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Abstract

Consistency, which refers to generating the
same predictions for semantically similar con-
texts, is highly desirable for a sound lan-
guage model. Although recent pre-trained
language models (PLMs) deliver an outstand-
ing performance in various downstream tasks,
they should also exhibit a consistent behaviour,
given that the models truly understand lan-
guage. In this paper, we propose a sim-
ple framework, called consistency analysis
on language models (CALM), to evaluate a
model’s lower-bound consistency ability. Via
experiments, we confirm that current PLMs
are prone to generate inconsistent predictions
even for semantically identical inputs with
high confidence. We also observe that multi-
task training is of benefit to improve consis-
tency, increasing the value by 17% on average.

1 Introduction

Large-sized pre-trained language models (PLMs),
such as BERT (Devlin et al., 2019) and GPT2 (Rad-
ford et al., 2019), compose the backbone of con-
temporary natural language processing (NLP) sys-
tems, delivering an outstanding performance on
many downstream tasks through fine-tuning and
in-context learning (Brown et al., 2020). Based on
their excellent performance, claims that PLMs can
understand language have emerged in the literature
(Devlin et al., 2019; Ohsugi et al., 2019; Qiu et al.,
2020) and popular press, such as the Google Blog
post! and Towards Data Science website?.

However, recent studies raise questions of
PLM’s language understanding capacity. Numer-
ous pieces of research demonstrated that PLMs
are incapable of identifying the meaning of sen-
tences but rely on the excessive exploitation of
statistical cues or syntactic patterns (Habernal

"https://www.blog.google/products/search/search-
language-understanding-bert/

“https://towardsdatascience.com/pre-trained-language-
models-simplified-b8ec80c62217

et al., 2018; Niven and Kao, 2019; McCoy et al.,
2019; Bender and Koller, 2020). Another line of
works found that PLMs can memorise frequent
word/phrase/knowledge presented in pretraining
data but poorly understand unseen expressions and
knowledge (Kassner et al., 2020; Ravichander et al.,
2020; Hofmann et al., 2021). Moreover, many stud-
ies discovered that PLMs are insensitive to sen-
tence order (Pham et al., 2020; Gupta et al., 2021;
Sinha et al., 2021) and lack an understanding of
negated phrases (Naik et al., 2018; Hossain et al.,
2020; Kassner and Schiitze, 2020; Ettinger, 2020;
Hosseini et al., 2021).

In the spirit of meaning-text theory (MTT), the
correspondence between semantic content (mean-
ing) and linguistic expressions (text) is many-to-
many, which implies that the meaning can be
conveyed in various text forms (Mel’¢uk and
Zolkovskij, 1970; Miliéevié, 2006). Also, the con-
cept of “understanding” is to focus on the meaning
and not the text form (Krashen, 1982). Therefore,
provided a model understands language, it should
make consistent decisions in semantically equiva-
lent texts, because meaning is a common invariant
content that all synonymous texts have. This is the
spirit of consistency, and the performance of PLMs
should be illuminated in terms of consistency, aside
from other evaluation metrics like accuracy, to eval-
uate their language understanding ability.

Many recent studies have investigated PLM’s
consistency through behavioural testing on aug-
mented data (Ribeiro et al., 2020; Ravichander
et al., 2020; Elazar et al., 2021) and text adver-
sarial attacks (Morris et al., 2020; Li et al., 2020a;
Garg and Ramakrishnan, 2020; Jin et al., 2020).
However, these approaches have several down-
sides. First, a great human effort or task-specific
data production rules are essential for the data
augmentation-based investigation. This limitation
confined the investigation to a few tasks, such as
zero-shot knowledge retrieval (Ravichander et al.,
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2020; Elazar et al., 2021) and sentiment analy-
sis (Ribeiro et al., 2020), and a certain language,
mainly English. Text adversarial attacks aim to
lead a model to make inconsistent decisions on ad-
versarial samples, mainly generated by the masked
language modelling (MLM) of PLMs to be seman-
tically analogous to the target words (Morris et al.,
2020; Li et al., 2020a; Garg and Ramakrishnan,
2020). However, the semantic equivalence of these
samples is not guaranteed due to their reliance on
PLMs, whose credibility has recently been chal-
lenged (Ravichander et al., 2020; Ettinger, 2020;
Kassner and Schiitze, 2020; Elazar et al., 2021).
Also, most text adversarial attack methods use sim-
ilarity scores of sentence embeddings generated
by a pre-trained encoder as a criterion to extract
adversarial samples. However, it is questionable
whether the encoder trained without meaning infor-
mation can extract semantically similar adversarial
samples (Bender and Koller, 2020). Since the se-
mantic equivalence is a prerequisite for evaluating
consistency, text adversarial attacks could lead to
an overestimation of PLM’s inconsistency. Also,
additional components, such as synonym dictionar-
ies (Ren et al., 2019) and pre-trained word/sentence
embeddings (Hill et al., 2015; Cer et al., 2018), are
a core of the adversarial sample generators. This
limitation precludes the examination of consistency
for other languages where such resources are not
available.

