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ABSTRACT

Graph Neural Networks (GNNs) are a predominant method for graph represen-
tation learning. However, beyond subgraph frequency estimation, their appli-
cation to network motif prediction remains underexplored, with no established
benchmarks in the literature. We propose to address this problem, framing mo-
tif estimation as an extension of subgraph frequency estimation. Our approach
formulates motif estimation as a multitarget regression problem, optimising for
interpretability and improving stability and scalability on large graphs. We vali-
date our method using a large synthetic dataset generated by graph generators that
mimic real-world data, and further test it on real-world graphs. Our experiments
reveal that 1-WL limited models trained on synthetic data struggle to predict accu-
rately motif profiles of real-world networks. However, apart from their reasonable
performance within synthetic data, they can generalise to approximate the graph
generation processes of real-world networks by comparing their predicted motif
profiles with the ones originating from synthetic data. This first study on GNN-
based motif estimation sets a benchmark and should open pathways for further
developing the connection between motif profiles and subgraph frequency from a
graph representation learning perspective.

1 INTRODUCTION

A structure is called a network motif when its recurring occurrence is not solely explained by ran-
domness. These structures are extremely powerful tools for understanding complex networks. Un-
derstanding what substructures are relevant and not relevant to a graph can help understand the fun-
damental organisational principles behind it. This understanding enhances theoretical knowledge of
network structure and function but also has practical implications in various fields, particularly in
Biology. For instance, the feed-forward loop has been identified as a crucial functional pattern in
many real biological networks of gene regulation (Mangan & Alon, 2003). It has also been discov-
ered that motifs enable efficient communication and fault-tolerance across transcriptional networks
(Roy et al., 2020). Furthermore, the related concept of graphlet degree distribution – a generalisa-
tion of degree distribution to higher-order structures – has been used to understand what is a good
network model for protein-protein interactions (Pržulj, 2007).

Discovering a motif entails counting the number of occurrences of the desired structure, both in
the network in study and in a set of control networks to understand its significance. However,
this process is a very hard computational task. Just determining if a subgraph exists in a larger
network (subgraph isomorphism) is a NP-complete problem (Cook, 1971). Even though methods to
perform an analysis based on motifs exist (Ribeiro et al., 2021), they have high temporal complexity,
rendering them intractable for very large networks. Furthermore, methods that rely on machine
learning to address this problem typically do not give very interpretable results, a critical concept
when doing analysis based on the relative importance of substructures.

Present Work. We aim to design a method for motif finding, leveraging a novel formulation that
hinges primarily on reworking the target task to something else other than direct substructure count-
ing. Our approach focuses on providing highly interpretable scores, ensuring the possibility of fur-
ther insight into the conclusions obtained. Additionally, our method is robust and versatile, capable
of operating effectively on graphs of any size. Knowing how difficult it is to obtain a high volume of
real-world graph datasets that have both high quality and variety, we create a large synthetic dataset,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

employing a myriad of generators and using it as the training data to assess the efficiency of our for-
mulation. This setup leads to the conceptualisation of the following research question. Can Message
Passing Neural Networks (MPNNs) under a different problem formulation than graph counting, be
enough to accurately predict motifs of real-world graphs when trained on synthetic data?

Key Contributions: Our key contributions can be summarised as follows: (1) We show that the
difficulty of motif discovery with MPNNs can be manipulated through different formulations of the
target variable. Different formulations pertain to different concepts of motifs. Hence, depending
on the the concept used, motif estimation does not have to follow the limitations from the literature
regarding subgraph counting with MPNNs; (2) We make available a large diverse synthetic dataset
in terms of graph topology and motif significance-profile generated with 23 synthetic generators. We
also present a collection of more than 100 real-world networks and their motif significance-profile;
(3) Our experiments show that MPNNs trained under the adopted motif concept with synthetic data
can predict the significance-profile of synthetic data with a solid accuracy. Furthermore, we show
they cannot generalise well for real-world data, showing a gap between these types of networks.

2 PRELIMINARIES

Let a graph G = (VG ,LG ,X) where VG denotes the vertex set of G, LG ⊆ VG × VG the edge set
of G, and X ∈ Rd1×d2 the vertex features such that ∀v ∈ VG ,x ∈ Rd2 . Let all edges by undirected
such (u, v) ∈ LG ⇔ (v, u) ∈ LG . Let H be a subgraph of G if and only if HH ⊆ VG ∧ LH ⊆ LG ,
such that exists an injective homomorphism given by the injective function f : VH 7→ VG such that
(v, u) ∈ LH ⇒ (f(v), f(u)) ∈ LG . If f is bijective and f−1 is an homomorphism (injective by
construction) the relation is an isomorphism and the subgraph induced.

3 RELATED WORK

In order to discover motifs, we must define three steps: (1) What is the set of graphs, SG, that we
admit as candidates for motifs; (2) What method is used to count the occurrences of graphs of SG in
the graph of interest G; (3) How is the significance of the obtained counts calculated.

3.1 STEP ONE - HOW TO DEFINE THE SET OF GRAPHS USED

In this step, SG is typically defined a priori. This method is the most widely used (Milo et al.,
2004a;b; Shen-Orr et al., 2002), and in most common cases, the selection of graphs used are ones
known to be important to the area of the work in question (Shen-Orr et al., 2002; Alon, 2007).

Defining SG a priori is frequent for “non-machine-learning” techniques, but it is also common in
machine-learning ones (Rong et al., 2020; Ying et al., 2020). However, when using techniques based
on machine-learning, it is easier to create a task that can infer structures in G than when using non-
machine learning approaches. Hence, motif discovery can be modulated as the task of finding the
best set of graphs that are motifs according to a defined graph metric. That is, discover what graphs
exhibit a certain criteria in order to be considered motifs (Bénichou et al., 2023; Zhang et al., 2020).

3.2 STEP TWO - HOW TO COUNT SUBGRAPHS

Non-GNN Methods. Numerous methods exist for approximating subgraph counts, eschewing de-
pendence on Graph Neural Networks (GNNs) or any machine learning techniques. We refer the
interested reader to Ribeiro et al. (2021) for a survey of these methods.

GNN Methods. Counting occurrences of a graph G in another graph H using GNNs was first
introduced by Chen et al. (2020). This work introduced significant limitations of what substructures
MPNNs can count. Subsequent works have refined MPNN-like models to be more expressive,
allowing them to have guarantees of being able to count occurrences of more graphs. One branch of
such models is known as node-rooted Subgraph GNNs. These will extract a k-hop neighbourhood
for each node in the graph to be studied. Since they act per node and add a feature to the node that
induced each subgraph, they are called node-rooted Subgraph GNNs.
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These architectures, with models as powerful as 1-WL as the backbone, are strictly more powerful
than maximum powerful MPNNs but are less powerful than the 3-WL test (Frasca et al., 2022; Yan
et al., 2023; Zhang et al., 2023). Hence, they have limitations regarding the type of structures that
they can count. Huang et al. (2022) gives a characterisation of what substructures Subgraph GNNs
cannot count at node-level based on the notation of cycles and paths. They show that the Subgraph
GNNs cannot count cycles of four or more nodes and paths of three or more nodes.

On a similar note, Huang et al. (2022) propose extracting edge-rooted subgraphs rather than node-
rooted and marking nodes that form the edge that anchors the subgraph extraction. Huang et al.
(2022) prove that the utilisation of double marking grants enhanced computational capabilities com-
pared to node rooted Subgraph GNNs. Additionally, it is ascertained that their model exhibit partial
superiority over the 3-WL test, enabling the counting of cycles with lengths shorter than seven and
all subgraphs up to size four in a non-induced setting.

Recently a new theoretical view of Subgraph GNNs based on the Subgraph Weisfeiler-Lehman,
a new version of the WL test, has been proposed (Zhang et al., 2023). This analysis presents a
characterisation of the expressive power of all node-rooted Subgraph GNNs. They conclude that
no node-rooted Subgraph GNN can be more powerful than the 2-folklore-WL (3-WL). This bound
was already discussed by Yan et al. (2023) and Frasca et al. (2022). However, Zhang et al. (2023)
demonstrate that no node-rooted Subgraph GNN can achieve the maximum expressivity of their time
complexity class. This result draws a limitation in the design of node-rooted Subgraph GNNs. Later
work by Yan et al. (2023) characterise the counting power of Subgraph GNNs for general architec-
tures and a general number of rooted nodes used as backbone. Furthermore, a method to compare
the expressivity of GNN models was introduced by Zhang et al. (2024) based on homomorphisms,
they summarise the ability of multiple GNN models on their ability to count any substructures with
no more than eight edges and no more than six vertices. Regarding induced subgraph counting at
graph level, the subject of our work, 1-WL models cannot count any pattern with 3 or more nodes.

