dcut = 5Å, ensuring that each atom only attends to neighbors within this spatial range.

The final atomic embedding eatomic
i combines node and neighborhood information:

eatomic
i = Wa([enode, eneigh

i ]), (20)

where Wa denotes learnable projector.

We also obtain the edge embedding eedge via:

eedge = Embededge(e). (21)

C Pseudo Code

We present the pseudocode for pretraining (see Algorithm 1) and finetuning (see Algorithm 2)
algorithms in this section.

D Experimental Setup

D.1 Computational Resource

All experiments are conducted on NVIDIA A6000-48G GPUs. Pretraining requires a total of 48 GPU
hours. For downstream tasks, finetuning on QM9 and MD17 takes approximately 48 and 8 GPU
hours per experiment, respectively.
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Algorithm 1 Pretraining of 3D-GSRD

Require: 3D graph encoder ϕ3D
θ , 2D graph encoder ϕ2D

θ , decoder ϕDe
θ , pretraining dataset D, input

3D molecule graph G = (x,a, e), masked coordinates prediction head PosHeadθ, denoising
prediction head DenoiseHeadθ, mask ratio p, denoising loss weight w.

1: while training is not finished do
2: Gi = (x,a, e) = dataloader(D)
3: randomly mask p atoms and add Gaussian noise (∆xi ∼ 0.04 ·N (0, σ2Im)) to the unmasked

atomic coordinates
4: input moleule G̃i = (ã, x̃, ẽ)

5: h3D,vec = ϕ3D
θ (G̃i)

6: h2D = ϕ2D
θ (a, e))

7: SRD(h3D, G̃i) = re-mask(h3D) + stop-grad(h2D)

8: rep,vec = ϕDe
θ (SRD(h3D, G̃i),vec)

9: For masked atoms: xpred
i = PosHeadθ(rep,vec)

10: For unmasked atoms: ∆xpred
i = DenoiseHeadθ(rep,vec)

11: Loss = ||xi
pred−xi||22+w ·||∆xi

pred−∆xi||22−CosineSimilarity(stop-grad(h3D),h2D)
12: Optimise(Loss)
13: end while

Algorithm 2 Finetuning of 3D-GSRD

Require: 3D graph encoder ϕ3D
θ , finetuning dataset D, input 3D molecule graph G = (x,a, e),

label prediction head LabelHeadθ.
1: while training is not finished do
2: Gi = (x,a, e), yi = dataloader(D)
3: h3D,vec = ϕ3D

θ (Gi)

4: ypredi = LabelHeadθ(h3D,vec)
5: Loss = ||yipred − yi||22
6: Optimise(Loss)
7: end while

D.2 Baselines

We describe the details of our reported baseline methods in this section.

SchNet [59] proposes continuous-filter convolutional layers, which enables the model to capture
local correlations in molecules without grid-based data.

E(n)-GNN [60] introduces an architecture that is equivariant to rotations, translations, reflections, and
permutations. Notably, its equivariance extends to higher dimensions with affordable computational
overhead increase.

DimeNet [61] applies directional message passing which enables graph neural networks to incorporate
directional information for molecular predictions and using spherical Bessel functions and spherical
harmonics to representation distances and angles.

DimeNet++ [62] improves upon DimeNet by being 8× faster and achieving 10% higher accuracy,
while maintaining strong generalization across molecular configurations and compositions.

PaiNN [23] addresses the limitations of invariant representations in message passing neural networks
by extending the message passing framework to rotationally equivariant representations.

SphereNet [63] analyzes 3D molecular graphs in the spherical coordinate system and propose
the spherical message passing (SMP) scheme to efficiently distinguish molecular structures while
reducing training complexity.

TorchMD-NET [24] introduces an equivariant Transformer architecture with a modified attention
mechanism that incorporates interatomic distances directly into the attention weights.
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Transformer-M [52] is a Transformer based architecture that that handles multiple molecular data
modalities within a unified model by using two separate channels to encode 2D and 3D molecular
structures.

SE(3)-DDM [56] leverages an SE(3)-invariant score matching method to transform coordinate
denoising into denoising the pairwise atomic distances within a molecule.

3D-EMGP [57] introduces an equivariant energy-based model and develops a self-supervised pre-
training framework including a physics-inspired node-level force prediction task and a graph-level
noise scale prediction task.

Coord [32] proposes a pretraining technique based on denoising for 3D molecular structures, showing
it is equivalent to learning a force field.

Frad [30] introduces a new hybrid noise strategy by first adding Gaussian noise to the dihedral angles
of the rotatable bonds, followed by traditional noise to the atom coordinates, with pretraining focused
solely on denoising the latter.

SliDe [31] develops a novel sliced denoising method that adds Gaussian noise to bond lengths, angles,
and torsion angles with their variances determined by parameters within the energy function.