In this paper, we propose a simple but efficient
behavioural testing framework, called consistency
analysis on language models (CALM), to evaluate
the consistency of PLMs. Our approach can be
applied to various downstream tasks without addi-
tional components and ideally ensures the semantic
equivalence and thus measures the lower-bound
consistency of PLMs. To be specific, we introduce
a free-text sentence type indicator and add pertur-
bations, such as shifting the input sentence order-
ing (REVERSE) and substituting a special symbol
(S1IGNAL), which works as a separator, with other
symbols (see Figure 1).

Our main contributions are as follows: (i) we
propose a behavioural testing framework that per-
fectly guarantees semantic equivalence (Section 3),
(i1) our approach could be easily applied to low-
resource languages and various downstream tasks,
(ii1) we observe that widely used PLMs lack con-
sistency regardless of their training objective and
languages (Section 5), (iv) we verify that humans
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Figure 1: Example of the CALM framework for the
MNLI task. The changes in the original free-text inputs
are marked in blue.

exhibit a very high consistency under the same ex-
perimental settings (Section 6), and (v) we show
that multi-task training is beneficial to improve
consistency (Section 7). We will make our code
available after acceptance.

2 Related Works

Consistency. There have been several attempts
to analyse the consistency of language models in
various NLP domains. For zero-shot knowledge
retrieval tasks, Ravichander et al. (2020) found that
PLMs generate different answers if an object of the
original query is replaced with its plural form (e.g.,
‘A robin is a [MASK]’ to ‘robins are [MASK]’).
Elazar et al. (2021) observed a discrepancy in the
predictions of PLMs for paraphrase queries and
alleviated the issue by fine-tuning the model on
the generated paraphrase queries. In question an-
swering (QA), Ribeiro et al. (2019) showed that
state-of-the-art QA models generate inconsistent
outputs for queries with the same context and used
data augmentation to improve consistency. Asai
and Hajishirzi (2020) also used data augmentation
and, additionally, inconsistency loss, which is de-
signed to penalise inconsistent predictions. Ribeiro
et al. (2020) proposed the invariance test to evalu-
ate consistency. For a sentiment analysis task, they
changed the named entity presented in a given sen-
tence, because such perturbation does not change
the polarity of the sentence. Research on consis-
tency in other domains includes text summarisation
(Kryscinski et al., 2020), explanation generation
(Camburu et al., 2020), and dialogue generation (Li
et al., 2020b). Li et al. (2020b) employed unlikeli-
hood training (Welleck et al., 2019) to improve the



consistency of a dialogue model.

Text Adversarial Attack. Text adversarial at-
tacks have a commonality with consistency anal-
ysis in that adversarial examples are designed to
have a similar meaning with their original coun-
terparts. Jin et al. (2020) proposed a black-box
attack approach, called TEXTFOOLER, which re-
places important words in an input sentence with
synonyms. They used pre-trained word vectors
(Hill et al., 2015) to extract synonyms. Li et al.
(2020a) used BERT for generating adversarial sam-
ples. They first extracted important words for
decision-making and replaced them by using the
BERT masked language model (MLM). Garg and
Ramakrishnan (2020) also used BERT MLM not
only for replacing important tokens but also for
inserting new tokens. Li et al. (2021) employed
MLM for three strategies; “replace”, “insert”, and
“merge” that mask a bi-gram and replace it with a
single word. All the approaches presented above
leverage the universal sentence encoder (USE, Cer
et al. 2018) to extract semantically similar adver-
sarial samples. However, it is doubtful that such an
encoder trained using only text form without mean-
ing information can ensure the semantic equiva-
lence between the original and adversarial samples
(Bender and Koller, 2020).

3 CALM: Consistency Analysis on
Language Models

Behavioural testing refers to examining software
systems to assess their capabilities by investigating
their behaviour for specially designed inputs (Rim
et al., 2021). Our behavioural testing framework
evaluates a model’s consistency on downstream
tasks that infer the relation of two input sentences,
such as natural language inference (NLI) and STS
tasks. The framework consists of three steps: (1)
fine-tune a PLM on the original input format, and
inference on development/test dataset, (2) use the
fine-tuned PLM to inference on the perturbed input
format, and (3) compare the results of the original
and perturbed formats. The overall framework of
our proposed method is illustrated in Figure 1.

