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Figure 1: Left: Sample images from our proposed test set generated using GPT + DALL-E 3.
For the class of golden retriever and attribute occlusion, we generate images of varying difficulty.
Intuitively, it is easier to classify the leftmost image as golden retriever compared to rightmost
image. Right: Possible responses (correct/incorrect) of a model on the easy/medium/hard image on
the left side. Cannot solve easy one — cannot solve difficult one. Can solve difficult one — can
solve easy one: this hypothesis is only satisfied in 4 (in red) out of 8 possibilities.

ABSTRACT

When a human undertakes a test, their responses likely follow a pattern: if they
answered an easy question (2 x 3) incorrectly, they would likely answer a more
difficult one (2 x 3 x 4) incorrectly; and if they answered a difficult question
correctly, they would likely answer the easy one correctly. Anything else hints at
memorization. Do current visual recognition models exhibit a similarly structured
learning capacity? In this work, we consider the task of image classification and
study if those models’ responses follow that pattern. Since real images aren’t
labeled with difficulty, we first create a dataset of 100 categories, 10 attributes,
and 3 difficulty levels using recent generative models: for each category (e.g.,
dog) and attribute (e.g., occlusion), we generate images of increasing difficulty
(e.g., a dog without occlusion, a dog only partly visible). We find that most of
the models do in fact behave similarly to the aforementioned pattern around 80-
90% of the time. Using this property, we then explore a new way to evaluate
those models. Instead of testing the model on every possible test image, we create
an adaptive test akin to GRE, in which the model’s performance on the current
round of images determines the test images in the next round. This allows the
model to skip over questions too easy/hard for itself, and helps us get its overall
performance in fewer steps.

1 INTRODUCTION

Imagine a math teacher grading a student’s answer sheet, and finds that they got the answer of (2 x 3)
wrong but the answer for (2 x 3 x 4) right. The teacher will rightly wonder whether the student
properly learnt the concept of multiplication or whether they memorized the answer to the more
difficult question. This is because there is a characteristic way in which humans learn any concept:
if they cannot answer an easy question, they very likely cannot answer a more difficult one. And
conversely, if they can answer a difficult question, they most certainly can answer an easier one as
well. Neural networks are also trained to learn concepts to perform a task. Do they also learn those
concepts in a similarly characteristic way?

In this work, we study this question in the context of vision models, specifically for the task of
image classification. Our goal is to see if modern visual recognition systems (e.g., ConvNext (Liu
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et al.| 2022)), ViT Dosovitskiy et al.|(2020)) have such human-like behavior to easy/hard-to-classify
images. We don’t think the answer to this question is straightforward because vision models typ-
ically are not explicitly trained to perform well on hard only if they perform well on easy, unlike
humans who learn through a well defined curriculum. If these models do indeed mimic humans, it
will only be an emergent property. Since there does not exist appropriate real datasets labeled with
ground-truth difficulty, we generate one instead. Recent image generative models have become ca-
pable of generating very high quality images (Rombach et al., [2022), good enough to be used in
training recognition models (Yu et al., 2023 |Aziz1 et al., [2023)), and we believe that they are good
enough to be used for our evaluation. With the aid of recent large language and generative models
(GPT-4 |Achiam et al.| (2023)) + DALL-E 3 Ramesh et al.|(2021))), we design a prompting system to
generate descriptions of images of three levels of difficulty. For example, an image of a fully visible
dog and an image of dog only partly visible can be considered to be image descriptions of an easy-
and hard-to-classify images respectively. We use DALL-E 3 to take in these different difficulty level
prompts and generate images while faithfully preserving the desired attributes. Fig. 1| (left) gives an
example.

Once we have the easy, medium and hard-to-classify test images, we record if the model predicts the
class correctly or incorrectly. Fig.|1|(right) depicts the 8 possibilities of model’s behavior (green/red
represent correct/incorrect response). If the model truly learns to classify images by developing
the aforementioned notion of easy/hard concepts, then its responses should fall under 4 out of the
8 possibilities highlighted in a red box. Our first key finding is that, for most of the current visual
recognition models, their responses do indeed fall under the 4 highlighted categories around 80-90%
of the time. This result hints that even without an explicit supervision, visual recognition models
learn to learn things in a structured way.

While an intriguing result in its own, we believe that this can have applications, especially in the
way we evaluate models. We take inspiration from how students are often tested using standardized
tests, like the Graduate Record Examination (GRE), for admissions into U.S. universities. These
tests are adaptive in nature, where questions in the next round depend on how well the student does
in the current one. So, for example, if the student cannot solve easy-medium questions, there is not
much point giving them difficult questions in the next round; i.e., one can reliably predict that they
will get zero points for those hard questions. We develop a similar GRE-type test to evaluate visual
recognition models on the generated dataset proposed above. The test is broken up into multiple
rounds. In the first round, the model is shown images of medium difficulty on average. Its score
in this round determines the distribution of easy/medium/hard questions in the next round. That is,
similar to GRE, we can skip over images that are too easy/hard for the model to classify. Thus,
instead of evaluating the model on every possible image in the test set, this way of dynamically
selecting the images helps approximate that total score of the model on the whole set using only
25% of the test images.

Additionally, the newly proposed dataset can have usefulness in and of itself. We generate images
from 100 categories taken from ImageNet (Deng et al) [2009). For each category, we consider
10 attributes. Within each attribute, we generate 12 images for 3 levels of difficulty, bringing the
total number of images to 36,000. However, different from standard benchmarks like the ImageNet
validation set, these 36k images are labeled with attribute value, difficulty, in addition to the ground-
truth class. This can enable analysing models on a much finer level (e.g., ResNet-50 struggles to
detect dogs from a side view).

