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ABSTRACT

Modern AI systems, including LLMs, are trained on diverse tasks (e.g., trans-
lation, code generation, math reasoning, text prediction) simultaneously. A key
challenge is to quantify the influence of individual training tasks on target task
performance — a problem we term task attribution. A natural solution is leave-
one-out retraining, where each task is removed and the model is retrained to mea-
sure its effect on target performance. However, this approach is computationally
prohibitive at scale. We address this challenge using surrogate models that ap-
proximate a target task’s performance given any subset of training tasks. While
prior work has explored linear surrogates, these only capture first-order (linear)
effects and do not model nonlinear task interactions such as synergy, antagonism,
or XOR-type relationships. We introduce kernel surrogate models, which better
capture these nonlinear relationships. To make kernel estimation tractable, we
develop a gradient-based procedure leveraging a first-order approximation of pre-
trained models, and empirically validate this to be accurate. Experiments across
various domains (math reasoning in transformers, in-context learning, and multi-
objective reinforcement learning) validate the effectiveness of kernel surrogate
models. We find that kernel surrogate models demonstrate a 25% higher corre-
lation with the leave-one-out ground truth than linear surrogate models and in-
fluence functions (among other baselines), establishing a more accurate and scal-
able solution for task attribution. Using kernel surrogate models for downstream
task selection leads to 40% improvement in demonstration selection for in-context
learning and multi-objective reinforcement learning benchmarks.

1 INTRODUCTION

Modern AI systems are trained to perform well on multiple tasks simultaneously, from machine
translation to code generation, object recognition, and mathematical reasoning. The multi-task ca-
pability of AI models raises the question of how we can better interpret their model behaviors. In
this paper, we study the problem of quantifying the influence of individual training tasks on model
performance, a problem that we term as task attribution.

Besides being a fundamental question for model interpretability, this problem has natural interpre-
tations in many applications. In multi-task learning, understanding the task relationships can inform
the design of neural network architectures and loss reweighting strategies (Yang et al., 2025). In
multi-group learning (Deng & Hsu, 2024), better modeling between different groups can reveal how
training on different demographic groups affects model behavior. Similarly, for in-context learning
(Garg et al., 2022; Zhang et al., 2025), one may consider the question of adding or removing one
demonstration example in the prompt and ask how that affects the model predictions. Other exam-
ples include multi-objective reinforcement learning (Yu et al., 2020), where one might care about
how competing reward signals influence learned policies.

The natural way to estimate the statistical influence of one training task can be done via leave-
one-out (LOO) retraining, which measures performance changes when one task is excluded from
training. Notably, computing LOO scores requires retraining the model repeatedly; if we have
K training tasks, computing the LOO scores for all K tasks requires training the model K + 1
times, which is computationally prohibitive when working with large-scale systems. More efficient
proxies for the LOO scores involve influence functions (Koh & Liang, 2017; Grosse et al., 2023),
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which measure the change of model predictions if one sample is added or removed in the training
set. Notice that influence functions are often computed at the terminal state of model training, once
it has reached a local minimum (Feldman & Zhang, 2020). Computing the influence functions (for
all the K training tasks) again requires repeatedly computing Hessian-vector products as part of
the Hessian approximation (Basu et al., 2021; Bae et al., 2022; Kwon et al., 2024). An alternative
approach that has emerged, called datamodels (Ilyas et al., 2022) and data attribution (Park et al.,
2023; Bae et al., 2024), involves building a surrogate function for approximating the outcome of a
black-box model. For example, data models (Ilyas et al., 2022) work by learning a surrogate function
that maps individual subsets of training subsets (that is, subsets of {1, 2, . . . ,K} in our setting), to
their trained outcomes if they are combined together. Notably, existing surrogate modeling methods
focus on estimating linear surrogate models, which can be theoretically shown to capture first-order
effects (Park et al., 2023; Li et al., 2023).

In this paper, we propose a kernel surrogate model instead, motivated by the need to capture non-
linear task interactions. We begin by analyzing the residual errors of surrogate models via a second-
order Taylor expansion. When the second-order terms in the expansion are negligible, we find that
the linear surrogate model coefficients (estimated via minimizing the surrogate model loss) are ap-
proximately equal to the influence functions (up to third-order expansion errors). An implication
of this result is that linear surrogate models do not capture second-order terms, which correspond
to non-linear task interactions. Motivated by these observations, we propose to estimate kernel
surrogate models such as the radial basis function (RBF) kernels. Estimating the kernel surrogates
requires pre-computing model outcomes on multiple subsets. Instead, we design An efficient estima-
tion procedure by using gradients as features, building on a first-order approximation of the model
outputs. Empirically, we validate this first-order approximation to be accurate, incurring less than
1% relative error across a range of datasets, including CIFAR-10, modular arithmetic, in-context
learning, and multi-objective RL benchmarks.

We validate the kernel surrogate modeling approach across a wide range of datasets and models.
First, we test our central hypothesis on modular arithmetic reasoning tasks. This presents a non-
linear learning problem, and we find that by using kernel surrogates, we can achieve a more accurate
task attribution score by 42% relative to existing methods (Li et al., 2023; Ilyas et al., 2022; Park
et al., 2023). Similarly, we conduct experiments on in-context learning and on a sequential decision-
making benchmark, noting qualitatively similar results. By running inference on the Qwen3-8B
model with sentiment classification and math reasoning tasks, the attribution scores using kernel
surrogates improve over existing methods by 18%. By running soft actor-critic on the Meta-World
MT10 benchmark (Yu et al., 2020), we can provide more accurate task attribution results with a 5%
improvement for environments where data distributions shift dynamically during policy learning.
Our method consistently outperforms existing approaches across all settings, achieving a higher
correlation with LOO by 25%. Finally, we use the kernel surrogate model to perform downstream
task selection, and find that our approach achieves 40% lower loss for both improved inference and
improved optimization in the meta-world benchmark. Moreover, the running time of estimating
kernel surrogates remains comparable to that of estimating linear surrogate models.

Taken together, this paper provides an efficient estimation algorithm for task attribution via ker-
nel surrogate models. First, we analyze the residual errors of surrogate models, showing that
the influence functions correspond to estimated coefficients of linear surrogate models. Second,
we design kernel surrogate models for capturing nonlinear task relationships. Additionally, we
provide an efficient estimation algorithm based on projected gradients. Overall, our approach
is thus scalable and highly flexible for modeling task relationships in black-box systems. Fi-
nally, we evaluate this approach in a wide variety of relevant empirical settings for AI systems,
including reasoning, LLM inference, and RL. We provide the code to replicate our results at
https://anonymous.4open.science/r/KernelSM.

2 PRELIMINARIES

We begin by introducing the notation and a task weighting framework. Within this framework,
we provide a formal definition of task attribution. Building on this foundation, we adapt influence
functions and task modeling techniques from the data attribution literature, which serve as state-of-
the-art benchmarks for evaluating task contributions without repeated retraining.

2

https://anonymous.4open.science/r/KernelSM/README.md


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Preliminaries. Suppose our training dataset consists of K tasks, denoted by S = {T1, T2, . . . , TK}.
Each task k contains nk samples drawn from its task-specific distribution, i.e., Tk =

{(xk,j , yk,j)}nk
j=1. The total number of training samples is n =

∑K
k=1 nk.

We consider a model fW parameterized by W ∈ Rd, which is shared across all tasks. For each
task k, we denote the task-level loss by ℓk(fW , Tk). To specify which tasks are included in training,
we introduce a K-dimensional binary vector s = [s1, · · · , sK ]⊤, where sk indicates that task k is
selected and sk = 0 otherwise. The corresponding weighted empirical loss is then defined as

L(W, s) =
1∑K

j=1 sj

K∑
k=1

skℓk(fW , Tk). (1)

For example, when sk = 1 for all k, the weighted loss L(W, s) reduces to the average loss over all
tasks. We denote by Ŵ (s) = argminW L(W, s) the minimizer of the weighted loss, and by fŴ (s)

the corresponding trained model.

