

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CAN VISION MODELS MIRROR HUMAN UNDER- STANDING OF INCREASING TASK DIFFICULTY?

Anonymous authors

Paper under double-blind review

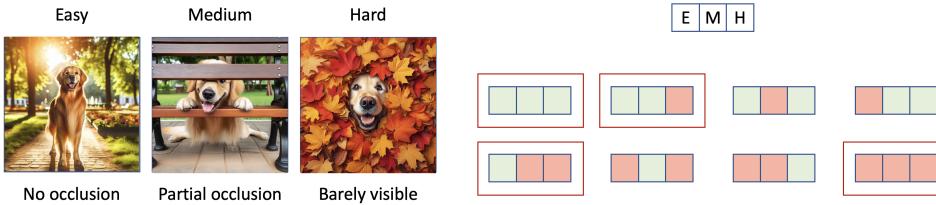


Figure 1: **Left:** Sample images from our proposed test set generated using GPT + DALL-E 3. For the class of *golden retriever* and attribute *occlusion*, we generate images of varying difficulty. Intuitively, it is easier to classify the leftmost image as *golden retriever* compared to rightmost image. **Right:** Possible responses (correct/incorrect) of a model on the easy/medium/hard image on the left side. *Cannot solve easy one* → *cannot solve difficult one*. *Can solve difficult one* → *can solve easy one*: this hypothesis is only satisfied in 4 (in red) out of 8 possibilities.

ABSTRACT

When a human undertakes a test, their responses likely follow a pattern: if they answered an easy question (2×3) incorrectly, they would likely answer a more difficult one $(2 \times 3 \times 4)$ incorrectly; and if they answered a difficult question correctly, they would likely answer the easy one correctly. Anything else hints at memorization. Do current visual recognition models exhibit a similarly structured learning capacity? In this work, we consider the task of image classification and study if those models' responses follow that pattern. Since real images aren't labeled with difficulty, we first create a dataset of 100 categories, 10 attributes, and 3 difficulty levels using recent generative models: for each category (e.g., dog) and attribute (e.g., occlusion), we generate images of increasing difficulty (e.g., a dog without occlusion, a dog only partly visible). We find that most of the models do in fact behave similarly to the aforementioned pattern around 80-90% of the time. Using this property, we then explore a new way to evaluate those models. Instead of testing the model on every possible test image, we create an adaptive test akin to GRE, in which the model's performance on the current round of images determines the test images in the next round. This allows the model to skip over questions too easy/hard for itself, and helps us get its overall performance in fewer steps.

1 INTRODUCTION

Imagine a math teacher grading a student's answer sheet, and finds that they got the answer of (2×3) wrong but the answer for $(2 \times 3 \times 4)$ right. The teacher will rightly wonder whether the student properly learnt the concept of multiplication or whether they memorized the answer to the more difficult question. This is because there is a characteristic way in which humans learn any concept: if they cannot answer an easy question, they very likely *cannot* answer a more difficult one. And conversely, if they can answer a difficult question, they most certainly *can* answer an easier one as well. Neural networks are also trained to learn concepts to perform a task. Do they also learn those concepts in a similarly characteristic way?

In this work, we study this question in the context of vision models, specifically for the task of image classification. Our goal is to see if modern visual recognition systems (e.g., ConvNext (Liu

054 et al., 2022), ViT Dosovitskiy et al. (2020)) have such human-like behavior to easy/hard-to-classify
 055 images. We don't think the answer to this question is straightforward because vision models typ-
 056 ically are not explicitly trained to perform well on hard *only* if they perform well on easy, unlike
 057 humans who learn through a well defined curriculum. If these models do indeed mimic humans, it
 058 will only be an emergent property. Since there does not exist appropriate real datasets labeled with
 059 ground-truth difficulty, we *generate* one instead. Recent image generative models have become ca-
 060 pable of generating very high quality images (Rombach et al., 2022), good enough to be used in
 061 training recognition models (Yu et al., 2023; Azizi et al., 2023), and we believe that they are good
 062 enough to be used for our evaluation. With the aid of recent large language and generative models
 063 (GPT-4 Achiam et al. (2023) + DALL-E 3 Ramesh et al. (2021)), we design a prompting system to
 064 generate descriptions of images of three levels of difficulty. For example, *an image of a fully visible*
 065 *dog* and *an image of dog only partly visible* can be considered to be image descriptions of an easy-
 066 and hard-to-classify images respectively. We use DALL-E 3 to take in these different difficulty level
 067 prompts and generate images while faithfully preserving the desired attributes. Fig. 1 (left) gives an
 068 example.

069 Once we have the easy, medium and hard-to-classify test images, we record if the model predicts the
 070 class correctly or incorrectly. Fig. 1 (right) depicts the 8 possibilities of model's behavior (green/red
 071 represent correct/incorrect response). If the model truly learns to classify images by developing
 072 the aforementioned notion of easy/hard concepts, then its responses should fall under 4 out of the
 073 8 possibilities highlighted in a red box. Our first key finding is that, for most of the current visual
 074 recognition models, their responses *do indeed* fall under the 4 highlighted categories around 80-90%
 075 of the time. This result hints that even without an explicit supervision, visual recognition models
 076 learn to learn things in a structured way.

077 While an intriguing result in its own, we believe that this can have applications, especially in the
 078 way we evaluate models. We take inspiration from how students are often tested using standardized
 079 tests, like the Graduate Record Examination (GRE), for admissions into U.S. universities. These
 080 tests are adaptive in nature, where questions in the next round depend on how well the student does
 081 in the current one. So, for example, if the student cannot solve easy-medium questions, there is not
 082 much point giving them difficult questions in the next round; i.e., one can reliably *predict* that they
 083 will get zero points for those hard questions. We develop a similar GRE-type test to evaluate visual
 084 recognition models on the generated dataset proposed above. The test is broken up into multiple
 085 rounds. In the first round, the model is shown images of medium difficulty on average. Its score
 086 in this round determines the distribution of easy/medium/hard questions in the next round. That is,
 087 similar to GRE, we can skip over images that are too easy/hard for the model to classify. Thus,
 088 instead of evaluating the model on every possible image in the test set, this way of dynamically
 089 selecting the images helps approximate that total score of the model on the whole set using only
 090 25% of the test images.

091 Additionally, the newly proposed dataset can have usefulness in and of itself. We generate images
 092 from 100 categories taken from ImageNet (Deng et al., 2009). For each category, we consider
 093 10 attributes. Within each attribute, we generate 12 images for 3 levels of difficulty, bringing the
 094 total number of images to 36,000. However, different from standard benchmarks like the ImageNet
 095 validation set, these 36k images are labeled with attribute value, difficulty, in addition to the ground-
 096 truth class. This can enable analysing models on a much finer level (e.g., ResNet-50 struggles to
 097 detect dogs from a side view).

098 In summary, our work has the following contributions. We present a new method to study the
 099 learning dynamics of modern visual recognition systems using the concept of example difficulty.
 100 To do this, we create a new test set of synthetic images labeled with class, attribute, and difficulty
 101 level. Our results indicate that most of the models do in fact develop a semantically meaningful
 102 notion of example difficulty while learning visual concepts, without having access to any external
 103 supervision. Using this newly found property, we develop a multi-round adaptive test, inspired
 104 by GRE, which steers the future test images according to a model's ongoing performance. This
 105 facilitates skipping over too easy/hard questions, and helps assess a model's performance using a
 106 fraction of test images.

107

108
109

2 RELATED WORK

110
111
112
113
114
115
116
117
118
119
120
121

Neural network learning mechanisms. Understanding how neural networks learn concepts has long been a central theme in deep learning. Prior work has examined their tendency to generalize versus memorize, even under random labels (Zhang et al., 2021; Arpit et al., 2017), and suggested that generalization depends more on data than model capacity (Dinh et al., 2017; Krueger et al., 2017). Another perspective comes from feature-importance visualization, such as gradient-based methods (Simonyan, 2013) or CAM (Zhou et al., 2016), which highlight regions critical to a model’s decision. Training dynamics also reveal biases: networks tend to prioritize easy-to-learn features like texture (Geirhos et al., 2018), while neglecting harder features such as shape (Geirhos et al., 2020) or minority samples (Mehrabi et al., 2021). These insights motivate curricula that present tasks of increasing difficulty (Bengio et al., 2009; Saxena et al., 2019), but such methods neither guarantee that harder concepts are learned only after easier ones nor prevent forgetting of earlier-learned concepts. To our knowledge, we are the first to ask whether this principle instead emerges naturally in neural networks after full training.

122
123
124
125
126
127
128
129
130
131
132
133
134
135

Datasets for studying models’ properties. The standard evaluation of image classifiers is accuracy on human-collected test sets, but benchmarks such as ImageNet (Deng et al., 2009) have raised concerns of saturation (Mayilvahanan et al., 2023). To address this, new datasets test robustness under distribution shifts (Recht et al., 2019; Wang et al., 2019; Barbu et al., 2019; Hendrycks et al., 2021; Taesiri et al., 2024; Hendrycks & Dietterich, 2019; Geirhos et al., 2018), while others employ synthetic data. For example, the Photorealistic Unreal Graphics (PUG) dataset (Bordes et al., 2024) leverages Unreal Engine to probe factors like pose, texture, and lighting; ImageNet-D (Zhang et al., 2024) uses Stable Diffusion to generate challenging images; and Spawrious (Lynch et al., 2023) targets spurious correlations. Parallel efforts study image “difficulty,” defined at the class level (Barbu et al., 2019) or per image via human response times (Mayo et al., 2023), model agreement (Meding et al., 2022), or scaling-based accuracy estimates (Jiang et al., 2021). Yet these difficulty notions are isolated and not tied to interpretable attributes. We argue that difficulty is best understood by considering what would make an image easy—for instance, an occluded dog (Fig. 1) would be easy to classify if unobscured. Guided by this view, we propose a generative approach to build datasets annotated with explicit, attribute-based difficulty labels.

