
Accurate, yet Inconsistent? Consistency Analysis on Language Models

Anonymous ACL submission

Abstract

Consistency, which refers to generating the001
same predictions for semantically similar con-002
texts, is highly desirable for a sound lan-003
guage model. Although recent pre-trained004
language models (PLMs) deliver an outstand-005
ing performance in various downstream tasks,006
they should also exhibit a consistent behaviour,007
given that the models truly understand lan-008
guage. In this paper, we propose a sim-009
ple framework, called consistency analysis010
on language models (CALM), to evaluate a011
model’s lower-bound consistency ability. Via012
experiments, we confirm that current PLMs013
are prone to generate inconsistent predictions014
even for semantically identical inputs with015
high confidence. We also observe that multi-016
task training is of benefit to improve consis-017
tency, increasing the value by 17% on average.018

1 Introduction019

Large-sized pre-trained language models (PLMs),020

such as BERT (Devlin et al., 2019) and GPT2 (Rad-021

ford et al., 2019), compose the backbone of con-022

temporary natural language processing (NLP) sys-023

tems, delivering an outstanding performance on024

many downstream tasks through fine-tuning and025

in-context learning (Brown et al., 2020). Based on026

their excellent performance, claims that PLMs can027

understand language have emerged in the literature028

(Devlin et al., 2019; Ohsugi et al., 2019; Qiu et al.,029

2020) and popular press, such as the Google Blog030

post1 and Towards Data Science website2.031

However, recent studies raise questions of032

PLM’s language understanding capacity. Numer-033

ous pieces of research demonstrated that PLMs034

are incapable of identifying the meaning of sen-035

tences but rely on the excessive exploitation of036

statistical cues or syntactic patterns (Habernal037

1https://www.blog.google/products/search/search-
language-understanding-bert/

2https://towardsdatascience.com/pre-trained-language-
models-simplified-b8ec80c62217

et al., 2018; Niven and Kao, 2019; McCoy et al., 038

2019; Bender and Koller, 2020). Another line of 039

works found that PLMs can memorise frequent 040

word/phrase/knowledge presented in pretraining 041

data but poorly understand unseen expressions and 042

knowledge (Kassner et al., 2020; Ravichander et al., 043

2020; Hofmann et al., 2021). Moreover, many stud- 044

ies discovered that PLMs are insensitive to sen- 045

tence order (Pham et al., 2020; Gupta et al., 2021; 046

Sinha et al., 2021) and lack an understanding of 047

negated phrases (Naik et al., 2018; Hossain et al., 048

2020; Kassner and Schütze, 2020; Ettinger, 2020; 049

Hosseini et al., 2021). 050

In the spirit of meaning-text theory (MTT), the 051

correspondence between semantic content (mean- 052

ing) and linguistic expressions (text) is many-to- 053

many, which implies that the meaning can be 054

conveyed in various text forms (Mel’čuk and 055

Žolkovskij, 1970; Milićević, 2006). Also, the con- 056

cept of “understanding” is to focus on the meaning 057

and not the text form (Krashen, 1982). Therefore, 058

provided a model understands language, it should 059

make consistent decisions in semantically equiva- 060

lent texts, because meaning is a common invariant 061

content that all synonymous texts have. This is the 062

spirit of consistency, and the performance of PLMs 063

should be illuminated in terms of consistency, aside 064

from other evaluation metrics like accuracy, to eval- 065

uate their language understanding ability. 066

Many recent studies have investigated PLM’s 067

consistency through behavioural testing on aug- 068

mented data (Ribeiro et al., 2020; Ravichander 069

et al., 2020; Elazar et al., 2021) and text adver- 070

sarial attacks (Morris et al., 2020; Li et al., 2020a; 071

Garg and Ramakrishnan, 2020; Jin et al., 2020). 072

However, these approaches have several down- 073

sides. First, a great human effort or task-specific 074

data production rules are essential for the data 075

augmentation-based investigation. This limitation 076

confined the investigation to a few tasks, such as 077

zero-shot knowledge retrieval (Ravichander et al., 078
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2020; Elazar et al., 2021) and sentiment analy-079

sis (Ribeiro et al., 2020), and a certain language,080

mainly English. Text adversarial attacks aim to081

lead a model to make inconsistent decisions on ad-082

versarial samples, mainly generated by the masked083

language modelling (MLM) of PLMs to be seman-084

tically analogous to the target words (Morris et al.,085

2020; Li et al., 2020a; Garg and Ramakrishnan,086

2020). However, the semantic equivalence of these087

samples is not guaranteed due to their reliance on088

PLMs, whose credibility has recently been chal-089

lenged (Ravichander et al., 2020; Ettinger, 2020;090

Kassner and Schütze, 2020; Elazar et al., 2021).091

Also, most text adversarial attack methods use sim-092

ilarity scores of sentence embeddings generated093

by a pre-trained encoder as a criterion to extract094

adversarial samples. However, it is questionable095

whether the encoder trained without meaning infor-096

mation can extract semantically similar adversarial097

samples (Bender and Koller, 2020). Since the se-098

mantic equivalence is a prerequisite for evaluating099

consistency, text adversarial attacks could lead to100

an overestimation of PLM’s inconsistency. Also,101

additional components, such as synonym dictionar-102

ies (Ren et al., 2019) and pre-trained word/sentence103

embeddings (Hill et al., 2015; Cer et al., 2018), are104

a core of the adversarial sample generators. This105

limitation precludes the examination of consistency106

for other languages where such resources are not107

available.108

In this paper, we propose a simple but efficient109

behavioural testing framework, called consistency110

analysis on language models (CALM), to evaluate111

the consistency of PLMs. Our approach can be112

applied to various downstream tasks without addi-113

tional components and ideally ensures the semantic114

equivalence and thus measures the lower-bound115

consistency of PLMs. To be specific, we introduce116

a free-text sentence type indicator and add pertur-117

bations, such as shifting the input sentence order-118

ing (REVERSE) and substituting a special symbol119

(SIGNAL), which works as a separator, with other120

symbols (see Figure 1).121

Our main contributions are as follows: (i) we122

propose a behavioural testing framework that per-123

fectly guarantees semantic equivalence (Section 3),124

(ii) our approach could be easily applied to low-125

resource languages and various downstream tasks,126

(iii) we observe that widely used PLMs lack con-127

sistency regardless of their training objective and128

languages (Section 5), (iv) we verify that humans129

Original

Hypothesis: Not complicatedly. Premise: Very simply.