Influence estimation. We aim to evaluate the influence of training tasks on a target test task Ttest.
To this end, we define a performance metric F (s) = ℓtest(fŴ (s), Ttest), which measures the test loss
of the model trained with subset of training tasks indicated by s.

A natural way to quantify the contribution of a task is through leave-one-out (LOO) training, which
measures the change in performance when task k is excluded from the training set

ILOO
k = F (1K)− F (1K − ek),

where 1K is the all-ones vector corresponding to training on all tasks, and ek ∈ {0, 1}K is the
one-hot vector with a 1 in the k-th coordinate.
Definition 2.1. We define the ground truth of task attribution of task k as ILOO

k .

An alternative approach is based on extending classical influence functions (Koh & Liang, 2017) to
task-weighted empirical loss. Given s, the influence of task k on the metric F (s) is

Ik(s) = [∇WF (s)]⊤
[
∇2

WL(W, s)
]−1∇W

(
sk∑K
j=1 sj

ℓk(fW , Tk)

)
.

This expression quantifies how the test performance changes when task k is infinitesimally up-
weighted. The gradient term captures task k’s direct contribution, the Hessian inverse accounts for
curvature of the training loss, and the outer product with ∇WF (s) translates the perturbation into
its effect on the test metric.

Task modeling. Another approach to quantify task influence is through task modeling (Li et al.,
2023). The key idea is to sample binary vectors s(1), s(2), . . . , s(m) from {0, 1}K , each indicating a
random subset of tasks. For each s(j), we train the model on the corresponding weighted loss to ob-
tain fŴ (s(j)) and record its performance F (s(j)). We then fit a linear surrogate model, parameterized
by intercept α ∈ R and coefficients β = [β1, . . . , βK ]⊤ ∈ RK , to approximate F (s)

R(α, β) = Es∼D

[(
F (s)− α− β⊤s

)2]
, (2)

whereD is a distribution of s. The optimal surrogate model is obtained by minimizing the empirical
counterpart of R(α, β) using the m sampled pairs {(s(j), F (s(j)))}mj=1.

3 METHODS

In this section, we present a kernel-based surrogate modeling approach for influence estimation.
First, we analyze surrogate modeling together with influence functions using a second-order Taylor
expansion in the task modeling space. We provide an approximation of the surrogate model and
find that the first-order approximation is given by the influence function. Thus, linear surrogate
models correspond to estimating the influence functions while ignoring non-linear interactions in the
task composition. Second, we design a kernel-based surrogate modeling to capture the non-linear
interactions between tasks. Finally, we also introduce a gradient estimation algorithm to efficiently
find the kernel surrogate.

3
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3.1 ANALYZING SURROGATE MODELING IN THE ATTRIBUTION SPACE

Second-order expansion of surrogate modeling. We center our analysis around s⋆ = 1K , which
corresponds to the global model trained on all tasks. Then we can characterize task contributions
with respect to this global model. Expanding around this anchor point s∗, we approximate the
performance function F (s) using a second-order Taylor expansion:

F (s) ≈ F (s⋆) + [∇sF (s⋆)]⊤(s− s⋆)︸ ︷︷ ︸
First-Order (Linear) Effects

+
1

2
(s− s⋆)⊤Hs(s− s⋆)︸ ︷︷ ︸

Second-Order (Interaction) Effects

, (3)

where the Hessian Hs = ∇2
sF (s⋆) captures the non-linear interactions between tasks.

We next connect this expansion to linear task modeling, which approximates F (s) with a linear
surrogate of the form g(s) = α + β⊤s. To analyze the behavior of this surrogate, we substitute
the second-order expansion of F (s) in Equation (3) directly into the surrogate model’s optimization
objective, E[(F (s)− g(s))2]. The following proposition formalizes the resulting characterization of
the coefficients.
Proposition 3.1. Let F : {0, 1}K → R and fix s⋆ = 1K . Suppose each coordinate in s is drawn
independently from a Bernoulli distribution, sk ∼ Bernoulli(p). Let (α̂, β̂) be the parameters that
minimize R(α, β) in equation (2). Then

β̂ ≈ ∇sF (s⋆) + (p− 1)Hs · 1K︸ ︷︷ ︸
sampling shift

+ 1
2 (1− 2p) diag(Hs)︸ ︷︷ ︸

Bernoulli variance

. (4)

This result shows that the surrogate coefficients β̂ recover the gradient of F at the fully trained
model s⋆, up to two terms induced by the sampling distribution. The first corresponds to a sampling
shift due to the mean of the Bernoulli draw, while the second reflects the variance adjustment that
accounts for randomness in task inclusion. A detailed proof of this proposition is in Appendix A.2.

Connection between influence functions and linear surrogate models. This result also shows the
connection between the linear task modeling and influence functions. Specifically, under a first-order
approximation (Hs = 0), both methods are estimators of the same underlying quantity ∇sF (s⋆).
Under this assumption, the second-order bias terms in the equation for β̂ from Proposition 3.1 van-
ish, directly showing that the linear task modeling coefficients approximate the gradient of the per-
formance landscape: β̂ ≈ ∇sF (s⋆). The influence function, by contrast, is analytically derived to
compute I = [I1(s⋆), I2(s⋆), . . . , IK(s⋆)]⊤ = ∇sF (s⋆). This is stated precisely below.
Corollary 3.2. Under a first-order assumption where task interactions are negligible, i.e., Hs = 0,
the coefficients of a linear surrogate model are approximately equal to the influence function vector:

β̂ ≈ I = ∇sF (s⋆).

Thus, influence functions provide a first-order approximation of surrogate models, while linear sur-
rogate models capture additive relations. In particular, more expressive attribution methods are
needed to express higher-order relationships.

To empirically validate this connection, we experiment with a binary logistic regression setting,
where the first-order approximation is expected to hold. We compared the estimates from both the
linear task model and influence functions against the ground-truth leave-one-out (LOO) retraining
scores. In Figure 1, we found that both methods produced estimates that aligned closely with the
ground truth: the Linear Task Model and Influence Functions achieved high Pearson correlations of
0.98 and 0.97, respectively, with the LOO scores. The estimates from the two methods were also
highly correlated with each other, with a Pearson correlation of 0.96. This demonstrates that when
the performance landscape is nearly linear, both the empirical and analytical approaches indeed
converge to the same underlying attribution scores. A detailed description of the experimental setup
is available in Appendix C.1.

3.2 LEARNING KERNEL SURROGATE MODELS

To build intuition for why a nonlinear data model is necessary, we present a numerical example
in Figure 2. We use a binary classification task with a two-layer MLP as the base classifier. The
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Figure 1: We compare the influence functions (IF), leave-one-out (LOO) retraining, and linear sur-
rogate models. Each point corresponds to the individual effect of removing one training example.

final goal for the surrogate model is to predict the MLP’s output probability on a fixed test sample,
given the subset of training data it was trained on. We specifically analyze the effect of different
subsets of training data sampled from near the MLP’s decision boundary. The detailed setting is in
Appendix C.2.

2 4 6 8 10
Subset
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Figure 2: Illustrate linear vs. kernel
models on a decision boundary.

The influence of a training subset exhibits strong non-
linearity that cannot be decomposed into individual sample
contributions. When specific samples combine in a training
subset, they produce changes in the MLP learned function,
causing transitions in test point predictions. The linear surro-
gate model does not capture these interactions. By contrast,
the RBF kernel surrogate model captures these dependencies
by modeling the joint influence of sample combinations. This
demonstrates that non-linear surrogate models are necessary
for capturing nonlinear interactions.

Estimating surrogate model using kernel ridge regression. To address the limitations of linear
models, we propose the kernel surrogate model algorithm, which replaces the linear mapping with a
non-linear function learned through kernel ridge regression. This enables modeling complex, non-
additive task interactions.