136
137
138
139
140
141
142

Adaptive model evaluation. Inspired by computerized adaptive testing (CAT) (Van der Linden & Glas, 2000), we propose adaptive testing algorithms for image classification benchmarks. Like CAT, which estimates ability from a subset of questions, our framework reduces computational cost by evaluating models on carefully selected samples while preserving assessment accuracy. Unlike prior lifelong evaluation frameworks that sub-select existing samples via dynamic programming (Prabhu et al., 2024), our approach generates unseen images with DALL-E, ensuring exposure to genuinely new data, mitigating leakage, and improving the reliability of generalization assessment.

144
145

3 MODELS’ BEHAVIOR ON EASY → HARD IMAGES

146
147
148
149
150
151

Humans learn concepts progressively: solving harder problems is only possible after mastering easier ones (Zacks & Tversky, 2001; Newson, 1973). We investigate whether image classification models exhibit a similar behavior. In Sec. 3.1, we describe our process for generating test data with images of varying difficulty, analogous to human exam questions. In Sec. 3.2, we introduce a method for analyzing model responses to these images to assess whether they mirror human-like learning progression.

152
153

3.1 DATASET CREATION

154
155
156
157
158

In image classification, the standard dataset format is pairs of images and ground-truth labels, $\mathcal{D} = \{(x_1, y_1), (x_2, y_2), \dots\}$. For our purpose, however, it is not enough to know that y_i is the correct label for x_i ; we also require a measure of how difficult it is to classify x_i as y_i . Thus, our first step is to formalize this notion of difficulty in the context of our problem.

159
160

3.1.1 UNDERSTANDING SAMPLE DIFFICULTY

161

Consider Fig. 2, specifically the triplet of images in the top right. Each depicts a golden retriever, yet it is clear to humans that the leftmost image is easiest to classify, while the rightmost is hardest, due

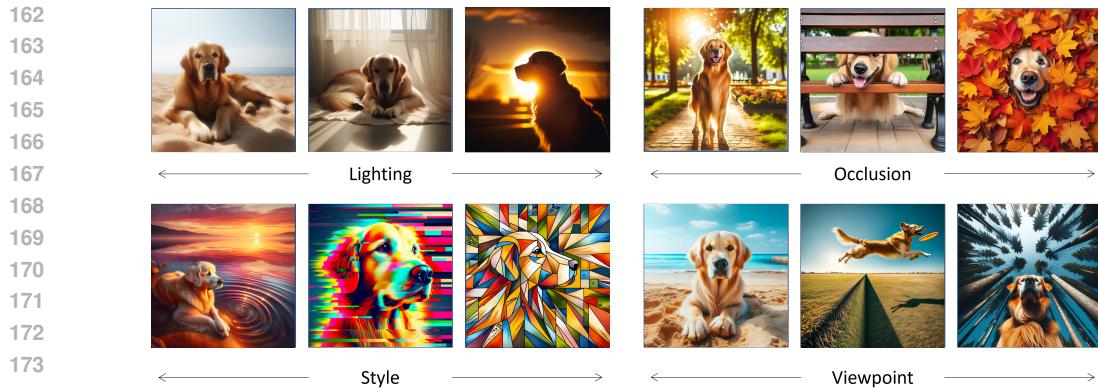


Figure 2: **Visualizing the difficulty of test samples.** All of the images are generated using our proposed pipeline. In each quadrant, we focus on one attribute (e.g., lighting, in the top left), and from left to right we show the images becoming progressively more difficult to be classified correctly.

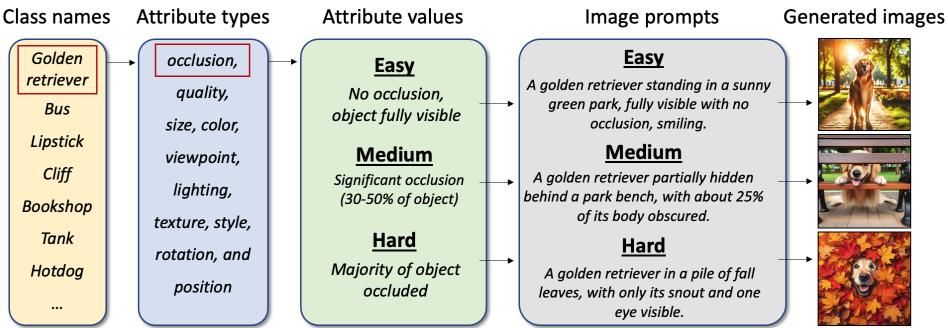


Figure 3: **Overview of the test set generation process.** The first step is to collect the names of the image categories that we wish to test the models on. We then prompt GPT-4 to generate the appropriate attribute values for those categories with various levels of difficulty. Using those, we again prompt GPT-4 to generate text prompts for a category (golden retriever), attribute (heavy occlusion) combination. Finally, we use DALL-E 3 to generate the corresponding images.

to increasing occlusion. Other triplets similarly illustrate an easy → hard progression along different attributes. The key observation is that difficulty is best understood relative to a specific attribute (e.g., occlusion). However, to our knowledge, no real-image dataset provides human annotations of sample difficulty in this manner.

Given recent advances in generative models, we propose to *synthesize* images with specific attributes. Modern text-to-image systems can now produce high-quality images (Rombach et al., 2022; OpenAI, 2024a), to the point of being successfully used for training classifiers (Yu et al., 2023; Azizi et al., 2023). Moreover, text prompts allow precise control over attributes, enabling the generation of images that are easier or harder to classify. We therefore leverage these models to design a controlled evaluation setup.

3.1.2 OVERALL IMAGE GENERATION PIPELINE

To generate images of varying difficulty via text, we require three components for each prompt: (i) a class name (e.g., golden retriever), (ii) an attribute type (e.g., occlusion), and (iii) a difficulty level for that attribute (e.g., hard). The combination of (ii) and (iii) specifies an attribute value. For example: “An image of a golden retriever heavily occluded by a door”—here golden retriever is the class, and heavily occluded corresponds to the hard difficulty for the occlusion attribute. Our first step is to collect the set of classes to evaluate. We select 100 object categories from the 1000 ImageNet classes (see Appendix .10 for the complete list). The next step is to define attribute values, such as heavily occluded in the example above, for each attribute–difficulty pair.

Generating the attributes. We first prompt GPT-4 (Achiam et al., 2023) to list 10 common attribute types useful for describing image content (see second column of Fig. 3). For each attribute, we then ask GPT-4:

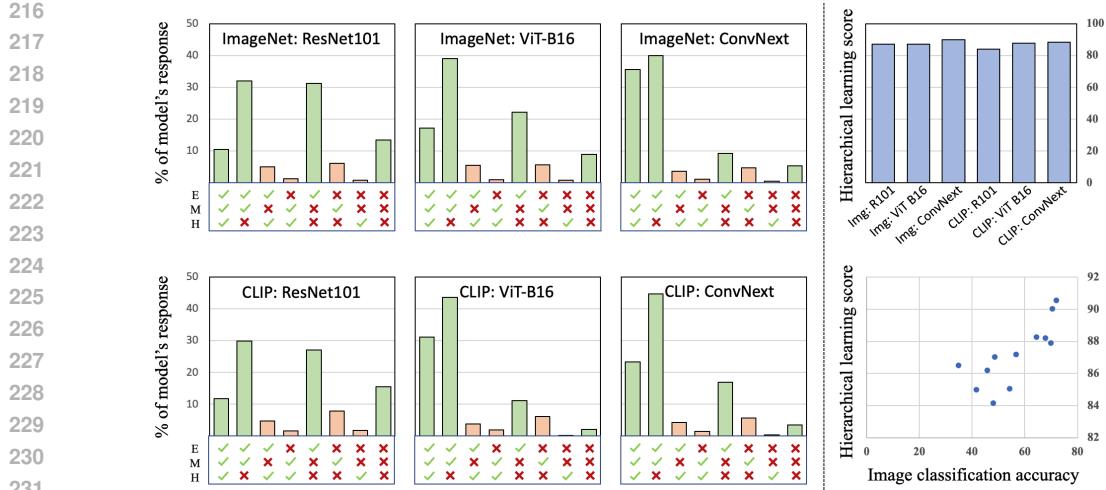


Figure 4: **Top:** Plots depicting % of model’s behavior on 12k triplets over the 8 possible patterns of Easy, Medium, Hard. Bars corresponding to principle-following pattern are colored green; others, red. All models behave according to the hierarchical learning principle. **Bottom left:** Hierarchical learning score of 6 vision models. Most achieve a score higher than 85%. **Bottom right:** Scatter plot of top-1 accuracy on our test set vs hierarchical learning score of 12 models. PCC value is 0.77.

‘‘To generate text prompts for DALL-E that will generate images of varying difficulty levels for vision models to classify, please create nine levels of difficulty based on <attribute name> attributes and group the nine levels of difficulty into categories of easy, medium, and hard.’’

GPT-4 returns difficulty-varying attribute values. For example, along the *occlusion* attribute: (i) Easy: No occlusion, object fully visible”; (ii) Medium: Significant occlusion (30–50%); (iii) Hard: “Majority of object occluded (70–90%)”.

Generating text prompts. Using these attribute values, we prompt GPT-4 once more to produce natural descriptions for DALL-E 3. Each description combines a class and an attribute value; e.g., combining *golden retriever* with *heavy occlusion* yields: “A golden retriever in a pile of fall leaves, with only its snout and one eye visible.” The overall pipeline is shown in Fig. 3, and Appendix 1 contains detailed prompts.

Dataset size: The dataset contains 100 classes, each paired with 10 attributes. For every attribute, we generate 3 difficulty levels with 12 images each, giving: $10 \times 100 \times 3 \times 12 = 36000$ images in total. The dataset is balanced across classes, attributes, and difficulty levels.

3.2 HIERARCHICAL LEARNING SCORE

We now describe how to use our easy/medium/hard dataset to test whether models learn concepts hierarchically. Each class combined with its attribute type yields $100 \times 10 = 1000$ pairs (e.g., *golden retriever, occlusion*). For each pair, we construct 12 triplets, each containing one easy, one medium, and one hard image, giving a total of 12,000 triplets.