In summary, our work has the following contributions. We present a new method to study the
learning dynamics of modern visual recognition systems using the concept of example difficulty.
To do this, we create a new test set of synthetic images labeled with class, attribute, and difficulty
level. Our results indicate that most of the models do in fact develop a semantically meaningful
notion of example difficulty while learning visual concepts, without having access to any external
supervision. Using this newly found property, we develop a multi-round adaptive test, inspired
by GRE, which steers the future test images according to a model’s ongoing performance. This
facilitates skipping over too easy/hard questions, and helps assess a model’s performance using a
fraction of test images.
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2 RELATED WORK

Neural network learning mechanisms. Understanding how neural networks learn concepts has
long been a central theme in deep learning. Prior work has examined their tendency to generalize
versus memorize, even under random labels (Zhang et al.l 2021} |Arpit et al.| [2017), and suggested
that generalization depends more on data than model capacity (Dinh et al., 2017; Krueger et al.,
2017). Another perspective comes from feature-importance visualization, such as gradient-based
methods (Simonyan,|2013) or CAM (Zhou et al.,|2016)), which highlight regions critical to a model’s
decision. Training dynamics also reveal biases: networks tend to prioritize easy-to-learn features
like texture (Geirhos et al., 2018), while neglecting harder features such as shape (Geirhos et al.,
2020) or minority samples (Mehrabi et al., [2021). These insights motivate curricula that present
tasks of increasing difficulty (Bengio et al., 2009; |Saxena et al., 2019), but such methods neither
guarantee that harder concepts are learned only after easier ones nor prevent forgetting of earlier-
learned concepts. To our knowledge, we are the first to ask whether this principle instead emerges
naturally in neural networks after full training.

Datasets for studying models’ properties. The standard evaluation of image classifiers is accu-
racy on human-collected test sets, but benchmarks such as ImageNet (Deng et al.,|2009) have raised
concerns of saturation (Mayilvahanan et al., [2023). To address this, new datasets test robustness
under distribution shifts (Recht et al., 2019; Wang et al., 2019; Barbu et al.,|2019; Hendrycks et al.,
20215 Taesiri et al., [2024} [Hendrycks & Dietterichl 2019;|Geirhos et al., 2018), while others employ
synthetic data. For example, the Photorealistic Unreal Graphics (PUG) dataset (Bordes et al., 2024)
leverages Unreal Engine to probe factors like pose, texture, and lighting; ImageNet-D (Zhang et al.,
2024) uses Stable Diffusion to generate challenging images; and Spawrious (Lynch et al.,2023)) tar-
gets spurious correlations. Parallel efforts study image “difficulty,” defined at the class level (Barbu
et al.,[2019) or per image via human response times (Mayo et al., [2023)), model agreement (Meding
et al., |2022), or scaling-based accuracy estimates (Jiang et al.| [2021). Yet these difficulty notions
are isolated and not tied to interpretable attributes. We argue that difficulty is best understood by
considering what would make an image easy—for instance, an occluded dog (Fig. 1) would be easy
to classify if unobscured. Guided by this view, we propose a generative approach to build datasets
annotated with explicit, attribute-based difficulty labels.

Adaptive model evaluation. Inspired by computerized adaptive testing (CAT) (Van der Linden &
Glas|,[2000), we propose adaptive testing algorithms for image classification benchmarks. Like CAT,
which estimates ability from a subset of questions, our framework reduces computational cost by
evaluating models on carefully selected samples while preserving assessment accuracy. Unlike prior
lifelong evaluation frameworks that sub-select existing samples via dynamic programming (Prabhu
et al.l 2024), our approach generates unseen images with DALL-E, ensuring exposure to genuinely
new data, mitigating leakage, and improving the reliability of generalization assessment.

3 MODELS’ BEHAVIOR ON EASY — HARD IMAGES

Humans learn concepts progressively: solving harder problems is only possible after mastering
easier ones (Zacks & Tverskyl [2001; Newtson, [1973). We investigate whether image classification
models exhibit a similar behavior. In Sec. we describe our process for generating test data
with images of varying difficulty, analogous to human exam questions. In Sec.[3.2] we introduce
a method for analyzing model responses to these images to assess whether they mirror human-like
learning progression.

3.1 DATASET CREATION

In image classification, the standard dataset format is pairs of images and ground-truth labels, D =
{(z1,91), (z2,y2), ...}. For our purpose, however, it is not enough to know that y; is the correct
label for x;; we also require a measure of how difficult it is to classify z; as y;. Thus, our first step
is to formalize this notion of difficulty in the context of our problem.

3.1.1 UNDERSTANDING SAMPLE DIFFICULTY

Consider Fig.[2] specifically the triplet of images in the top right. Each depicts a golden retriever, yet
it is clear to humans that the leftmost image is easiest to classify, while the rightmost is hardest, due
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Yy Viewpoint
Figure 2: Visualizing the difficulty of test samples. All of the images are generated using our pro-
posed pipeline. In each quadrant, we focus on one attribute (e.g., lighting, in the top left), and from
left to right we show the images becoming progressively more difficult to be classified correctly.
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Figure 3: Overview of the test set generation process. The first step is to collect the names of
the image categories that we wish to test the models on. We then prompt GPT-4 to generate the
appropriate attribute values for those categories with various levels of difficulty. Using those, we
again prompt GPT-4 to generate text prompts for a category (golden retriever), attribute (heavy
occlusion) combination. Finally, we use DALL-E 3 to generate the corresponding images.

to increasing occlusion. Other triplets similarly illustrate an easy — hard progression along different
attributes. The key observation is that difficulty is best understood relative to a specific attribute
(e.g., occlusion). However, to our knowledge, no real-image dataset provides human annotations of
sample difficulty in this manner.

Given recent advances in generative models, we propose to synthesize images with specific at-
tributes. Modern text-to-image systems can now produce high-quality images (Rombach et al.
2022; [OpenAlL [2024al), to the point of being successfully used for training classifiers (Yu et al.
2023} |Azizi et al.l [2023)). Moreover, text prompts allow precise control over attributes, enabling the
generation of images that are easier or harder to classify. We therefore leverage these models to
design a controlled evaluation setup.