We learn a kernel surrogate function g : {0, 1}K → R within a Reproducing Kernel Hilbert Space
(RKHS)Hk by minimizing the following objective:

min
g∈Hk

m∑
i=1

(
F (s(i))− g(s(i))

)2
+ λ∥g∥2K, (5)

where λ > 0 is a regularization parameter and K is an m × m kernel matrix with entries Kij =

k(s(i), s(j)). For example, since input vectors s are binary, we use the Radial Basis Function (RBF)
kernel:

k(s(a), s(b)) = exp
(
− γ∥s(a) − s(b)∥2

)
. (6)

By the representer theorem, the minimizer takes the form: g(s) =
∑m

i=1 cik
(
s(i), s

)
. The coefficient

vector c = [c1, . . . , cm]⊤ is computed as: c = (K+λ Id)−1F, where F = [F (s(1)), . . . , F (s(m))]⊤

is the vector of observed outcomes and Id is the identity matrix.

This kernel provides flexibility for capturing complex relationships while maintaining computa-
tional tractability. Hyperparameters λ and γ are selected via cross-validation. Unlike linear models
that assign fixed coefficients to individual tasks, the kernelized task model learns a global non-
linear function that predicts performance for any task combination, thereby capturing intricate inter-
dependencies between tasks.

We empirically validated this choice by comparing the RBF kernel with linear and polynomial
kernels with degrees {1, 2, 3} in Table 1. We use ResNet-9 classifiers trained on the CIFAR-10
dataset (Krizhevsky et al., 2009) as the base model. The detailed description is in Appendix C.4.
We find that the RBF kernel achieves a much lower residual error compared to the linear surrogate
model. We discuss more kernels in Appendix C.4.
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Table 1: We investigate the surrogate model per-
formance with different kernels.

Residual error Linear RBF
CIFAR-10 4.4±0.9 1.0±0.0

Modular arithmetic 4.6±1.3 1.5±0.4

In-context learning 0.8±0.2 0.4±0.1

Multi-objective RL 0.2±0.1 0.1±0.1

Table 2: Relative approximation error of ϵW (x),
tested on four different tasks.

Relative error
CIFAR-10 1.02±0.69%
Modular arithmetic 2.40±2.17%
In-context learning 0.51±0.04%
Multi-objective RL 0.43±0.73%

3.3 EFFICIENT ESTIMATION VIA PROJECTED GRADIENTS

One downside of surrogate modeling is that it involves training m separate models, one on each
randomly-sampled subset. Instead of training the model to get fW (i) on each subset s(i), one can
approximate the model output via a first-order Taylor expansion with perturbed parameters W =

Ŵ + Z as:

fW (x) = fŴ (x) + ⟨∇W fW (x), Z⟩+ ϵW (x),

where Z ∈ Rd is the parameter perturbation vector and ∇Ŵ fW (x) is the gradient of the model
logits with respect to its parameters, evaluated at Ŵ , and ϵW (x) is the first-order Taylor’s expansion
error of fW on input x. We empirically evaluate relative approximation error

(
ϵW (x)/fŴ (x)

)2
in

Table 2.

By substituting this approximation into the empirical loss, we can estimate the optimal parameter
perturbation ∆W ⋆

s(i)
. We now get an approximated objective on each subset s(i) as:

Z⋆
s(i) = argmin

Z∈Rd

k∑
k=1

∑
(x,y)∈Tk

s
(i)
k · ℓ

(
fŴ (x) + ⟨∇W fW (x), Z⟩, y

)
,

assuming the expansion error of ϵW (x) is negligibly small. This corresponds to a regularized multi-
nomial logistic regression problem, where the gradient serves as features for the regression weights
Z. Now, to minimize the above approximated loss on all the subsets s(1), s(2), . . . , s(m), one only
needs to compute the function values and the gradients at the initialization Ŵ (e.g., a well-trained
LLM), including fŴ (x) for all x in the training set, as well as∇fŴ (x) for all possible x.

We estimate the model’s output on a test sample (xtest, ytest) using the same linear approximation:

f̂Ŵ (s(i))(xtest) = fŴ (xtest) + ⟨∇fŴ (xtest), Z
⋆
s(i)⟩.

The performance of the subset model is then evaluated as the loss ℓ(f̂Ŵ (s(i))(xtest), ytest) on the
test set. The primary challenge in solving this objective is the high dimensionality of the parameter
space. We address this by applying random projection to project the gradients into a low-dimensional
subspace. In practice, solving the regression with the projected gradients takes a few seconds, al-
lowing for quickly estimating the performance of multiple subsets. See the detailed procedure in
Algorithm 2, Appendix B. Taken together, we summarize the overall procedure in Algorithm 1
below.

4 EXPERIMENTS

Our experiments investigate three key questions: (1) How does KERNELSM compare to existing
attribution techniques on complex tasks such as modular arithmetic reasoning, in-context learning,
and multi-objective reinforcement learning? (2) Can the attributions generated by KERNELSM
be effectively leveraged for downstream task selection? (3) How does a complex loss landscape
impact the performance of KERNELSM compared to methods relying on linear surrogate models?
We evaluate our approach across three settings, including arithmetic reasoning, in-context learning,
and multi-objective reinforcement learning. We find that KERNELSM can improve over existing
influence estimation methods by 25%. When applied to downstream task selection, KERNELSM
can improve the performance of baselines by 41%. Various robustness checks and ablation studies
validate the consistency of KERNELSM under different optimizers and sample sizes.

6
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Algorithm 1 Estimating Kernel Surrogate Models (KERNELSM)

1: Input: Set of training tasks {T1, . . . , TK}, test performance metric F (·), number of subsets m,
subset sampling distribution D, kernel function k(·, ·), ℓ2-regularization parameter λ > 0

2: Output: Regression coefficient vector c
/* Generating sampled subsets */

3: Initialize surrogate dataset Dsurrogate ← ∅
4: Compute initial logits {fŴ (z)} and gradients {∇Ŵ fW (z)} for all relevant data points z
5: for i = 1, . . . ,m do
6: Sample a task subset, represented by a binary vector s(i) ∼ D, where s

(i)
k = 1 if task Tk is

in the subset, and 0 otherwise
7: Obtain F (W (i))← GradientEstimation(s(i), {fŴ (z)}, {∇Ŵ fW (z)}, F )

8: Dsurrogate ← Dsurrogate ∪ {(s(i), F (W (i)))}
9: end for

/* Kernel ridge regression */
10: Construct the m×m kernel matrix K where Kij = k(s(i), s(j))

11: Construct the outcome vector y = [F (W (1)), . . . , F (W (m))]⊤.
12: Solve for the KRR coefficients c← (K + λ Id)−1y
13: return g(s) =

∑m
i=1 cik(s

(i), s)

4.1 EXPERIMENT SETUP

Datasets and models. Our primary controlled environment is an arithmetic reasoning task, where
we train a small decoder-only Transformer. Consider learning a transformer model to perform mod-
ular arithmetic operations over two numbers, in the form of a ◦ b (mod p) = c, where ◦ is an
arithmetic operation and p is a prime. Inputs are composed of four tokens: a, ◦, b, and =, with a and
b generated between 0 and p − 1. The label is the result of the arithmetic operation c. Specifically,
we use the addition task a + b (mod p) = c and the quadratic task a2 + b2 + ab (mod p) = c,
where we set p = 97.

For more complex scenarios, we evaluate a Qwen3-8B model on in-context classification tasks. We
construct prompts with k = 4 in-context examples followed by a query. For attribution computation,
we treat each example’s input embedding as the sample input, and the query’s cross-entropy loss as
the model score F (s). We evaluate on two datasets: SST-2 and coin flip.

We also evaluate attribution in multi-objective reinforcement learning using the MetaWorld MT10
benchmark. It contains ten different manipulation tasks. We adopt the Soft Actor-Critic (SAC)
algorithm as our training protocol. Each task is treated as a sample for attribution analysis, and we
evaluate the model score by the average rewards of all tasks.

Baselines. We compare KERNELSM with existing data attribution methods. Influence func-
tions (Koh & Liang, 2017) employ implicit differentiation, computing the inverse Hessian via
LISSA. TracIn (Pruthi et al., 2020) traces prediction changes throughout training by computing gra-
dient products between training and test examples. Linear surrogate models (Ilyas et al., 2022) train
linear models that predict test behavior from binary indicators of training sample inclusion across
multiple model retrainings. Trak (Park et al., 2023) applies random projection and the one-step
Newton method to approximate the datamodels’ results without retraining.