For each model, we record whether its predictions match the ground-truth class. A model’s responses on a triplet fall into one of 8 possible patterns (Fig. 1, right), depending on which of the easy/medium/hard samples it classifies correctly. We then compute the distribution of these 8 patterns across all triplets.

Adopting a human-like hierarchical learning principle—a harder question should be answered correctly only if all easier ones are answered correctly—we note that only 4 of the 8 patterns satisfy this rule (marked in red in Fig. 1). We call these the principle-following patterns. The hierarchical-learning score is defined as the % of a model’s responses that fall into these patterns over all 12,000 triplets. The higher this score, the more a model adheres to the hierarchical learning principle.

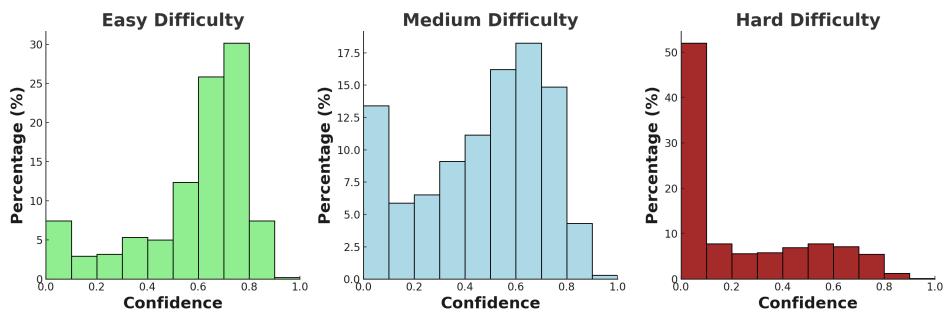


Figure 5: % of our dataset grouped according to classification confidence for the Easy, Medium, and Hard difficulty levels. We average the sample numbers across six selected classifiers (ViT-B16 (Dosovitskiy et al., 2020), ConvNext (Liu et al., 2022), ResNet-101 (He et al., 2016), trained on ImageNet1k (Deng et al., 2009) and LAION (Schuhmann et al., 2022)). See Appendix for more confidence visualization of different classifiers.

Experiments and Results: We evaluate three popular architectures—(i) ViT-B16 (Dosovitskiy et al., 2020), (ii) ConvNeXt (Liu et al., 2022), and (iii) ResNet-101 (He et al., 2016)—each trained on ImageNet-1k (Deng et al., 2009) with cross-entropy and on LAION (Schuhmann et al., 2022) with the CLIP objective (Radford et al., 2021), giving six models in total. Results are shown in Fig. 4 (top), where we plot the distribution of behaviors over 12,000 triplets, coloring principle-following patterns in green and others in red. From these distributions, we compute hierarchical-learning scores (Fig. 4, bottom left). Across all models, the majority of behaviors fall under principle-following patterns, yielding hierarchical-learning scores above 85%. In every case, the four most frequent behaviors correspond to the principle-following set, with the most common being Easy: \checkmark , Medium: \checkmark , Hard: \times , and the least common Easy: \times , Medium: \times , Hard: \checkmark . Notably, models trained with cross-entropy on ImageNet and those trained with CLIP on LAION (e.g., ResNet-101 vs. CLIP:ResNet-101) show broadly similar behaviors. These findings indicate that modern visual recognition models follow a human-like hierarchical learning principle—even without explicit supervision to enforce it.

Model’s hierarchical learning score vs accuracy: Consider two extremes: Model A classifies nearly all triplets as $\checkmark, \checkmark, \checkmark$, while Model B mostly produces \times, \times, \times . Despite vastly different top-1 accuracies, both would achieve very high hierarchical-learning scores. This raises the question of how the score relates to accuracy. To study this, we evaluate 12 models (6 more than in the previous section; see Appendix) and compute both their hierarchical-learning score and top-1 accuracy. The scatter plot in Fig. 4 (bottom right) shows a clear correlation, with a Pearson coefficient of 0.77. While correlation alone cannot prove that accuracy improves *because* models adopt human-like hierarchical learning, the positive trend suggests that the learning dynamics of strong and weak models are not symmetric: models that perform well in accuracy also tend to score highly on hierarchical learning. Notably, even the lowest hierarchical-learning score observed is 84.2, which we regard as sufficiently high to conclude that all tested models follow the hierarchical-learning principle.

3.2.1 EVALUATING CORRECTNESS OF DIFFICULTY LEVELS

To test our hypothesis that vision models follow a hierarchical learning principle, we rely on generated images of varying difficulty (Fig. 2). While these images appear visually plausible, we must ensure that the dataset as a whole meaningfully reflects the intended difficulty levels. For this, we evaluate 36,000 images using six classifiers, analyzing their prediction confidence (softmax probability) at each difficulty tier. We expect high confidence for easy samples, low confidence for hard ones, and intermediate values for medium samples. As shown in Fig. 5, the confidence distributions align with these expectations, validating that our generation process produces images that accurately represent their assigned difficulty levels.

We further conducted a user study to assess how well the generated difficulty levels (Easy, Medium, Hard) align with human perception using pairwise comparisons. From 10 classes with 10 attributes each, we sampled 900 images (3 difficulty levels per attribute). Ten participants evaluated two classes each, completing 540 pairwise comparisons in which they selected the more difficult image; each image appeared multiple times to ensure robustness. Responses were fit with a Bradley-Terry

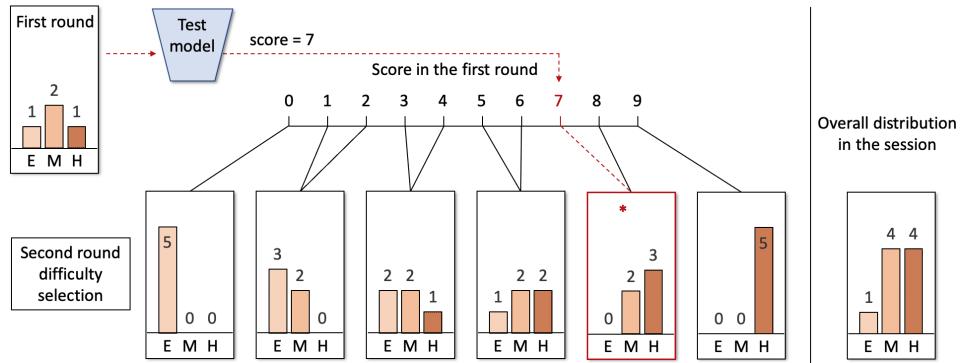


Figure 6: **Adaptive testing of a classifier.** The test involves two rounds. Similar to GRE, the first round is of, on average, medium level difficulty, consisting of 4 test images (1 easy, 2 medium, 1 hard). The model gets a score (max = 9, min = 0) based on which the distribution of images for the next round is chosen. We show an example of a model getting a score of 7 in round 1, because of which in next round there are 0 easy, 2 medium, and 3 hard images. **Right:** Overall, the model gets tested on a total of 9 images; in this case, 1 easy, 4 medium and 4 hard images.

model to derive continuous difficulty scores. The resulting correlations $r = 0.871$ (Pearson), $\rho = 0.883$ (Spearman), and $\tau = 0.749$ (Kendall’s Tau), demonstrate strong agreement between human judgments and our assigned difficulty labels (see Appendix Sec. .2 for details).

4 ADAPTIVE TESTING OF IMAGE CLASSIFIERS

Humans learn concepts hierarchically, and standardized tests like the GRE exploit this by adapting questions to a student’s ability. For instance, if a student struggles with (2×3) or (4×5) , it is unnecessary to test them on $(2^2 + 3^2) \times (4 + 5)$ —their performance can already be inferred. This adaptive testing avoids asking every easy, medium, and hard question while still accurately assessing ability. In the same spirit, our benchmark of 36k images (spanning 100 categories, 10 attributes, and 3 difficulty levels) enables GRE-style adaptive evaluation of vision models, yielding reliable performance estimates without exhaustively testing all samples.

To evaluate a model, we iterate over all class–attribute combinations (1000 total), each containing 3 difficulty levels with 12 images per level (36 images). The goal is to estimate model performance without testing all 36 images. Inspired by GRE-style adaptive testing, we use two rounds. In round one, the model sees 4 images (1 easy, 2 medium, 1 hard), with scores assigned as 1, 2, and 4 points for correct predictions at easy, medium, and hard levels, respectively. Based on the total score (0–9), round two presents 5 new images with a difficulty distribution determined by the score (Fig. 6). Across both rounds, each model is tested on only 9 images in total, yielding (i) a cumulative score and (ii) accuracies by difficulty tier. While we do not claim this setup is the definitive evaluation scheme, it offers a practical configuration; see Appendix Sec. .3 for further discussion.

After collecting results across all sessions, we can aggregate them in multiple ways. Attribute-level scores are obtained by averaging session scores across 100 classes, while attribute-level accuracies can be computed overall or per difficulty tier. This allows us to identify which attributes a model struggles with (see Sec. 4.3). A global score or accuracy, averaged across attributes, provides an overall performance measure—all derived from only a fraction of the full 36k images.

In the next sections, we discuss how accurate our predictions (score/accuracy) can be when compared against those same values computed over the whole set.

4.1 IS THE TEST DIFFERENT FOR DIFFERENT MODELS?

The purpose of adaptive testing is to challenge stronger models with harder samples and weaker models with easier ones. Since each session evaluates a model on only 9 questions, the composition of easy, medium, and hard items will naturally differ across models. Table 1 shows the average distribution of difficulty levels faced by seven models. Most are tested primarily on medium questions,

378 Table 1: Average number of questions tested per difficulty level for adaptive testing. Models with
 379 better performance tend to receive a higher proportion of medium and hard questions, and vice versa.
 380

Difficulty	Easy	Medium	Hard
ResNet18	3.51	3.83	1.55
ResNet101	2.56	3.96	2.48
ViT-B16	2.0	3.89	3.07
ConvNext-B	1.55	3.46	3.98
CLIP-RN101	2.60	3.89	2.51
CLIP-ViT-B16	1.47	3.61	3.93
CLIP-ConvNext-B	1.62	3.79	3.58

381
 382 but the balance shifts with capability. For example, ResNet18 (ImageNet top-1 accuracy 69.76%)
 383 encounters more easy (3.51) than hard (1.55) samples, while ConvNeXt (top-1 accuracy 84.06%) is
 384 tested much more on hard (3.98) than easy (1.55) samples. These results illustrate how models of
 385 varying strength trace distinct trajectories of test questions under our adaptive framework.
 386
 387

388 4.2 HOW CLOSELY DOES ADAPTIVE EVALUATION FOLLOW FULL EVALUATION?