Reverse

Premise: Very simply. Hypothesis: Not complicatedly.

Entailments
Fine-tuned

PLM
Neutral

Conflict

(a) REVERSE case
Original

Hypothesis: Not complicatedly. Premise: Very simply.

Signal

[Hypothesis] Not complicatedly. [Premise] Very simply.

(Hypothesis) Not complicatedly. (Premise) Very simply.

Hypothesis@ Not complicatedly. Premise@ Very simply.

Entailments

Neutral

Conflict

Contradiction

Entailments

Fine-tuned
PLM

(b) SIGNAL case

Figure 1: Example of the CALM framework for the
MNLI task. The changes in the original free-text inputs
are marked in blue.

exhibit a very high consistency under the same ex- 130

perimental settings (Section 6), and (v) we show 131

that multi-task training is beneficial to improve 132

consistency (Section 7). We will make our code 133

available after acceptance. 134

2 Related Works 135

Consistency. There have been several attempts 136

to analyse the consistency of language models in 137

various NLP domains. For zero-shot knowledge 138

retrieval tasks, Ravichander et al. (2020) found that 139

PLMs generate different answers if an object of the 140

original query is replaced with its plural form (e.g., 141

‘A robin is a [MASK]’ to ‘robins are [MASK]’). 142

Elazar et al. (2021) observed a discrepancy in the 143

predictions of PLMs for paraphrase queries and 144

alleviated the issue by fine-tuning the model on 145

the generated paraphrase queries. In question an- 146

swering (QA), Ribeiro et al. (2019) showed that 147

state-of-the-art QA models generate inconsistent 148

outputs for queries with the same context and used 149

data augmentation to improve consistency. Asai 150

and Hajishirzi (2020) also used data augmentation 151

and, additionally, inconsistency loss, which is de- 152

signed to penalise inconsistent predictions. Ribeiro 153

et al. (2020) proposed the invariance test to evalu- 154

ate consistency. For a sentiment analysis task, they 155

changed the named entity presented in a given sen- 156

tence, because such perturbation does not change 157

the polarity of the sentence. Research on consis- 158

tency in other domains includes text summarisation 159

(Kryscinski et al., 2020), explanation generation 160

(Camburu et al., 2020), and dialogue generation (Li 161

et al., 2020b). Li et al. (2020b) employed unlikeli- 162

hood training (Welleck et al., 2019) to improve the 163
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consistency of a dialogue model.164

Text Adversarial Attack. Text adversarial at-165

tacks have a commonality with consistency anal-166

ysis in that adversarial examples are designed to167

have a similar meaning with their original coun-168

terparts. Jin et al. (2020) proposed a black-box169

attack approach, called TEXTFOOLER, which re-170

places important words in an input sentence with171

synonyms. They used pre-trained word vectors172

(Hill et al., 2015) to extract synonyms. Li et al.173

(2020a) used BERT for generating adversarial sam-174

ples. They first extracted important words for175

decision-making and replaced them by using the176

BERT masked language model (MLM). Garg and177

Ramakrishnan (2020) also used BERT MLM not178

only for replacing important tokens but also for179

inserting new tokens. Li et al. (2021) employed180

MLM for three strategies; “replace”, “insert”, and181

“merge” that mask a bi-gram and replace it with a182

single word. All the approaches presented above183

leverage the universal sentence encoder (USE, Cer184

et al. 2018) to extract semantically similar adver-185

sarial samples. However, it is doubtful that such an186

encoder trained using only text form without mean-187

ing information can ensure the semantic equiva-188

lence between the original and adversarial samples189

(Bender and Koller, 2020).190

3 CALM: Consistency Analysis on191

Language Models192

Behavioural testing refers to examining software193

systems to assess their capabilities by investigating194

their behaviour for specially designed inputs (Rim195

et al., 2021). Our behavioural testing framework196

evaluates a model’s consistency on downstream197

tasks that infer the relation of two input sentences,198

such as natural language inference (NLI) and STS199

tasks. The framework consists of three steps: (1)200

fine-tune a PLM on the original input format, and201

inference on development/test dataset, (2) use the202

fine-tuned PLM to inference on the perturbed input203

format, and (3) compare the results of the original204

and perturbed formats. The overall framework of205

our proposed method is illustrated in Figure 1.206

In our experiments, it is crucial to ensure se-207

mantic equivalence after perturbation. Inspired208

by the widely used input formats for human data209

annotations (Camburu et al., 2018; Kayser et al.,210

2021) and text-to-text models (Raffel et al., 2020),211

we introduce a free-text sentence-type indicator212

to achieve the semantic equivalence. Specifically,213

we first insert the sentence-type indicator at the 214

beginning of each sentence, followed by a special 215

symbol that acts as a separator (e.g., ‘Premise:’ and 216

‘Hypothesis:’ for the NLI task). These indicator- 217

added input formats are the original data where 218

each model is trained. For the perturbation, we 219

applied the following two methods: REVERSE 220

and SIGNAL. 221

REVERSE: This method changes the order of 222

the two input sentences. An example case of this 223

method is illustrated in Figure 1a. Without the 224

sentence-type indicator, a model might be unable 225

to distinguish between the first and second input 226

sentence after the ordering alteration. The exis- 227

tence of the indicator will prevent confusion by 228

specifying the input types and, there, can maintain 229

the meaning of inputs after the alteration. We ver- 230

ify that humans are insensitive to this perturbation 231

through human evaluation (see Section 6). 232

Let O = {o1, ..., oN} and R = {r1, ..., rN} 233

denote a set of the original and REVERSE inputs, 234

respectively, and M is a model that we will evalu- 235

ate. Then, the consistency of the REVERSE case is 236

calculated as follows: 237

CR =
1

N

N∑
t=1

1(M(ot) =M(rt)), 238

where M(x) denotes the prediction of model M 239

on the data point x. Intuitively, the metric implies 240

the accuracy between the prediction of the original 241

and REVERSE inputs. 242

SIGNAL: This method changes a special sym- 243

bol in the sentence-type indicator. An example case 244

of this method is illustrated in Figure 1b. The sub- 245

stitution of the special symbol does not change the 246

meaning of the inputs, because it conveys no spe- 247

cific semantic content. Therefore, a model should 248

make a consistent prediction after the perturbation. 249

In our experiments, we replace a colon in the origi- 250

nal input format with multiple other symbols. 251

Let us assume St = {st1, ..., stk} be the set of 252

perturbed inputs of the SIGNAL case for t-th data 253

point (ot). First, we define the pass rate (pt) of the 254

ot as follows: 255

pt =
1

k

k∑
i=1

1(M(sti) =M(ot)). 256

Next, we consider that the model is consistent on 257

the ot if pt ≥ θ, where θ is a pre-defined threshold. 258
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As a result. the consistency of the SIGNAL case is259