Evaluation. We evaluate the data attribution methods by comparing them to the linear datamodeling
score (LDS) (Ilyas et al., 2022). We compute LDS in the following steps: (1) Sample m fixed subsets
of the training set, which are represented by s(i), . . . , s(m) ∈ {0, 1}K . We sample s from a Bernoulli
distribution with probability p. (2) For each s(i), we train a model F (s(i)), and use a task attribution
method to obtain an estimation F̂ (s(i)). (3) We compute the LDS from the Spearman correlation ρ
between the real model output and the task attribution estimation.

4.2 EXPERIMENTAL RESULTS

Estimation results. Our results uniformly demonstrate that by moving beyond the linear assump-
tions of prior work, KERNELSM achieves a more accurate estimation of task attribution. The ad-
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Table 3: Summary of comparison results on task attribution. We report the mean and standard
deviation from five independent runs.

Methods Modular arithmetic reasoning In-context learning Multitask RL
Addition Quadratic SST-2 Coin flip Metaworld

Influence functions 0.03±0.01 0.01±0.01 0.16±0.05 0.05±0.10 0.71±0.11

TracIn 0.17±0.03 0.32±0.09 0.21±0.05 0.32±0.09 0.45±0.15

TRAK 0.14±0.01 0.28±0.06 0.11±0.08 0.23±0.12 0.42±0.19

Linear surrogate models 0.18±0.02 0.44±0.09 0.33±0.05 0.43±0.05 0.76±0.04

KERNELSM 0.30±0.12 0.52±0.08 0.37±0.02 0.54±0.01 0.80±0.04

Table 4: We evaluate KERNELSM on the downstream task selection. We measure performance by
the loss in ICL tasks and the target rewards in multi-objective RL tasks. We measure the running
time in minutes.

Loss (↓) SST-2 Coin flip Time (↓) Rewards (↑) MT 10 Time (↓)
Influence func. 0.23±0.21 1.62±1.33 17±1 Influence func. 16.3±1.4 2±1

Linear surrogate 0.20±0.11 0.05±0.03 2±1 Linear surrogate 13.1±4.3 1±1

KERNELSM 0.16±0.08 0.02±0.03 2±1 KERNELSM 18.8±5.6 1±1

vantage is most pronounced in tasks with complex, non-linear structures. For example, in modular
arithmetic reasoning, KERNELSM improves the LDS by over 42% on average compared to linear
surrogate models. Similarly, on the reasoning Coin Flip ICL task, where the language model ex-
hibits intricate prompt-following behavior that falters linear approximations, our method’s ability to
capture higher-order interactions yields a 25% relative improvement in LDS. In multi-objective rein-
forcement learning, where the task’s more transparent structure allows the linear baseline to perform
well already (LDS of 0.76), KERNELSM still shows an improvement to 0.80.

Task selection results. Next, we show that the accurate attributions from KERNELSM are applica-
ble to downstream optimization tasks. We apply task attribution methods to find optimal groupings
for downstream performance. For prompt selection in ICL, we select the top-4 examples with the
highest attribution score. For synergistic task selection in RL, we co-train each target task with the
top-3 tasks identified by our method to encourage positive transfer.

To derive an individual attribution for each item from the kernel surrogate model, we adopt a random
ensemble method. We sample multiple subsets and use our kernel surrogate to obtain a performance
prediction for each. The final attribution for any given item is then calculated as the average predic-
tion score of all sampled subsets in which that item was included.

As shown in Table 4, KERNELSM achieves a 40% lower loss in the prompt selection task in ICL,
and improves the target rewards by 15%. These results demonstrate the benefit of using KERNELSM
over linear surrogate models.

4.3 REGULARIZATION OF HESSIAN

Recall from equation (4) that the error of surrogate models is influenced by the second-order terms.
Next, we compare the accuracy of linear task modeling by measuring the curvature of the loss
Hessian ∇2

W L̂(Ŵ ), by controlling it with different Hessian regularization. We report results on
a modular quadratic task trained using a two-layer transformer. We compared three methods, in-
cluding the standard SGD without explicit Hessian regularization, and two Hessian regularization
methods: sharpness-aware minimization (SAM) (Foret et al., 2021), and noise stability optimization
(NSO) (Zhang et al., 2024). We measure the Hessian trace on the global model, and the LDS and
residual error of the linear surrogate model are measured on subsets with α = 0.9, at 500, 1000,
1500, and 2000 training epochs.

In SGD, the Hessian trace increases continuously throughout training. This worsens the linear sur-
rogate model’s performance, characterized by a decrease in LDS. Eventually, the LDS dropped to
0.01. By contrast, both SAM and NSO constrain the Hessian trace. This regularization results in
improved model fit, whose LDS remained relatively consistent throughout training.
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Figure 3: We investigate both linear and kernel surrogate models’ fit under different Hessian reg-
ularization during model training. The linear surrogate model does not fit model outcomes when
using SGD, and only works when its Hessian is regularized. By contrast, kernel surrogate models
remain robust when trained with various optimizers and regularization.

5 RELATED WORK

Our work is related to the literature on training data attribution methods. Data attribution methods
have been extensively studied to quantify the influence of individual training samples on model
behavior (Koh & Liang, 2017; Feldman & Zhang, 2020; Ilyas et al., 2022). In this work, we extend
these concepts to task attribution, where we measure the contribution of groups of samples that form
different training tasks.

The first line of approach is based on the influence function (Koh & Liang, 2017). These meth-
ods compute the influence function. The main challenge is that the influence function involves
Hessian computation. Instead of computing the exact Hessian inverse, recent approaches use the
Gauss-Newton Hessian approximation (Choe et al., 2024). Influence functions can also be applied
to non-decomposable loss functions, such as contrastive loss and preference loss, allowing for data
attribution across a broader class of models (Deng et al., 2025). The second line of approach studies
the trajectory of model training, rather than just examining the final state of the trained model. These
methods aim to trace the training dynamics and predict the counterfactual trajectory that would re-
sult from a different training set (Bae et al., 2024). Recent work calculates the exact influence of
training data on a single, deterministic model instance by leveraging large-scale meta-gradient com-
putation (Engstrom et al., 2025; Ilyas & Engstrom, 2025). The third line of research involves using
a surrogate model to approximate the behavior of the original complex model and then computing
the surrogate model. Recent work shows that the model output can be linearized in a certain local
area (Li et al., 2024). Under this assumption, one can rephrase the model output as a first-order Tay-
lor expansion on the parameters. This method provides an efficient estimation for the leave-one-out
score (Li et al., 2023) and for datamodels (Park et al., 2023). Building on top of surrogate model
methods, our work aims to improve upon this by using a kernel-based model to better capture the
non-linear interactions between tasks.

6 CONCLUSION

In this paper, we study the problem of task attribution, which aims to quantify the influence of
different training tasks on a model’s final performance. We first unified the theories of existing
influence functions and linear surrogate models, highlighting their limitations in handling non-linear
interactions between tasks. To overcome this challenge, we proposed a new kernel-based attribution
method. This approach effectively captures complex task interactions and does not rely on specific
assumptions about the training process. This makes it broadly applicable to emerging paradigms,
including in-context learning and reinforcement learning. Furthermore, we introduced an efficient
gradient approximation technique that avoids expensive retraining, ensuring our method is scalable.
We validated our method’s effectiveness with experiments across several distinct domains. The
experiment results demonstrate that our approach provides more accurate attribution than existing
methods in a diverse range of settings that are relevant to modern AI systems.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our study does not involve human subjects, personally identifiable information, or sensitive private
data. All datasets used are publicly available and have been processed in compliance with their
respective licenses. We do not foresee harmful applications or discriminatory outcomes stemming
from this work. Our research complies with the ICLR Code of Ethics and institutional research
integrity guidelines.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure reproducibility. The main paper includes detailed descriptions
of our model architecture, training procedure, and evaluation settings. A full account of assumptions
and theoretical background is provided in the appendix. All datasets used are publicly available
and described with preprocessing details in the supplementary materials. To further support repro-
ducibility, we have provided an anonymous repository containing source code, hyperparameters,
and scripts to reproduce all experiments.