3.3 STEP THREE - HOW IS SIGNIFICANCE OBTAINED

After obtaining the frequency of the structures in SG, the next step is to evaluate their significance.
Hence, it is necessary to have an idea of what would produce, with no factor other than random
chance, a network similar to G for some characteristic of interest. Let us denote NULL as a model
that can achieve that goal. One example of NULL is a model that, given a graph G, randomly
switches edges while keeping the degree distribution of G – degree distribution is the characteristic
of interest. The rewiring process is completely random and without any bias towards any predispo-
sition (Milo et al., 2004a;b).

3.4 MOTIFS AND GRAPH NEURAL NETWORKS

Motif estimation, when approached through the lens of GNNs, appears to be a challenge that, to the
best of our knowledge, remains largely unexplored in the existing literature.

Directly counting. One of the approaches that better matches direct motif estimation with GNNs
would be to count subgraphs of interest, SG, using a GNN in the input graph G and, after selecting
a suitable null model, generate an amount T of graphs according to it and use the same GNN model
used in G to count the occurrences of the selected set of subgraphs in each of the T control graphs.

Motifs as tool. Other works that integrate GNNs and motifs typically deviate from estimating motifs
and use pre-computed ones to enhance the power of GNNs. Examples of this work include Motif
Convolutional Networks (Lee et al., 2018), motif2vec (Dareddy et al., 2019), Motif Graph Attention
Network (Sheng et al., 2024), Motif Graph Neural Network (Chen et al., 2023) and Heterogeneous
Motif Graph Neural Network (Yu & Gao, 2022). In the field of GNNs, another usage of the concept
of a motif as a relevant pattern comes from the attempt to explain the decision of GNN models. Two
examples in this field are GNNExplainer (Ying et al., 2019) and TempME (Chen & Ying, 2023).

3.4.1 LEARNING RELEVANT PATTERNS

We will introduce the forthcoming studies under the term “relevant patterns” since most of them use
a definition of motif that is different from the one we introduce. Nonetheless, when discussing such
works, we follow the terminology of the original works and will call the pattern “motif”.
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Works directly pertaining to motif estimation (used to refine a downstream task) are MICRO-
Graph (Zhang et al., 2020) and MotiFiesta (Oliver et al., 2022). An example of a method made
to estimate subgraph frequency is SPMiner (Ying et al., 2020).

The main problems of these works are the following: (1) either the model does not assume a null
model and returns raw counts of occurrences of a general H in G (SPMiner and other frequency
estimation models), or (2) the model may use a null model to guide motif search but only returns the
subgraph(s) that are considered a motif by the model, meaning it is typically not possible to query
for a specific H (MICRO-Graph and MotiFiesta). Hence, these models typically ignore everything
not branded as a motif, sometimes not even returning a motif score for the graphs regarded as such.
Furthermore, models that return the raw count of occurrences can suffer from poor generalisation
since the number of graph structures grows super-exponentially (Fu et al., 2023). As the size of a
graph G grows, the possible counts of a substructure H in G also grow super-exponentially, causing
high variation between results of small and very-large graphs. This fact can hinder the learning pro-
cess of models that aim at being agnostic of network size and topology. Also, for raw count models,
since no null model is assumed, obtaining significance implies added subsequent computation.

4 INITIAL PROBLEM DESCRIPTION

Hereafter, referencing the number of occurrences of a graph H within G, denotes the induced count
of H in G. Furthermore, all graphs are undirected and they do not have edge features.

According to the definition of motif adopted, to understand if a graph H is a motif of a graph G, we
must know the number of occurrences of H in G. Let us denote such count as C(H,G). Furthermore,
to grasp the importance of H in G, it is needed to know the count of H across sufficient graphs
derived from a null model denoted as NULL. Let us denote the average count of H in graphs derived
from NULL as Cµ(H,GNULL) and the standard deviation as Cσ(H,GNULL). Hence, Z(H,GNULL) =
C(H,G)−Cµ(H,GNULL)

Cσ(H,GNULL)
denotes the standardization (Z-score) of the occurrences of a graph H in G.

4.1 OUR APPROACH

Even though not used for subgraph counting, we implant degree features into the graphs to enhance
the capability of the models. Instead of modelling the learning task as predicting a single value
Z(H,G) for some H and some G, we model it as a multi-target regression problem in order to
predict the motif score of multiple subgraphs at once. This characterisation naturally allows the
construction of motif fingerprints as proposed by Milo et al. (2004b). Thus, we start with a vector
of Z-scores, z = [Z(H1,G) . . . Z(Hn,G)].
The restriction of the number of graphs in z implies that the proposed model will not be able to
search if an arbitrary graph is or is not a motif. However, by having a model that has a more
restricted objective, we aim to achieve higher precision in the said objective. Since z has a restricted
size, one other aspect that deserves careful consideration is deciding what is the size of z and what
graphs compose it. Should the selected graphs exhibit negligible relation, an attempt to predict the
Z-score concurrently for all graphs may prove harmful to the performance of the model. In this
case, such an approach forces the model to incorporate distinct patterns to predict scores for each
graph, thereby resulting in a sub-optimal global predictive efficacy. However, if z is composed of a
well-thought group of graphs, allowing them to share common patterns from a learning perspective,
we hypothesise that the performance of the model can improve when compared to predicting just
one Z-score, due to the possibility of what is learned about a target variable be “shared” with others
through weight sharing (one other advantage is the need to only train a single model instead of
multiple). A good candidate for z should have patterns that are interconnected with each other,
either from the point of view of the Z-score distribution or from a topological one.

Building on top of what was described in the two previous paragraphs, we focus on small graphs,
in particular all connected graphs of size three and four. This is also supported by existing relevant
literature (Milo et al., 2004b;a; Shen-Orr et al., 2002; Asikainen et al., 2020; Pržulj, 2007; Ribeiro
& Silva, 2013) suggesting that to understand a complex network, it is an important to understand
how small graphs behave in that network. We focus on these graphs because their proximity in size
should allow them to have a topological connection that translates in a connection in their Z-Scores.
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Restricting the size of the graphs used in z to small ones also has the added benefit that we can
get the ground-truth of motif scores for a diverse type and size of networks, allowing for a richer
train dataset. Furthermore, we expect that using a set of graphs of increasing size in the number
of nodes and edges gives enough interconnectivity between their patterns from both a topological
and a Z-score distribution point of view to allow the model to have a strong inductive bias towards
meaningful patterns, allowing for a stronger performance. For example, a graph with many size four
cliques will probably have a small amount of 4-stars.

We will refer to the set of graphs used to populate z as Ω. The function notation Ω(G) gives the
set of all graphs that have the same number of connected nodes as the graph G. For the chosen
graphs it is possible to create two groups in Ω, the graphs of size three and the graphs of size four.
Using the motif Z-score directly in the learning task not only makes the function and result highly
interpretable, but also eliminates the need to compute multiple networks based on the NULL model
to determine significance. By normalising the Z-score across groups of graphs, as defined in Milo
et al. (2004b), the values of z are constrained between −1 and 1, independent of network size,
enhancing the model’s predictive stability across various network scales. Moreover, normalising
the Z-scores with si = zi/(

∑
j∈Ω(i) z

2
j )

1/2 imposes a mathematical interconnectivity between the
Z-scores of graphs of the same group. This relationship, where the sum of squared Z-scores equals
1, supports a multi-target objective and further strengthens the problem formulation by adding an
additional layer of interdependence among graphs. The normalised Z-score refers to the values of
the significance-profile s. The learning task consists of minimising the MSE between the true and
predicted significance-profiles.

4.2 ON THE RELATION WITH EXPRESSIVITY THROUGH SUBGRAPH COUNTING

It is expected that the expressivity regarding substructure counting to be highly related to the ex-
pressivity of discovering the significance-profile of graphs. Concretely, the problem of counting
graphs is a subset of the problem of discovering significance-profiles where reducing the null model
to nothing reduces the problem to graph counting.

Since P , the problem of counting graphs, is a subset of S, the problem of significance-profile esti-
mation, it is possible to obtain instances of S that are as hard as P , easier than P and harder than
P . Under the assumption that S and P function around the same set of graphs, these differences
in difficulty come from the choice of null model. In the case of S = P , the null model should
do nothing, for example, returning always 0. In the case of S < P , the null model could always
return the counts of each subgraph in a graph G without modifying G, reducing the problem to al-
ways predicting a vector of zeros. For the case of S > P , employing a null model that randomly
returns counts for G should make the problem theoretically harder since the model would have to
learn the random process employed to correctly construct the significance-profiles. Thus, theoretical
guarantees of expressivity might not hold depending on the selected null model. For instance, a re-
cent demonstration solved the dimensionality of the k-WL test for induced subgraph count, stating
that to perform induced subgraph count of any pattern with k nodes we need at least dimensionality
k (Lanzinger & Barceló, 2023). Furthermore, no induced pattern with k + 1 nodes can be counted
with dimensionality k, a result not verified to non-induced counts (Lanzinger & Barceló, 2023).
However, depending on the null model, when working with significance-profiles over graphs of size
four in Ω, it might not be enough to have a model as powerful as the 4-WL to guarantee enough
power to correctly identify the normalised Z-scores of the size four graphs in Ω.