In our experiments, it is crucial to ensure se-
mantic equivalence after perturbation. Inspired
by the widely used input formats for human data
annotations (Camburu et al., 2018; Kayser et al.,
2021) and text-to-text models (Raffel et al., 2020),
we introduce a free-text sentence-type indicator
to achieve the semantic equivalence. Specifically,

we first insert the sentence-type indicator at the
beginning of each sentence, followed by a special
symbol that acts as a separator (e.g., ‘Premise:” and
‘Hypothesis:” for the NLI task). These indicator-
added input formats are the original data where
each model is trained. For the perturbation, we
applied the following two methods: REVERSE
and SIGNAL.

REVERSE: This method changes the order of
the two input sentences. An example case of this
method is illustrated in Figure 1a. Without the
sentence-type indicator, a model might be unable
to distinguish between the first and second input
sentence after the ordering alteration. The exis-
tence of the indicator will prevent confusion by
specifying the input types and, there, can maintain
the meaning of inputs after the alteration. We ver-
ify that humans are insensitive to this perturbation
through human evaluation (see Section 6).

Let O = {01, ...,ON} and R = {7“1, ...,TN}
denote a set of the original and REVERSE inputs,
respectively, and M is a model that we will evalu-
ate. Then, the consistency of the REVERSE case is
calculated as follows:

N
Cr = 5 1M (o) = M(r)),

where M (x) denotes the prediction of model M
on the data point x. Intuitively, the metric implies
the accuracy between the prediction of the original
and REVERSE inputs.

SIGNAL: This method changes a special sym-
bol in the sentence-type indicator. An example case
of this method is illustrated in Figure 1b. The sub-
stitution of the special symbol does not change the
meaning of the inputs, because it conveys no spe-
cific semantic content. Therefore, a model should
make a consistent prediction after the perturbation.
In our experiments, we replace a colon in the origi-
nal input format with multiple other symbols.

Let us assume S; = {s},..., s} be the set of
perturbed inputs of the SIGNAL case for ¢-th data
point (o). First, we define the pass rate (p;) of the
oy as follows:

bt =

k
> 104(s)) = M(or)).

N

Next, we consider that the model is consistent on
the o, if p; > 6, where 6 is a pre-defined threshold.



As aresult. the consistency of the SIGNAL case is
defined as follows:

LN
Cs N ;:1 L(p: > 0)

For the experiments, we use ten different special
symbols, such as a square bracket and semi-colon,
for replacement (i.e., k = 10). The details of the
used symbols can be found in Table 7 in the ap-
pendix. We set the 6 to 1.0, because, ideally, a
model should make the same predictions for all the
perturbations.

4 Experimental Design

4.1 Datasets

For the experiments, we select the NLI and STS
tasks from the GLUE benchmark (Wang et al.,
2019). For the NLI tasks, we use MNLI (MultiNLI,
Multi-Genre Natural Language Inference, Williams
et al., 2018), QNLI (Question Natural Language
Inference, Rajpurkar et al., 2016) and RTE (Recog-
nising Textual Entailment, Candela-Quinonero
et al., 2006); they are composed of two sentence
pairs and a label indicating whether the sentence
pairs are entailed or not. For the STS tasks, we use
QQP (Quora Question Pairs?) and MRPC (Mi-
crosoft Research Paraphrase Corpus, Dolan and
Brockett, 2005), which consist of two sentence
pairs and a label indicating whether the two sen-
tences share an identical meaning.

We also evaluate the Korean datasets to show
the general applicability of our framework to other
languages. For the NLI task, KorNLI (Ham et al.,
2020) and KLUE-NLI (Park et al., 2021) are se-
lected, and for the STS task, KLUE-STS (Park
et al., 2021) is used. The three Korean datasets
do not provide test sets. Therefore, we randomly
sampled test sets from the validation set for the
KLUE datasets and from the training set for the
KorNLI dataset. The basic statistics of the datasets
are given in Table 6 in Appendix A.1.

4.2 Model candidates

We conduct experiments on various types of PLMs
having different sizes. For the English tasks,
we select the encoder-based models (RoBERTa
(Liu et al., 2019b) and ELECT RA (Clark et al.,
2020)), the decoder-based models (GPT2 (Rad-
ford et al., 2019)), and the Seq2Seq models

3https://www.kaggle.com/c/quora-question-pairs/data

(BART (Lewis et al., 2020) and T'5 (Raffel et al.,
2020)). For the Korean tasks, KoBERT and
KoFElectra are used as the encoder-based models.
For the decoder-based and Seq2Seq models, we use
KoGPT?2 and KoBART, respectively. We lever-
age the pre-trained PLMs from the HuggingFace
transformers (Wolf et al., 2020) library.

4.3 Training Details

Apart from the T'5 models, a classification head is
added on top of each model, and all weights are up-
dated while optimising the classification objective
function. We fine-tune each of our candidate back-
bone models on individual tasks. Meanwhile, fine-
tuning for 7'5 models is not performed, because the
HuggingFace T'5 models are already trained on the
datasets used in our experiments through multi-task
training.