THE USE OF LARGE LANGUAGE MODELS

In this paper, we have used the LLM to polish the English writing.

REFERENCES

Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger B Grosse. If influence functions
are the answer, then what is the question? Advances in Neural Information Processing Systems,
35:17953–17967, 2022.

Juhan Bae, Wu Lin, Jonathan Lorraine, and Roger Baker Grosse. Training data attribution via ap-
proximate unrolling. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024.

Samyadeep Basu, Phil Pope, and Soheil Feizi. Influence functions in deep learning are fragile. In
International Conference on Learning Representations, 2021.

Sang Keun Choe, Hwijeen Ahn, Juhan Bae, Kewen Zhao, Minsoo Kang, Youngseog Chung, Adithya
Pratapa, Willie Neiswanger, Emma Strubell, Teruko Mitamura, et al. What is your data worth to
gpt? llm-scale data valuation with influence functions. arXiv preprint arXiv:2405.13954, 2024.

Junwei Deng, Weijing Tang, and Jiaqi W. Ma. A versatile influence function for data attribution with
non-decomposable loss. In Forty-second International Conference on Machine Learning, 2025.

Samuel Deng and Daniel Hsu. Multi-group learning for hierarchical groups. In Proceedings of the
41st International Conference on Machine Learning, pp. 10440–10487, 2024.

Logan Engstrom, Andrew Ilyas, Benjamin Chen, Axel Feldmann, William Moses, and Aleksander
Madry. Optimizing ml training with metagradient descent. arXiv preprint arXiv:2503.13751,
2025.

Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the
long tail via influence estimation. Advances in Neural Information Processing Systems, 33:2881–
2891, 2020.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization. In International Conference on Learning Represen-
tations, 2021.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in neural information processing
systems, 35:30583–30598, 2022.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model generalization
with influence functions. arXiv preprint arXiv:2308.03296, 2023.

Andrew Ilyas and Logan Engstrom. Magic: Near-optimal data attribution for deep learning. arXiv
preprint arXiv:2504.16430, 2025.

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry. Data-
models: Predicting predictions from training data. 2022.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pp. 1885–1894. PMLR, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yongchan Kwon, Eric Wu, Kevin Wu, and James Zou. Datainf: Efficiently estimating data influence
in lora-tuned llms and diffusion models. In The Twelfth International Conference on Learning
Representations, 2024.

Dongyue Li, Huy Nguyen, and Hongyang Ryan Zhang. Identification of negative transfers in mul-
titask learning using surrogate models. Transactions on Machine Learning Research, 2023.

Dongyue Li, Ziniu Zhang, Lu Wang, and Hongyang Zhang. Scalable fine-tuning from multiple data
sources: A first-order approximation approach. In Findings of the Association for Computational
Linguistics: EMNLP 2024, pp. 5608–5623, 2024.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. Trak:
Attributing model behavior at scale. In International Conference on Machine Learning, pp.
27074–27113. PMLR, 2023.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
influence by tracing gradient descent. Advances in Neural Information Processing Systems, 33:
19920–19930, 2020.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with im-
plicit gradients. Advances in neural information processing systems, 32, 2019.

Fan Yang, Hongyang R Zhang, Sen Wu, Christopher Re, and Weijie J Su. Precise high-dimensional
asymptotics for quantifying heterogeneous transfers. Journal of Machine Learning Research, 26
(113):1–88, 2025.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

Hongyang R. Zhang, Dongyue Li, and Haotian Ju. Noise stability optimization for finding flat
minima: A hessian-based regularization approach. Transactions on Machine Learning Research,
2024. ISSN 2835-8856.

Ziniu Zhang, Zhenshuo Zhang, Dongyue Li, Lu Wang, Jennifer Dy, and Hongyang R Zhang. Linear-
time demonstration selection for in-context learning via gradient estimation. Empirical methods
in natural language processing, 2025.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A COMPLETE PROOFS

A.1 DERIVATION OF INFLUENCE FUNCTIONS

Let S = {(x1, y1), (x2, y2), . . . , (xn, yn)} be a dataset including n samples from an unknown data
distribution. Let fW denote a model with parameters W ∈ Rd. Let L̂(fW ) denote the empirical
training loss of the model fW , averaged over the n training data samples. The textbook definition of
influence, as defined by how much a trained model changes after adding or removing one sample z,
is given by

(
∇2L̂(fW )

)−1∇L̂(z, fW ). To derive this result, let the perturbed parameter after adding
input z with step size ϵ be given by:

Ŵ ϵ, z = arg min
W∈W

(
L̂(W ) + ϵL(z,W )

)
(7)

Define the parameter change ∆ϵ = Ŵϵ,z − Ŵ , and note that, as Ŵ does not depend on ϵ, we can
thus write:

dŴϵ,z

dϵ
=

d∆ϵ

dϵ
.

Based on first-order optimality conditions, from Eq. (7), we get:

∇L̂(Ŵϵ,z) + ϵ∇L(z, Ŵϵ,z).

Since Ŵϵ,z → Ŵ as ϵ→ 0, we perform Taylor’s expansion with the anchor set at Ŵ up to first-order
as: (

∇L̂(Ŵ ) + ϵ∇L(z, Ŵ )
)
+
(
∇2L̂(Ŵ ) + ϵ∇2L(z, Ŵ )

)
∆ϵ ≈ 0, (8)

which is approximately zero after dropping the second-order term. After setting ϵ to approaching
zero, and solving for ∆ϵ, we get:

∆ϵ = −[∇2L̂(Ŵ )]−1
(
∇L̂(Ŵ ) + ϵ∇L(z, Ŵ )

)
= −ϵ[∇2L̂(Ŵ )]−1∇L(z, Ŵ ), (9)

since∇L̂(Ŵ ) = 0. Through the chain rule, the influence on any differentiable quantity F becomes:

I = [∇WF (fŴ )]⊤
[
∇2L̂(fW )

]−1∇L̂(z, fW ). (10)

A.2 PROOF OF PROPOSITION 3.1

Proof. We let µ = E[s] = p1K . First, we derive the population OLS coefficients. Since features
are independent, the population OLS coefficient for feature sk is

β̂k =
Cov(sk, F (s))

Var(sk)
.

We decompose the covariance using the Taylor expansion:

Cov(sk, F (s)) ≈ Cov(sk, F (s⋆))︸ ︷︷ ︸
=0

+Cov
(
sk, g

⊤(s− s⋆)
)︸ ︷︷ ︸

linear

+Cov
(
sk,

1
2 (s− s⋆)⊤Hs(s− s⋆)

)︸ ︷︷ ︸
quadratic

.

The linear term reduces to gk Var(sk) by independence. For the quadratic term, write s − s⋆ =
(s− µ) + (µ− s⋆) and expand:

Q = 1
2

[
(s− µ)⊤Hs(s− µ) + 2(µ− s⋆)⊤Hs(s− µ) + (µ− s⋆)⊤Hs(µ− s⋆)

]
.

The constant part vanishes in covariance. For the mixed part,

Cov
(
sk, (µ− s⋆)⊤Hs(s− µ)

)
= Var(sk)

∑
j

Hkj(µj − s⋆j ),

using symmetry of Hs. For the centered quadratic,

(s− µ)⊤Hs(s− µ) =
∑
i

Hii(si − µi)
2 + 2

∑
i<j

Hij(si − µi)(sj − µj).

12
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All cross-covariances with i ̸= j vanish by independence and zero mean of (sj − µj), leaving

1
2 Cov

(
sk, (s− µ)⊤Hs(s− µ)

)
= 1

2 Hkk Cov
(
sk, (sk − µk)

2
)
.

With Xk = sk − µk, Cov(sk, X2
k) = E[X3

k ], and for Bernoulli(p), E[X3
k ] = p(1 − p)(1 − 2p).

Hence
Cov(sk, Q) = Var(sk)

∑
j

Hkj(µj − s⋆j ) +
1
2 Hkk p(1− p)(1− 2p),

which yields

β̂k ≈ gk +
∑
j

Hkj(µj − s⋆j ) +
1
2Hkk(1− 2p).