Modifications made to the problem. In Section 4, we attempted to reduce the difficulty of the
problem by formulating it as a multitarget regression of interconnected values from an algebraic
and topological point of view. However, even in the case where it exists a perfect dependence
between graphs of the same group of Ω, or even across different groups, the problem is still at least
as hard as finding the significance-profile of the graph(s) that governs the dependence relation. For
example, if the significance-profile of the 3-path was symmetric to the significance-profile of the
3-clique, it would still be necessary to determine the significance-profile for 3-paths to compute the
significance-profile of 3-cliques and vice versa.

Testing with 1-WL bounded models? MPNNs cannot perform induced counts of patterns of three
or more nodes (Chen et al., 2020). Nevertheless, MPNNs are not inherently incapable of counting
patterns in any graphs. Rather, for a pattern H, there exists graphs G1,G2 ∈ G such that C(H,G1) ̸=
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C(H,G2) and for any MPNN M under 1-WL, M(G1) = M(G2). Hence, M cannot discover
C(H,G1) and C(H,G2) simultaneously. However, within the 1-WL framework, MPNNs remain
highly valuable and find numerous practical applications in real-world scenarios. Furthermore, we
did not construct any characterisation of the problem space of S regarding P for the null model used.
Hence, we might have made the problem easier (or harder) than substructure counting. The same
applies to the usage of a multi-target objective. Thus, we will scrutinise the capability of MPNNs to
address our particular challenge. Furthermore, more expressive models like Subgraph GNNs have a
very high computational complexity, being very hard to use in large-scale graphs.

5 DATASETS

We rely exclusively on synthetic graphs, rather than commonly used GNN datasets such as Wu et al.
(2018); Gómez-Bombarelli et al. (2018); Morris et al. (2020); Hu et al. (2021b;a). Our goal is to
have a large dataset with diverse topological features, which would be difficult and costly to obtain
from real-world data spanning multiple domains. Using multiple graph generators designed to sim-
ulate real-world phenomena and fully exploring their parameter space, we aim to create a dataset
with both high topological diversity and a close resemblance to real-world data. Additionally, syn-
thetic data allows for flexible expansion of the dataset size. Using synthetic data to train GNNs is
not a new concept. However, as far as we know, most of the popularly used datasets typically have
very small graphs (at most few hundreds of nodes) and are generated from a small set of generators,
often random regular graphs and Erdős-Renyi graphs (Chen et al., 2020). Another popular type of
synthetic graph dataset for benchmarking is small handcrafted graphs to limit test GNN models (Ab-
boud et al., 2021; Murphy et al., 2019; Balcilar et al., 2021; Wang & Zhang, 2023). While still very
limited, the only exceptions identified are Veličković et al. (2020); Corso et al. (2020).

Since we are not interested in limit testing the power of the model in comparison to theoretical
tests, and instead aim at having a diverse dataset regarding graph topologies and motif scores, we
create a new dataset using a total of 23 synthetic generators (11 non-deterministic, 12 deterministic).
We explore their graph-generating space in order to extract all types of possible topologies they
can express while limiting the graph size in order to avoid bottlenecks that increase training time
beyond what we find reasonable for the amount of time and resources available. The final dataset
puts the non-deterministic segment with 109164 graphs, and the deterministic segment with 38400
graphs, totalling for ≈ 250 million nodes and ≈ 750 million edges. Section A has a description
with greater detail on how each generator was explored. For the ground-truth, we calculate s using
G-Tries (Ribeiro & Silva, 2013).

Exploring the myriad of significance-profiles from the generated graphs leads us to the con-
clusion that the 3-path and the triangle can only take on a few sets of values, being those
{−0.707106, 0, 0.707106, 1} for the 3-path and the first three values for the triangle. This leads
to a strict result on the inter-variability of their Z-scores. Apart from cases where both scores are
zero or the 3-path is 1 and the triangle is 0 (an artefact from the G-Trie model, primarily affecting the
duplication-divergence model), we found that the Z-scores for graphs of size three are symmetric.
This means that if one structure takes a Z-score of x, the other will take −x. In normalised form,
these values are mapped to 0.707106 and −0.707106, respectively. For the size four graphs, we
can say that the size three encodes some information about the significance-profile of graphs of size
four, alluding to the possibility of an advantage of using graphs of both sizes in the target variable
(Figure 3 - Appendix A.4 has a detailed view of this result). As for strict dependence between the
graphs of size four, apart from the mathematical based constraint, we could not confirm any other.

Real-World Data. Since we are interested in assessing the performance of the models with real-
world data, we compiled a test set based on real networks of multiple categories. Besides varying
the type of network, we vary in their relative size in terms of number of nodes and edges. We devise
two categories based on the size of the networks used in the train set: (1) small-scale networks, (2)
medium-large scale networks. Section A.5 presents a detailed description of the networks collected.

6 METHODOLOGY

The model used in the experiments is a very simple model similar to the one described in Chen et al.
(2020) definition A.1. from Appendix A. Section B further details the model and how it was trained.
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Baselines. We define a baseline denoted by an horizontal red line corresponding to the expected loss
incurred when predicting the significance-profile s by employing an independent random uniform
model for each component of s. A second base line denoted by an horizontal blue line corresponds
to the expected loss when using a model predicting a random value for every component of s, but
taking into account the restrictions posited in Section 4 regarding the range of values each group of
Ω can take. A final baseline dependent on the architecture of the model is represented by a light pink
bar. It illustrates the mean error derived from using the model in question with random weights.

Persistent Patterns. Given a set of significance-profiles S, we define the persistency ρ of a pattern
s ∈ S as the frequency of its occurrence within S. The higher the number of occurrences of s, the
more persistent the pattern will be. Considering the randomness inherent to deriving a significance-
profile, we use a threshold, t, to decide what patterns are equivalent to each other. Given t, discover-
ing the persistence of s is reduced to ρs = |{s′ | d∞(s, s′) ≤ t,∀s′ ∈ S}| where d∞ is the Chebyshev
distance. We employ the concept of persistent patterns to develop a high-level understanding of the
nature of the true and predicted significance-profiles. We use the true significance-profiles as a stan-
dard to determine an appropriate threshold for equivalency. This threshold is then applied to the
predicted significance-profiles. Section C further details the process to obtain t.

“Correct” Predictions. Since having a criteria for a prediction for a significance-profile to be cor-
rect/useful depends largely on the research field, in order to have a systematic threshold, we study
how many predictions for each generator have all individual values of the predicted significance-
profile below the obtained test error. Furthermore, we ensure that for a prediction to count as
“correct”, all significance-profiles for graphs in Ω have the correct sign. Presuming the test errors
obtained for the synthetic dataset are relatively low, this approach guarantees that the predictions
deemed “correct” not only contribute to a lower test loss than the one observed but are also poten-
tially valuable from an application perspective. Let us denote a benchmark model as T . Let this
model predict a random pattern according to the criterion used for the horizontal blue line described
above. If we define a cutoff mean loss for T of 0.25 (0.5 absolute error), this model will incur in a
possible error of 25% of the maximum allowed. According to 1e8 simulations, T will have a rate of
“correct” guesses of 0.364% while following the restrictions here introduced.

7 RESULTS

The chosen models correspond to one instance of GIN and SAGE for the non-deterministic segment
and one instance of GIN for the deterministic one (see Appendix D for more details). Figure 1 shows
the results for the selected models for the small and medium-large datasets. The yellow bar denotes
the validation error, the blue bar represents the test error observed in the test dataset and the green
bar the result of the model in the real-world dataset. The other marks represent the baselines from
Section 6. A more detailed version of the predictions is available in Appendix D.2.
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Figure 1: Scores of the best models for the test and real-world datasets.
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7.1 DISCUSSION OF THE RESULTS

The models have low generalisation error as training, validation, and test errors are similar, and there
is no significant difference in performance between GIN and SAGE for synthetic data. However, the
models present a much higher error in the real-world dataset than the out-of-sample error estimated
through the test set. Furthermore, the obtained value is dangerously close to the error obtained with
random weights minus one standard deviation. Nonetheless, one positive is the stability of the error
across the two different real-world dataset sizes. Even though the error is high, it remains stable as
the size of the networks increases, a growth that exceeds three orders of magnitude in scale.

What is the model not doing. It is evident that any trained model does not adhere to an indepen-
dent uniform random prediction and is not randomly predicting based on the restrictions of s. All
predictions conspicuously surpass the red line and blue line, established as the initial benchmark.

What can the model be doing. Regarding the poor performance, one possible scenario is that the
synthetic data used does not accurately reflect the real-world data, leading to the observed disso-
nance between scores in the test and real datasets. However, it is essential to consider the limitations
of the MSE for this particular analysis. While MSE is valuable for comparing models with sig-
nificant differences in performance, it does not provide sufficient information regarding individual
predictions and their global shape. For instance, a model predicting a value of 0 for all graphs
would have an expected MSE of 0.25. Using the concept of persistent patterns, we can understand
how the predictions are distributed in terms of proximity to one another in relation to what would
be expected from the ground-truth. Table 3 (Appendix C) conveys a detailed view of the clusters
found for the threshold inferred from the true significance-profiles. Summarily, we conclude: (1) all
models exhibit a substantially lower number of predicted patterns than expected; (2) this reduction
is primarily attributed to the higher ρ of select patterns, rather than an higher mean ρ across patterns.