At fine-tuning, we use the AdamW optimiser
(Loshchilov and Hutter, 2017) and a linear learning
rate scheduler decaying from le-3. We fine-tune
the models for 10 epochs with a learning rate of
le-5 and batch size of 64 and apply an early stop-
ping method during the training. More detailed
information regarding the hyperparameter search
is presented in Appendix A.2.

S Experimental Results

5.1 Experiments on English Datasets

The experimental results for the English datasets
are summarised in Table 1. In general, all models
except for the 75 models exhibit the same trend.
In the REVERSE case, they show a relatively high
consistency on STS tasks. However, all PLMs
fall short of expectations on the NLI tasks, mak-
ing consistent predictions on only 40~50% of the
evaluation data. In the SIGNAL case, the PLMs
record a high consistency in most of the cases, but
it should be not overlooked that they make incon-
sistent predictions on roughly 4~7% of data points
despite the minor alteration of a single special sym-
bol. The result implies that PLMs could provide
wrong predictions even with meaningless typos,
which could result in a negative consequence in
practical applications, especially in risk-sensitive
domains.

On the contrary, the 75 models show the oppo-
site pattern. They exhibit a relatively high consis-
tency in the REVERSE case but entirely fail in the
SIGNAL case. Unlike PLMs, humans achieved a
very high consistency level on both the REVERSE
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Model MNLI QNLI RTE QQP MRPC
Accml CR Cs Accml CR Cs Accval CR Cs Accml CR Cs Accvaz CR Cs
RoBERTapgse | 87.1 612 96.1| 925 653 95.6| 669 52.1 91.0| 90.5 97.3 97.3| 88.5 949 96.3
RoBERT ajarge | 900 655 969 | 941 642 97.8| 747 544 90.6| 91.1 96.8 982| 87.6 94.6 933
Electrapgse 884 623 934| 921 56.7 934| 742 524 84.4| 909 969 96.5| 884 93.1 909
Electrajarge 89.7 632 952| 946 524 96.4| 833 579 942| 914 973 934| 903 939 96.6
GPT2p4s¢ 79.6 46.6 83.8| 86.5 49.0 89.8| 574 64.6 43.7| 879 928 92.0| 709 91.0 54.7
GPT2i4rge 85.8 56.8 914| 914 518 93.7| 694 399 66.5| 90.6 93.8 95.1| 81.7 894 799
BARTvase 85.7 543 96.1| 915 516 97.1| 626 542 794| 90.2 96.8 97.6| 7577 97.1 943
T'Bpase 859 603 32| 932 874 00| 664 821 00| 906 974 549| 8.8 964 0.0
TSiarge 89.8 857 735| 939 945 485| 794 871 0.0 | 913 97.7 214| 877 975 00
Human 809 97.1 97.1| 89.2 987 98.7| 852 957 97.1| 854 98.7 98.7| 67.0 98.0 100.0

Table 1: Results for the consistency evaluation on the English datasets. Acc,y; denotes an accuracy on the vali-
dation dataset. C'r and Cys stands for the consistency for the REVERSE and SIGNAL cases, respectively. We
trained each model five times and recorded the average of each metric. The best values are in bold.

Dataset| Type Input 1 Input 2 Prediction
. . |Sentencel: Microsoft was established g . . .
RTE Original in Ttaly in 1985. Sentence2: Microsoft was established in 1985. | entailment
Signal [Sentengel] Microsoft was established [Sentence2] Microsoft was established in 1985.|not_entailment
in Italy in 1985.
. .|Sentencel: Spinnaker employs roughly |Sentence2: Spinnaker employs 83 people, .
MRPC Original 83 people ; NetApp employs 2,400. most of whom are engineers. equivalent
Sentence2: Spinnaker employs 83 people,|Sentencel: Spinnaker employs roughly .
Reverse most of whom are engineers. 83 people ; NetApp employs 2,400. not_equivalent
Oricinal Question: With what word was Tesla’s  |Sentence: Tesla was asocial and prone to entailment
QNLI 18NS ociability described? seclude himself with his work. !
R Sentence: Tesla was asocial and prone to [Question: With what word was Tesla’s ¢ entailment
CVeISC|seclude himself with his work. sociability described? not_entatimen

Table 2: Examples of inconsistent predictions of the RoBERT'a;q,.4c model.

and SIGNAL cases, reaching almost 100%. More
detailed analyses of the experimental results are
demonstrated in the following sections. We also de-
scribe several examples of inconsistent predictions
in Tables 2 and 3. More examples are available in
Tables 9, 10, and 11 in the appendix.