defined as follows:260

CS =
1

N

N∑
t=1

1(pt ≥ θ).261

For the experiments, we use ten different special262

symbols, such as a square bracket and semi-colon,263

for replacement (i.e., k = 10). The details of the264

used symbols can be found in Table 7 in the ap-265

pendix. We set the θ to 1.0, because, ideally, a266

model should make the same predictions for all the267

perturbations.268

4 Experimental Design269

4.1 Datasets270

For the experiments, we select the NLI and STS271

tasks from the GLUE benchmark (Wang et al.,272

2019). For the NLI tasks, we use MNLI (MultiNLI,273

Multi-Genre Natural Language Inference, Williams274

et al., 2018), QNLI (Question Natural Language275

Inference, Rajpurkar et al., 2016) and RTE (Recog-276

nising Textual Entailment, Candela-Quinonero277

et al., 2006); they are composed of two sentence278

pairs and a label indicating whether the sentence279

pairs are entailed or not. For the STS tasks, we use280

QQP (Quora Question Pairs3) and MRPC (Mi-281

crosoft Research Paraphrase Corpus, Dolan and282

Brockett, 2005), which consist of two sentence283

pairs and a label indicating whether the two sen-284

tences share an identical meaning.285

We also evaluate the Korean datasets to show286

the general applicability of our framework to other287

languages. For the NLI task, KorNLI (Ham et al.,288

2020) and KLUE-NLI (Park et al., 2021) are se-289

lected, and for the STS task, KLUE-STS (Park290

et al., 2021) is used. The three Korean datasets291

do not provide test sets. Therefore, we randomly292

sampled test sets from the validation set for the293

KLUE datasets and from the training set for the294

KorNLI dataset. The basic statistics of the datasets295

are given in Table 6 in Appendix A.1.296

4.2 Model candidates297

We conduct experiments on various types of PLMs298

having different sizes. For the English tasks,299

we select the encoder-based models (RoBERTa300

(Liu et al., 2019b) and ELECTRA (Clark et al.,301

2020)), the decoder-based models (GPT2 (Rad-302

ford et al., 2019)), and the Seq2Seq models303

3https://www.kaggle.com/c/quora-question-pairs/data

(BART (Lewis et al., 2020) and T5 (Raffel et al., 304

2020)). For the Korean tasks, KoBERT and 305

KoElectra are used as the encoder-based models. 306

For the decoder-based and Seq2Seq models, we use 307

KoGPT2 and KoBART , respectively. We lever- 308

age the pre-trained PLMs from the HuggingFace 309

transformers (Wolf et al., 2020) library. 310

4.3 Training Details 311

Apart from the T5 models, a classification head is 312

added on top of each model, and all weights are up- 313

dated while optimising the classification objective 314

function. We fine-tune each of our candidate back- 315

bone models on individual tasks. Meanwhile, fine- 316

tuning for T5 models is not performed, because the 317

HuggingFace T5 models are already trained on the 318

datasets used in our experiments through multi-task 319

training. 320

At fine-tuning, we use the AdamW optimiser 321

(Loshchilov and Hutter, 2017) and a linear learning 322

rate scheduler decaying from 1e-3. We fine-tune 323

the models for 10 epochs with a learning rate of 324

1e-5 and batch size of 64 and apply an early stop- 325

ping method during the training. More detailed 326

information regarding the hyperparameter search 327

is presented in Appendix A.2. 328

5 Experimental Results 329

5.1 Experiments on English Datasets 330

The experimental results for the English datasets 331

are summarised in Table 1. In general, all models 332

except for the T5 models exhibit the same trend. 333

In the REVERSE case, they show a relatively high 334

consistency on STS tasks. However, all PLMs 335

fall short of expectations on the NLI tasks, mak- 336

ing consistent predictions on only 40∼50% of the 337

evaluation data. In the SIGNAL case, the PLMs 338

record a high consistency in most of the cases, but 339

it should be not overlooked that they make incon- 340

sistent predictions on roughly 4∼7% of data points 341

despite the minor alteration of a single special sym- 342

bol. The result implies that PLMs could provide 343

wrong predictions even with meaningless typos, 344

which could result in a negative consequence in 345

practical applications, especially in risk-sensitive 346

domains. 347

On the contrary, the T5 models show the oppo- 348

site pattern. They exhibit a relatively high consis- 349

tency in the REVERSE case but entirely fail in the 350

SIGNAL case. Unlike PLMs, humans achieved a 351

very high consistency level on both the REVERSE 352
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Model
MNLI QNLI RTE QQP MRPC

Accval CR CS Accval CR CS Accval CR CS Accval CR CS Accval CR CS

RoBERTabase 87.1 61.2 96.1 92.5 65.3 95.6 66.9 52.1 91.0 90.5 97.3 97.3 88.5 94.9 96.3
RoBERTalarge 90.0 65.5 96.9 94.1 64.2 97.8 74.7 54.4 90.6 91.1 96.8 98.2 87.6 94.6 93.3
Electrabase 88.4 62.3 93.4 92.1 56.7 93.4 74.2 52.4 84.4 90.9 96.9 96.5 88.4 93.1 90.9
Electralarge 89.7 63.2 95.2 94.6 52.4 96.4 83.3 57.9 94.2 91.4 97.3 93.4 90.3 93.9 96.6
GPT2base 79.6 46.6 83.8 86.5 49.0 89.8 57.4 64.6 43.7 87.9 92.8 92.0 70.9 91.0 54.7
GPT2large 85.8 56.8 91.4 91.4 51.8 93.7 69.4 39.9 66.5 90.6 93.8 95.1 81.7 89.4 79.9
BARTbase 85.7 54.3 96.1 91.5 51.6 97.1 62.6 54.2 79.4 90.2 96.8 97.6 75.7 97.1 94.3
T5base 85.9 60.3 3.2 93.2 87.4 0.0 66.4 82.1 0.0 90.6 97.4 54.9 85.8 96.4 0.0
T5large 89.8 85.7 73.5 93.9 94.5 48.5 79.4 87.1 0.0 91.3 97.7 21.4 87.7 97.5 0.0
Human 80.9 97.1 97.1 89.2 98.7 98.7 85.2 95.7 97.1 85.4 98.7 98.7 67.0 98.0 100.0

Table 1: Results for the consistency evaluation on the English datasets. Accval denotes an accuracy on the vali-
dation dataset. CR and CS stands for the consistency for the REVERSE and SIGNAL cases, respectively. We
trained each model five times and recorded the average of each metric. The best values are in bold.