3.1.2 OVERALL IMAGE GENERATION PIPELINE

To generate images of varying difficulty via text, we require three components for each prompt:
(1) a class name (e.g., golden retriever), (ii) an attribute type (e.g., occlusion), and (iii) a difficulty
level for that attribute (e.g., hard). The combination of (ii) and (iii) specifies an attribute value. For
example: “An image of a golden retriever heavily occluded by a door”—here golden retriever is
the class, and heavily occluded corresponds to the hard difficulty for the occlusion attribute. Our
first step is to collect the set of classes to evaluate. We select 100 object categories from the 1000
ImageNet classes (see Appendix[10|for the complete list). The next step is to define attribute values,
such as heavily occluded in the example above, for each attribute—difficulty pair.

Generating the attributes. We first prompt GPT-4 2023)) to list 10 common attribute
types useful for describing image content (see second column of Fig. [3). For each attribute, we then

ask GPT-4:
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Figure 4: Top: Plots depicting % of model’s behavior on 12k triplets over the 8 possible patterns of
Easy, Medium, Hard. Bars corresponding to principle-following pattern are colored green; others,
red. All models behave according to the hierarchical learning principle. Bottom left: Hierarchical
learning score of 6 vision models. Most achieve a score higher than 85%. Bottom right: Scatter
plot of top-1 accuracy on our test set vs hierarchical learning score of 12 models. PCC value is 0.77.

‘‘To generate text prompts for DALL-E that will generate images

of varying difficulty levels for vision models to classify,

please create nine levels of difficulty based on <attribute name>
attributes and group the nine levels of difficulty into categories
of easy, medium, and hard.’’

GPT-4 returns difficulty-varying attribute values. For example, along the occlusion attribute: (i)
Easy: No occlusion, object fully visible”; (ii) Medium: Significant occlusion (30-50%)”; (iii) Hard:
“Majority of object occluded (70-90%)”.

Generating text prompts. Using these attribute values, we prompt GPT-4 once more to produce
natural descriptions for DALL-E 3. Each description combines a class and an attribute value; e.g.,
combining golden retriever with heavy occlusion yields: “A golden retriever in a pile of fall leaves,
with only its snout and one eye visible.” The overall pipeline is shown in Fig. 3] and Appendix [1]
contains detailed prompts.

Dataset size: The dataset contains 100 classes, each paired with 10 attributes. For every attribute,
we generate 3 difficulty levels with 12 images each, giving: 10 x 100 x 3 x 12 = 36000 images in
total. The dataset is balanced across classes, attributes, and difficulty levels.

3.2 HIERARCHICAL LEARNING SCORE

We now describe how to use our easy/medium/hard dataset to test whether models learn concepts
hierarchically. Each class combined with its attribute type yields 100 x 10 = 1000 pairs (e.g., golden
retriever, occlusion). For each pair, we construct 12 triplets, each containing one easy, one medium,
and one hard image, giving a total of 12,000 triplets.

For each model, we record whether its predictions match the ground-truth class. A model’s re-
sponses on a triplet fall into one of 8 possible patterns (Fig. [T} right), depending on which of the
easy/medium/hard samples it classifies correctly. We then compute the distribution of these 8 pat-
terns across all triplets.

Adopting a human-like hierarchical learning principle—a harder question should be answered cor-
rectly only if all easier ones are answered correctly—we note that only 4 of the 8§ patterns satisfy
this rule (marked in red in Fig.[T). We call these the principle-following patterns. The hierarchical-
learning score is defined as the % of a model’s responses that fall into these patterns over all 12,000
triplets. The higher this score, the more a model adheres to the hierarchical learning principle.
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Figure 5: % of our dataset grouped according to classification confidence for the Easy, Medium,
and Hard difficulty levels. We average the sample numbers across six selected classifiers (ViT-
B16 (Dosovitskiy et al.l [2020), ConvNext (Liu et al., |2022)), ResNet-101 (He et al., [2016), trained
on ImageNetlk (Deng et al.,|2009) and LAION (Schuhmann et al.| 2022))). See Appendix for more
confidence visualization of different classifiers.

Experiments and Results: We evaluate three popular architectures—(i) ViT-B16 (Dosovitskiy
et al.,[2020), (i) ConvNeXt (Liu et al.||2022)), and (iii) ResNet-101 (He et al.,|2016)—each trained on
ImageNet-1k (Deng et al., |2009) with cross-entropy and on LAION (Schuhmann et al.,|2022) with
the CLIP objective (Radford et al., 2021)), giving six models in total. Results are shown in Fig. [
(top), where we plot the distribution of behaviors over 12,000 triplets, coloring principle-following
patterns in green and others in red. From these distributions, we compute hierarchical-learning
scores (Fig. |4 bottom left). Across all models, the majority of behaviors fall under principle-
following patterns, yielding hierarchical-learning scores above 85%. In every case, the four most
frequent behaviors correspond to the principle-following set, with the most common being Easy: v/,
Medium: v/, Hard: X, and the least common Easy: x, Medium: x, Hard: v'. Notably, models
trained with cross-entropy on ImageNet and those trained with CLIP on LAION (e.g., ResNet-101
vs. CLIP:ResNet-101) show broadly similar behaviors. These findings indicate that modern vi-
sual recognition models follow a human-like hierarchical learning principle—even without explicit
supervision to enforce it.

Model’s hierarchical learning score vs accuracy: Consider two extremes: Model A classifies
nearly all triplets as v/, v/, v/, while Model B mostly produces x, x, x. Despite vastly different top-
1 accuracies, both would achieve very high hierarchical-learning scores. This raises the question of
how the score relates to accuracy. To study this, we evaluate 12 models (6 more than in the previous
section; see Appendix) and compute both their hierarchical-learning score and top-1 accuracy. The
scatter plot in Fig. f] (bottom right) shows a clear correlation, with a Pearson coefficient of 0.77.
While correlation alone cannot prove that accuracy improves because models adopt human-like hi-
erarchical learning, the positive trend suggests that the learning dynamics of strong and weak models
are not symmetric: models that perform well in accuracy also tend to score highly on hierarchical
learning. Notably, even the lowest hierarchical-learning score observed is 84.2, which we regard as
sufficiently high to conclude that all tested models follow the hierarchical-learning principle.