5.2 Analysis and Discussion

Models are more consistent on STS tasks. In
the REVERSE case, we observe that the consis-
tency of STS tasks outperforms that of NLI tasks
by a considerable margin. We conjecture a leading
cause is a difference between the training objec-
tive of each task. The objective of the STS tasks
is to identify whether two sentences with differ-
ent wordings are semantically identical. Therefore,
models trained on such tasks can capture the intrin-
sic meaning of sentences better and are thus more
robust to the meaning-preserving perturbations. In
the SIGNAL case, when comparing the tasks with
similar training data sizes (MRPC with RTE and
QQP with MNLI), the consistency of the SIGNAL

case is also higher than that of the REVERSE case,
but the difference is marginal.

More data higher consistency. We find that the
number of training data plays an important role in
improving consistency. For the NLI tasks, both the
REVERSE and SIGNAL consistencies of the RTE
dataset are generally lower than those of the MINLI
and QNLI datasets. Similarly, for the STS tasks,
the consistency of the MRPC dataset are lower
than those of the QQP dataset. Through a paired
t-test, we confirm a statistical significance under
the significance level of 0.1.

Models are highly confident. The inconsistency
issue might be less concerned provided the predic-
tions are made by chance, i.e., high entropy. There-
fore, we investigate the entropy of each model’s
predictive distribution on the inconsistent predic-
tions. The results are illustrated in Figure 2. Note
that, in the binary classification, the entropy of
confidence scores 0.7 and 0.9 are 0.88 and 0.47,
respectively. The results demonstrate that all PLMs
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Figure 2: The average entropy of each English model’s
predictive distribution on inconsistent predictions. “b”
and “1” denotes “base” and “large”, respectively.

are quite confident in the inconsistent predictions,
particularly for the REVERSE case. Although they
are less confident in the SIGNAL case, the predic-
tive distributions are still distant from the uniform
distribution. Furthermore, there exist numerous
instances having extremely low entropy values that
are less than the 25th percentile.

Impact of pre-training objectives. The PLMs
used in our experiments are trained based on
different training objectives. RoBERTa (Liu
et al., 2019b) uses a dynamic word-based MLM,
ELECTRA (Clark et al., 2020) uses a replaced to-
ken detection (RTD), G PT2 (Radford et al., 2019)
uses an autoregressive language modelling, BART
(Lewis et al., 2020) uses a span-based MLM, and
T5 uses both span-based MLM and multi-task
training. We observe that GPT2 models exhibit
a significantly low consistency compared to the
other models, even in the STS tasks. The result
suggests that the autoregressive LM is a less ef-
fective training objective in terms of consistency.
Also, our results presented in Table 1 show that no
models are perfectly consistent despite their differ-
ences. These findings reveal a potential downside
of modern language understanding systems.

Is a large model more consistent? In Table 1,
large-sized models outperform their correspond-
ing base-sized models in terms of accuracy, just
as in the previous studies. However, no such pat-
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Figure 3: The average entropy of each Korean model’s
predictive distribution on inconsistent predictions.

tern is evident when it comes to consistency. We
perform a paired t-test between the base and large
models of RoBERTa, ELECTRA, and GPT?2,
and find no significant difference in both the RE-
VERSE and SIGNAL cases. These results suggest
that accuracy is not a sufficient criterion and raise
the need to evaluate the model’s performance from
other lenses, such as consistency.

Analysis of the T5 Models. Compared to the
other models that showed relatively high perfor-
mance in the SIGNAL case, the consistency of
the 7'5 models in the SIGNAL case falls short of
expectation. One of the strong reasons is that the
input formats of the 7'5 models for diverse training
tasks use a colon as a separator (Raffel et al., 2020),
which is the same format as that of our original
case. Because 7'5 models are trained in multi-task
fashion on many downstream tasks based on the
colon-separator input formats, our SIGNAL case
inputs became a completely new distribution to the
model. As a result, the desired texts (i.e., labels)
were not properly generated. It would be a severe
issue for a text-to-text framework, provided the
model generates entirely wrong predictions on in-
puts with such minor changes. Several generated
examples of the T'5 models are provided in Table
3. More examples are available in Table 11 in the
appendix.

Meanwhile, the T'5 models, especially the large
model, outperform the others in the REVERSE



ORIGINAL INPUTS: mrpc sentencel: The best-performing stock was Altria Group Inc., which rose more than 27 percent
to close at $42.31 a share. sentence2: Altria Group Inc. MO.N fell 50 cents, or 1.2 percent, to $41.81.

SIGNAL INPUTS: mrpc sentencel; The best-performing stock was Altria Group Inc., which rose more than 27 percent
to close at $42.31 a share. sentence2; Altria Group Inc. MO.N fell 50 cents, or 1.2 percent, to $41.81.