In the following sections we answer: (1) What can cause a model to tend towards persistent patterns?
(2) Can we take the low error in the test set as a signal that the model is learning the synthetic data?
(3) What causes the discrepancy between the scores in the synthetic and the real-world dataset?

7.2 TENDENCY FOR PERSISTENT PATTERNS.

This study examines the impact of dropout on the expressivity of models and persistence of the
patterns. By systematically increasing dropout values, the model’s power is reduced due to regular-
isation. Testing with both GIN and SAGE models reveals that dropout on the MPNN has little to no
effect on GIN’s performance but slightly affects SAGE, indicating GIN’s greater expressivity. This
possibility was briefly discussed in Section 4.2, suggesting that less expressive GNN models are ca-
pable of distinguishing fewer graphs. The results suggest that models lacking expressivity generate
fewer diverse patterns, leading to similar predictions across graphs. Hence, poor performance on
real-world data might not solely result from limitations of the synthetic dataset, but also from the
lack of expressivity of the models.

Answering question (1). Tendency towards persistency of patterns higher than what would be
expected stems from the lack of expressivity of either the model, the dataset, or both.

7.3 MODEL PREDICTIONS IN THE SYNTHETIC DATASET

Following Figure 8 (Appendix D.2), we conclude that the predictions made by all the models are
reasonable for all generators. The results suggest that the model is sufficiently expressive to distin-
guish between different graph generators, as predictions often align with the true mean significance-
profile. However, it struggles to differentiate graphs within the same generator, particularly in non-
deterministic and highly diverse generators like random regular and Erdős-Renyi. The differences
between graphs of different generators is large enough that an MPNN can capture them. However, as
we see the predictions gravitating towards the mean pattern of a generator, evidenced by the tighter
band between the 2.5% and 97.5% percentile, distinguishing between graphs within each generator
seems to be a task that MPNNs cannot generally perform. In these cases, the model tends to pre-
dict a less diverse set of patterns, leading to tighter percentile bands compared to reality (result also
observable through Table 3 in Appendix C).
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Table 1: Number of graphs with significance-profiles deemed “correct”. Italic-underlined are for
SAGE and the others GIN. Generators with ≥50%, ≥70% and ≥90% are highlighted. Error in non-
deterministic graphs for SAGE is 15.0%, 15.2% for GIN and 11.4% for deterministic ones.

Generator “Correct” “Incorrect” Generator “Correct” “Incorrect”
Geometric-3D DD Graph 035 224 314 125 Balanced Tree 191 129
Duplication Divergence Graph 280 303 069 046 Barbell Graph 185 135
Extended Barabasi Albert Graph 152 056 197 293 Binomial Tree 197 123
Erdős-Renyi 000 000 349 349 Chordal Cycle Graph 076 244
Forest Fire 209 119 140 230 Circular Ladder Graph 158 162
Gaussian Random Partition Graph 000 003 349 346 Dorogovtsev Goltsev Mendes Graph 107 213
Random Limited Geometric Graph 006 085 343 264 Full Rary Tree 244 076
Newman Watts Strogatz Graph 000 189 349 160 Square Lattice 167 153
Powerlaw Cluster Graph 336 301 013 048 Hexagonal Lattice Graph 156 164
Random Regular Graph 000 000 349 349 Lollipop Graph 085 235
Watts Strogatz Graph 000 031 349 318 Star Graph 106 052

Triangular Lattice Graph 260 060
Total 1018 1311 2821 2528 Total 1932 1746

Assuming that the choice of null model had little impact in the difficulty of the problem, the con-
clusion of the ability of a model with expressivity at most equal to the 1-WL to be able to distin-
guish graphs of different generators can be seen as a partial empirical confirmation of an old result
by Babai & Kucera (1979); Babai et al. (1980), regarding the 1-WL test being able to distinguish
any random graph with high probability as the size of graph approaches infinity. Similarly, the ap-
parent good performance of the tree generators is also theoretically backed by findings in Arvind
et al. (2015). The conclusion of the inability of the model to distinguish graphs with high granu-
larity among those in the same generator has theoretical backing for the case of the random regular
generator (Babai & Kucera, 1979; Cai et al., 1989; Babai et al., 1980). As for the other generators,
following the result in Babai & Kucera (1979); Babai et al. (1980), theoretically, it should be highly
probable that a model as powerful as the 1-WL could distinguish most of the graphs, specially ran-
dom ones, at inter and intra-generator level. However, according to our findings, this is not exactly
true in practice, either because the model could not reach the 1-WL expressivity due to failing to
approximate an injective function or because the bound does not work well in practical scenarios.

The model may be capable of accurately making inter-generator predictions by predicting a
significance-profile corresponding to the mean of each generator, along with additional predictions
gravitating around it. Following the formulation from Section 6, the “correct” predictions using the
test set error will be evaluated assuming an error between 15.4% and 11.4% of the total error.

According to Table 1, more than 50% of the predictions for the deterministic dataset are satisfac-
tory/correct. Not counting the regular graphs, known to not be distinguishable by 1-WL, SAGE got
satisfactory predictions for 29.2% of the graphs and GIN for 37.6%. The generators whose graphs
had more satisfactory predictions were those exhibiting a stronger mean pattern. In these cases, a
model reaps significant gains from simply following the mean pattern. For instance, if we do not
count the three problematic generators, regular graph, Gaussian random partition, and Erdős-Renyi,
GIN has a satisfactory prediction rate of 46.9% and SAGE 36.5%. The worst-performing model
achieves 29.2%, more than 80 times better than T , even with its lenient margin for accuracy.

Answering question (2). Yes, the model is learning the synthetic dataset (further reinforced by
Figure 8). The model learns in two scales: inter-generator and intra-generator. It presents a good
general capacity for inter-generator learning, meaning it does a fine job of distinguishing what is
the generator of a graph. As for its intra-generator performance, it has a reasonable discriminative
power. In the best case, for the non-deterministic segment, assuming 15.4% margin of error and a
guaranteed signal match, it guesses correctly the significance-profile 46.9% of the times. As for the
deterministic segment it predicts correctly 52.6% of the times, with a margin of error of 11.4%.

7.4 MODEL PREDICTIONS IN THE REAL-WORLD DATASET

Analysing the multiple figures from Section D.2, it becomes apparent that the inter-category (or
inter-generator, in the context of the synthetic dataset) performance is far from optimal. The models
exhibit identical predictions across graphs from different categories, even when these categories
have distinct significance-profiles. Intra-category performance is even poorer than inter-category,
with models like SAGE generating patterns that are too similar across graphs, though just distinct
enough to avoid being captured by the persistence measures. This phenomenon is exemplified by
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the predictions for the small biological category and the small interaction category observed in the
SAGE model, by the medium-large interaction and medium-large social communication for GIN
non-deterministic, among others. In the real-world data analysis, the SAGE model had the best
performance with 12.5% satisfactory predictions, seven correct in the small dataset. Other models
had three or fewer. This result is 2.4× worse than the poorest in the synthetic dataset, despite a
24.1% margin of error, ≈ 1.6× larger.

Interestingly, the models seem to have induced their own groupings based on similarities with
the synthetic datasets used for training. For instance, real-world graphs like ia-escorts-dynamic,
coauthor-CS, and ia-primary-school-proximity exhibited patterns resembling synthetic models like
duplication-divergence, forest-fire, and geometric graphs, respectively. This suggests that the model
predicts based on how similar a real-world graph is to the synthetic ones it has seen. While the model
struggles to produce satisfactory predictions for real-world networks, it could help identify which
synthetic model a real-world network most closely resembles. The closer the predicted pattern is to
the true pattern, the more alike the synthetic and real networks.

Points of divergence. In network similarity discovery based on significance-profiles, two key con-
cepts are crucial. First, the model’s ability to distinguish networks is constrained by the expressivity
of the space of the significance-profile used. The more expressive the space, the more reliable the
ability of the model to distinguish networks. Secondly, if the model predicts similar profiles for two
graphs G and H, indicating they resemble a graph F , this suggests G and H may originate from
a process similar to F . However, this conclusion is valid only if the true profiles of G and H are
indeed similar; otherwise, the model’s lack of expressivity leads to incorrect conclusions.

Closeness to Random Weights. A network with random weights can take any possible network as
a value. However, achieving performance near the score of the trained network purely by chance
is unlikely due to the complexity of the model. To address this, we propose that while the solution
space for random models may differ, its mean score should be similar to that of the solution space of
the trained model. Specifically, (1) models with random weights resemble those with high dropout,
showing a tendency towards highly persistent patterns; (2) the trained model produces meaning-
ful patterns for synthetic data; (3) the predictions of the model can significantly differ from true
significance-profiles due to its limited expressivity. Thus, while a trained model predicts meaning-
ful patterns ineffectively, a random one only predicts highly persistent patterns, leading to a similar
average scores.