3.2.1 EVALUATING CORRECTNESS OF DIFFICULTY LEVELS

To test our hypothesis that vision models follow a hierarchical learning principle, we rely on gen-
erated images of varying difficulty (Fig. [2). While these images appear visually plausible, we must
ensure that the dataset as a whole meaningfully reflects the intended difficulty levels. For this, we
evaluate 36,000 images using six classifiers, analyzing their prediction confidence (softmax proba-
bility) at each difficulty tier. We expect high confidence for easy samples, low confidence for hard
ones, and intermediate values for medium samples. As shown in Fig.[5] the confidence distributions
align with these expectations, validating that our generation process produces images that accurately
represent their assigned difficulty levels.

We further conducted a user study to assess how well the generated difficulty levels (Easy, Medium,
Hard) align with human perception using pairwise comparisons. From 10 classes with 10 attributes
each, we sampled 900 images (3 difficulty levels per attribute). Ten participants evaluated two
classes each, completing 540 pairwise comparisons in which they selected the more difficult image;
each image appeared multiple times to ensure robustness. Responses were fit with a Bradley—Terry
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Figure 6: Adaptive testing of a classifier. The test involves two rounds. Similar to GRE, the first
round is of, on average, medium level difficulty, consisting of 4 test images (1 easy, 2 medium, 1
hard). The model gets a score (max = 9, min = 0) based on which the distribution of images for the
next round is chosen. We show an example of a model getting a score of 7 in round 1, because of
which in next round there are 0 easy, 2 medium, and 3 hard images. Right: Overall, the model gets
tested on a total of 9 images; in this case, 1 easy, 4 medium and 4 hard images.

model to derive continuous difficulty scores. The resulting correlations » = 0.871 (Pearson), p =
0.883 (Spearman), and 7 = 0.749 (Kendall’s Tau), demonstrate strong agreement between human
judgments and our assigned difficulty labels (see Appendix Sec.[.2]for details).

4 ADAPTIVE TESTING OF IMAGE CLASSIFIERS

Humans learn concepts hierarchically, and standardized tests like the GRE exploit this by adapting
questions to a student’s ability. For instance, if a student struggles with (2 x 3) or (4 x 5), it
is unnecessary to test them on (22 + 32) x (4 + 5)—their performance can already be inferred.
This adaptive testing avoids asking every easy, medium, and hard question while still accurately
assessing ability. In the same spirit, our benchmark of 36k images (spanning 100 categories, 10
attributes, and 3 difficulty levels) enables GRE-style adaptive evaluation of vision models, yielding
reliable performance estimates without exhaustively testing all samples.

To evaluate a model, we iterate over all class—attribute combinations (1000 total), each containing 3
difficulty levels with 12 images per level (36 images). The goal is to estimate model performance
without testing all 36 images. Inspired by GRE-style adaptive testing, we use two rounds. In round
one, the model sees 4 images (1 easy, 2 medium, 1 hard), with scores assigned as 1, 2, and 4 points
for correct predictions at easy, medium, and hard levels, respectively. Based on the total score (0-9),
round two presents 5 new images with a difficulty distribution determined by the score (Fig. [6).
Across both rounds, each model is tested on only 9 images in total, yielding (i) a cumulative score
and (ii) accuracies by difficulty tier. While we do not claim this setup is the definitive evaluation
scheme, it offers a practical configuration; see Appendix Sec. [3|for further discussion.

After collecting results across all sessions, we can aggregate them in multiple ways. Attribute-level
scores are obtained by averaging session scores across 100 classes, while attribute-level accuracies
can be computed overall or per difficulty tier. This allows us to identify which attributes a model
struggles with (see Sec.[.3). A global score or accuracy, averaged across attributes, provides an
overall performance measure—all derived from only a fraction of the full 36k images.

In the next sections, we discuss how accurate our predictions (score/accuracy) can be when com-
pared against those same values computed over the whole set.

4.1 IS THE TEST DIFFERENT FOR DIFFERENT MODELS?

The purpose of adaptive testing is to challenge stronger models with harder samples and weaker
models with easier ones. Since each session evaluates a model on only 9 questions, the composition
of easy, medium, and hard items will naturally differ across models. TableI]shows the average dis-
tribution of difficulty levels faced by seven models. Most are tested primarily on medium questions,
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Table 1: Average number of questions tested per difficulty level for adaptive testing. Models with
better performance tend to receive a higher proportion of medium and hard questions, and vice versa.

Difficulty Easy Medium Hard
ResNet18 3.51 3.83 1.55
ResNet101 2.56 3.96 2.48
ViT-B16 2.0 3.89 3.07
ConvNext-B 1.55 3.46 3.98
CLIP-RN101 2.60 3.89 2.51
CLIP-ViT-B16 1.47 3.61 3.93

CLIP-ConvNext-B  1.62 3.79 3.58

but the balance shifts with capability. For example, ResNet18 (ImageNet top-1 accuracy 69.76%)
encounters more easy (3.51) than hard (1.55) samples, while ConvNeXt (top-1 accuracy 84.06%) is
tested much more on hard (3.98) than easy (1.55) samples. These results illustrate how models of
varying strength trace distinct trajectories of test questions under our adaptive framework.

4.2 HOW CLOSELY DOES ADAPTIVE EVALUATION FOLLOW FULL EVALUATION?

We next compare our GRE-style adaptive evaluation to the standard way of evaluating a model on
the entire dataset across the ten attributes and three difficulty levels.

To evaluate classification performance, we complement standard accuracy with a GRE-style score
that rewards correct answers on harder samples: Score = (correcteasy X 1) + (correctmedivm X 2) +
(correctyaq X 4), assigning 1, 2, and 4 points for correctly classifying easy, medium, and hard images,
respectively (0 for misclassifications). A key advantage of this metric is its ability to distinguish
models with similar accuracy. For example, although ConvNeXt-B and CLIP-ViT-B16 achieve close
accuracies (70.2 vs. 69.8 in Table @), their GRE-style scores (59.2 vs. 57.6) reveal which model is
better at handling more challenging cases.