ORIGINAL PREDICTION
not_equivalent

SIGNAL PREDICTION
sentence2; Altria Group Inc. MO.N fell 50

ORIGINAL INPUTS: mrpc sentencel: The Toronto Stock Exchange opened on time and slightly lower. sentence2: The Toronto
Stock Exchange said it will be business as usual on Friday morning.

SIGNAL INPUTS: mrpc sentencel# The Toronto Stock Exchange opened on time and slightly lower. sentence2# The Toronto
Stock Exchange said it will be business as usual on Friday morning.

ORIGINAL PREDICTION
not_equivalent

SIGNAL PREDICTION
acceptable

ORIGINAL INPUTS: mrpc sentencel: "It was a little bit embarrassing the way we played in the first two games, "Thomas said.
"We’re in the Stanley Cup finals, and it was a little bit embarrassing the way we played in the first two games.

SIGNAL INPUTS: mrpc sentencel @ "It was a little bit embarrassing the way we played in the first two games, "Thomas said.
sentence2@ "We’re in the Stanley Cup finals, and it was a little bit embarrassing the way we played in the first two games.

ORIGINAL PREDICTION
equivalent

SIGNAL PREDICTION
sentence2@ "We're in the Stanley Cup finals

Table 3: Examples of inconsistent predictions of the 7'5;4,.4. model on the SIGNAL case of the MRPC dataset. The

changes made in the SIGNAL case inputs are in bold.

Model KorNLI KLUE-NLI KLUE-STS
Accyar Cr Cs | Accoar Cr Cs | Accvar Cr Cs
KoBERT | 855 532 91.8| 71.7 482 763 | 73.1 902 80.7
KoFElectra | 86.1 528 945| 784 556 89.6| 750 946 924
KoGPT?2 839 49.0 76.1 643 484 63.6| 76.7 839 733
KoBART 852 546 93.7| 719 519 83.0| 76.7 874 91.1
Human 873 94.0 96.0| 860 98.0 98.0 | 88.0 100.0 100.0

Table 4: Results for the consistency evaluation on the Korean datasets. Acc,,; denotes an accuracy on the vali-
dation dataset. C'r and C'g stand for the consistency for the REVERSE and SIGNAL cases, respectively. We
trained each model 5 times and recorded the average of each metric. The best values are in bold.

case. We speculate a leading cause is that the T'5
models are simultaneously trained with multiple
tasks, including STS tasks, which are regarded to
have a positive influence in obtaining a high con-
sistency according to our experimental results.

5.3 Experiments on Korean Datasets

The experimental results for the Korean datasets are
demonstrated in Table 4. Interestingly, the results
for the Korean datasets exhibit a similar trend with
those for the English datasets. The consistency
of the SIGNAL case is considerably higher than
that of the REVERSE case. Also, models trained
on the STS tasks mark a high consistency in both
the REVERSE and SIGNAL cases, while those
trained on the NLI tasks completely failed in the
REVERSE case. Moreover, KoGPT2 generally
delivered a lower consistency in both the REVERSE
and SIGNAL cases than the other models, such as

KoBERT and KoElectra. Finally, just as in the
English datasets, all models are highly confident in
inconsistent predictions (see Figure 3). The results
indicate that, for the inconsistency issue of PLMs,
we do not have to blame languages but the models
themselves.

6 Human Evaluation

We also evaluate the human consistency ability.
Five human annotators native to each language are
asked to solve the individual tasks for the English
and Korean tasks. We provide 30 samples of the
original input format extracted from the validation
data and their corresponding perturbed examples
for the REVERSE and SIGNAL cases for each anno-
tator.

In Tables 1 and 4, the results demonstrate that hu-
mans can make consistent decisions regardless of
tasks, perturbation types, and languages. However,



Model MNLI QNLI RTE
Accml CR Cs Accml CR Cs ACCUal CR Os
RoBERT ajarge 90.0 655 969 | 941 642 97.8| 747 544 90.6
RoBERTajgrge-multi | 90.3 734 956 | 943 814 96.8| 852 92.8 91.1
GPT2pqse 79.6 46.6 83.8| 865 49.0 89.8| 574 646 43.7
G PT2pqse-multi 784 524 813| 86.6 56.0 888 | 609 71.0 724

Table 5: Results for the consistency evaluation on multi-task training. Acc,,; denotes an accuracy on the validation
dataset. C'r and Cs stands for the consistency for the REVERSE and SIGNAL cases, respectively. We trained
each model five times and recorded the average of each metric. The best value is in bold.

in the English datasets, the accuracy of humans
is generally lower than that of fine-tuned models.
A leading cause of this result is the small sample
size for the human evaluation that degrades the per-
formance considerably even for a single mistake.
Another reason is that the average input length of
the English datasets is quite long (28 words), which
make annotators hardly concentrate on the evalu-
ation. On the contrary, it is easier to focus on the
Korean tasks whose average input length is much
shorter (14 words). As a result, human performance
on the Korean datasets outperforms that of the LMs.
Also, we find that the labels of several samples of
the MRPC dataset seem incorrect, which causes a
decrease in human accuracy. We list such examples
in Table 8 in Appendix A.3.