Dataset Type Input 1 Input 2 Prediction

RTE
Original Sentence1: Microsoft was established

in Italy in 1985. Sentence2: Microsoft was established in 1985. entailment

Signal [Sentence1] Microsoft was established
in Italy in 1985. [Sentence2] Microsoft was established in 1985. not_entailment

MRPC
Original Sentence1: Spinnaker employs roughly

83 people ; NetApp employs 2,400.
Sentence2: Spinnaker employs 83 people,
most of whom are engineers. equivalent

Reverse Sentence2: Spinnaker employs 83 people,
most of whom are engineers.

Sentence1: Spinnaker employs roughly
83 people ; NetApp employs 2,400. not_equivalent

QNLI
Original Question: With what word was Tesla’s

sociability described?
Sentence: Tesla was asocial and prone to
seclude himself with his work. entailment

Reverse Sentence: Tesla was asocial and prone to
seclude himself with his work.

Question: With what word was Tesla’s
sociability described? not_entailment

Table 2: Examples of inconsistent predictions of the RoBERTalarge model.

and SIGNAL cases, reaching almost 100%. More353

detailed analyses of the experimental results are354

demonstrated in the following sections. We also de-355

scribe several examples of inconsistent predictions356

in Tables 2 and 3. More examples are available in357

Tables 9, 10, and 11 in the appendix.358

5.2 Analysis and Discussion359

Models are more consistent on STS tasks. In360

the REVERSE case, we observe that the consis-361

tency of STS tasks outperforms that of NLI tasks362

by a considerable margin. We conjecture a leading363

cause is a difference between the training objec-364

tive of each task. The objective of the STS tasks365

is to identify whether two sentences with differ-366

ent wordings are semantically identical. Therefore,367

models trained on such tasks can capture the intrin-368

sic meaning of sentences better and are thus more369

robust to the meaning-preserving perturbations. In370

the SIGNAL case, when comparing the tasks with371

similar training data sizes (MRPC with RTE and372

QQP with MNLI), the consistency of the SIGNAL373

case is also higher than that of the REVERSE case, 374

but the difference is marginal. 375

More data higher consistency. We find that the 376

number of training data plays an important role in 377

improving consistency. For the NLI tasks, both the 378

REVERSE and SIGNAL consistencies of the RTE 379

dataset are generally lower than those of the MNLI 380

and QNLI datasets. Similarly, for the STS tasks, 381

the consistency of the MRPC dataset are lower 382

than those of the QQP dataset. Through a paired 383

t-test, we confirm a statistical significance under 384

the significance level of 0.1. 385

Models are highly confident. The inconsistency 386

issue might be less concerned provided the predic- 387

tions are made by chance, i.e., high entropy. There- 388

fore, we investigate the entropy of each model’s 389

predictive distribution on the inconsistent predic- 390

tions. The results are illustrated in Figure 2. Note 391

that, in the binary classification, the entropy of 392

confidence scores 0.7 and 0.9 are 0.88 and 0.47, 393

respectively. The results demonstrate that all PLMs 394
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Figure 2: The average entropy of each English model’s
predictive distribution on inconsistent predictions. “b”
and “l” denotes “base” and “large”, respectively.

are quite confident in the inconsistent predictions,395

particularly for the REVERSE case. Although they396

are less confident in the SIGNAL case, the predic-397

tive distributions are still distant from the uniform398

distribution. Furthermore, there exist numerous399

instances having extremely low entropy values that400

are less than the 25th percentile.401

Impact of pre-training objectives. The PLMs402

used in our experiments are trained based on403

different training objectives. RoBERTa (Liu404

et al., 2019b) uses a dynamic word-based MLM,405

ELECTRA (Clark et al., 2020) uses a replaced to-406

ken detection (RTD), GPT2 (Radford et al., 2019)407

uses an autoregressive language modelling,BART408

(Lewis et al., 2020) uses a span-based MLM, and409

T5 uses both span-based MLM and multi-task410

training. We observe that GPT2 models exhibit411

a significantly low consistency compared to the412

other models, even in the STS tasks. The result413

suggests that the autoregressive LM is a less ef-414

fective training objective in terms of consistency.415

Also, our results presented in Table 1 show that no416

models are perfectly consistent despite their differ-417

ences. These findings reveal a potential downside418

of modern language understanding systems.419

Is a large model more consistent? In Table 1,420

large-sized models outperform their correspond-421

ing base-sized models in terms of accuracy, just422

as in the previous studies. However, no such pat-423

Figure 3: The average entropy of each Korean model’s
predictive distribution on inconsistent predictions.