Our full generated test set contains 36,000 images—12 images for each combination of 100 classes,
10 attributes, and 3 difficulty levels. We treat evaluation on this complete set, denoted ‘Static 12’,
as the ground-truth baseline. To validate our adaptive testing, we first construct a reduced baseline
called ‘Static 3°, formed by randomly selecting 3 of the 12 images at each difficulty level, yielding
100 (classes) x 10 (attributes) x 3 (difficulty levels) x 3 (images) = 9,000 images in total.

Our adaptive procedure also selects 9 images per class—attribute pair, but distributes them adaptively
across difficulty levels rather than fixing 3 per level. This again produces 100 x 10 x 9 = 9,000
images, matching the size of Static 3 but with a different difficulty distribution. We then compare
classifier performance on these subsets, aiming for close correlation with Static 12 while reducing
error relative to the naive Static 3 strategy.

We compare Static 3 and our adaptive test against the full evaluation (Static 12) in Table 2] Each
evaluation is repeated three times, with mean error reported (standard deviations are in Appendix[.7)).
Results show that adaptive testing yields accurate performance estimates using fewer images, and
produces smaller errors in both score and accuracy than the Static 3 baseline. This confirms that,
leveraging the hierarchical learning behavior of image classifiers, adaptive testing can expedite eval-
uation without sacrificing reliability.

4.3 DETAILED ERROR ANALYSIS

Because our dataset provides fine-grained labels for attributes such as size, color, lighting, oc-
clusion, and style, we can pinpoint specific failure modes in model performance. Table 3] shows
attribute-level results for six classifiers. As observed on the ImageNet validation set (Idrissi et al.,
2022), models with similar overall scores tend to align closely on per-attribute scores—for example,
ConvNeXt-Base and CLIP ViT-B16 achieve comparable overall performance (59.2 vs. 57.6) and
show close agreement on 6 of 10 attributes.

Despite overall improvements, most models consistently struggle with factors such as size, tex-
ture, style, and viewpoint, while performing relatively well on object position and image quality.
Beyond attributes, our dataset also enables difficulty-level analyses (Tables [5] [6] [7). As expected,
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Table 2: Comparing each classifier’s score and accuracy using Static 3 and our adaptative method
against Static 12 using the Mean Squared Error. Reported errors are averaged over three runs (Std in
the supp). Our method provides accurate performance estimates with fewer test images and smaller
errors than Static 3, optimizing the evaluation process. (Static #) represents the number of test
images used in each level of difficulty for each attribute of a given class.

Classifier ‘ RN101  ViT-B16 ConvN-B C-RN101 C-ViT-B16 C-ConvN-B

Score  Static 12 353 43.8 59.2 36.4 57.6 51.0
Error  Static 3 54 4.6 3.2 4.5 5.5 4.8
Error  Ours 4.2 2.7 2.5 2.2 1.5 3.3
Acc Static 12 48.5 56.9 70.2 48.1 69.8 64.6
Error  Static 3 49 2.6 2.0 4.4 3.5 1.6
Error  Ours 3.6 1.0 0.9 3.6 2.3 0.9

Table 3: Score of different models for each attribute. Bold/underline indicates best/second best.

Attributes Color Light Occlu Pos Quality Rot Size Style Texture View
ResNet101 41.1 31.1 402 39.1 47.0 348 304 237 304 352
ViT-B16 47.7 39.7 46.6 489 56.9 48.0 363 342 37.8 41.6
ConvNext-B 63.7 60.6 594  86.7 66.2 775 408 413 42.9 52.6
CLIP-RN101 39.5 33.4 333 622 36.6 39.7 346 302 23.4 31.2
CLIP-ViT-B16 622 589 466 853 67.2 59.8 398 533 50.4 52.4

CLIP-ConvNext-B  53.1 49.9 484 794 574 47.0 36.7 45.1 41.1 47.7

performance decreases with difficulty, with attributes like Texture, Style, and Viewpoint showing
the steepest drop at the Hard level. An exception is Size: models perform well on easy and medium
cases but struggle significantly when many small objects are present.

5 DISCUSSION AND LIMITATIONS

The hierarchical learning score captures a different dimension of ability: not just whether a model is
accurate, but whether its success reflects a principled learning process, grounded in the way humans
learn, rather than something akin to memorization. This learning principle could be studied even
for non-vision models, e.g., LLMs/VLMs like OpenAl ol (OpenAl [2024b). In fact, the GRE-
based adaptive testing will save even more compute cost for such computationally heavy models.
Exploring those settings, however, requires redefining “difficulty” in task-specific ways, which is
beyond the scope of this paper. Our goal here is to establish the phenomenon clearly in vision,
validate it with a controlled synthetic dataset, and provide a proof of concept.

That said, this new score is not immune to extreme cases; a model that fully memorizes test images
could still achieve high score. Moreover, while DALL-E 3 enables large-scale synthetic genera-
tion with controllable difficulty, it introduces limitations. For rare classes (e.g., African Hunting
Dog), DALL-E often produces mislabeled outputs, and for complex prompts (e.g., “A carousel in
an amusement park, almost entirely hidden behind a festival tent”), it may generate simplified or
unintended scenes, resulting in biased “easy” samples. Although we manually filtered out problem-
atic cases, future work could leverage more advanced generative models to mitigate these issues and
improve dataset reliability.