7 The Effect of Multi-Task Training on
Consistency

From the earlier experiments, we observed that the
T'5 text-to-text models trained on multiple down-
stream tasks are very consistent in the REVERSE
case but fail in the SIGNAL case. On the contrary,
all classification-based models showed an oppo-
site pattern. Therefore, we hypothesise that train-
ing classification-based models on multiple down-
stream tasks can attain high consistencies in both
the REVERSE and SIGNAL cases.

To train the PLMs on multiple tasks simul-
taneously, we leverage the MT-DNN structure
(Liu et al., 2019a), which shares the encoder but
has individual classifiers for each task. We se-
lect RoBERT a;4yge and G P12y, as backbone
model candidates and train them on the English
datasets.

Through experiments, we ascertain that our hy-
pothesis is valid. Table 5 demonstrates the ex-
perimental results. We record the results of the
NLI tasks, because all PLMs achieved a quite high
consistency in the STS tasks. As in the previ-

ous study (Liu et al., 2019a), the accuracy of the
multi-task models improved in general, and the
enhancements are substantial for the tasks with
less training data (i.e., RTE). Also, we observe
that multi-task training improves not only accu-
racy but also consistency. Specifically, all PLMs
achieve great improvements in the REVERSE case,
obtaining a 21% increase on average. Similar to
the trend observed on the accuracy, the improve-
ment is considerable in the RTE task, recording
a 40% increase on average. In the SIGNAL case,
different patterns are observed depending on the
size of the training data. For the MNLI and QNLI,
the consistency slightly decreased by 1.6% on aver-
age, but the drop is marginal considering the com-
plete failure of the 75 models. On the contrary,
the consistency is improved in the RTE dataset,
especially for G PT2p,s., Which is increased by
65%. Our experimental results suggest that attain-
ing good representations through multiple language
understanding tasks could be a remedy to improve
consistency, especially for the small-sized datasets.

8 Summary and Outlook

Consistency is a highly desirable property that a
good language understanding model should possess
to obtain a human-level language understanding ca-
pability. In this paper, we proposed a simple yet
efficient framework, called CALM, that measures
a lower-bound consistency of PLMs. Through ex-
periments, we ascertained that PLMs exhibit cases
of inconsistent behaviour regardless of the pre-
training objective and language despite their ex-
cellent accuracy on downstream tasks. We also
confirmed that multi-task training has a positive
impact on improving consistency. Our findings
suggest that high accuracy is not a sufficient cri-
terion to evaluate PLMs’ language understanding
abilities, and it is time to assess language models
from various points of view.
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#of Train set Validation Test set

classes  size set size size
MNLI 3 393K 9.8K 9.8K
QNLI 2 105K 5.5K 5.5K
RTE 2 2.5K 277 3K
QQP 2 364K 40K 391K
MRPC 2 3.7K 408 1.7K
KorNLI 3 53K 10K 10K
KLUE-NLI 3 25K 1.5K 1.5K
KLUE-STS 2 1.2K 260 259

Table 6: Descriptions of datasets for the experiments.

A Appendix

A.1 Dataset Statistics

Table 6 shows the statistics of the datasets that
we used for the experiments. The number of data
points in the RTE, MRPC, and KLUE-STS tasks is
considerably smaller than in the others.

A.2 Hyperparameter Search

We investigated the following range of hyperpa-
rameter values to decide the optimal values for the
fine-tuning:

e Batch size: 32, 64, 128,
* Learning rate: 5e-5, le-5, Se-6.

Datasets with a large amount of training data,
e.g., MNLI and QQP, are insensitive to the hy-
perparameter values. Therefore, we select hyper-
parameter values that generally perform well on
small-sized datasets, such as RTE and MRPC.

A.3 Samples of MRPC data

Table 8 shows several examples of the MRPC data
that are considered to have incorrect answers. It
seems that most of the human annotators made
correct predictions. We believe such samples de-
creased the human accuracy on the MRPC dataset,
because we used only a few instances for the hu-
man evaluation.
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Symbols ‘

i

{} 0

<>

# ! @

s

~

Examples ‘ [Premise] {Premise} (Premise) <Premise> Premise; premise# Premise! Premise@ Premise~ Premise-

Table 7: The special symbols that we use for the SIGNAL case. The examples illustrate the alteration of the
“Premise:” indicator.