Uni-Mol2 [16] is a molecular pretraining model that uses a two-track transformer to jointly capture
atomic-level, graph-level, and geometry-level features, while systematically investigating scaling
laws in molecular pretraining.

ComENet [64] introduces a graph neural network for 3D molecular graphs that adopts rotation
angles and local completeness in the 1-hop neighborhood, while integrating quantum-inspired basis
functions into its message passing mechanism.

Mol-AE [19] addresses the gap between pretraining and downstream objectives in encoder-only 3D
molecular models by introducing an auto-encoder with positional encodings as atomic identifiers and
a 3D Cloze Test objective that drops atoms to better capture real substructures.

Uni-GEM [58] unifies molecular generation and property prediction through a diffusion-based
two-phase process of scaffold nucleation and molecule growth, using a multi-branch network with
oversampling to balance tasks.

D.3 Implementation details

We employ the 3D-ReTrans as the 3D graph encoder and implement 2D-PE as 2D-ReTrans, a
simplified version of the 3D-ReTrans that excludes 3D coordinates and distance inputs, while using
the Transformer as the structure-independent decoder. The 3D graph encoder is configured with a
hidden dimension of 256, 8 attention heads, and 12 layers. The 2D-PE shares most of its configuration
with the 3D graph encoder, except for a hidden dimension of 64 and 4 attention heads. The decoder
consists of 2 layers, with the hidden dimension and number of attention heads same as the 3D graph
encoder. The detailed hyper-parameters configuration for pretraining and finetuning are shown in
Table 7, Table 8, and Table 9, respectively.

E More Experimental Results

E.1 Ablation on Alternative Approach to Eliminating 2D Leakage

We investigate an alternative approach to fully eliminate 2D leakage by directly combining 3D
embeddings with 2D positional encodings as molecular representations during downstream tasks.
We test this setup with SRD both with and without distillation. As shown in Table 10, simply fusing
2D-PE with 3D-ReTrans under SRD without distillation consistently underperforms our original
design, highlighting the necessity of SRD with distillation for effective 2D and 3D alignment. In
contrast, when distillation is applied, downstream performance becomes insensitive to whether 2D-PE
is explicitly included, suggesting that pretraining distillation sufficiently aligns the modalities and
renders additional 2D input unnecessary.
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Table 7: Hyper-parameters for pretraining on PCQM4MV2.

Parameter Value

Dataset PCQM4MV2
Train/Val/Test Split Others/100/100
Batch size 128
Inference Batch size 128
Accumulate grad batches 2
Optimizer AdamW
Weight decay 1e-16
Scheduler CosineAnnealingLR
Init learning rate 5e-5
Min learning rate 1e-6
Warm up steps 10000
Max epochs 30
Masked ratio 0.25
Masked coordinates reconstruction loss type MSE loss
Coordinate noise scale(type: Gaussian) 0.04
Denoising loss weight 0.1

Table 8: Hyper-parameters for finetuning on QM9.

Parameter Value

Dataset QM9
Train/Val/Test Split 11000/1000/10831
Batch size 128
Inference Batch size 128
Accumulate grad batches 1
Optimizer AdamW
Weight decay 1e-16
Scheduler CosineAnnealingLR
Init learning rate 5e-4
Min learning rate 1e-6
Warm up steps 1000
Learning rate cosine length 2,000,000
Max steps 2,000,000
Max epochs 2000
Finetuning loss type MSE loss

E.2 Evolution of 2D-PE’s representations

To examine how 2D-PE’s representation evolves during pretraining, we track the cosine similarity
between 2D and 3D representations. As shown in Figure 8, the similarity increases sharply in the
initial training steps, approaching 1.0, and then grows gradually, indicating progressive alignment
between the two modalities.

26



Table 9: Hyper-parameters for finetuning on MD17.

Parameter Value

Dataset MD17
Train/Val Split 9500/500/remaining data
Batch size 80
Inference batch size 64
Accumulate grad batches 1
Optimizer AdamW
Weight decay 0.0
Scheduler CosineAnnealingLR
Init learning rate 5e-4
Min learning rate 1e-6
Warm up steps 1000
Max epochs 1200
Force weight 0.8
Energy weight 0.2
Finetuning loss type MAE loss
Ema alpha dy 1.0
Ema alpha y 0.05

Table 10: Ablation on alternative approach to eliminate 2D leakage. Performance (MAE ↓) on MD17.

Downstream Model SRD Ldistill Salicylic Toluene Uracil

2D-PE+3D-ReTrans ✓ ✗ 0.0420 0.0293 0.0334
3D-ReTrans ✓ ✗ 0.0416 0.0293 0.0329
2D-PE+3D-ReTrans ✓ ✓ 0.0384 0.0275 0.0311
3D-ReTrans ✓ ✓ 0.0387 0.0275 0.0315

Figure 8: Evolution of the 2D-PE’s representation.
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