6 CONCLUSION

We investigated whether modern visual recognition models display human-like learning behaviors
across images of varying difficulty. Using advanced generative models, we created a synthetic
dataset annotated with class, attribute, and difficulty labels. Our results show that most models
exhibit structured sensitivity to difficulty, even without explicit supervision. Building on this in-
sight, we propose an adaptive testing framework that substantially reduces evaluation time while
preserving reliability. Beyond evaluation, the dataset itself—with fine-grained annotations—offers
a valuable tool for analyzing model weaknesses. Together, these contributions provide a new per-
spective on learning dynamics in vision models and introduce an efficient, dynamic approach to
model assessment.
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Ethics Statement This work does not involve human subjects, personal data, or sensitive infor-
mation. The synthetic dataset used in our experiments was generated with large language and image
generation models (GPT-4 and DALL-E 3), and no copyrighted or private material was incorporated.
The dataset contains only artificial images and thus poses minimal privacy, security, or legal con-
cerns. We note that synthetic data can still introduce biases inherited from the generative models;
to mitigate this, we constructed a balanced dataset spanning 100 ImageNet categories and explicitly
validated difficulty labels both via human judgment and model behavior. The findings of this paper
focus on understanding the learning dynamics of vision models and developing more efficient eval-
uation strategies. We do not foresee direct harmful applications, but we caution that difficulty-aware
evaluation frameworks, if misused, could be applied in adversarial ways (e.g., selectively evaluating
models to downplay weaknesses). Our contribution is intended to benefit the research community
by providing tools for more interpretable and efficient benchmarking.

Reproducibility Statement We have taken several steps to ensure reproducibility of our results.
The generation process for the synthetic dataset is fully described in Section [3.T] (Dataset Construc-
tion) and Appendix |.1} including the prompt design and sampling strategy. All model architectures
we evaluate (ConvNeXt, ViT, CLIP, ResNet) are standard publicly available models. The definition
of Hierarchical Learning Score (HLS) is given formally in Section [3.2] and the adaptive evaluation
protocol is detailed in Section 4 In the supplementary material, we include (i) complete prompts
used for dataset generation, (ii) additional experimental results across model families. We will also
release the dataset and source code to support full reproducibility.
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.1  PROMPT DESIGN FOR IMAGE GENERATION PIPELINE

Please see Fig. [/] for the detailed view of all the prompts used to create the final text caption
used by DALLE-3 to generated the images. Note, to achieve finer granularity in difficulty design,
we create nine distinct levels, allowing for a more nuanced representation of attribute variation
across a spectrum. This finer resolution ensures incremental differences between levels, preventing
gaps or uneven difficulty progression. In contrast, directly generating only three broad levels may
oversimplify the difficulty range. As shown in the blue box of Fig.[/] we prompt GPT with“group
the nine levels of difficulty into categories of easy, medium, and hard” to consolidate them into three
final categories.

Please generate ten distinct attributes of images, which should
cover a range of visual characteristics commonly used in image
analysis

attribute name

v

To generate text prompts for DALL-E that will generate images of

varying difficulty levels for vision models to classify, please create

nine levels of difficulty based on <attribute name> attributes and

group the nine levels of difficulty into categories of easy, medium,
\_ and hard.

E/M/H attribute
v value

Please create text prompts for DALL-E to generate images of
<specified class> class, each varying in <attribute name> attribute
that progressively increases in difficulty for a vision model to
classify. | will provide three levels of difficulty, with each level
including multiple examples for guidance. Here are the details:

**Easy:**
Easy difficulty attribute value 1
Easy difficulty attribute value 2
Easy difficulty attribute value 3

**Medium:**

Medium difficulty attribute value 1
Medium difficulty attribute value 2
Medium difficulty attribute value 3

**Hard:**

Hard difficulty attribute value 1
Hard difficulty attribute value 2
Hard difficulty attribute value 3

For each difficulty level, generate three distinct text prompts

Qcordingly. /

l Text prompts

Generate an image based on the following description: <text
prompts>

Figure 7: Desinged prompt for test set generation pipeline.

.2 USER STUDY PIPELINE FOR EVALUATING DIFFICULTY LEVELS OF GENERATED IMAGES

To assess the alignment between difficulty levels of generated images and human perception, we
conducted a pairwise comparison study and analyzed the results using statistical correlation metrics.
The study pipeline consists of the following steps.

Dataset and sampling strategy Our dataset consists of 100 classes, each with 10 attributes and
three difficulty levels per attribute (Easy, Medium, Hard), with 12 images per difficulty level. To
ensure feasibility for the user study, we randomly sampled a subset of 900 images: 10 classes, 10
attributes per class, 3 difficulty levels per attribute, and 3 images per difficulty level.

Study design and pairwise comparison setup To evaluate difficulty perception, participants com-
pared difficulty levels within each attribute rather than across attributes or classes. Each attribute
underwent three pairwise comparisons: Easy vs. Medium, Medium vs. Hard, and Easy vs. Hard.
Participants were presented with two images at a time and asked: ‘‘*Which image is more
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difficult to be recognized as [class]?". We show the interface of user study in
Fig.[8] Each pairwise comparison consisted of two images, one from each difficulty level. The total
number of comparisons was: 27 per attribute, 270 per class, and 2700 across all classes.

Attribute: occlusion

‘Which image is more difficult to be recognized as "brownbear"?

O Right

Next |

Trial 1 out of 540

Figure 8: Interface of user study.

Experimental setup We recruited ten participants, each evaluating two classes. Since each class
contains 270 comparisons, each participant completed a total of 270 x 2 = 540 comparisons. This
distribution ensured that all 2700 selected images were evaluated while maintaining overlap across
participants to enhance robustness. To reduce bias, image placements (left vs. right) were random-
ized, and each image appeared in multiple comparisons.

Analysis and ranking inference To derive a global difficulty ranking from human responses, we
applied the Bradley-Terry Model (BTM), which estimates a continuous latent difficulty score \; for
each image based on pairwise comparisons. Given two images, ¢ and j, the probability of selecting

¢ as more difficult is:
)\v
. . et
P(i>j) = Py (1
Higher )\; values indicate greater perceived difficulty.

Correlation analysis: difficulty levels of generated images vs. human-inferred difficulty To
quantify the alignment between difficulty levels of generated images (Easy = 1, Medium = 2, Hard
= 3) and human rankings, we computed Pearson correlation () to measure linear alignment, Spear-
man rank correlation (p) to evaluate ordinal agreement, and Kendall’s Tau (7) to assess pairwise
consistency. The computed values were:

r=0871 (p<102%)
p=0883 (p<1072%) (2)
T=0.749 (p < 107187)

These results indicate a strong alignment between difficulty of generated labels and human percep-
tion.