389 We next compare our GRE-style adaptive evaluation to the standard way of evaluating a model on
 390 the entire dataset across the ten attributes and three difficulty levels.
 391

392 To evaluate classification performance, we complement standard accuracy with a GRE-style score
 393 that rewards correct answers on harder samples: $\text{Score} = (\text{correct}_{\text{easy}} \times 1) + (\text{correct}_{\text{medium}} \times 2) +$
 394 $(\text{correct}_{\text{hard}} \times 4)$, assigning 1, 2, and 4 points for correctly classifying easy, medium, and hard images,
 395 respectively (0 for misclassifications). A key advantage of this metric is its ability to distinguish
 396 models with similar accuracy. For example, although ConvNeXt-B and CLIP-ViT-B16 achieve close
 397 accuracies (70.2 vs. 69.8 in Table 2), their GRE-style scores (59.2 vs. 57.6) reveal which model is
 398 better at handling more challenging cases.
 399

400 Our full generated test set contains 36,000 images—12 images for each combination of 100 classes,
 401 10 attributes, and 3 difficulty levels. We treat evaluation on this complete set, denoted ‘Static 12’,
 402 as the ground-truth baseline. To validate our adaptive testing, we first construct a reduced baseline
 403 called ‘Static 3’, formed by randomly selecting 3 of the 12 images at each difficulty level, yielding
 404 $100 \times 10 \times 3 = 300$ images in total.
 405

406 Our adaptive procedure also selects 9 images per class–attribute pair, but distributes them adaptively
 407 across difficulty levels rather than fixing 3 per level. This again produces $100 \times 10 \times 9 = 9,000$
 408 images, matching the size of Static 3 but with a different difficulty distribution. We then compare
 409 classifier performance on these subsets, aiming for close correlation with Static 12 while reducing
 410 error relative to the naive Static 3 strategy.
 411

412 We compare Static 3 and our adaptive test against the full evaluation (Static 12) in Table 2. Each
 413 evaluation is repeated three times, with mean error reported (standard deviations are in Appendix 7).
 414 Results show that adaptive testing yields accurate performance estimates using fewer images, and
 415 produces smaller errors in both score and accuracy than the Static 3 baseline. This confirms that,
 416 leveraging the hierarchical learning behavior of image classifiers, adaptive testing can expedite eval-
 417 uation without sacrificing reliability.
 418

419 4.3 DETAILED ERROR ANALYSIS

420 Because our dataset provides fine-grained labels for attributes such as size, color, lighting, oc-
 421 clusion, and style, we can pinpoint specific failure modes in model performance. Table 3 shows
 422 attribute-level results for six classifiers. As observed on the ImageNet validation set (Idrissi et al.,
 423 2022), models with similar overall scores tend to align closely on per-attribute scores—for example,
 424 ConvNeXt-Base and CLIP ViT-B16 achieve comparable overall performance (59.2 vs. 57.6) and
 425 show close agreement on 6 of 10 attributes.
 426

427 Despite overall improvements, most models consistently struggle with factors such as size, tex-
 428 ture, style, and viewpoint, while performing relatively well on object position and image quality.
 429 Beyond attributes, our dataset also enables difficulty-level analyses (Tables 5, 6, 7). As expected,
 430

432
 433 Table 2: Comparing each classifier’s score and accuracy using Static 3 and our adaptative method
 434 against Static 12 using the Mean Squared Error. Reported errors are averaged over three runs (Std in
 435 the supp). Our method provides accurate performance estimates with fewer test images and smaller
 436 errors than Static 3, optimizing the evaluation process. (Static #) represents the number of test
 images used in each level of difficulty for each attribute of a given class.

	Classifier	RN101	ViT-B16	ConvN-B	C-RN101	C-ViT-B16	C-ConvN-B
Score	Static 12	35.3	43.8	59.2	36.4	57.6	51.0
Error	Static 3	5.4	4.6	3.2	4.5	5.5	4.8
Error	Ours	4.2	2.7	2.5	2.2	1.5	3.3
Acc	Static 12	48.5	56.9	70.2	48.1	69.8	64.6
Error	Static 3	4.9	2.6	2.0	4.4	3.5	1.6
Error	Ours	3.6	1.0	0.9	3.6	2.3	0.9

444 Table 3: Score of different models for each attribute. Bold/underline indicates best/second best.
 445

Attributes	Color	Light	Occlu	Pos	Quality	Rot	Size	Style	Texture	View
ResNet101	41.1	31.1	40.2	39.1	47.0	34.8	30.4	23.7	30.4	35.2
ViT-B16	47.7	39.7	46.6	48.9	56.9	48.0	36.3	34.2	37.8	41.6
ConvNext-B	63.7	60.6	59.4	86.7	<u>66.2</u>	77.5	40.8	41.3	<u>42.9</u>	52.6
CLIP-RN101	39.5	33.4	33.3	62.2	36.6	39.7	34.6	30.2	23.4	31.2
CLIP-ViT-B16	<u>62.2</u>	<u>58.9</u>	46.6	<u>85.3</u>	67.2	<u>59.8</u>	<u>39.8</u>	53.3	50.4	<u>52.4</u>
CLIP-ConvNext-B	53.1	49.9	<u>48.4</u>	79.4	57.4	47.0	36.7	<u>45.1</u>	41.1	47.7

452
 453
 454 performance decreases with difficulty, with attributes like Texture, Style, and Viewpoint showing
 455 the steepest drop at the Hard level. An exception is Size: models perform well on easy and medium
 456 cases but struggle significantly when many small objects are present.

458 5 DISCUSSION AND LIMITATIONS

460 The hierarchical learning score captures a different dimension of ability: not just whether a model is
 461 accurate, but whether its success reflects a principled learning process, grounded in the way humans
 462 learn, rather than something akin to memorization. This learning principle could be studied even
 463 for non-vision models, e.g., LLMs/VLMs like OpenAI o1 (OpenAI, 2024b). In fact, the GRE-
 464 based adaptive testing will save even more compute cost for such computationally heavy models.
 465 Exploring those settings, however, requires redefining “difficulty” in task-specific ways, which is
 466 beyond the scope of this paper. Our goal here is to establish the phenomenon clearly in vision,
 467 validate it with a controlled synthetic dataset, and provide a proof of concept.

468 That said, this new score is not immune to extreme cases; a model that fully memorizes test images
 469 could still achieve high score. Moreover, while DALL-E 3 enables large-scale synthetic genera-
 470 tion with controllable difficulty, it introduces limitations. For rare classes (e.g., African Hunting
 471 Dog), DALL-E often produces mislabeled outputs, and for complex prompts (e.g., “A carousel in
 472 an amusement park, almost entirely hidden behind a festival tent”), it may generate simplified or
 473 unintended scenes, resulting in biased “easy” samples. Although we manually filtered out problem-
 474 atic cases, future work could leverage more advanced generative models to mitigate these issues and
 475 improve dataset reliability.

476 6 CONCLUSION

478 We investigated whether modern visual recognition models display human-like learning behaviors
 479 across images of varying difficulty. Using advanced generative models, we created a synthetic
 480 dataset annotated with class, attribute, and difficulty labels. Our results show that most models
 481 exhibit structured sensitivity to difficulty, even without explicit supervision. Building on this in-
 482 sight, we propose an adaptive testing framework that substantially reduces evaluation time while
 483 preserving reliability. Beyond evaluation, the dataset itself—with fine-grained annotations—offers
 484 a valuable tool for analyzing model weaknesses. Together, these contributions provide a new per-
 485 spective on learning dynamics in vision models and introduce an efficient, dynamic approach to
 model assessment.

486 **Ethics Statement** This work does not involve human subjects, personal data, or sensitive information.
 487 The synthetic dataset used in our experiments was generated with large language and image
 488 generation models (GPT-4 and DALL-E 3), and no copyrighted or private material was incorporated.
 489 The dataset contains only artificial images and thus poses minimal privacy, security, or legal con-
 490 cerns. We note that synthetic data can still introduce biases inherited from the generative models;
 491 to mitigate this, we constructed a balanced dataset spanning 100 ImageNet categories and explicitly
 492 validated difficulty labels both via human judgment and model behavior. The findings of this paper
 493 focus on understanding the learning dynamics of vision models and developing more efficient eval-
 494 uation strategies. We do not foresee direct harmful applications, but we caution that difficulty-aware
 495 evaluation frameworks, if misused, could be applied in adversarial ways (e.g., selectively evaluating
 496 models to downplay weaknesses). Our contribution is intended to benefit the research community
 497 by providing tools for more interpretable and efficient benchmarking.
 498

499 **Reproducibility Statement** We have taken several steps to ensure reproducibility of our results.
 500 The generation process for the synthetic dataset is fully described in Section 3.1 (Dataset Construc-
 501 tion) and Appendix .1, including the prompt design and sampling strategy. All model architectures
 502 we evaluate (ConvNeXt, ViT, CLIP, ResNet) are standard publicly available models. The definition
 503 of Hierarchical Learning Score (HLS) is given formally in Section 3.2, and the adaptive evaluation
 504 protocol is detailed in Section 4. In the supplementary material, we include (i) complete prompts
 505 used for dataset generation, (ii) additional experimental results across model families. We will also
 506 release the dataset and source code to support full reproducibility.
 507

508 REFERENCES

509 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
 510 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
 511 report. *arXiv preprint arXiv:2303.08774*, 2023.

512 Devansh Arpit, Stanisław Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxin-
 513 der S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer
 514 look at memorization in deep networks. In *International conference on machine learning*, pp.
 515 233–242. PMLR, 2017.