tern is evident when it comes to consistency. We 424

perform a paired t-test between the base and large 425

models of RoBERTa, ELECTRA, and GPT2, 426

and find no significant difference in both the RE- 427

VERSE and SIGNAL cases. These results suggest 428

that accuracy is not a sufficient criterion and raise 429

the need to evaluate the model’s performance from 430

other lenses, such as consistency. 431

Analysis of the T5 Models. Compared to the 432

other models that showed relatively high perfor- 433

mance in the SIGNAL case, the consistency of 434

the T5 models in the SIGNAL case falls short of 435

expectation. One of the strong reasons is that the 436

input formats of the T5 models for diverse training 437

tasks use a colon as a separator (Raffel et al., 2020), 438

which is the same format as that of our original 439

case. Because T5 models are trained in multi-task 440

fashion on many downstream tasks based on the 441

colon-separator input formats, our SIGNAL case 442

inputs became a completely new distribution to the 443

model. As a result, the desired texts (i.e., labels) 444

were not properly generated. It would be a severe 445

issue for a text-to-text framework, provided the 446

model generates entirely wrong predictions on in- 447

puts with such minor changes. Several generated 448

examples of the T5 models are provided in Table 449

3. More examples are available in Table 11 in the 450

appendix. 451

Meanwhile, the T5 models, especially the large 452

model, outperform the others in the REVERSE 453
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ORIGINAL INPUTS: mrpc sentence1: The best-performing stock was Altria Group Inc., which rose more than 27 percent
to close at $42.31 a share. sentence2: Altria Group Inc. MO.N fell 50 cents, or 1.2 percent, to $41.81.
SIGNAL INPUTS: mrpc sentence1; The best-performing stock was Altria Group Inc., which rose more than 27 percent
to close at $42.31 a share. sentence2; Altria Group Inc. MO.N fell 50 cents, or 1.2 percent, to $41.81.

ORIGINAL PREDICTION SIGNAL PREDICTION

not_equivalent sentence2; Altria Group Inc. MO.N fell 50

ORIGINAL INPUTS: mrpc sentence1: The Toronto Stock Exchange opened on time and slightly lower. sentence2: The Toronto
Stock Exchange said it will be business as usual on Friday morning.
SIGNAL INPUTS: mrpc sentence1# The Toronto Stock Exchange opened on time and slightly lower. sentence2# The Toronto
Stock Exchange said it will be business as usual on Friday morning.

ORIGINAL PREDICTION SIGNAL PREDICTION

not_equivalent acceptable

ORIGINAL INPUTS: mrpc sentence1: "It was a little bit embarrassing the way we played in the first two games, "Thomas said.
"We’re in the Stanley Cup finals, and it was a little bit embarrassing the way we played in the first two games.
SIGNAL INPUTS: mrpc sentence1@ "It was a little bit embarrassing the way we played in the first two games, "Thomas said.
sentence2@ "We’re in the Stanley Cup finals, and it was a little bit embarrassing the way we played in the first two games.

ORIGINAL PREDICTION SIGNAL PREDICTION

equivalent sentence2@ "We’re in the Stanley Cup finals

Table 3: Examples of inconsistent predictions of the T5large model on the SIGNAL case of the MRPC dataset. The
changes made in the SIGNAL case inputs are in bold.

Model
KorNLI KLUE-NLI KLUE-STS

Accval CR CS Accval CR CS Accval CR CS

KoBERT 85.5 53.2 91.8 71.7 48.2 76.3 73.1 90.2 80.7
KoElectra 86.1 52.8 94.5 78.4 55.6 89.6 75.0 94.6 92.4
KoGPT2 83.9 49.0 76.1 64.3 48.4 63.6 76.7 83.9 73.3
KoBART 85.2 54.6 93.7 71.9 51.9 83.0 76.7 87.4 91.1

Human 87.3 94.0 96.0 86.0 98.0 98.0 88.0 100.0 100.0

Table 4: Results for the consistency evaluation on the Korean datasets. Accval denotes an accuracy on the vali-
dation dataset. CR and CS stand for the consistency for the REVERSE and SIGNAL cases, respectively. We
trained each model 5 times and recorded the average of each metric. The best values are in bold.

case. We speculate a leading cause is that the T5454

models are simultaneously trained with multiple455

tasks, including STS tasks, which are regarded to456

have a positive influence in obtaining a high con-457

sistency according to our experimental results.458

5.3 Experiments on Korean Datasets459

The experimental results for the Korean datasets are460

demonstrated in Table 4. Interestingly, the results461

for the Korean datasets exhibit a similar trend with462

those for the English datasets. The consistency463

of the SIGNAL case is considerably higher than464

that of the REVERSE case. Also, models trained465

on the STS tasks mark a high consistency in both466

the REVERSE and SIGNAL cases, while those467

trained on the NLI tasks completely failed in the468

REVERSE case. Moreover, KoGPT2 generally469

delivered a lower consistency in both the REVERSE470

and SIGNAL cases than the other models, such as471

KoBERT and KoElectra. Finally, just as in the 472

English datasets, all models are highly confident in 473

inconsistent predictions (see Figure 3). The results 474

indicate that, for the inconsistency issue of PLMs, 475

we do not have to blame languages but the models 476

themselves. 477

6 Human Evaluation 478

We also evaluate the human consistency ability. 479

Five human annotators native to each language are 480

asked to solve the individual tasks for the English 481

and Korean tasks. We provide 30 samples of the 482

original input format extracted from the validation 483

data and their corresponding perturbed examples 484

for the REVERSE and SIGNAL cases for each anno- 485

tator. 486

In Tables 1 and 4, the results demonstrate that hu- 487

mans can make consistent decisions regardless of 488

tasks, perturbation types, and languages. However, 489

7



Model
MNLI QNLI RTE

Accval CR CS Accval CR CS Accval CR CS

RoBERTalarge 90.0 65.5 96.9 94.1 64.2 97.8 74.7 54.4 90.6
RoBERTalarge-multi 90.3 73.4 95.6 94.3 81.4 96.8 85.2 92.8 91.1

GPT2base 79.6 46.6 83.8 86.5 49.0 89.8 57.4 64.6 43.7
GPT2base-multi 78.4 52.4 81.3 86.6 56.0 88.8 60.9 71.0 72.4

Table 5: Results for the consistency evaluation on multi-task training. Accval denotes an accuracy on the validation
dataset. CR and CS stands for the consistency for the REVERSE and SIGNAL cases, respectively. We trained
each model five times and recorded the average of each metric. The best value is in bold.