Stacking over k gives (4).

Intercept. Using β̂0 = E[F (s)]− β̂⊤µ and E[s− µ] = 0,

E[F (s)] ≈ F (s⋆) + g⊤(µ− s⋆) + 1
2

(
(µ− s⋆)⊤Hs(µ− s⋆) + Tr

(
Hs Cov(s)

))
.

Residual mean-squared error. Let X = s− µ (zero mean, independent coordinates). The optimal
linear predictor removes the constant and all components in the span of {Xk}. Therefore

E = Var
[
Q− E[Q]−

∑
k

bkXk

]
= Var(Q)−

∑
k

Cov[Xk, Q]2

Var[Xk]
.

Because Cov[Xk, Q] = Cov[sk, Q] and Var[Xk] = Var[sk] = p(1− p), this gives

E ≡ min
β0,β

E
[
(F (s)− β0 − β⊤s)2

]
≈ Var(Q)−

K∑
k=1

Cov(sk, Q)2

Var(sk)
. (11)

It remains to compute Var[Q]. Since Q = 1
2X

⊤HsX ,

X⊤HsX =
∑
i

HiiX
2
i + 2

∑
i<j

HijXiXj

⇒ Var(X⊤HsX) =
∑
i

H2
ii Var[X

2
i ] + 4

∑
i<j

H2
ij Var[XiXj ],

by independence and mean zero, eliminating mixed covariances. Thus

Var(Q) = 1
4 Var(X

⊤HsX).

For Bernoulli(p), Xi ∈ {1− p,−p} with E[X2
i ] = p(1− p), E[X4

i ] = p(1− p)4 + (1− p)p4, so

Var(X2
i ) = E[X4

i ]− E[X2
i ]

2 = p(1− p)(1− 2p)2,

Var(XiXj) = E[X2
i ]E[X2

j ] = [p(1− p)]2 (i ̸= j).

Substituting gives

Cov(sk, Q) = p(1− p)
∑
j

Hkj(µj − s⋆j ) +
1
2 Hkk p(1− p)(1− 2p), (12)

Var(Q) = 1
4

∑
i

H2
ii p(1− p)(1− 2p)2 + 4

∑
i<j

H2
ij

(
p(1− p)

)2 . (13)
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A.3 PROOF OF COROLLARY 3.2

Proof. Next, we show that the influence function estimates the gradients of the performance func-
tion. Our goal is to show that the vector of influence functions I = (I1, . . . , IK)⊤ is equal to the
gradient vector∇sF (s).

The optimal parameters Ŵ (s) = argminW L̂(W, s). The empirical risk minimizer corresponds to
the uniform weight vector s∗ = 1K . Let F (s) be any differentiable performance metric that depends
on the optimal parameters, e.g., the loss on a test point, F (s) = ℓ(fŴ (s)(xtest), ytest). The gradient
of this function at the standard training point,∇sF (s⋆).

The original influence function uses an additive perturbation ε for a single sample i. The perturbed
objective is:

Lpert(W, ϵ) =

 1

K

K∑
j=1

ℓ(fW (xj), yj)

+
ϵ

n
ℓ(fW (xi), yi). (14)

We can rewrite this expression by collecting terms for each sample:

Lpert(W, ϵ) =
1

K

(1 + ϵ)ℓ(fW (xi), yi) +
∑
j ̸=i

ℓ(fW (xj), yj)

 . (15)

This shows that the additive perturbation framework is a specific instance of the general task weight
framework. It corresponds to a path in the n-dimensional weight space s, where the path is defined
as:

s(ϵ) = (1, 1, . . . , 1 + ϵ︸ ︷︷ ︸
i-th pos.

, . . . , 1)⊤ = s⋆ + ϵ · ei. (16)

Here, ei is the i-th standard basis vector.

The influence function for sample i, Ii(F ), is defined as the derivative of the performance function
F with respect to ε, evaluated as ε = 0. We can compute this derivative using the multivariate chain
rule on our general function F (s):

Ii(F ) =
dF (s(ϵ))

dϵ

∣∣∣∣
ϵ=0

. (17)

The chain rule states:

dF (s(ϵ))

dϵ
= ∇sF (s(ϵ))⊤ · ds(ϵ)

dϵ
. (18)

From our definition, s(ϵ) = s∗ + ϵ · ei, the derivative of the path vector is simply ds(ϵ)
dϵ = ei.

Substituting this in, we get:

dF (s(ϵ))

dϵ
= ∇sF (s(ϵ))⊤ · ei =

∂F (s(ϵ))

∂si
. (19)

This means the derivative with respect to the perturbation parameter ε is exactly the partial derivative
with respect to the weight si.

Finally, we evaluate this at ε = 0. At this point, s(0) = s∗. Therefore:

Ii(F ) =
∂F (s(ϵ))

∂ϵ

∣∣∣∣
ϵ=0

=
∂F (s)

∂si

∣∣∣∣
s=s⋆

. (20)

Since this holds for all i = 1, . . . ,K, the vector of influence functions is identical to the gradient
vector of the performance function:

I = (I1, . . . , IK)⊤ = ∇sF (s⋆). (21)
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Next, we examine the optimal solution of task modeling, which estimates the gradients of the per-
formance function. Denote the quality of a linear data model β ∈ RK over training set B given
by:

R(α, β) = Es∼D

(F (s)− α−
K∑
i=1

βisi

)2
 (22)

Let µ = E[s] ∈ RK , µF = E[F (s)] ∈ R, Σ = Cov(s) = E[(s−µ)(s−µ)⊤], and c = Cov(s, F ) =
E[(s− µ)(F (s)− µF )].

Then the minimizer of
R(α, β) = E

[
(F (s)− α− β⊤s)2

]
is

β̂ = Σ†c, β̂0 = µF − β̂⊤µ.

The minimal residual (risk) is

R(α̂, β̂) = Var(F (s))− c⊤Σ†c.

With the first-order Taylor expansion on F (s⋆):

F (s) = F (s⋆) +

[
∂F (s)

∂s

∣∣∣
s=s⋆

]⊤
(s− s⋆) + r(s). (23)

Define the first-order expansion

F (s) = F (s⋆) + g⊤(s− s⋆) +R(s),

where g = ∇sF (s⋆). Neglecting quadratic remainder terms,

c ≈ Σg, µF ≈ F (s⋆) + g⊤(µ− s⋆).

Therefore,
β̂ ≈ Σ†Σ g = ΠΣg, β̂0 ≈ F (s⋆)− g⊤s⋆ + (g −ΠΣg)

⊤µ,

where ΠΣ := Σ†Σ = ΣΣ† projects onto range(Σ). In particular, if Σ is full rank (or g ∈ range(Σ)),
then β̂ ≈ g and β̂0 ≈ F (s⋆)− g⊤s⋆. Here the full rank of Σ follows from the random sampling of
subsets, and we need the number of subsets to be large enough so that it’s full rank (See Section 3.2,
Li et al. (2023)).

By combining these two results, we have proven the proposition that when the respective assump-
tions for both methods are satisfied, they are numerically equivalent, β̂ = g.

B ALGORITHM DETAILS

Random Projection. This method directly addresses the high dimensionality of the gradient by
projecting it into a low-dimensional subspace. We employ a random matrix P ∈ Rk×d (where
k ≪ d) to map the gradient∇fW (x) ∈ Rd to a compressed representation∇f̃W (x) = P∇fW (x) ∈
RC×k. Motivated by the Johnson-Lindenstrauss Lemma, which guarantees that pairwise distances
are approximately preserved, we then solve the perturbation objective using these low-dimensional
features. The optimization is performed over a k-dimensional vector, making the problem tractable
and independent of the original parameter count d.