Answering question (3). The model learns from the synthetic dataset. The discrepancy comes from
the synthetic data not accurately reflecting the real-world, at least when used by models limited by
the 1-WL. Thus, we can only confirm that the knowledge extracted from the synthetic dataset by the
used models is not enough to describe real-world data.

7.5 VALIDATION OF THE ASSUMPTIONS MADE

Multi-target regression improves predictive accuracy for most graphs, except for graphs 4-clique
and 4-path, likely due to limited benefit from shared information. Predicting significance profiles
directly enhances performance for graphs with significant variation in subgraph occurrences, like
the 3-path, triangle, 4-path, and 4-clique. Despite minor error increases in some cases, the overall
gains in accuracy and computational efficiency make this approach preferable for motif estimation
in the given null model. Section D.1 has a detailed exploration of the mentioned results.

8 CONCLUSIONS

Despite the lack of a GNN-based method specifically designed for predicting significance profiles,
our current MPNN models combined with synthetic data are still deemed insufficient for real-world
applications related to significance-profile discovery. The best performance benchmark shows a
prediction accuracy of 12.5% for small networks and 10.41% for medium-large networks, each with
a 24.1% margin of error. In contrast, having into account their simplicity, the used models together
with the presented formulation, for synthetic data, achieve good results, with a benchmark accuracy
of 46.9% with a 15.4% margin of error for non-deterministic generators and 52.6% with an 11.4%
margin of error for deterministic generators. This suggests that the models are promising for network
categorisation by effectively distinguishing high-level differences between graphs.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES
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V. Arvind, Johannes Köbler, Gaurav Rattan, and Oleg Verbitsky. On the Power of Color Refinement,
pp. 339–350. Springer International Publishing, 2015. ISBN 9783319221779. doi: 10.1007/
978-3-319-22177-9\ 26.
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lative effects of triadic closure and homophily in social networks. Science Advances, 6(19), May
2020. ISSN 2375-2548. doi: 10.1126/sciadv.aax7310.

Laszlo Babai and Ludik Kucera. Canonical Labelling of Graphs in Linear Average Time. An-
nual Symposium on Foundations of Computer Science - Proceedings, (2):39–46, 1979. ISSN
02725428. doi: 10.1109/sfcs.1979.8.
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Albert-László Barabási and Márton Pósfai. Network science. Cambridge University Press, 2017.
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Petar Veličković, Arantxa Casanova, Pietro Liò, Guillem Cucurull, Adriana Romero, and Yoshua
Bengio. Graph attention networks. 6th International Conference on Learning Representations,
ICLR 2018 - Conference Track Proceedings, pp. 1–12, 2018. doi: 10.1007/978-3-031-01587-8\
7.
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A DATA DETAILS

A.1 NON-DETERMINISTIC GENERATORS

For the Erdős-Renyi model Erdős & Rényi (1960), we mainly aim at creating graphs in the three
(out of four) main topological phases a graph can be (Barabási & Pósfai, 2017). We exclusively
uniformly control the number of nodes within each of the delineated phases, namely, the “critical”,
“supercritical” and “connected” states. This strategic regulation facilitates substantial variability in
graph size while preventing an excessive escalation of the referred metric that could possibly impede
further computational processing.

For the Watts-Strogatz (Watts & Strogatz, 1998) and Newman Watts-Strogatz (Newman & Watts,
1999), we regulated the generation based on the total number of nodes, the initial number of neigh-
bours and the probability of rewiring in order to generate networks that represented key sections of
the characterisation based on the clustering coefficient and path length, as given in Watts & Strogatz
(1998).

For the extended Barabási-Albert model (Albert & Barabási, 2000), we defined as hyperparameters
the total number of nodes and amount of connections a new node gains. Subsequently, we em-
ploy the equations delineated in the original article, values for the probabilities associated with the
formation of new links (p) and the rewiring of existing connections (q) are derived. These computa-
tions aim to yield graphs characterised by a power-law degree distribution with an exponent ranging
uniformly between 2 and 3.

For the cluster power-law (Holme & Kim, 2002), we vary uniformly the number of nodes and
calculate the necessary probability according to the original study to obtain a clustering coefficient
of 0.35, 0.45 or 0.55.

The duplication-divergence generator (Ispolatov et al., 2005) operates by randomly selecting a node
v from an initial graph and duplicating all edges connected to v with a retention probability denoted
as σ. Two of the selected regimes exhibit self-averaging behaviour concerning the number of edges,
specifically when 0 < σ < e−1 and e−1 < σ < 1/2. The non-self-averaging regime is characterised
by 1/2 < σ < 1. More characteristics regarding the generated graphs, for example, the degree
distribution, can be found in the original paper.

In the Gaussian random partition model, proposed by Brandes et al. (2003), k groups of nodes
are generated with t nodes derived from a Gaussian distribution with mean s and variance v. The
connectivity between nodes in a group is given by a probability p, and the connectivity inter-groups
is given by q. In this generator, we parameterise the number of nodes |V |, the size of the k groups
and the maximum number of allowed edges |Emax|. Both the p and q probabilities are calculated to
not exceed the maximum number of edges according to Equation 1.

q ≤ min

(
1,

2|Emax|
|V |2 + |V |

(
κ · s1/2 − s(κ+ 1)

)) (1)

p ≤ min(1, κ · q) (2)

We defined p as always having the possibility of going above q because we would like to have
networks that can have a some community structure in order to have a more diverse set of graphs.
Hence, we put the upper bound of p as being scaled over q by κ, which we called over-attractiveness.
The values used for the v and κ are 10 and 5 respectively. All other parameters are uniformly
sampled from a predefined range1.

In the case of the forest-fire model (Leskovec et al., 2007), we varied the number of nodes and
the backward and forward probability between 0 and 0.4 (inclusive) to try to steer away from very
aggressive Densification Power Law exponents and clique-like graphs, characteristics that, if se-
vere, can hinder the subsequent steps from a computational point of view. With the values for the
probabilities defined above, we expect to observe sparse networks that slowly “densify over time”,
together with decreasing diameter. All the graphs are made undirected after being generated.

1Details for the parameters available in the supplemental material.
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For the random geometric graph, since some properties of the graph related to its connected-
ness, such as maximum cluster size and coefficient vary with the dimension of the unit hypercube
used (Dall & Christensen, 2002; Penrose, 2003), we decided to vary the number of nodes and the
dimension of the hypercube used between 2 and 5. However, we did not efficiently explore all
possible configurations within the referred dimensions because we limited the number of edges.
Similarly to a random geometric model, we used a random geometric model in 3D with duplication
divergence (Higham et al., 2008). For this model, we followed Silva et al. (2023).

The last model in the non-deterministic segment is the random regular generator. In this case, the
parameters subject to uniform variation were the total number of nodes and the degree assigned to
each node, which once determined, remain constant across all nodes.

A.2 DETERMINISTIC GENERATORS

We complemented the graphs generated by the non-deterministic generators with smaller amounts of
graphs from deterministic generators. These generators have their network completely and without
randomness determined once their parameters are chosen.

The first group of deterministic generators consists of multiple types of trees. We use the binomial
tree model parameterised on its order and the balanced tree (full rary-tree) parameterised on its
height and branching factor.

The second group is based on modified cycles. We use the circular ladder generator, varying the
complete size of the graph and the chordal cycle (Lubotzky, 1994), also varying its complete size.

The third group is based on complete graphs and encompasses the barbell and lollipop graphs. The
barbell graph is made of two complete graphs of size k connected by a path of size m. The lollipop
is a barbell graph with only one complete graph and the path. In order to not complicate subsequent
steps, we carefully limited the size of the complete graphs.

The fourth group consists of the Dorogovtsev-Goltsev-Mendes model (Dorogovtsev et al., 2002).
This generator modulates a scale-free discrete degree distribution with exponent 1 + ln 3/ln 2 by
using a rather simple rule: “At each time step, to every edge of the graph, a new vertex is added,
which is attached to both the end vertices of the edge.” (in Dorogovtsev et al. (2002)). We vary
the magnitude of the number of nodes and edges by changing n, resulting in 3(3n + 1)/2 and 3n+1

nodes and edges respectively.

The fifth group consists of lattices. Namely, we use 2D hexagonal, triangular lattices and 3D square
lattices. The first 2 lattices have the option of allowing for boundary periodicity. All lattices vary in
terms of the size of each dimension.

Finally, the last group consists of star graphs of various sizes.

Since the types of graphs that the deterministic generators generate are not subject to randomness,
it is redundant to create multiple graphs for each set of parameters. However, in order to introduce
a degree of randomness to the deterministic graphs, we introduced a probability of random rewiring
of a percentage of edges after the graph is generated. The rewiring procedure for a single edge
consists of selecting an edge (u, v) from a graph G, deleting it and attaching one of the ends, u or v,
to another node w. If u is picked and (u,w) already exists, then G will exit the procedure with one
less edge. Since we want some variability but still want to preserve the original deterministic graphs,
for each generator, two sets of graphs S1 and S2 will be generated where each set goes through all
the proposed generator parameters. After that, S1 is not subject to any rewiring, and for each graph
in S2, p% of its edges are rewired according to the procedure described earlier. According to this
methodology, we generated four versions. The first had 2 edges swapped, the second 25% of the
edges swapped, the third 10% and the fourth 60%. We stick to version two due to being the best
performing one according to preliminary tests. This fact means that 25% seems to be a good choice
of random-rewiring so that the information encoded in the deterministic graphs is maximised.