in the English datasets, the accuracy of humans490

is generally lower than that of fine-tuned models.491

A leading cause of this result is the small sample492

size for the human evaluation that degrades the per-493

formance considerably even for a single mistake.494

Another reason is that the average input length of495

the English datasets is quite long (28 words), which496

make annotators hardly concentrate on the evalu-497

ation. On the contrary, it is easier to focus on the498

Korean tasks whose average input length is much499

shorter (14 words). As a result, human performance500

on the Korean datasets outperforms that of the LMs.501

Also, we find that the labels of several samples of502

the MRPC dataset seem incorrect, which causes a503

decrease in human accuracy. We list such examples504

in Table 8 in Appendix A.3.505

7 The Effect of Multi-Task Training on506

Consistency507

From the earlier experiments, we observed that the508

T5 text-to-text models trained on multiple down-509

stream tasks are very consistent in the REVERSE510

case but fail in the SIGNAL case. On the contrary,511

all classification-based models showed an oppo-512

site pattern. Therefore, we hypothesise that train-513

ing classification-based models on multiple down-514

stream tasks can attain high consistencies in both515

the REVERSE and SIGNAL cases.516

To train the PLMs on multiple tasks simul-517

taneously, we leverage the MT-DNN structure518

(Liu et al., 2019a), which shares the encoder but519

has individual classifiers for each task. We se-520

lect RoBERTalarge and GPT2base as backbone521

model candidates and train them on the English522

datasets.523

Through experiments, we ascertain that our hy-524

pothesis is valid. Table 5 demonstrates the ex-525

perimental results. We record the results of the526

NLI tasks, because all PLMs achieved a quite high527

consistency in the STS tasks. As in the previ-528

ous study (Liu et al., 2019a), the accuracy of the 529

multi-task models improved in general, and the 530

enhancements are substantial for the tasks with 531

less training data (i.e., RTE). Also, we observe 532

that multi-task training improves not only accu- 533

racy but also consistency. Specifically, all PLMs 534

achieve great improvements in the REVERSE case, 535

obtaining a 21% increase on average. Similar to 536

the trend observed on the accuracy, the improve- 537

ment is considerable in the RTE task, recording 538

a 40% increase on average. In the SIGNAL case, 539

different patterns are observed depending on the 540

size of the training data. For the MNLI and QNLI, 541

the consistency slightly decreased by 1.6% on aver- 542

age, but the drop is marginal considering the com- 543

plete failure of the T5 models. On the contrary, 544

the consistency is improved in the RTE dataset, 545

especially for GPT2base, which is increased by 546

65%. Our experimental results suggest that attain- 547

ing good representations through multiple language 548

understanding tasks could be a remedy to improve 549

consistency, especially for the small-sized datasets. 550

8 Summary and Outlook 551

Consistency is a highly desirable property that a 552

good language understanding model should possess 553

to obtain a human-level language understanding ca- 554

pability. In this paper, we proposed a simple yet 555

efficient framework, called CALM, that measures 556

a lower-bound consistency of PLMs. Through ex- 557

periments, we ascertained that PLMs exhibit cases 558

of inconsistent behaviour regardless of the pre- 559

training objective and language despite their ex- 560

cellent accuracy on downstream tasks. We also 561

confirmed that multi-task training has a positive 562

impact on improving consistency. Our findings 563

suggest that high accuracy is not a sufficient cri- 564

terion to evaluate PLMs’ language understanding 565

abilities, and it is time to assess language models 566

from various points of view. 567
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Jasmina Milićević. 2006. A short guide to the meaning- 781
text linguistic theory. Journal of Koralex, 8:187– 782
233. 783

John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby, 784
Di Jin, and Yanjun Qi. 2020. TextAttack: A frame- 785
work for adversarial attacks, data augmentation, and 786
adversarial training in NLP. In Proceedings of the 787
2020 Conference on Empirical Methods in Natu- 788
ral Language Processing: System Demonstrations, 789

10

https://doi.org/10.18653/v1/2020.emnlp-main.732
https://doi.org/10.18653/v1/2020.emnlp-main.732
https://doi.org/10.18653/v1/2020.emnlp-main.732
https://doi.org/10.18653/v1/2020.conll-1.45
https://doi.org/10.18653/v1/2020.conll-1.45
https://doi.org/10.18653/v1/2020.conll-1.45
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.emnlp-main.750
https://doi.org/10.18653/v1/2020.emnlp-main.750
https://doi.org/10.18653/v1/2020.emnlp-main.750
https://doi.org/10.18653/v1/2021.naacl-main.400
https://doi.org/10.18653/v1/2021.naacl-main.400
https://doi.org/10.18653/v1/2021.naacl-main.400
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.acl-main.428
https://doi.org/10.18653/v1/2020.acl-main.428
https://doi.org/10.18653/v1/2020.acl-main.428
https://doi.org/10.18653/v1/2020.acl-main.428
https://doi.org/10.18653/v1/2020.acl-main.428
https://doi.org/10.18653/v1/P19-1441
https://doi.org/10.18653/v1/P19-1441
https://doi.org/10.18653/v1/P19-1441
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2020.emnlp-demos.16
https://doi.org/10.18653/v1/2020.emnlp-demos.16


pages 119–126, Online. Association for Computa-790
tional Linguistics.791

Aakanksha Naik, Abhilasha Ravichander, Norman792
Sadeh, Carolyn Rose, and Graham Neubig. 2018.793
Stress test evaluation for natural language inference.794
In Proceedings of the 27th International Conference795
on Computational Linguistics, pages 2340–2353,796
Santa Fe, New Mexico, USA. Association for Com-797
putational Linguistics.798

Timothy Niven and Hung-Yu Kao. 2019. Probing neu-799
ral network comprehension of natural language ar-800
guments. In Proceedings of the 57th Annual Meet-801
ing of the Association for Computational Linguis-802
tics, pages 4658–4664, Florence, Italy. Association803
for Computational Linguistics.804

Yasuhito Ohsugi, Itsumi Saito, Kyosuke Nishida,805
Hisako Asano, and Junji Tomita. 2019. A simple806
but effective method to incorporate multi-turn con-807
text with bert for conversational machine compre-808
hension. In Proceedings of the First Workshop on809
NLP for Conversational AI, pages 11–17.810

Sungjoon Park, Jihyung Moon, Sungdong Kim, Won Ik811
Cho, Jiyoon Han, Jangwon Park, Chisung Song, Jun-812
seong Kim, Yongsook Song, Taehwan Oh, Joohong813
Lee, Juhyun Oh, Sungwon Lyu, Younghoon Jeong,814
Inkwon Lee, Sangwoo Seo, Dongjun Lee, Hyunwoo815
Kim, Myeonghwa Lee, Seongbo Jang, Seungwon816
Do, Sunkyoung Kim, Kyungtae Lim, Jongwon Lee,817
Kyumin Park, Jamin Shin, Seonghyun Kim, Lucy818
Park, Alice Oh, Jung-Woo Ha, and Kyunghyun Cho.819
2021. Klue: Korean language understanding evalua-820
tion. arXiv preprint arXiv:2105.09680.821