Gradient estimation for in-context learning. For our experiments on the ICL task, we define
the loss function and compute gradients in the embedding space. This approach enables us to
avoid perturbation-based objective optimization methods, as we already know the difference in em-
beddings. Thus, we can directly perform a first-order estimation of the logit outputs for different
prompts based on the gap between their embeddings. Consider the model output of a prompt subset
S on an input x, denoted as fW (ϕ(S, x)). Given an anchor prompt S0, the first-order approximation
of fW around the embedding vector ϕ(S0, x) is given by:

fW (ϕ(S, x)) = fW (ϕ(S0, x)) + ⟨∇ϕfW (ϕ(S0, x)), ϕ(S, x)− ϕ(S0, x)⟩+ ϵS,x. (24)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 2 GradientEstimation

1: Input: Task subset vector s(i); pre-computed logits {fŴ (z)}; pre-computed gradients
{∇Ŵ fW (x)}; test task Ttest

2: Requires: ℓ2 regularization λ > 0; random projection matrix P ∈ Rk×d

3: Output: Estimated performance on the test task, y(i)

4: Construct the sample subset S(i)
train = {zj = (xj , yj)}|S|

j=1 from tasks in s(i)

/* Step 1: Project gradients and solve for low-dimensional regression */
5: Compute projected gradients for all samples in the subset: gj = P∇fW (xj)
6: Define the low-dimensional objective over Z ∈ Rk:

Lproj(Z) =

|S|∑
j=1

ℓCE
(
fŴ (xj) + ⟨gj , Z⟩, yj

)
+

λ

2
∥Z∥22

7: Compute the optimal low-dimensional regression by minimizing this convex objective:

Z⋆ = argmin
Z∈Rk

Lproj(Z)

/* Step 2: Estimate performance */
8: y(i) ← 0
9: for each ztest = (xtest, ytest) ∈ Ttest do

10: Project the test gradient: gtest = P∇fŴ (xtest)
11: Approximate the test logits using the low-dimensional projections:

f̂Ŵ (S(i))(xtest) = fŴ (xtest) + ⟨gtest, Z
⋆⟩

12: Accumulate the loss: y(i) ← y(i) + ℓ(f̂Ŵ (S(i))(xtest), ytest)

13: end for
14: y(i) ← y(i)/|Ttest| ▷ Average loss over the test task
15: return y(i)

C EXPERIMENT DETAILS

C.1 CORRELATION BETWEEN SURROGATE MODELS AND INFLUENCE FUNCTIONS

We designed an experiment using an ℓ2-regularized logistic regression model (with a 10−2 ℓ2
penalty) on the Wisconsin Breast Cancer dataset. The data was standardized and split into a training
set of 455 samples and a test set. Our analysis focused on quantifying the influence of each training
point on the loss of a single, randomly selected test point.

We computed three distinct valuation scores for every training point: the ground-truth leave-one-out
(LOO) score, the first-order influence function (IF) approximation, and the coefficients from a linear
surrogate model. The LOO scores were obtained by exhaustively retraining the model from scratch
(cold-start) after removing each training point individually and recording the change in test loss.
The IF scores were calculated as a first-order approximation using the Hessian of the full training
loss, stabilized with a 10−3 damping term. To build the surrogate model, we generated 1000 subsets,
each containing 430 training points, and retrained a model on each to measure the resulting test loss
change. These loss changes were then used as targets in a final linear regression, whose coefficients,
solved via ordinary least squares (OLS), provided the surrogate model scores.

C.2 NON-LINEAR NUMERICAL SIMULATION

We consider a binary classification task in a feature space X ∈ R2 with labels Y ∈ {0, 1}. The
base learning algorithm, denoted by A, is a two-layer MLP. The network architecture consists of
an input layer, two hidden layers with 16 neurons each and ReLU activation functions, and a final
output layer with a softmax activation.
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Table 5: We investigate the surrogate model performance with different kernels. We run each exper-
iment with five random seeds to report the standard deviations.

Residual error Linear regression Degree-1 Degree-2 Degree-3 RBF
CIFAR-10 4.4±0.9 3.8±0.8 1.6±0.1 2.7±0.2 1.0±0.0

Modular arithmetic 4.6±1.3 2.2±0.5 1.7±0.4 3.3±0.7 1.5±0.4

In-context learning 0.8±0.2 0.6±0.1 0.5±0.1 0.5±0.1 0.4±0.1

Multi-objective RL 0.2±0.1 0.2±0.1 0.1±0.1 0.1±0.1 0.1±0.1

To analyze the influence of different training samples, we construct a series of related but distinct
training subsets. We first define a small, fixed set of N anchor data points, Sanchor = {(xi, yi)

N
i=1}.

Next, we define a candidate set of K additional data points, C = {c1, c2, . . . , cK}, which are sam-
pled along the path that traverses a critical region near this boundary. The experiment then focuses
on a series of K training subsets, where each subset Sj is formed by combining the fixed anchor set
with exactly one candidate point from C: Sj = Sanchor ∪{(cj , yc)}, for j = 1, . . . ,K. We select a
fixed test point xtest ∈ X whose prediction is sensitive to the location of the decision boundary. The
goal is to attribute the model’s prediction on xtest to the choice of the candidate point cj .

C.3 ABLATION STUDIES

Kernel methods often require a higher sample complexity to converge to an optimal solution com-
pared to linear models. We conduct an ablation study to investigate this trade-off. We compared
the performance of the kernel surrogate model with that of the linear surrogate model, varying the
size of the data subset used for their construction, sampling from 20% to 80% of the total subsets.
The results in Figure 4 show that the kernel surrogate model consistently outperforms the linear
surrogate model across all tested subset sizes. Notably, even when the number of samples was small
(e.g., at the 20% subset level), the kernel method still demonstrated a better performance.

C.4 COMPARISON OF KERNELS

We use the CIFAR-10 dataset and the ResNet-9 classifier for our experiments. The dataset consists
of 60,000 32 × 32 color images in 10 classes, with 6,000 images per class. We utilize the standard
training set of 50,000 images. To align with the scope of our task attribution methodology, we
partition the 50,000 training samples into 50 disjoint tasks. Each task is constructed by randomly
sampling 1,000 data points from the training set without replacement. This results in 50 distinct
tasks, which form the basis of our analysis. For the training of our surrogate model, we randomly
select 30 of these 50 tasks.

We evaluate the performance of different kernels. Let s(a) and s(b) denote different subset indices.
The kernels evaluated in our study are:

• Polynomial Kernel (Degree-1, 2, 3): The general form of the polynomial kernel is

k(s(a), s(b)) = (s(a)⊤s(b) + c)d.

In our experiments, we set the constant c = 0 and test for degrees d ∈ {1, 2, 3}.
• Radial Basis Function (RBF) Kernel: The RBF kernel is defined by the following equation:

k(s(a), s(b)) = exp
(
− γ∥s(a) − s(b)∥2

)
.

In our experiments, we set γ = 10−5.

In Table 5, we find that the linear surrogate model (Task modeling) and the degree-1 kernel have a
large residual error. The degree-2 kernel achieves the lowest residual error among the three polyno-
mial kernels. And the RBF kernel achieves the lowest residual error among all the kernels.

C.5 OMITTED EXPERIMENTAL SETUP

Modular arithmetic tasks. For modular arithmetic tasks, we consider the following functions, with
p = 97: a+ b (mod p) = c, and a2 + ab+ b2 (mod p) = c. For each task, we generate a complete
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dataset by iterating through all possible pairs of (a, b), where a, b ∈ {0, 1, . . . , p − 1}. This results
in a dataset of 97 × 97 = 9, 409 unique equations for each function. Each equation is formatted as
a sequence of tokens: a, op, b, =, c, where op is + for addition and a placeholder token for the
quadratic function. We randomly split the whole dataset into a training set comprising 90% of the
data and a test set comprising the remaining 10%.

We use a standard two-layer decoder-only transformer with embedding dimension 128 as the clas-
sifier for all modular experiments. The model is trained to predict the correct token for the result
c, given the preceding sequence (a, op, b, =). The cross-entropy loss and gradients are computed
based on the model’s output logits at the final token position.

To support our task attribution analysis, we employ a grouped subset sampling strategy that partitions
the training data based on the values of both operands, a and b. We first partition the range of
possible values for each operand, {0, 1, . . . , 96}, into 5 disjoint intervals. Specifically, a training
example (a, b, c) is assigned to a group Gi,j where i = ⌊a/20⌋ and j = ⌊b/20⌋. This creates a 5×5
grid of 25 groups, where each group corresponds to a specific rectangular region in the input space.
Subsets of the training data are then constructed by selecting specific combinations of these groups.
This method enables a fine-grained analysis of how the model learns from different regions of the
input space, allowing for the systematic construction of task vectors. We sample 50 subsets with a
sampling ratio 0.9, and use 40 subsets as the surrogate training set.