516

517 Shekoofeh Azizi, Simon Kornblith, Chitwan Saharia, Mohammad Norouzi, and David J. Fleet. Syn-
 518 thetic data from diffusion models improves imagenet classification. *arXiv*, 2023.

519

520 Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh
 521 Tenenbaum, and Boris Katz. Objectnet: A large-scale bias-controlled dataset for pushing the
 522 limits of object recognition models. *Advances in neural information processing systems*, 32,
 523 2019.

524

525 Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
 526 *Proceedings of the 26th annual international conference on machine learning*, pp. 41–48, 2009.

527

528 Florian Bordes, Shashank Shekhar, Mark Ibrahim, Diane Bouchacourt, Pascal Vincent, and Ari Mor-
 529 cos. Pug: Photorealistic and semantically controllable synthetic data for representation learning.
Advances in Neural Information Processing Systems, 36, 2024.

530

531 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
 532 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 533 pp. 248–255. Ieee, 2009.

534

535 Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
 536 for deep nets. In *International Conference on Machine Learning*, pp. 1019–1028. PMLR, 2017.

537

538 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 539 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
 arXiv:2010.11929*, 2020.

540 Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann, and
 541 Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias im-
 542 proves accuracy and robustness. *arXiv preprint arXiv:1811.12231*, 2018.

543

544 Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
 545 Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. *Nature
 546 Machine Intelligence*, 2(11):665–673, 2020.

547 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 548 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 549 770–778, 2016.

550 Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
 551 ruptions and perturbations. *arXiv preprint arXiv:1903.12261*, 2019.

552

553 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
 554 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A criti-
 555 cal analysis of out-of-distribution generalization. In *Proceedings of the IEEE/CVF international
 556 conference on computer vision*, pp. 8340–8349, 2021.

557 Badr Youbi Idrissi, Diane Bouchacourt, Randall Balestrieri, Ivan Evtimov, Caner Hazirbas, Nico-
 558 las Ballas, Pascal Vincent, Michal Drozdal, David Lopez-Paz, and Mark Ibrahim. Imagenet-
 559 x: Understanding model mistakes with factor of variation annotations. *arXiv preprint
 560 arXiv:2211.01866*, 2022.

561 Ziheng Jiang, Chiyuan Zhang, Kunal Talwar, and Michael C. Mozer. Characterizing structural
 562 regularities of labeled data in overparameterized models. In *International Conference on Machine
 563 Learning*, 2021.

564

565 David Krueger, Nicolas Ballas, Stanislaw Jastrzebski, Devansh Arpit, Maxinder S Kanwal, Tegan
 566 Maharaj, Emmanuel Bengio, Asja Fischer, and Aaron Courville. Deep nets don’t learn via mem-
 567 orization. 2017.

568 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
 569 A convnet for the 2020s. In *Proceedings of the IEEE/CVF conference on computer vision and
 570 pattern recognition*, pp. 11976–11986, 2022.

571

572 Aengus Lynch, Gbètondji JS Dovonon, Jean Kaddour, and Ricardo Silva. Spawrious: A benchmark
 573 for fine control of spurious correlation biases. *arXiv preprint arXiv:2303.05470*, 2023.

574

575 Prasanna Mayilvahanan, Thaddäus Wiedemer, Evgenia Rusak, Matthias Bethge, and Wieland Bren-
 576 del. Does clip’s generalization performance mainly stem from high train-test similarity? *arXiv
 577 preprint arXiv:2310.09562*, 2023.

578

579 David Mayo, Jesse Cummings, Xinyu Lin, Dan Gutfreund, Boris Katz, and Andrei Barbu. How
 580 hard are computer vision datasets? calibrating dataset difficulty to viewing time. In *Advances in
 581 Neural Information Processing Systems*, 2023.

582

583 Kristof Meding, Luca M. Schulze Buschoff, Robert Geirhos, and Felix A. Wichmann. Trivial or
 584 impossible – dichotomous data difficulty masks model differences (on imagenet and beyond). In
 585 *International Conference on Learning Representations*, 2022.

586

587 Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A survey
 588 on bias and fairness in machine learning. *ACM computing surveys (CSUR)*, 54(6):1–35, 2021.

589

590 Darren Newson. Attribution and the unit of perception of ongoing behavior. *Journal of Personality
 591 and Social Psychology*, 1973.

592

593 OpenAI. Dall-e 3. <https://openai.com/dall-e-3>, 2024a.

594

595 OpenAI. Openai o1. <https://openai.com/o1/>, 2024b.

596

597 Ameya Prabhu, Vishaal Udandarao, Philip Torr, Matthias Bethge, Adel Bibi, and Samuel Albanie.
 598 Lifelong benchmarks: Efficient model evaluation in an era of rapid progress. *arXiv preprint
 599 arXiv:2402.19472*, 2024.

594 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 595 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 596 models from natural language supervision. In *International conference on machine learning*, pp.
 597 8748–8763. PMLR, 2021.

598 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 599 and Ilya Sutskever. Zero-shot text-to-image generation. In *International conference on machine*
 600 *learning*, pp. 8821–8831. Pmlr, 2021.

601 Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
 602 generalize to imagenet? In *International conference on machine learning*, pp. 5389–5400. PMLR,
 603 2019.

604 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 605 resolution image synthesis with latent diffusion models, 2022. URL <https://arxiv.org/abs/2112.10752>.

606 Shreyas Saxena, Oncel Tuzel, and Dennis DeCoste. Data parameters: A new family of parameters
 607 for learning a differentiable curriculum. *Advances in neural information processing systems*, 29,
 608 2019.

609 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 610 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
 611 open large-scale dataset for training next generation image-text models. *Advances in Neural*
 612 *Information Processing Systems*, 35:25278–25294, 2022.

613 Karen Simonyan. Deep inside convolutional networks: Visualising image classification models and
 614 saliency maps. *arXiv preprint arXiv:1312.6034*, 2013.

615 Mohammad Reza Taesiri, Giang Nguyen, Sarra Habchi, Cor-Paul Bezemer, and Anh Nguyen.
 616 Imagenet-hard: The hardest images remaining from a study of the power of zoom and spatial
 617 biases in image classification. *Advances in Neural Information Processing Systems*, 36, 2024.

618 Wim J Van der Linden and Cees AW Glas. *Computerized adaptive testing: Theory and practice*.
 619 Springer, 2000.

620 Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representa-
 621 tions by penalizing local predictive power. *Advances in Neural Information Processing Systems*,
 622 32, 2019.

623 Zhuoran Yu, Chenchen Zhu, Sean Culatana, Raghuraman Krishnamoorthi, Fanyi Xian, and Yong Jae
 624 Lee. Diversify, don't fine-tune: Scaling up visual recognition training with synthetic images.
 625 *arXiv*, 2023.

626 Jeffrey M. Zacks and Barbara Tversky. Event structure in perception and conception. *Psychological*
 627 *bulletin*, 2001.

628 Chenshuang Zhang, Fei Pan, Junmo Kim, In So Kweon, and Chengzhi Mao. Imagenet-
 629 d: Benchmarking neural network robustness on diffusion synthetic object. *arXiv preprint*
 630 *arXiv:2403.18775*, 2024.

631 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
 632 deep learning (still) requires rethinking generalization. *Communications of the ACM*, 64(3):107–
 633 115, 2021.

634 Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
 635 features for discriminative localization. In *Proceedings of the IEEE conference on computer*
 636 *vision and pattern recognition*, pp. 2921–2929, 2016.

637

638

639

640

641

642

643

644

645

646

647

648
649

.1 PROMPT DESIGN FOR IMAGE GENERATION PIPELINE

650
651
652
653
654
655
656
657

Please see Fig. 7 for the detailed view of all the prompts used to create the final text caption used by DALLE-3 to generate the images. Note, to achieve finer granularity in difficulty design, we create nine distinct levels, allowing for a more nuanced representation of attribute variation across a spectrum. This finer resolution ensures incremental differences between levels, preventing gaps or uneven difficulty progression. In contrast, directly generating only three broad levels may oversimplify the difficulty range. As shown in the blue box of Fig. 7, we prompt GPT with “group the nine levels of difficulty into categories of easy, medium, and hard” to consolidate them into three final categories.

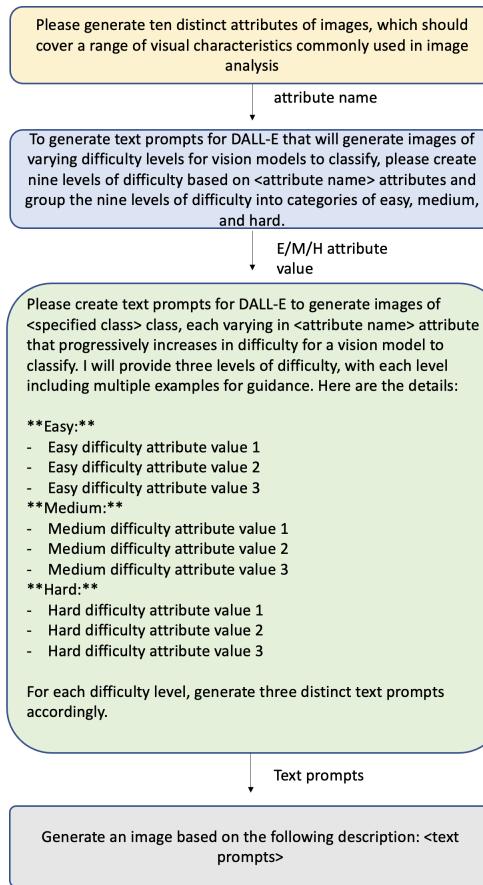
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689

Figure 7: Desinged prompt for test set generation pipeline.

690

.2 USER STUDY PIPELINE FOR EVALUATING DIFFICULTY LEVELS OF GENERATED IMAGES

691
692
693
694

To assess the alignment between difficulty levels of generated images and human perception, we conducted a pairwise comparison study and analyzed the results using statistical correlation metrics. The study pipeline consists of the following steps.