Thang M Pham, Trung Bui, Long Mai, and Anh822
Nguyen. 2020. Out of order: How important is823
the sequential order of words in a sentence in nat-824
ural language understanding tasks? arXiv preprint825
arXiv:2012.15180.826

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao,827
Ning Dai, and Xuanjing Huang. 2020. Pre-trained828
models for natural language processing: A survey.829
Science China Technological Sciences, pages 1–26.830

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,831
Dario Amodei, and Ilya Sutskever. 2019. Language832
models are unsupervised multitask learners. OpenAI833
blog, 1(8):9.834

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine835
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,836
Wei Li, and Peter J Liu. 2020. Exploring the limits837
of transfer learning with a unified text-to-text trans-838
former. Journal of Machine Learning Research,839
21:1–67.840

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and841
Percy Liang. 2016. SQuAD: 100,000+ questions for842
machine comprehension of text. In Proceedings of843
the 2016 Conference on Empirical Methods in Natu-844
ral Language Processing, pages 2383–2392, Austin,845
Texas. Association for Computational Linguistics.846

Abhilasha Ravichander, Eduard Hovy, Kaheer Sule- 847
man, Adam Trischler, and Jackie Chi Kit Cheung. 848
2020. On the systematicity of probing contextual- 849
ized word representations: The case of hypernymy 850
in BERT. In Proceedings of the Ninth Joint Con- 851
ference on Lexical and Computational Semantics, 852
pages 88–102, Barcelona, Spain (Online). Associa- 853
tion for Computational Linguistics. 854

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che. 855
2019. Generating natural language adversarial ex- 856
amples through probability weighted word saliency. 857
In Proceedings of the 57th Annual Meeting of the 858
Association for Computational Linguistics, pages 859
1085–1097, Florence, Italy. Association for Compu- 860
tational Linguistics. 861

Marco Tulio Ribeiro, Carlos Guestrin, and Sameer 862
Singh. 2019. Are red roses red? evaluating con- 863
sistency of question-answering models. In Proceed- 864
ings of the 57th Annual Meeting of the Association 865
for Computational Linguistics, pages 6174–6184, 866
Florence, Italy. Association for Computational Lin- 867
guistics. 868

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, 869
and Sameer Singh. 2020. Beyond accuracy: Be- 870
havioral testing of NLP models with CheckList. In 871
Proceedings of the 58th Annual Meeting of the Asso- 872
ciation for Computational Linguistics, pages 4902– 873
4912, Online. Association for Computational Lin- 874
guistics. 875

Wiem Ben Rim, Carolin Lawrence, Kiril Gashteovski, 876
Mathias Niepert, and Naoaki Okazaki. 2021. Behav- 877
ioral testing of knowledge graph embedding models 878
for link prediction. In 3rd Conference on Automated 879
Knowledge Base Construction. 880

Koustuv Sinha, Prasanna Parthasarathi, Joelle Pineau, 881
and Adina Williams. 2021. UnNatural Language In- 882
ference. In Proceedings of the 59th Annual Meet- 883
ing of the Association for Computational Linguistics 884
and the 11th International Joint Conference on Nat- 885
ural Language Processing (Volume 1: Long Papers), 886
pages 7329–7346, Online. Association for Computa- 887
tional Linguistics. 888

Alex Wang, Amanpreet Singh, Julian Michael, Felix 889
Hill, Omer Levy, and Samuel R. Bowman. 2019. 890
GLUE: A multi-task benchmark and analysis plat- 891
form for natural language understanding. In Inter- 892
national Conference on Learning Representations. 893

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Di- 894
nan, Kyunghyun Cho, and Jason Weston. 2019. Neu- 895
ral text generation with unlikelihood training. arXiv 896
preprint arXiv:1908.04319. 897

Adina Williams, Nikita Nangia, and Samuel Bowman. 898
2018. A broad-coverage challenge corpus for sen- 899
tence understanding through inference. In Proceed- 900
ings of the 2018 Conference of the North American 901
Chapter of the Association for Computational Lin- 902
guistics: Human Language Technologies, Volume 903

11

https://aclanthology.org/C18-1198
https://doi.org/10.18653/v1/P19-1459
https://doi.org/10.18653/v1/P19-1459
https://doi.org/10.18653/v1/P19-1459
https://doi.org/10.18653/v1/P19-1459
https://doi.org/10.18653/v1/P19-1459
https://w.jmlr.org/papers/volume21/20-074/20-074.pdf
https://w.jmlr.org/papers/volume21/20-074/20-074.pdf
https://w.jmlr.org/papers/volume21/20-074/20-074.pdf
https://w.jmlr.org/papers/volume21/20-074/20-074.pdf
https://w.jmlr.org/papers/volume21/20-074/20-074.pdf
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://aclanthology.org/2020.starsem-1.10
https://aclanthology.org/2020.starsem-1.10
https://aclanthology.org/2020.starsem-1.10
https://aclanthology.org/2020.starsem-1.10
https://aclanthology.org/2020.starsem-1.10
https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.18653/v1/P19-1621
https://doi.org/10.18653/v1/P19-1621
https://doi.org/10.18653/v1/P19-1621
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2021.acl-long.569
https://doi.org/10.18653/v1/2021.acl-long.569
https://doi.org/10.18653/v1/2021.acl-long.569
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101


1 (Long Papers), pages 1112–1122, New Orleans,904
Louisiana. Association for Computational Linguis-905
tics.906

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien907
Chaumond, Clement Delangue, Anthony Moi, Pier-908
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-909
icz, Joe Davison, Sam Shleifer, Patrick von Platen,910
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,911
Teven Le Scao, Sylvain Gugger, Mariama Drame,912
Quentin Lhoest, and Alexander Rush. 2020. Trans-913
formers: State-of-the-art natural language process-914
ing. In Proceedings of the 2020 Conference on Em-915
pirical Methods in Natural Language Processing:916
System Demonstrations, pages 38–45, Online. Asso-917
ciation for Computational Linguistics.918

12

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6


# of
classes

Train set
size

Validation
set size

Test set
size

MNLI 3 393K 9.8K 9.8K

QNLI 2 105K 5.5K 5.5K

RTE 2 2.5K 277 3K

QQP 2 364K 40K 391K

MRPC 2 3.7K 408 1.7K

KorNLI 3 53K 10K 10K

KLUE-NLI 3 25K 1.5K 1.5K

KLUE-STS 2 1.2K 260 259

Table 6: Descriptions of datasets for the experiments.