In-context learning. For in-context learning, we use the Qwen3-8B as the base model and evaluate
it on a sentiment classification dataset, SST-2, and a reasoning task, the coin flip. The SST-2 dataset
is a binary sentiment classification dataset composed of movie reviews labeled as either positive or
negative from the GLUE benchmark. The number of queries is 450. The Coin-Flip dataset is an
arithmetic reasoning task where the model reads a natural language description of a sequence of fair
coin flips and must predict the final outcome (heads or tails). The number of queries is 869. For
each dataset, we use the first 50 candidate demonstrations as the data to be attributed. We sample
200 subsets, each containing 4 prompts, and use 80 of these subsets as the surrogate training set.

Multi-objective reinforcement learning. We use MT10 from the Meta-World benchmark (Yu et al.,
2020), which consists of 10 diverse robotic manipulation tasks. The agent’s observation includes the
environment state and a one-hot vector that specifies the current task. A sparse reward for moving
the objective to its goal position. The 10 tasks in MT10 are: reach, push, pick-place, door-open,
drawer-open, drawer-close, button-press-topdown, peg-insert-side, window-open, and box-open.

For the task attribution evaluation, we use the Soft Actor-Critic (SAC) as the training algorithm, and
take the reward of each task as the F (s). We sample 50 subsets, each containing 7 tasks, and use 40
subsets as the surrogate training set.

C.6 BASELINES

Influence functions. Influence functions (Koh & Liang, 2017), originally proposed for individual
samples, can be adapted to estimate the influence of entire tasks by considering a task-weighted loss
function. The influence of infinitesimally up-weighting task Tk on the test performance is given by
the formula from the main text:

Ik(s) = [∇WF (s)]⊤
[
∇2

WL(W, s)
]−1∇W

(
sk∑K
j=1 sj

ℓk(fW , Tk)

)
.

Here, H = ∇2
WL(W, s) is the Hessian of the total training loss. In our implementation, we approx-

imate the inverse Hessian-vector product H−1v (where v is the gradient of the task-specific loss
term) by solving a Lasso regression problem, which avoids direct matrix inversion.

TracIn. TracIn (Pruthi et al., 2020) traces the influence of training data through the optimization
trajectory, avoiding Hessian computation. We adapt this method from the sample level to the task
level by measuring the correlation between task gradients over the course of training. The influence
of a training task Tk on a test task Ttest is approximated by summing the dot products of their
respective loss gradients across various training checkpoints:

TracIn(Tk, Ttest) =

T∑
t=1

ηt∇W f⊤
test∇W ℓk(fWt , Tk),
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Figure 4: We investigated how the size of the surrogate training split affects the residual error of the
linear and kernel models. We observed that across a range of training splits from 20% to 80%, the
kernel model consistently yields a lower residual error than the linear model.

Table 6: Top positively and negatively influential prompt samples identified on the Coin flip task.

Query Top Positively Prompt Sample Top Negatively Prompt Sample

Q: A coin is heads up.
kielmeyer flips the coin. jev-
genij does not flip the coin. Is
the coin still heads up? (no)

Q: A coin is heads up. erdener flips
the coin. ismari does not flip the
coin. Is the coin still heads up? (no)

Q: A coin is heads up. pachl flips
the coin. lissett flips the coin. Is the
coin still heads up? (yes)

Q: A coin is heads up. bonnitta
does not flip the coin. ellise
does not flip the coin. Is the
coin still heads up? (yes)

Q: A coin is heads up. brittingham
does not flip the coin. alilet does
not flip the coin. Is the coin still
heads up? (yes)

Q: A coin is heads up. kimyetta
flips the coin. raynel does not flip
the coin. Is the coin still heads up?
(no)

Q: A coin is heads up. roeland
does not flip the coin. joeliz
flips the coin. Is the coin still
heads up? (no)

Q: A coin is heads up. kulju does
not flip the coin. afrodisio flips the
coin. Is the coin still heads up? (no)

Q: A coin is heads up. pachl flips
the coin. lissett flips the coin. Is
the coin still heads up? (yes)

where Wt are the model parameters and ηt is the learning rate at checkpoint t.

TRAK. TRAK (Park et al., 2023) offers an efficient method for data attribution by linearizing the
model and using random projections. We adapt it to attribute influence at the task level. The core idea
is to represent each task by an average of its constituent samples’ projected gradients. Specifically,
for each sample z in a task, a feature vector is computed from the gradient of a model output function
fW . To get a feature vector for an entire task Tk, we average these features over all its samples. This
task-level feature is then projected into a low-dimensional space using a random matrix P. The
attribution score for the test task Ttest is then computed as: ϕ(Ttest)

⊤(Φ⊤Φ)−1Φ⊤Q. Here, ϕ(Ttest)
is the projected feature vector for the test task, Φ is the K × k matrix of stacked projected features
for the K training tasks, and Q is a K×K diagonal weighting matrix. The final scores are averaged
over an ensemble of models to ensure robustness.

Linear surrogate models. Linear surrogate models (Ilyas et al., 2022; Li et al., 2023) directly learn
a linear mapping from data weights to model predictions. Given a set of models trained on different
data subsets, this approach fits a linear function f : {0, 1}n → R that predicts test performance
from training set inclusion indicators. The coefficients of this linear model serve as attribution
scores, capturing the marginal contribution of each training example across multiple training runs.

C.7 QUALITATIVE RESULTS

In Table 6, we present the top positively and negatively prompt samples obtained by KERNELSM
on the Coin flip dataset. We use bold to show information that is the same as the query, and italics
for information that is different from the query.

C.8 EXTENSIONS

Meta-learning. Model-agnostic meta-learning (MAML) seeks to learn a model initialization that is
optimized for rapid adaptation to new tasks, typically with only a few gradient steps. Our work on
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task attribution, which measures a model’s sensitivity to its training data, is connected to this goal.
The error of first-order attribution methods is directly governed by the Hessian. For attribution, a
large Hessian signifies a highly curved, non-linear performance landscape where linear approxima-
tions are unreliable, leading to significant attribution error. In contrast, MAML leverages this same
curvature as a signal. The meta-gradient update in MAML involves differentiating through an inner-
loop gradient step, a calculation that explicitly depends on the Hessian of the inner-loop loss with
respect to the model parameters. There also exists a mathematical parallel between the derivation
of influence functions and the formulation of implicit MAML (iMAML) (Rajeswaran et al., 2019).
Influence functions can be derived by applying the implicit function theorem to the first-order opti-
mality condition of the perturbed loss, yielding an expression for the parameter change that involves
the inverse Hessian. Analogously, iMAML uses the implicit function theorem to derive an analytical
expression for the meta-gradient that depends only on the solution of the inner optimization, not the
path taken to reach it.

Multi-group learning. Multi-group learning aims to train a single predictor that performs robustly
across a predefined set of subgroups, addressing the common failure mode where high average
accuracy masks poor performance on critical subpopulations (Deng & Hsu, 2024). The influence
of task k on the performance of a model evaluated on task j can be directly interpreted as the
marginal contribution of group k’s training data to the model’s performance on group j. A positive
influence value for a loss-based metric provides a clear signal of negative transfer. Standard influence
functions, being first-order approximations, capture pairwise, additive effects and struggle to model
more complex issues. For example, a model may perform poorly on an intersectional group (e.g.,
women of a specific race) due to higher-order interactions between the data subgroups that linear
methods cannot detect. By using a non-linear RBF kernel, our model learns a global function that
captures combinatorial effects between groups. This can also inform the design of robust learning
algorithms. For example, the MGL-Tree algorithm for hierarchical groups decides whether to use
a general parent-level predictor or a specialized child-level predictor by comparing their empirical
risks. Our method could provide a more principled, causal signal to guide this choice.
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