A.3 EXACT DATASET PARTITION

Initially, we will conduct separate experiments using the two segments of the produced data, the
deterministic and the non-deterministic. Furthermore, the split in train-validation-test is stratified
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(a) Deterministic Generators

(b) Non-Deterministic Generators

Figure 2: Distribution of the values the significance profile of each graph in Ω takes in the synthetic
dataset. Each point represents a graph.

by random sampling a percentage p of each of the generators for each segment. In the case of
the deterministic segment, we use all 3200 graphs available. With p = 0.7, the training set has
3200 × 0.7 × 12 = 26880 graphs, and the validation set has 3200 × 0.2 × 12 = 7680 graphs.
The remaining 10% are used for the test set. We avoided using larger datasets due to memory
restrictions. As for the non-deterministic segment, in order for it to have a comparable total size
to the deterministic segment, we sampled 3490 × 0.7 × 11 = 26873 graphs and the validation set
3490× 0.2× 11 = 7678.

A.4 PATTERN INTERCONNECTIVITY

Figure 2 adopts a view of individual cases at the cost of a global view of the patterns. Each dot
corresponds to an individual graph. Each point is slightly transparent to attempt to give the notion
of density.
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Following the discovery introduced in Section 5 regarding the symmetry of the score of size three
patterns, we have a strong indication that even without the normalisation of the Z-score, the number
of occurrences between connected graphs of the same size is highly related. More formally, the
relation between the Z-scores of the graphs of size three can be described as follows. Let x be a
random variable denoting the number of induced occurrences of triangles in any graph that follows
the degree distribution D. Let y be a random variable denoting the occurrence of induced 3-paths in
any graph that follows the degree distribution D. Equation 3 gives the relation between Z-scores of
x and y.

X =

{
0, if y − µy = 0

−σx
σy
(Y − µy) + µx, otherwise (3)

When standardised to a mean of 0 and a standard deviation of 1, the Z-scores of both variables, ex-
hibit symmetry. Hence, it is possible to express their non-standardised values as linear combinations
of each other. Considering the mean and standard deviation of the counts of 3-paths and triangles
for D, given any graph G that follows D, it is possible to get the concrete count of triangles from the
count of 3-paths and vice-versa.

Even though from a practical point of view, the result from Equation 3 has little implications due to
the dependence on the first raw moment and the second central moment of both the distributions of x
and y, it presents a strong indication of what was postulated in Section 4 regarding the connectivity
between the graphs selected for Ω. In this case, the relation is so strong that we believe to be redun-
dant to try to predict both scores. Moreover, following the normalisation procedure, the restrained
nature of the result raises questions about the choice of modelling the problem as a regression task
for the size three graphs. However, despite these observations, we stick to our initial formulation
since in theory it does not undermine the ability of the model.

The result experimentally verified in the above paragraphs can be seen as a small extension of Ginoza
& Mugler (2010) and Wegner (2014) to undirected patterns of size three. In particular, adapting from
Wegner, Equation 4 displays the conservation law for the number of induced 3-paths.

#3-pathsind = #3-pathsind︸ ︷︷ ︸
fully defined by degree sequence

− 3#triangles︸ ︷︷ ︸
not fully defined by degree sequence

(4)

Since the number of non-induced 3-paths depends only on the degree sequence
(∑|V |

i=0

(|N(i)|
2

))
, it

will not change under the configuration model. Hence, the number of induced 3-paths is a variable
that once the degree sequence is fixed, depends only on the number of triangles. As for the number
of triangles, they depend on the order the edges are added to the graph under equation 5.

total triangles =
|E|∑
t=0

#trianglest (5a)

total 3-path =

|E|∑
t=0

(#3-patht −#trianglest) (5b)

#trianglest+1 = |{w|w ∈ N(ut) ∧ w ∈ N(vt)}| (5c)

#3-patht+1 = |N(ut)|+ |N(vt)| − 2#trianglest+1 (5d)

where nodes u and v represent the nodes that were connected by an edge at iteration t. Hence, any
realisation of a degree sequence through the configuration model will always have its number of
induced 3-paths negatively correlated with the number of triangles.

Regarding the relation between graphs of size three and graphs of size four, by analysing Figure 3,
it is possible to understand that there is a relation between the significance profiles of these graphs.
This relationship is particularly pronounced concerning the 4-star, tri-pan and 4-clique, as the values
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of the significance profiles assumed by these graphs are distributed across the spectrum centred at
0, contingent upon the value held by the 3-path. As for the 4-cycle and bi-fan, this relation is not
as strong. For the 4-cycle, we learn that the values are mostly zero when the significance-profile
for the 3-path is negative and is quite dispersed across the space otherwise. As for the bi-fan, even
though hard to discern from the figure, 46.2% of the values are 0 when the significance-profile for
the 3-path is positive, and 69.7% are between −0.1 and 0.1 for the same conditions.
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Figure 3: Distribution of the significance profiles for the graphs of size 4, given the value the 3-path
took. The positive value corresponds to 0.707106 and the negative to −0.707106.

A.5 REAL-WORLD DATASET

The selected type categories are described in list A.5. The numbers between the square brackets
in each bullet point correspond to the number of networks each category has in each of the scale
categories from the smallest to the largest scale.

• ANIMAL SOCIAL: [10/8] networks of the social behaviour of non-human animals incor-
porating a spectrum that includes ants, dolphins, lizards, sheep, and other examples.

• BIOLOGICAL: [10/10] networks of protein-protein interactions, a metabolic network of
small organisms and a network of connections between diseases in humans by the number
of shared genes.

• BRAIN: [9/10] networks of connectomes of diverse regions such as the cerebral cortex,
interareal cortical network, and neural synaptic, among others, of multiple species such as
cats, worms, mice, macaques and humans.

• CHEMOINFORMATICS: [10/0] networks of multiple different enzyme structures.

• COLLABORATION CITATION [6/8]: networks of citations of papers and collabora-
tions between authors.

• INFRASTRUCTURE: [5/7] Electric grids and road networks.

• INTERACTION: [5/6] Networks of physical contact between humans in various contexts,
together with some digital contact, for example, by e-mail or a phone call.

• SOCIAL COMMUNICATION: [2/10] Interaction between humans in social networks
such as mutually liked Facebook pages, friendship connections and retweets.

Figure 4a and Figure 4b show a summary of the number of edges and nodes for the different type
and scale categories. The red dashed lines represent the average of the minimum node (or edges)
quantity, the average of the mean node (or edges) quantity and the average of the maximum node
(or edges) quantity respectively, calculated for all 23 graph models used in the synthetic dataset.

In Figure 4a and Figure 4b, a noticeable distinction is observable in the delineation of scale cat-
egories based on the type category. The distinction between scale categories is influenced by the
type category of the network. For example, ANIMAL SOCIAL networks tend to be smaller than
INFRASTRUCTURE networks in the medium-large category. However, this relationship varies by
scale, as both network types exhibit similar sizes in the small-scale category, contrasting with their
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(a) Summary of how the number of nodes is distributed for the real networks.
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(b) Summary of how the number of edges is distributed for the real networks.

Figure 4: Summary of the distribution of the node and edge count of the real networks. All data is
presented in logarithmic scale.

medium-large behaviour. In any case, in the general scenario, we expect that the small-scale cat-
egory encloses networks from being smaller than an average network from the training set until
networks that can be slightly larger than the mean training network. As for the medium-large cate-
gory, they hold networks that can be around the average size of a training network to networks that
are several orders of magnitude larger than the average size of a training network. The dashed red
lines in Figure 4a and Figure 4b help validate this statement.

The supplemental details have further details regarding the real-networks used. In summary, we
have 56 networks in the small-scale category and 59 in the medium-large category. If a graph in the
test set was not already a simple undirected static graph when it was obtained, we transformed it in
a graph following said conditions.

B INITIAL BASE MODEL

The model (B) consists of three modules. The first module consists of K layers of a GNN. The job
of the first module is to work on the graph data and adjust the node embeddings so that the second
module, a global pooling function, can summarise them into a single graph-level embedding. The
third module is an MLP that takes as input the graph embedding and will adapt it to output the final
prediction for the normalised Z-scores of the graphs in s. Figure 5 shows a diagram of the model.

All the optimisations for the hyperparameters of B will be performed by Optuna (Akiba et al.,
2019) with 450 rounds of suggestions of hyperparameters, orchestrated through Ray (Liaw et al.,
2018; Moritz et al., 2018). Moreover, the hyperparameter sampling procedure employed the Tree-
Structured Parzen Estimator (Watanabe, 2023), while the pruning strategy was executed through the
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Figure 5: Illustration of the base model B divided in three modules, M1, M2 and M3.