.3 ABLATION OF HYPERPARAMETERS FOR THE GRE TESTING ROUND

The effectiveness of the adaptive test in approximating overall performance should not be highly
sensitive to minor changes in test structure. To validate this, we conducted an ablation study on test
parameters by modifying two aspects: (i) the number of questions in the first and second rounds and
(ii) the distribution of second-round questions based on first-round performance.

In this modified setting, referred to as ours new, the model receives five questions in the first round,
consisting of 1 easy, 3 medium, and 1 hard question, ensuring an average difficulty of medium.
The score range is from 0 to 11. The second-round question distribution, in terms of easy (E),
medium (M), and hard (H) questions, is adjusted as follows:

e Score=0 (E=4, M=0, H=0)



Under review as a conference paper at ICLR 2026

Table 4: Impact of different hyperparameters for the GRE testing round. The results of different
hyperparameters remain largely consistent.

Model Acc (Ours Old)  Acc (Ours New)  Acc (All)
ConvNext-B 70.5 70.8 70.2
ViT-B16 56.8 57.4 56.9
ResNet101 48.5 38.9 30.7
CLIP ConvNext-B 64.8 64.1 64.6
CLIP ViT-B16 70.4 69.2 69.8
CLIP ResNet101 48.0 48.8 48.1

m |
4

Quality Size _—

Figure 9: Visualizing the difficulty of test samples. All of the images are generated using our
proposed pipeline. In each quadrant, we focus on one attribute (e.g., color, in the top left), and from
left to right we show the images becoming progressively more difficult to be classified correctly.

Score =[1,3] (E=3, M=1, H=0)
Score =[4,6] (E=1, M=2, H=1)
Score =[7,10] (E=0, M=1, H=3)
e Score =11 (E=0, M=0, H=4)

Using this revised test format, we report model accuracy below, consistent with the results presented
in Table[d For comparison, we replicate the results of the existing adaptive test (ours old) alongside
the overall accuracy of the static 12-question test. The results indicate that performance remains
largely consistent with the previous test version.

.4 VISUALIZING THE DIFFICULTY OF TEST SAMPLES

We present additional images featuring a golden retriever as the main subject, focusing on attributes
such as color, texture, quality, and size. From left to right, the images are arranged to become
progressively more challenging for accurate classification. Please see Fig.[9 Finally, we also show
more examples for other classes along with their attributes in Fig. [T0} [TT] [12} [T3]

.5 DETAILED ERROR ANALYSIS

In addition to analyzing attribute-level errors, our generated dataset enables a detailed difficulty-
level analysis for each classifier, as shown in TablesEl, Table and Tablem Across all models, the
performance decreases as the difficulty level increases. This is a general trend for each attribute,
indicating that all models struggle more with "Hard” samples compared to “Easy” and "Medium”
ones. Additionally, attributes like “Texture,” ”Style,” and ”Viewpoint” generally have lower ac-
curacies, especially at the "Hard” level. This suggests that these attributes pose more significant
challenges for current deep-learning models.
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Beer Bottle

occlusion

viewpoint

Lighting

Quality

Style

Figure 10: Visualizing the class of Beer Bottle.

Attribute CLIP ResNet101 ResNetl01 CLIP ViTB16 ViT B16 CLIP ConvNext Base ConvNext Base Average (Attributes)

Color 58.89 70.74 83.33 75.56 84.07 83.70 76.38
Lighting 67.04 67.04 91.11 77.41 87.41 82.59 78.77
Occlusion 65.93 76.67 84.81 80.00 88.52 86.67 80.77
Position 97.78 96.67 100.00 97.04 99.26 97.04 97.96
Quality 69.26 78.52 89.26 80.74 87.41 87.41 82.77
Rotate 99.26 96.67 100.00 97.78 100.00 99.26 98.49
Size 98.52 97.04 100.00 98.15 100.00 99.26 98.83
Style 71.48 68.89 82.96 78.52 85.56 82.22 78.27
Texture 42.96 56.67 77.78 67.04 75.19 75.19 65.64
Viewpoint 63.70 77.41 86.67 84.81 84.44 89.63 81.11
Average 73.08 77.13 89.59 83.00 89.19 88.30

Table 5: Accuracy for different attributes at the easy difficulty level. Bold indicates the highest
score, and underline denotes the second highest. The rightmost column shows the average accuracy
of each attribute.

.6  HIERARCHICAL LEARNING SCORE OF ADDITIONAL MODELS

As Section 3.2 mentions Hierarchical Learning Score (HLS), we include an additional six classifiers:
ResNet 18, ResNet 50, ConvNext Large, ConvNext Small, ViT Small 16, and ViT Large 16. Their
Hierarchical Learning Scores are provided in Table ]

.7 STANDARD DEVIATION ACROSS MULTIPLE RUNS

We ran our experiments shown in Table 2 three times. The standard deviation of classification scores,
both for ours vs static 3 baseline, is shown in Table 9 We see that the results are consistent (low
standard deviation) for all the models.

.8 MORE CONFIDENCE VISUALIZATION FOR THE EASY, MEDIUM, AND HARD DIFFICULTY

In this section, we visualize the distribution of prediction confidence across the difficulty levels for
several classifiers, using our generated dataset. Please see Fig.[14]and[T5] We see that they follow a



Under review as a conference paper at ICLR 2026

African Elephant

Medium Hard

occlusion

viewpoint

Lighting

Quality

Style

Figure 11: Visualizing the class of African elephant.