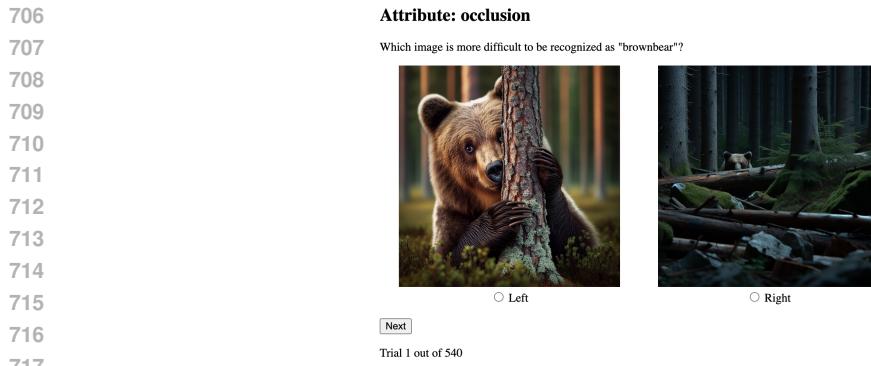
695
696
697
698

Dataset and sampling strategy Our dataset consists of 100 classes, each with 10 attributes and three difficulty levels per attribute (Easy, Medium, Hard), with 12 images per difficulty level. To ensure feasibility for the user study, we randomly sampled a subset of 900 images: 10 classes, 10 attributes per class, 3 difficulty levels per attribute, and 3 images per difficulty level.

699
700
701

Study design and pairwise comparison setup To evaluate difficulty perception, participants compared difficulty levels within each attribute rather than across attributes or classes. Each attribute underwent three pairwise comparisons: Easy vs. Medium, Medium vs. Hard, and Easy vs. Hard. Participants were presented with two images at a time and asked: ‘‘Which image is more

702 difficult to be recognized as [class]?"'. We show the interface of user study in
 703 Fig. 8. Each pairwise comparison consisted of two images, one from each difficulty level. The total
 704 number of comparisons was: 27 per attribute, 270 per class, and 2700 across all classes.
 705



715
 716 Figure 8: **Interface of user study.**
 717

718 **Experimental setup** We recruited ten participants, each evaluating two classes. Since each class
 719 contains 270 comparisons, each participant completed a total of $270 \times 2 = 540$ comparisons. This
 720 distribution ensured that all 2700 selected images were evaluated while maintaining overlap across
 721 participants to enhance robustness. To reduce bias, image placements (left vs. right) were random-
 722 ized, and each image appeared in multiple comparisons.
 723

724 **Analysis and ranking inference** To derive a global difficulty ranking from human responses, we
 725 applied the Bradley-Terry Model (BTM), which estimates a continuous latent difficulty score λ_i for
 726 each image based on pairwise comparisons. Given two images, i and j , the probability of selecting
 727 i as more difficult is:
 728

$$P(i \succ j) = \frac{e^{\lambda_i}}{e^{\lambda_i} + e^{\lambda_j}} \quad (1)$$

729 Higher λ_i values indicate greater perceived difficulty.
 730

731 **Correlation analysis: difficulty levels of generated images vs. human-inferred difficulty** To
 732 quantify the alignment between difficulty levels of generated images (Easy = 1, Medium = 2, Hard
 733 = 3) and human rankings, we computed Pearson correlation (r) to measure linear alignment, Spear-
 734 man rank correlation (ρ) to evaluate ordinal agreement, and Kendall's Tau (τ) to assess pairwise
 735 consistency. The computed values were:
 736

$$\begin{aligned} r &= 0.871 \quad (p < 10^{-280}) \\ \rho &= 0.883 \quad (p < 10^{-296}) \\ \tau &= 0.749 \quad (p < 10^{-187}) \end{aligned} \quad (2)$$

737 These results indicate a strong alignment between difficulty of generated labels and human percep-
 738 tion.
 739

740 .3 ABLATION OF HYPERPARAMETERS FOR THE GRE TESTING ROUND

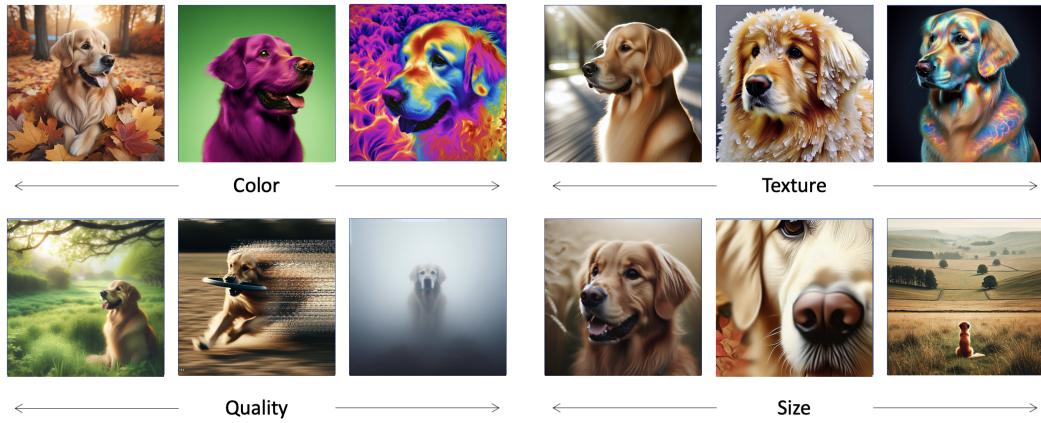
741 The effectiveness of the adaptive test in approximating overall performance should not be highly
 742 sensitive to minor changes in test structure. To validate this, we conducted an ablation study on test
 743 parameters by modifying two aspects: (i) the number of questions in the first and second rounds and
 744 (ii) the distribution of second-round questions based on first-round performance.
 745

746 In this modified setting, referred to as *ours new*, the model receives five questions in the first round,
 747 consisting of **1 easy, 3 medium, and 1 hard** question, ensuring an average difficulty of medium.
 748 The score range is from **0 to 11**. The second-round question distribution, in terms of easy (E),
 749 medium (M), and hard (H) questions, is adjusted as follows:
 750

- 751 • **Score = 0** (E=4, M=0, H=0)

756 Table 4: Impact of different hyperparameters for the GRE testing round. The results of different
 757 hyperparameters remain largely consistent.
 758

759	Model	Acc (Ours Old)	Acc (Ours New)	Acc (All)
760	ConvNext-B	70.5	70.8	70.2
761	ViT-B16	56.8	57.4	56.9
762	ResNet101	48.5	38.9	30.7
763	CLIP ConvNext-B	64.8	64.1	64.6
764	CLIP ViT-B16	70.4	69.2	69.8
765	CLIP ResNet101	48.0	48.8	48.1



779 Figure 9: **Visualizing the difficulty of test samples.** All of the images are generated using our
 780 proposed pipeline. In each quadrant, we focus on one attribute (e.g., color, in the top left), and from
 781 left to right we show the images becoming progressively more difficult to be classified correctly.
 782
 783

- 784 • **Score = [1,3]** (E=3, M=1, H=0)
- 785 • **Score = [4,6]** (E=1, M=2, H=1)
- 786 • **Score = [7,10]** (E=0, M=1, H=3)
- 787 • **Score = 11** (E=0, M=0, H=4)

788 Using this revised test format, we report model accuracy below, consistent with the results presented
 789 in Table 4. For comparison, we replicate the results of the existing adaptive test (*ours old*) alongside
 790 the overall accuracy of the static 12-question test. The results indicate that performance remains
 791 largely consistent with the previous test version.
 792

793 .4 VISUALIZING THE DIFFICULTY OF TEST SAMPLES

794 We present additional images featuring a golden retriever as the main subject, focusing on attributes
 795 such as color, texture, quality, and size. From left to right, the images are arranged to become
 796 progressively more challenging for accurate classification. Please see Fig. 9. Finally, we also show
 797 more examples for other classes along with their attributes in Fig. 10, 11, 12, 13.
 798

800 .5 DETAILED ERROR ANALYSIS

801 In addition to analyzing attribute-level errors, our generated dataset enables a detailed difficulty-
 802 level analysis for each classifier, as shown in Tables 5, Table 6, and Table 7. Across all models, the
 803 performance decreases as the difficulty level increases. This is a general trend for each attribute,
 804 indicating that all models struggle more with "Hard" samples compared to "Easy" and "Medium"
 805 ones. Additionally, attributes like "Texture," "Style," and "Viewpoint" generally have lower ac-
 806 curacies, especially at the "Hard" level. This suggests that these attributes pose more significant
 807 challenges for current deep-learning models.
 808

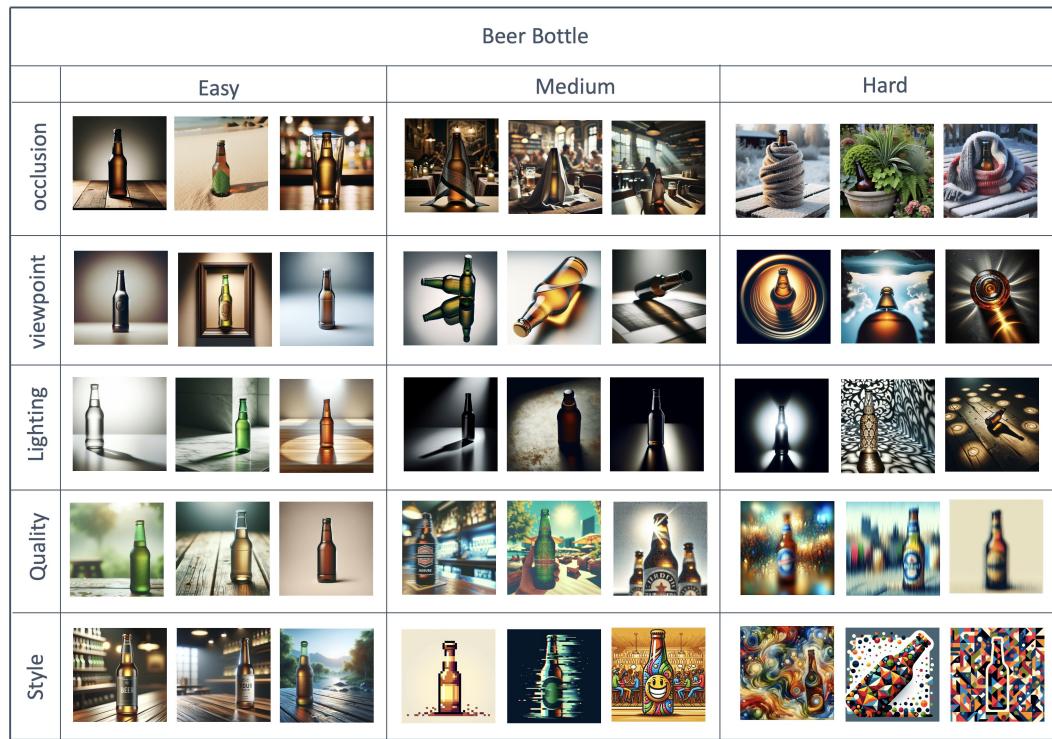


Figure 10: Visualizing the class of Beer Bottle.