Table 2: Break down of the hyperparameter space used for B.

Min Max Epochs Batch Size Learning Rate (log)
M1-GNN Depth 2 3

100 16, 32, 64,
128, 256

[0.00001,
0.001]

M1-Hidden Dimension 6 16
M1-GNN Dropout 0.0 0.9
M1-Jumping Knowledge max, cat, lstm
M2-Global Pool add
M3-MLP Depth 2 6
M3-Hidden Dimension 6 16
M3-MLP Dropout 0.2 0.9

application of the median rule (Golovin et al., 2017). Table 2 presents the hyperparameter space
used for model B.

The asymmetry in the hyperparameter space presented in Table 2 stems from our choice of preemp-
tively test a slightly larger hyperparameter space and identify some values that resulted in very bad
results. From this early testing phase, we also narrowed down M3 from a global add, mean or max
function to just the global add function. This result aligns with some limitations that are known for
the mean and max pooling functions (Xu et al., 2019). Furthermore, the fixed values of 100 epochs
can be shortened not only by the pruner but also by an early-stopping module with a grace period
of 25 epochs, synced with the median pruner, and patience of other 25 epochs of not seeing an im-
provement for the global minimum loss. Moreover, since we believe our problem does not need very
long range dependencies since the structures in Ω can be fully defined by a hop size of 2, in order
to try to limit the problem of over-smoothing we limited the maximum number of GNN layers to 3
based on the findings that most networks have a small diameter (Albert et al., 1999; Barabási et al.,
2000; Watts & Strogatz, 1998). By limiting the GNN layers, we also hope to reduce over-squashing.

For the initial tests, we performed several experiments on the synthetic dataset described in Sec-
tion 5 for different M1 modules. Each experimental iteration comprised 450 trials, each uniquely
characterised by a distinct combination of hyperparameters suggested by Optuna.

The four different GNNs used were GAT (Veličković et al., 2018), SAGE (max-pooling) (Hamilton
et al., 2017), GCN (Kipf & Welling, 2017) and GIN (Xu et al., 2019) and are all 1-WL limited. Most
of the training was done using a single NVIDIA RTX 3090 and later a NVIDIA RTX A6000.

C METHODOLOGIES

Persistent Patterns. To evaluate the impact of a value t in the number of persistent patterns, we
employ agglomerative clustering with complete linkage over the significance profiles with t as a
stopping point for agglomeration. Using the complete linkage over d∞ ensures that all significance
profiles in a cluster remain within t of each other, effectively counting the number of persistent
patterns through the number of clusters and their persistency through the size of each cluster. To
discover t, we test different values and iteratively evaluate their impact on the quantity of patterns
induced. The selected value is the lowest one that produces the largest drop in the number of per-
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Table 3: Summary of the number of persistent patterns and their persistency. The number of clusters
gives the number of persistent patterns and the statistics about their size pertain to ρs.

Segment Model Q1 Q2 Q3 Min Mean Max STD Number Clusters Number of SPs Threshold

ND - Test
True 1.00 1.00 1.00 1.00 1.65 56.00 3.15 2325

3839 0.01GIN 1.00 1.00 2.00 1.00 19.39 710.00 73.92 198
SAGE 1.00 1.00 2.00 1.00 11.53 751.00 63.79 333

D - Test True 1.00 1.00 1.00 1.00 1.90 38.00 3.25 1935 3678 0.01GIN 1.00 1.00 2.00 1.00 4.73 520.00 25.88 777

Medium-Large

True 1.00 1.00 1.00 1.00 1.38 5.00 0.94 42

58 0.08GIN-ND 1.25 2.00 5.25 1.00 4.14 20.00 5.07 14
SAGE-ND 1.00 1.00 3.00 1.00 2.15 6.00 1.61 27

GIN-D 1.00 1.00 2.00 1.00 2.90 27.00 5.86 20

Small

True 1.00 1.00 2.00 1.00 1.51 7.00 1.19 37

56 0.21GIN-ND 1.00 1.00 3.00 1.00 2.95 12.00 3.41 19
SAGE-ND 1.00 2.00 3.50 1.00 2.95 10.00 2.57 19

GIN-D 1.00 1.00 3.00 1.00 2.67 14.00 3.43 21

sistent patterns (similar to the elbow method for clustering). Table 3 conveys summary statistics
regarding the discovered persistency of patterns.

Red Line. Equation 6 delineates the derivation of the expected loss for the baseline depicted as a
red line. The first step in said equation comes from expanding the square and the second step from
the definition of variance for a standard uniform distribution. Conceptually, the red line embodies the
unequivocal baseline for any model endeavouring to address the problem of predicting normalised
Z-scores as delineated in Section 4. Any model falling short of the benchmark set by the red line
can be confidently deemed inadequate.

1

n

n∑
i=1

E
(
(yi − Ŷi)

2
)

(6a)

≡ 1

n

n∑
i=1

(
y2i + V ar(Ŷi)

)
(6b)

≡ 1

n

n∑
i=1

(y2i + 1/3) (6c)

≡ 1/3 + 2/n (6d)

Blue Line. The derivation is similar to the one employed for the red line, hence omitted. Com-
pared to the red line, the blue line defines an improved standard that any model that tries to predict
the normalised Z-score as postulated in Section 4 must also clear. To delineate the value of the
blue line, we formulated a model enabling the stochastic prediction of values that adhere to the
constraint that the sum of the squared values of the scores of the graphs of each group of Ω must
be equal to 1. We chose to articulate the model using a set of independent standard normal vari-
ables S = {x1, . . . xn}, which are then normalised by the Euclidean norm of the respective S. This
particular formulation seems to manifest a good distribution across the space formed by S in terms
of uniformity, especially when considering the increasingly improbable nature, attributed to both
the concentration of measure phenomenon and Dvoretzky’s theorem (Pisier, 1989; Giannopoulos &
Milman, 2000), of truly attaining a random uniform distribution of points across the entire volume of
a compact, symmetric, convex subset within an n-dimensional Banach space, like the n-Euclidean
space, S, delineated by the process used to generate random guesses. On another note, precisely due
to this observation, we conjecture that the problem of interest is ill-posed in very high dimensional
spaces, meaning it becomes increasingly hard to have a meaningful significance-profile and thus
predict them as the groups of Ω increase in cardinality.

Light-Pink Bar. To ascertain the referred mean error that the light pink bar depicts, we randomised
the weights of each model a total of 100 times and predicted the significance-profiles for the real-
world dataset for each randomisation. In conjunction with the mean error estimation, we provide an
error bar indicative of one standard deviation.
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D EXPERIMENT RESULTS

Figure 6 and 7 shows the summary of the results from the 450 rounds of hyperparameter optimisation
for each model used in M1. The solid line represents the mean score, and the semi-transparent bound
around each line represents the standard error. The displayed metrics are the MSE for the train and
validation data, the median absolute error, med

(
{medi(|yi−ŷi|,∀i ∈ |y|)}

)
, the maximum absolute

error calculated for a full prediction of a significance profile, and the mean value for the worst-
performing prediction of a graph from Ω. The maximum error is given by max( {

∑
j∈|Ω| |Y[i,j] −

Ŷ[i,j]|,∀i ∈ |Dvalid|} ) where Y is a 2-d matrix where the first dimension gives the number of
examples in the validation dataset and the second dimension the length of s. As for the mean value
of the worst-performing predictions, it is given by mean(max{

∑
i∈|Dvalid| |(Y[i,j] − Ŷ[i,j])|,∀j ∈

|Ω|} ).
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Figure 6: Learning curves for the various backends used for M1 when trained with the deterministic
segment of graph generators.
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Figure 7: Learning curves for the various backends used for M1 when trained with the non-
deterministic segment of graph generators.

The learning curves for the deterministic segment (Figure 6) show that all models improve signif-
icantly within the first 50 epochs, especially in all metrics except for the maximum absolute error.
GIN outperforms all other models by a wide margin, prompting its selection for further analysis. For
the non-deterministic segment (Figure 7), the performance of GraphSAGE and GIN is very close,
with GraphSAGE holding a slight numerical edge. Since both models perform comparably, both
will be retained for further evaluation.

D.1 VALIDATION OF THE ASSUMPTIONS MADE

The two main assumptions by us proposed regards to using multi-target regression and directly
predicting the significance-profiles of the chosen graphs.

Single-target vs. Multi-target. To allow this comparison, we trained eight models, each for one of
the graphs in Ω. The data used was the non-deterministic synthetic dataset. For the task, we utilised
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Table 4: Percentiles int the validation set of the squared error and their percent decrease/increase
comparing the multitarget to the single target model. Order: 3-path (0), triangle (1), 4-path (2),
4-cycle (3), 4-star (4), tailed-triangle (5), 4-chord-cycle (6), 4-clique (7).