Attribute  CLIP ResNet101 ResNet101 CLIP ViT B16 ViT B16 CLIP ConvNext Base ConvNext Base Average (Attributes)

Color 50.37 51.48 78.89 66.29 69.63 81.85 66.42
Lighting 48.52 47.78 84.44 55.93 75.19 80.37 65.71
Occlusion 47.41 57.78 72.59 62.96 71.48 80.00 65.37
Position 67.41 38.89 93.70 54.44 91.11 94.81 73.73
Quality 43.70 60.74 78.89 67.78 75.19 77.04 67.22
Rotate 56.67 44.44 94.07 69.63 75.19 96.30 72.05
Size 62.22 54.07 81.85 70.74 85.19 85.19 73.54
Style 49.26 35.19 84.44 56.67 78.52 66.29 61.06
Texture 40.37 49.26 78.89 57.41 69.26 68.52 60.62
Viewpoint 44.07 56.29 80.74 65.56 67.78 82.96 66.23
Average 50.40 49.69 82.85 62.44 75.65 81.03

Table 6: Accuracy for different attributes at the medium difficulty level. Bold indicates the highest
score, and underline denotes the second highest. The rightmost column shows the average accuracy
of each attribute.

similar trend as described in Fig.[5] where the distribution of confidence is progressively decreasing
as we move from easy — hard samples.

.9 ATTRIBUTE OF VARIATION DEFINITIONS

Position: The location or placement of the object within the frame of the image. It can indicate
whether the object is centered, towards the edge, or even partially out of view.

Viewpoint: Describes the angle or perspective from which the object is observed, such as front,
side, top-down, or oblique view. The viewpoint affects the amount of detail visible and can reveal
or obscure specific features of the object.

Quality: Indicates the overall clarity and resolution of the image. High-quality images have fine
details and little noise, while low-quality images may appear blurry, pixelated, or noisy, making it
harder to discern specific features.
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Figure 12: Visualizing the class of Koala.

Attribute CLIP ResNet101 ResNet1l01 CLIP ViTB16 ViT B16 CLIP ConvNext Base ConvNext Base Average (Attributes)

Color 29.26 28.52 48.52 31.48 37.04 47.04 36.98
Lighting 17.41 13.70 38.15 22.22 30.74 45.19 27.57
Occlusion 18.15 22.22 24.07 30.00 26.67 44.07 27.53
Position 50.74 38.89 77.41 34.07 68.15 80.37 58.27
Quality 24.81 32.22 55.93 45.56 43.33 52.59 42.07
Rotate 16.30 14.44 32,59 24.81 19.63 62.59 28.06
Size 4.81 1.85 3.70 3.70 1.85 4.44 3.39
Style 10.37 6.67 30.37 11.85 20.37 21.48 16.52
Texture 10.00 14.44 29.26 20.74 18.52 22.22 19.20
Viewpoint 16.67 14.07 29.63 18.89 28.51 28.15 22.26
Average 19.65 18.60 36.36 26.83 29.75 38.82

Table 7: Accuracy for different attributes at the hard difficulty level. Bold indicates the highest
score, and underline denotes the second highest. The rightmost column shows the average accuracy
of each attribute.

Rotate: Describes the orientation of the object in the image. An object can be upright, tilted, or
flipped. The rotation can affect the perception and recognition of the object’s standard appearance.

Occlusion: Occurs when parts of the main object are blocked or obscured by other objects in the
scene. This can make it challenging to identify the full structure of the object.

Size: Refers to the object’s scale within the image. Size can be influenced by the object’s actual
size, its distance from the camera, or the zoom level.

Lighting: Lighting in the image is either brighter or darker when compared to the prototypical
images.

Color: Color can indicate the object’s natural appearance, the time of day, or the overall mood.

Texture: Refers to the surface quality or pattern seen on the object, such as smooth, rough, glossy,
or matte.

Style: Indicates the visual aesthetics or artistic rendering of the image. This could include photo-
graphic styles (e.g., realistic, abstract, cartoonish), drawing styles, or filters applied to the image.
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Golden Retriever

Medium

occlusion

viewpoint

Lighting

Quality

Style

Figure 13: Visualizing the class of golden retriever.

Table 8: Hierarchical Learning Score of additional six visual recognition models.

Classifer ResNetl8 ResNet50 ConvNext-L.  ConvNext-S  ViT-S16  ViT-L16
HLS 86.52 86.19 90.56 88.22 85.00 85.04

.10 LisT OF 100 OBJECT CATEGORIES

We selected 100 object categories from the 1,000 classes in ImageNet for our study. These cat-
egories represent a diverse range of items, animals, and objects, including: Objects: catamaran,
wooden spoon, hourglass, stopwatch, iPod, plate, crate, turnstile, frying pan, comic book, pencil
box, cash machine, school bus, obelisk, volleyball, lifeboat, computer keyboard, CD player. Ani-
mals: malamute, koala, goose, meerkat, gazelle, bullfrog, loggerhead turtle, box turtle, iguana, Ko-
modo dragon, rock python, diamondback rattlesnake, scorpion, wolf spider, black grouse, flamingo,
king penguin, killer whale, Chihuahua, Maltese dog, beagle, Afghan hound, Irish wolfhound, Bor-
der collie, Rottweiler, Bernese mountain dog, Dalmatian, Siberian husky, lion, tiger, American black
bear, ladybug, fire salamander, hummingbird, goldfinch, toucan, peacock, lobster, Dungeness crab,
zebra, bison, hippopotamus, giraffe, kangaroo, platypus, woodpecker, raccoon, skunk, bat, otter,
seahorse, jellyfish, sea anemone, coral, stork, crane, tortoise, parrot. Food-related: beer bottle, lip-
stick, mixing bowl, mashed potato. Others: cliff, black widow, lakeside, sock, great white shark,
ostrich, bald eagle, vulture, American alligator, African elephant, golden retriever. This wide range
of categories ensures a comprehensive evaluation of model performance across various domains.

.11 LLM USAGE STATEMENT

We used large language models (LLMs) such as GPT as a general-purpose writing assistant. Their
role was limited to aiding clarity, polishing wording, and improving readability of the manuscript.
All conceptual contributions, research design, experiments, analyses, and conclusions were devel-
oped solely by the authors. The use of LLMs did not influence the research methodology or results.
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Table 9: The standard deviation of classification scores for ours vs static 3 baseline.
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Figure 14: Classification confidence for ViT-B16 model.
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Figure 15: Classification confidence for CLIP-ViT-B16 model.
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