A Appendix919

A.1 Dataset Statistics920

Table 6 shows the statistics of the datasets that921

we used for the experiments. The number of data922

points in the RTE, MRPC, and KLUE-STS tasks is923

considerably smaller than in the others.924

A.2 Hyperparameter Search925

We investigated the following range of hyperpa-926

rameter values to decide the optimal values for the927

fine-tuning:928

• Batch size: 32, 64, 128,929

• Learning rate: 5e-5, 1e-5, 5e-6.930

Datasets with a large amount of training data,931

e.g., MNLI and QQP, are insensitive to the hy-932

perparameter values. Therefore, we select hyper-933

parameter values that generally perform well on934

small-sized datasets, such as RTE and MRPC.935

A.3 Samples of MRPC data936

Table 8 shows several examples of the MRPC data937

that are considered to have incorrect answers. It938

seems that most of the human annotators made939

correct predictions. We believe such samples de-940

creased the human accuracy on the MRPC dataset,941

because we used only a few instances for the hu-942

man evaluation.943
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Symbols [] {} () <> ; # ! @ ∼ -

Examples [Premise] {Premise} (Premise) <Premise> Premise; premise# Premise! Premise@ Premise∼ Premise-

Table 7: The special symbols that we use for the SIGNAL case. The examples illustrate the alteration of the
“Premise:” indicator.

Inputs User1 User2 User3 User4 User5 Label
Sentence1: "Sanitation is poor„, there could be typhoid and cholera," he said.
Sentence2: "Sanitation is poor, drinking water is generally left behind...
there could be typhoid and cholera."

1 1 1 1 1 0

Sentence1: The only announced Republican to replace Davis is Rep. Darrell Issa of
Vista, who has spent $1.71 million of his own money to force a recall.
Sentence2: So far the only declared major party candidate is Rep. Darrell Issa,
a Republican who has spent $1.5 million of his own money to fund the recall.

0 0 1 0 0 1

Table 8: An example of human answers on MRPC data points that seem to have wrong labels. 0 and 1 implies
‘not_equivalent’ and ‘equivalent’, respectively.

Dataset Type Input 1 Input 2 Prediction

RTE
Original Sentence1: These folk art traditions have

been preserved for hundreds of years. Sentence2: Indigenous folk art is preserved. entailment

Signal Sentence1! These folk art traditions have
been preserved for hundreds of years. Sentence2! Indigenous folk art is preserved. not_entailment

MRPC
Original Sentence1: The initial report was made to

Modesto Police December 28.
Sentence2: It stems from a Modesto police
report. equivalent

Reverse Sentence2: It stems from a Modesto police
report.

Sentence1: The initial report was made to
Modesto Police December 28. not_equivalent

QNLI
Original Question: What is essential for the successful

execution of a project?
Sentence: For the successful execution of a
project, effective planning is essential. entailment

Reverse Sentence: For the successful execution of a
project, effective planning is essential.

Question: What is essential for the successful
execution of a project? not_entailment

Table 9: Examples of inconsistent predictions of Electralarge.

Dataset Type Input 1 Input 2 Prediction

RTE
Original Sentence1: In 1900 Berlin’s arterial roads ran

across Potsdam Square - Potsdamer Platz.
Sentence2: Postdam Square is located in
Berlin. not_entailment

Reverse Sentence2: Postdam Square is located in
Berlin.

Sentence1: In 1900 Berlin’s arterial roads ran
across Potsdam Square - Potsdamer Platz. entailment

MRPC
Original Sentence1: Both are being held in the

Armstrong County Jail.
Sentence2: Tatar was being held without bail
in Armstrong County Prison today. equivalent

Signal <Sentence1> Both are being held in the
Armstrong County Jail.

<Sentence2> Tatar was being held without bail
in Armstrong County Prison today. <extra_id_0>...

QNLI
Original Question: What fueled Luther’s concept of

Christ and His Salvation?
Sentence: His railing against the sale of
indulgences was based on it. not_entailment

Signal [Question] What fueled Luther’s concept of
Christ and His Salvation?

[Sentence] His railing against the sale of
indulgences was based on it. entailment

Table 10: Examples of inconsistent predictions of T5large. The generated output of the SIGNAL case in the
MRPC dataset is “<extra_id_0>1 County Jail.<extra_id_1>.<extra_id_2> sentence1>".
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ORIGINAL INPUTS: rte sentence1: At least 50 animals died in a late December avalanche. sentence2: Humans died
in an avalanche.
ORIGINAL INPUTS: rte [sentence1] At least 50 animals died in a late December avalanche. [sentence2] Humans died
in an avalanche.

ORIGINAL PREDICTION SIGNAL PREDICTION

not_entailment <extra_id_0> <extra_id_1> [sentence1] At least 50
animals died in an

ORIGINAL INPUTS: rte sentence1: Microsoft denies that it holds a monopoly. sentence2: Microsoft holds a monopoly power.

SIGNAL INPUTS: rte sentence1! Microsoft denies that it holds a monopoly. sentence2! Microsoft holds a monopoly power.

ORIGINAL PREDICTION SIGNAL PREDICTION

not_entailment rte sentence1! Microsoft denies that it holds a

ORIGINAL INPUTS: rte sentence1: An earthquake has hit the east coast of Hokkaido, Japan, with a magnitude of 7.0 Mw.
sentence2: An earthquake occurred on the east coast of Hokkaido, Japan.
SIGNAL INPUTS: rte {sentence1} An earthquake has hit the east coast of Hokkaido, Japan, with a magnitude of 7.0 Mw.
{sentence2} An earthquake occurred on the east coast of Hokkaido, Japan.

ORIGINAL PREDICTION SIGNAL PREDICTION

entailment <extra_id_0>e<extra_id_1>e {sentence2} An earthquake has
hit the east

Table 11: More examples of inconsistent predictions of T5base on the SIGNAL case of the RTE dataset. The
changes made on the SIGNAL case inputs are in bold.
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