Inputs

Userl User2 User3 Userd User5

Label

Sentencel: "Sanitation is poor,,, there could be typhoid and cholera," he said.

Sentence2: "Sanitation is poor, drinking water is generally left behind... 1 1 1 1 1 0
there could be typhoid and cholera."

Sentencel: The only announced Republican to replace Davis is Rep. Darrell Issa of

Vista, who has spent $1.71 million of his own money to force a recall. 0 0 1 0 0 1

Sentence2: So far the only declared major party candidate is Rep. Darrell Issa,
a Republican who has spent $1.5 million of his own money to fund the recall.

Table 8: An example of human answers on MRPC data points that seem to have wrong labels. 0 and 1 implies
‘not_equivalent’ and ‘equivalent’, respectively.

Dataset| Type Input 1 Input 2 Prediction
Original Sentencel: These folk art traditions have Sentence2: Indigenous folk art is preserved. entailment
RTE been preserved for hundreds of years.
\ .
Signal gentencel. These folk art traditions have Sentence2! Indigenous folk art is preserved. |not_entailment
een preserved for hundreds of years.
Original Sentencel: The initial report was made to Sentence?2: It stems from a Modesto police equivalent
MRPC £l N fodesto Police December 28. report. quiv
R Sentence?2: It stems from a Modesto police |Sentencel: The initial report was made to ot equivalent
everse report. Modesto Police December 28. -4
Original Question: What is essential for the successful|Sentence: For the successful execution of a ntailment
NLI gMhallxecution of a project? roject, effective planning is essential. entaiime
Q proj proj P g
Rever Sentence: For the successful execution of a |Question: What is essential for the successful ot entailment
everse project, effective planning is essential. execution of a project? ot_entarime
Table 9: Examples of inconsistent predictions of Electra;qrge.
Dataset| Type Input 1 Input 2 Prediction
Original Sentencel: In 1900 Berlin’s arterial roads ran|Sentence2: Postdam Square is located in not._entailment
RTE EMall, cross Potsdam Square - Potsdamer Platz. Berlin. ot_entarime
Sentence2: Postdam Square is located in Sentencel: In 1900 Berlin’s arterial roads ran .
Reverse . entailment
Berlin. across Potsdam Square - Potsdamer Platz.
Original Sentencel: Both are being held in the Sentence2: Tatar was being held without bail equivalent
MRPC & Armstrong County Jail. in Armstrong County Prison today. q
Sional <Sentencel> Both are being held in the <Sentence2> Tatar was being held without bail <extra id 0>
& Armstrong County Jail. in Armstrong County Prison today. -
Oricinal Question: What fueled Luther’s concept of |Sentence: His railing against the sale of not_entailment
QNLI MEMA Christ and His Salvation? indulgences was based on it. ot_entarime
Sional [Question] What fueled Luther’s concept of |[Sentence] His railing against the sale of ail "
'81 | Christ and His Salvation? indulgences was based on it. entatimen

Table 10: Examples of inconsistent predictions of T'5;4,.4.. The generated output of the SIGNAL case in the
MRPC dataset is “<extra_id_0>1 County Jail.<extra_id_1>.<extra_id_2> sentencel>".
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ORIGINAL INPUTS: rte sentencel: At least 50 animals died in a late December avalanche. sentence2: Humans died
in an avalanche.

ORIGINAL INPUTS: rte [sentencel] At least 50 animals died in a late December avalanche. [sentence2] Humans died
in an avalanche.

ORIGINAL PREDICTION SIGNAL PREDICTION

<extra_id_0> <extra_id_1> [sentencel] At least 50

not_entailment . n
animals died in an

ORIGINAL INPUTS: rte sentencel: Microsoft denies that it holds a monopoly. sentence2: Microsoft holds a monopoly power.

SIGNAL INPUTS: rte sentencel! Microsoft denies that it holds a monopoly. sentence2! Microsoft holds a monopoly power.

ORIGINAL PREDICTION SIGNAL PREDICTION

not_entailment rte sentencel! Microsoft denies that it holds a

ORIGINAL INPUTS: rte sentencel: An earthquake has hit the east coast of Hokkaido, Japan, with a magnitude of 7.0 Mw.
sentence2: An earthquake occurred on the east coast of Hokkaido, Japan.

SIGNAL INPUTS: rte {sentencel} An earthquake has hit the east coast of Hokkaido, Japan, with a magnitude of 7.0 Mw.
{sentence2} An earthquake occurred on the east coast of Hokkaido, Japan.

ORIGINAL PREDICTION SIGNAL PREDICTION

<extra_id_O>e<extra_id_1>e {sentence2} An earthquake has

entailment hit the east

Table 11: More examples of inconsistent predictions of 15,5, on the SIGNAL case of the RTE dataset. The
changes made on the SIGNAL case inputs are in bold.
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