Attribute	CLIP ResNet101	ResNet101	CLIP ViT B16	ViT B16	CLIP ConvNext Base	ConvNext Base	Average (Attributes)
Color	58.89	70.74	<u>83.33</u>	75.56	84.07	83.70	76.38
Lighting	67.04	67.04	91.11	77.41	<u>87.41</u>	82.59	78.77
Occlusion	65.93	76.67	84.81	80.00	88.52	86.67	80.77
Position	97.78	96.67	100.00	97.04	99.26	97.04	97.96
Quality	69.26	78.52	89.26	<u>80.74</u>	87.41	87.41	82.77
Rotate	99.26	96.67	100.00	97.78	100.00	99.26	98.49
Size	98.52	97.04	100.00	<u>98.15</u>	100.00	99.26	98.83
Style	71.48	68.89	82.96	78.52	85.56	82.22	78.27
Texture	42.96	56.67	77.78	67.04	75.19	75.19	65.64
Viewpoint	63.70	<u>77.41</u>	86.67	84.81	84.44	89.63	81.11
Average	73.08	77.13	89.59	83.00	<u>89.19</u>	88.30	

Table 5: Accuracy for different attributes at the easy difficulty level. Bold indicates the highest score, and underline denotes the second highest. The rightmost column shows the average accuracy of each attribute.

.6 HIERARCHICAL LEARNING SCORE OF ADDITIONAL MODELS

As Section 3.2 mentions Hierarchical Learning Score (HLS), we include an additional six classifiers: ResNet 18, ResNet 50, ConvNext Large, ConvNext Small, ViT Small 16, and ViT Large 16. Their Hierarchical Learning Scores are provided in Table 8.

.7 STANDARD DEVIATION ACROSS MULTIPLE RUNS

We ran our experiments shown in Table 2 three times. The standard deviation of classification scores, both for ours vs static 3 baseline, is shown in Table 9. We see that the results are consistent (low standard deviation) for all the models.

.8 MORE CONFIDENCE VISUALIZATION FOR THE EASY, MEDIUM, AND HARD DIFFICULTY

In this section, we visualize the distribution of prediction confidence across the difficulty levels for several classifiers, using our generated dataset. Please see Fig. 14 and 15. We see that they follow a

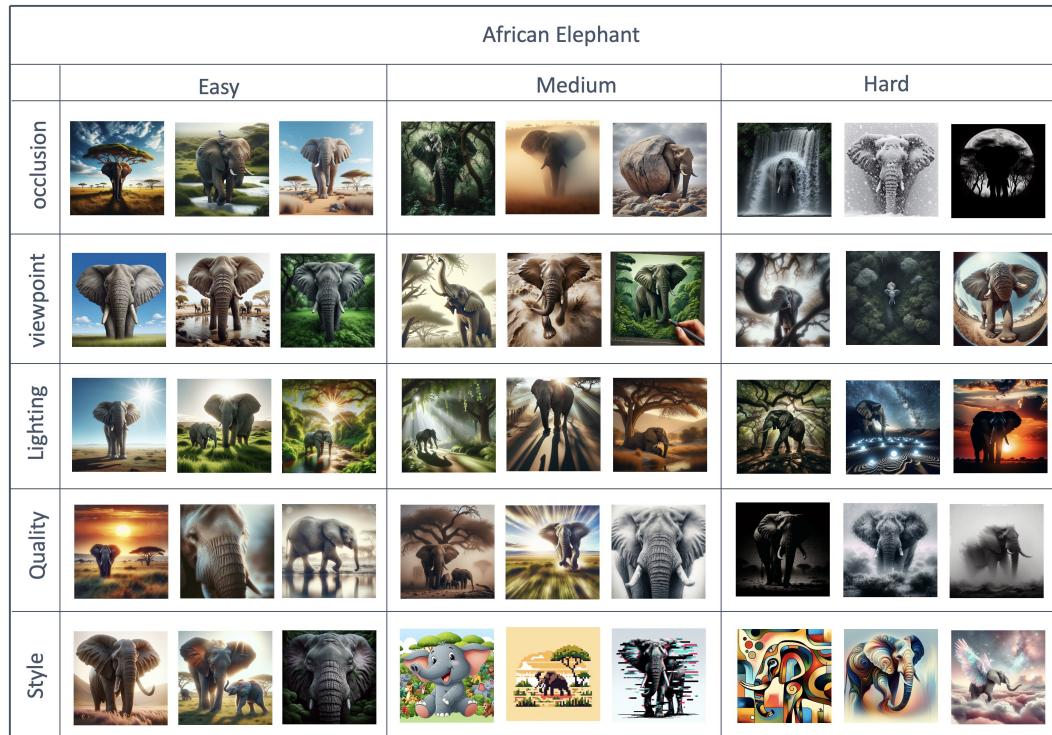


Figure 11: Visualizing the class of African elephant.

Attribute	CLIP ResNet101	ResNet101	CLIP ViT B16	ViT B16	CLIP ConvNext Base	ConvNext Base	Average (Attributes)
Color	50.37	51.48	78.89	66.29	69.63	81.85	66.42
Lighting	48.52	47.78	84.44	55.93	<u>75.19</u>	80.37	65.71
Occlusion	47.41	57.78	<u>72.59</u>	62.96	71.48	80.00	65.37
Position	67.41	38.89	<u>93.70</u>	54.44	91.11	94.81	73.73
Quality	43.70	60.74	78.89	67.78	75.19	77.04	67.22
Rotate	56.67	44.44	<u>94.07</u>	69.63	75.19	96.30	72.05
Size	62.22	54.07	<u>81.85</u>	70.74	85.19	85.19	73.54
Style	49.26	35.19	84.44	56.67	<u>78.52</u>	66.29	61.06
Texture	40.37	49.26	78.89	57.41	<u>69.26</u>	68.52	60.62
Viewpoint	44.07	56.29	<u>80.74</u>	65.56	67.78	82.96	66.23
Average	50.40	49.69	82.85	62.44	75.65	<u>81.03</u>	

Table 6: Accuracy for different attributes at the medium difficulty level. Bold indicates the highest score, and underline denotes the second highest. The rightmost column shows the average accuracy of each attribute.

similar trend as described in Fig. 5, where the distribution of confidence is progressively decreasing as we move from easy → hard samples.

.9 ATTRIBUTE OF VARIATION DEFINITIONS

Position: The location or placement of the object within the frame of the image. It can indicate whether the object is centered, towards the edge, or even partially out of view.

Viewpoint: Describes the angle or perspective from which the object is observed, such as front, side, top-down, or oblique view. The viewpoint affects the amount of detail visible and can reveal or obscure specific features of the object.

Quality: Indicates the overall clarity and resolution of the image. High-quality images have fine details and little noise, while low-quality images may appear blurry, pixelated, or noisy, making it harder to discern specific features.

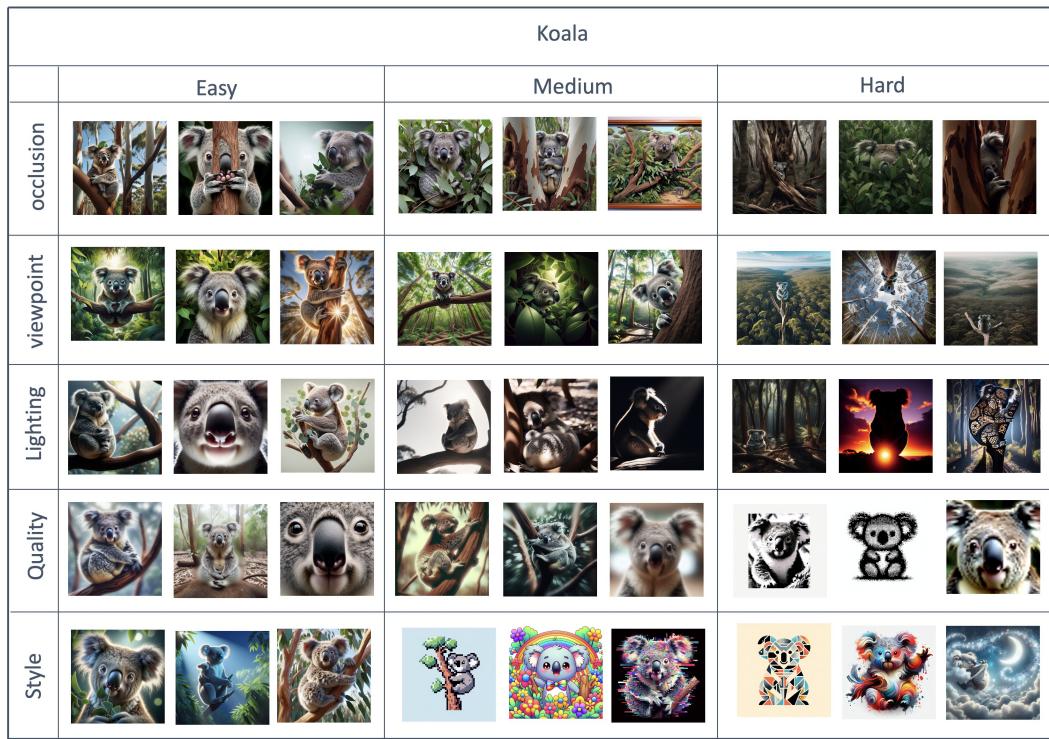


Figure 12: Visualizing the class of Koala.