Graph 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0
Type single multi single multi single multi single multi single multi single multi single multi single multi

100% 1.835 2.868 1.830 1.126 1.126 0.816 1.498 0.913 1.056 1.268 2.275 2.388 1.814 2.193 2.940 2.621
+56.294% -38.470% -27.531% -39.052% +20.076% +4.967% +20.893% -10.850%

95% 0.294 0.250 0.376 0.334 0.304 0.320 0.350 0.348 0.547 0.502 0.517 0.489 1.294 0.741 1.463 0.808
-14.966% -11.170% +5.263% -0.571% -8.227% -5.416% -42.736% -44.771%

75% 0.080 0.091 0.085 0.050 0.052 0.041 0.083 0.053 0.067 0.038 0.082 0.100 0.210 0.042 0.357 0.048
+13.750% -41.176% -21.154% -36.145% -43.284% +21.851% -80.000% -86.555%

50% 0.007 0.009 0.031 0.013 0.005 0.006 0.008 0.007 0.005 0.003 0.007 0.012 0.051 0.007 0.042 0.007
+28.571% -58.065% +20.000% -12.500% -40.000% +71.429% -86.275% -83.333%

25% 0.000 0.001 0.002 0.001 0.001 0.000 0.001 0.001 0.001 0.000 0.000 0.002 0.005 0.000 0.012 0.003
+100.000% -50.000% -100.000% 0.00% -100.000% +100.000% -100.000% -75.000%

Table 5: Percentiles in the test set of the absolute difference between the true and predicted
significance-profile by direct estimation (SP) and their percent decrease/increase comparing to the
predictions using a multi-target model with graph frequencies as output. Order: 3-path (0), triangle
(1), 4-path (2), 4-cycle (3), 4-star (4), tailed-triangle (5), 4-chord-cycle (6), 4-clique (7).

Graph 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0
Type Count SP Count SP Count SP Count SP Count SP Count SP Count SP Count SP

75% 0.806 0.222 0.248 0.323 0.150 0.199 0.120 0.227 0.073 0.173 0.541 0.298 0.362 0.172 0.412 0.278
-72.429% +30.320% +33.280% +89.686% +137.311% -51.763% -68.122% -32.566%

50% 0.161 0.116 0.046 0.109 0.065 0.056 0.065 0.083 0.042 0.083 0.202 0.126 0.476 0.072 0.335 0.079
-28.068% +140.276% -14.035% +28.404% +99.939% -37.503% -84.891% -76.506%

25% 0.081 0.044 0.025 0.042 0.016 0.036 0.019 0.031 0.018 0.020 0.083 0.041 0.396 0.027 0.231 0.021
-46.267% +65.427% +127.724% +61.485% +9.853% -50.814% -93.296% -90.737%

the GIN variant of MPNNs, as it demonstrated both theoretical and practical superiority among
available options. The models were trained without any prior assumptions; they were initialised
with the same hyperparameter space as all other models, allowing the optimiser to explore the entire
parameter space. Consequently, the models are designed to specialise in their respective graph.
Table 4 shows the percentiles for the squared difference between the true and predicted (using GIN
model from Figure 7) significance-profile in the validation dataset for each of the eight graphs of Ω.
Each percentile has a percent comparison between the results of the multiple models.

Following the results from Table 4, apart from graph 7 (four-node clique) and 2 (four-path), gen-
erally, all graphs show an improvement in the predicted score when using multi-target regression.
This result confirms our expectation delineated in Section 4 that graphs that predicting together
graphs that share common traits can improve the outcome. Regarding the increased error observed
in graphs 7 and 2, we hypothesise that this may be due to their limited benefit from shared infor-
mation. Other graphs do not possess enough encoded information to be leverage by the shared
knowledge to outperform a specialised model. Regardless, having into account the magnitude of the
increase/decrease of the the errors, we believe that multi-target is superior for motif estimation. One
other added benefit is the need to train only a single model that maintains competitive training times
comparing to single-target regression.

Estimating Frequency vs. Estimating Significance-Profiles. To allow this comparison, we
trained a model to estimate the frequency of the graphs of Ω directly. The data used was the non-
deterministic synthetic dataset. For the task, we utilised the GIN variant of MPNNs, as it demon-
strated both theoretical and practical superiority among available options. The model was trained
without any prior assumptions; it was initialised with the same hyperparameter space as all other
models, allowing the optimiser to explore the entire parameter space. Consequently, the model
is designed to specialise in frequency estimation. Table 5 shows the percentiles for the absolute
difference between the true and predicted significance-profile, by either direct estimation (SP) or
frequency estimation (Count) in the test dataset for each of the eight graphs of Ω. Each percentile
has a percentage comparison between the outcomes of the two models.

To circumvent the need to generate 500 random networks according to NULL for each network in
the test set and subsequently estimate the frequency of each subgraph within them, we opted for
an estimation of the predicted Z-Scores. Let x represent a random variable corresponding to the
frequency of subgraphs in a given degree-distribution as estimated by the trained model. We decom-
pose x and its associated Z-score calculation into two variables, y and z, as shown in Equation 7.
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The variable y denotes the actual frequency of a subgraph, while z captures the error introduced by
the model’s approximation.

Ẑ =
x− E[x]
V ar[x]1/2

(7a)

Ẑ =
(y + z)− E[y + z](

V ar(y)2 + V ar(z)2
)1/2 (7b)

Assuming that the difference between a value z ∼ z and µz is proportional to σz, minding signal
indetermination, Equation 7 originates Equation 8.

Ẑ =
(y − E[y]) + (z − E[z])(
V ar(y)2 + V ar(z)2

)1/2 (8a)

Ẑ =
(y − E[y])± σz(

V ar(y)2 + V ar(z)2
)1/2 (8b)

All values in Equation 8 are known since they were either acquired during the training of the model
(values regarding z) or were collected during the dataset construction (values regarding y).

By approximating the Z-scores predicted by models that perform frequency estimation, and subse-
quently normalising them as described in Section 4, we are able to compare these approximations
with the outputs of models that directly predict the normalised Z-scores (significance profiles). We
employ the percentiles of the absolute differences between the true significance profiles and those
directly estimated by the models, as well as between the true significance profiles and those esti-
mated via Equation 8. Table 5 presents this comparison. The values under “Count” correspond to
the minimum difference (hence worst case comparison) resulting of all valid signal combinations
according to Equation 8b.

Following the results from Table 5, we conclude that, generally, predicting significance-profiles di-
rectly improves the scores for the 3-path (graph 0), triangle (graph 1), 4-path (graph 2) and the
4-clique (graph 7). All others present a general score that is worse when directly predicting the
significance-profile. The graphs that experienced overall improvement are those characterised by
significant variation in their number of occurrences, depending on the type and size of the network.
This result likely arises from the model’s enhanced ability to handle the extreme differences in the
frequency of subgraph occurrences in networks with substantial size and topological disparities. De-
spite, the deteriorating the results for graphs 3 through 6, apart from 75% for graph 3 and 50% for
graph 6, the increase does not magnify the order of magnitude of the errors significantly. Further-
more, the decrease for the other graphs is larger and more significant. Hence, we believe predicting
significance-profiles directly to be an overall improvement to predicting graph frequencies, in the
context of motif estimation for the chosen null model. Furthermore, predicting significance-profiles
directly is much cheaper computationally from a motif calculation point of view.

Joining the result from Table 4 and 5, in the context of motif estimation, we believe that using
multi-target regression to predict significance-profiles directly outperforms using models to perform
subgraph frequency estimation using either single or multi-target regression.

D.2 PREDICTIONS

Figures 8 display a summary of the predictions for each generator made by each selected model.

Regarding the real-world dataset, since the number of graphs per category is much smaller than
in the synthetic dataset, basing an analysis solely on the mean profile and percentile band can be
deceiving. Regardless, we make available such figure available (Figure 12 and 13). Conversely, that
scarcity allows for a more comprehensive individual analysis. Still, the volume of graphs is to high
to present all images. Figures 9a through 11d show some examples. To see all predictions follow
the README in the supplemental material.
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(a) GIN trained on the deterministic segment.
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(b) GIN trained on the non-deterministic segment.
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(c) SAGE trained on the non-deterministic segment.

Figure 8: Predictions for each model in each of their corresponding synthetic test datasets.
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Figure 9: Continued on next page.
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Figure 9: Predictions by GIN trained on the non-deterministic segment. Orange lines with circles
are predictions and dark-yellow with triangles true values.
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Figure 10: Continued on next page.
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Figure 10: Predictions by GIN trained on the deterministic segment. Orange lines with circles are
predictions and dark-yellow with triangles true values.
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Figure 11: Continued on next page.
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Figure 11: Predictions by GIN trained on the deterministic segment. Orange lines with circles are
predictions and dark-yellow with triangles true values.
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(a) GIN trained on the deterministic segment.
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(b) GIN trained on the non-deterministic segment.
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(c) SAGE trained on the non-deterministic segment.

Figure 12: Predictions for each model in for the small real-world dataset.
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(c) SAGE trained on the non-deterministic segment.

Figure 13: Predictions for each model in for the medium-large real-world dataset.
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