Attribute	CLIP ResNet101	ResNet101	CLIP ViT B16	ViT B16	CLIP ConvNext Base	ConvNext Base	Average (Attributes)
Color	29.26	28.52	<u>48.52</u>	31.48	37.04	47.04	36.98
Lighting	17.41	13.70	<u>38.15</u>	22.22	30.74	45.19	27.57
Occlusion	18.15	22.22	24.07	<u>30.00</u>	26.67	44.07	27.53
Position	50.74	38.89	<u>77.41</u>	34.07	68.15	80.37	58.27
Quality	24.81	32.22	<u>55.93</u>	45.56	43.33	52.59	42.07
Rotate	16.30	14.44	<u>32.59</u>	24.81	19.63	62.59	28.06
Size	4.81	1.85	<u>3.70</u>	3.70	1.85	4.44	3.39
Style	10.37	6.67	<u>30.37</u>	11.85	20.37	21.48	16.52
Texture	10.00	14.44	<u>29.26</u>	20.74	18.52	22.22	19.20
Viewpoint	16.67	14.07	<u>29.63</u>	18.89	<u>28.51</u>	28.15	22.26
Average	19.65	18.60	<u>36.36</u>	26.83	29.75	38.82	

Table 7: Accuracy for different attributes at the hard difficulty level. Bold indicates the highest score, and underline denotes the second highest. The rightmost column shows the average accuracy of each attribute.

Rotate: Describes the orientation of the object in the image. An object can be upright, tilted, or flipped. The rotation can affect the perception and recognition of the object's standard appearance.

Occlusion: Occurs when parts of the main object are blocked or obscured by other objects in the scene. This can make it challenging to identify the full structure of the object.

Size: Refers to the object's scale within the image. Size can be influenced by the object's actual size, its distance from the camera, or the zoom level.

Lighting: Lighting in the image is either brighter or darker when compared to the prototypical images.

Color: Color can indicate the object's natural appearance, the time of day, or the overall mood.

Texture: Refers to the surface quality or pattern seen on the object, such as smooth, rough, glossy, or matte.

Style: Indicates the visual aesthetics or artistic rendering of the image. This could include photographic styles (e.g., realistic, abstract, cartoonish), drawing styles, or filters applied to the image.

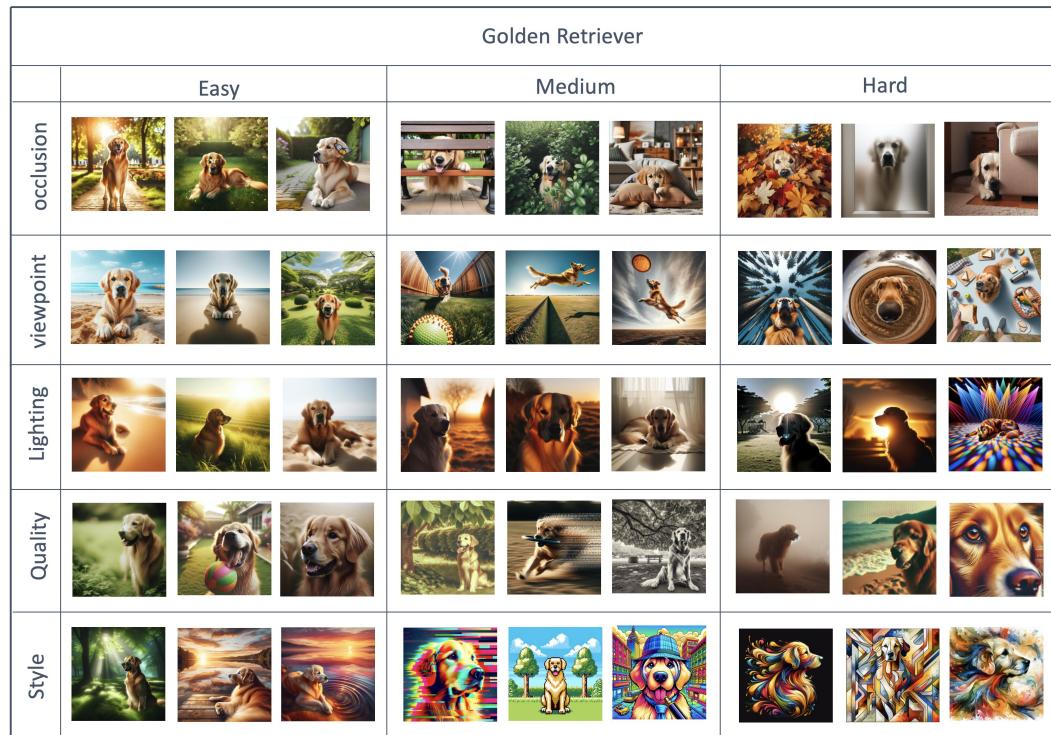


Figure 13: Visualizing the class of golden retriever.

Table 8: Hierarchical Learning Score of additional six visual recognition models.

Classifier	ResNet18	ResNet50	ConvNext-L	ConvNext-S	ViT-S16	ViT-L16
HLS	86.52	86.19	90.56	88.22	85.00	85.04

1003 .10 LIST OF 100 OBJECT CATEGORIES

1005 We selected 100 object categories from the 1,000 classes in ImageNet for our study. These cat-
 1006 egories represent a diverse range of items, animals, and objects, including: Objects: catamaran,
 1007 wooden spoon, hourglass, stopwatch, iPod, plate, crate, turnstile, frying pan, comic book, pencil
 1008 box, cash machine, school bus, obelisk, volleyball, lifeboat, computer keyboard, CD player. Ani-
 1009 mals: malamute, koala, goose, meerkat, gazelle, bullfrog, loggerhead turtle, box turtle, iguana, Ko-
 1010 modo dragon, rock python, diamondback rattlesnake, scorpion, wolf spider, black grouse, flamingo,
 1011 king penguin, killer whale, Chihuahua, Maltese dog, beagle, Afghan hound, Irish wolfhound, Bor-
 1012 der collie, Rottweiler, Bernese mountain dog, Dalmatian, Siberian husky, lion, tiger, American black
 1013 bear, ladybug, fire salamander, hummingbird, goldfinch, toucan, peacock, lobster, Dungeness crab,
 1014 zebra, bison, hippopotamus, giraffe, kangaroo, platypus, woodpecker, raccoon, skunk, bat, otter,
 1015 seahorse, jellyfish, sea anemone, coral, stork, crane, tortoise, parrot. Food-related: beer bottle, lip-
 1016 stick, mixing bowl, mashed potato. Others: cliff, black widow, lakeside, sock, great white shark,
 1017 ostrich, bald eagle, vulture, American alligator, African elephant, golden retriever. This wide range
 1018 of categories ensures a comprehensive evaluation of model performance across various domains.

1019 .11 LLM USAGE STATEMENT

1021 We used large language models (LLMs) such as GPT as a general-purpose writing assistant. Their
 1022 role was limited to aiding clarity, polishing wording, and improving readability of the manuscript.
 1023 All conceptual contributions, research design, experiments, analyses, and conclusions were devel-
 1024 oped solely by the authors. The use of LLMs did not influence the research methodology or results.

Table 9: The standard deviation of classification scores for ours vs static 3 baseline.

Classifier	ConvNeXt Base	ViT B16	ResNet101	CLIP ConvNeXt Base	CLIP ViT B16	CLIP ResNet101
Std (ours)	1.3	1.9	1.1	0.7	1.0	0.8
Std (Static3)	1.9	2.3	2.1	1.4	1.6	1.5

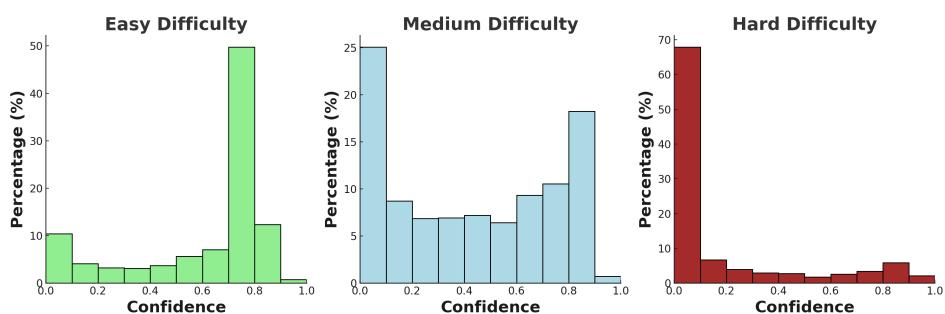


Figure 14: Classification confidence for ViT-B16 model.

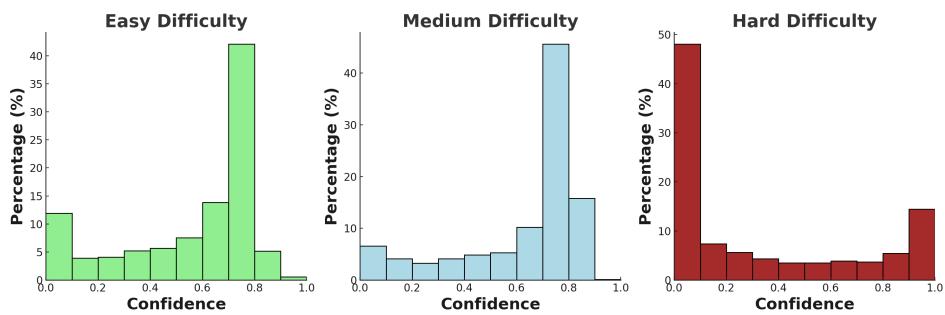


Figure 15: Classification confidence for CLIP-ViT-B16 model.