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ABSTRACT

Adversarial imitation learning (AIL) is a popular method that has recently
achieved much success. However, the performance of AIL is still unsatisfactory on
the more challenging tasks. We find that one of the major reasons is due to the low
quality of AIL discriminator representation. Since the AIL discriminator is trained
via binary classification that does not necessarily discriminate the policy from the
expert in a meaningful way, the resulting reward might not be meaningful either.
We propose a new method called Policy Contrastive Imitation Learning (PCIL)
to resolve this issue. PCIL learns a contrastive representation space by anchor-
ing on different policies and generates a smooth cosine-similarity-based reward.
Our proposed representation learning objective can be viewed as a stronger ver-
sion of the AIL objective and provide a more meaningful comparison between the
agent and the policy. From a theoretical perspective, we show the validity of our
method using the apprenticeship learning framework. Furthermore, our empirical
evaluation on the DeepMind Control suite demonstrates that PCIL can achieve
state-of-the-art performance. Finally, qualitative results suggest that PCIL builds
a smoother and more meaningful representation space for imitation learning.

1 INTRODUCTION

Imitation is one of the fundamental capabilities of an intelligent agent (Hussein et al., 2017). Ani-
mals and humans can acquire many skills by mimicking each other (Byrne, 2009). In engineering,
imitation learning also enables many robotics applications. One mainstream class of imitation learn-
ing algorithms is the adversarial imitation learning (AIL) (Ho & Ermon, 2016). AIL converts the
imitation task into a distribution matching problem and proposes to imitate it by training a policy
against an adversarial discriminator. AIL has enjoyed great success on many imitation tasks: it
achieves superior performance (Ho & Ermon, 2016; Kostrikov et al., 2018), and has been experi-
mentally proven to alleviate some of the distributional drift issue, and can work even without expert
actions (Torabi et al., 2018b).However, AIL is hard to train in practice, usually involving careful
tuning of discriminator neural network sizes and learning rates (Wang et al., 2017; Kim & Park,
2018; Orsini et al., 2021). The fragility of the discriminator (Peng et al., 2018) not only leads to
poor performance but also severely limits the applicability of AIL to a broader range of tasks.

Numerous techniques have been proposed to improve the performance of AIL, such as using reg-
ularization and gradient penalties (Fu et al., 2017; Kostrikov et al., 2018; Gulrajani et al., 2017).
Some works also propose to use different distribution metrics (e.g., KL divergence, Wasserstein dis-
tance) (Xiao et al., 2019) for distribution matching and show some improvements. Though these
methods show encouraging results, we notice that they ignore one crucial aspect of the problem:
the representation of AIL’s discriminator. To be specific, the discriminator in AIL is usually trained
with binary classification loss that distinguishes expert transitions from agent transitions. This dis-
criminator is then used to define rewards. However, since the only goal of the discriminator is to
distinguish the expert from the agent, it does not necessarily learn a good, smooth representation
space that can provide a reasonable comparison between the behavior of two agents.Ideal represen-
tations should be able to provide semantically meaningful signals to compare the expert policy and
the agent policy.

In this paper, we propose a new algorithm called Policy Contrastive Imitation Learning (PCIL) to
achieve this goal. Instead of training with a binary-classification objective, we propose to train a dis-
criminator representation space with the contrastive learning loss. Our method differs from the prior
representation learning approach in AIL in that we perform contrastive learning between different
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Figure 1: Comparison between the representation space of AIL method and our method. Since the
AIL methods use a binary classification objective to distinguish expert and non-expert transitions,
the representation space is only required to separate two classes in two disjoint subspaces. So the
embedding space is not required to be semantically meaningful enough, e.g. (Left) the distance
between 2 expert data points may be even longer than the distance between expert data point and sub-
optimal non-expert data point. (Right) We overcome this limitation by proposing PCIL. Our method
enforces the compactness of the expert’s representation. This ensures that the learned representation
can capture common, robust features of the expert’s transitions, which leads to a more meaningful
representation space.

policies. More specifically, we push the expert’s representation together and pull the agent pol-
icy’s representation away from them. We define the imitation learning reward via cosine similarity
between the policy’s and expert’s transition.

As is shown in Figure 1, the discriminator (binary classifier) might not have a good representation
space: the distance between two expert transitions can be even larger than the distance between an
expert transition and an agent transition. This implies that the discriminator may not encode some
common features of the expert’s behavior and may use non-robust features to compare the behav-
ior. The lack of proper structure in the representation space of traditional discriminators may yield
low-quality AIL rewards. To alleviate this issue, we explicitly define a constraint on the represen-
tation space, requiring that the distance between expert transitions be smaller than their distance
to the agent’s transitions. This is a stronger constraint on the discriminator’s representation: it is
easy to derive a binary classifier from our learned representation. However, the binary classifier’s
representation space does not necessarily satisfy our objective.

From a theoretical perspective, we show the soundness of PCIL in the apprenticeship learning frame-
work. We also evaluate our method empirically by benchmarking our method on the DeepMind
Control Suite (Tassa et al., 2018). Experimental results show that our method is able to achieve state-
of-the-art results. Through ablation study and qualitative visualization, we find that our method is
more effective than prior representation learning methods and able to provide a better representation
space for imitation learning.

In summary, our contributions in this paper are as follows.

1. We point out a new direction to improve the performance of the AIL methods, i.e., going
beyond naive binary classification and leveraging more stable and meaningful representa-
tion learning algorithms for imitation.

2. We propose an algorithm called Policy Contrast Imitation Learning (PCIL) method that
instantiates such an improvement and establishes its connection to apprenticeship learning
from a theoretical perspective.

3. We evaluate our method on the DeepMind Control Suite and achieve state-of-the-art per-
formance. Through ablation studies, we highlight its essential difference from previous
contrastive learning methods in AIL.
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2 PRELIMINARIES

2.1 NOTATIONS

In this paper, we model the imitation leanring problem as a markov decision process M =
(S,A, p0(s), p (s

′ | s, a) , r (s, a, s′) , γ). Here, S is the state space. A is the action space. p0(s) de-
fines the initial state distribution. p(s′|s, a) defines the transition dynamics. r(s, a, s′) is the reward
function. γ is the discount factor. The goal is to maximize the expected return of the learned policy
π, which is defined by

J (π) = Es0∼p0(s),ai∼π(·|si),si+1∼p(·|si,ai)

[ ∞∑
k=0

γkr (sk, ak, sk+1)

]
.

For the imitation learning problem, the algorithm does not have access to the reward function and the
transition dynamics. Instead, it is provided with an expert demonstration dataset D sampled from
an expert policy πE , which can perform well in M. Here, D takes the form of {(sEi , aEi )}, where
(sEi , a

E
i ) is sampled from ρπE

, the stationary state-action visiting distribution of πE . The imitation
learning algorithm is then required to reproduce the expert’s behavior with D.

2.2 ADVERSARIAL IMITATION LEARNING

One popular class of the imitation learning algorithm is the adversarial imitation learning (AIL),
whose vanilla version is Generative Adversarial Imitation Learning (GAIL) (Ho & Ermon, 2016).
The idea of GAIL is to minimize the divergence between ρπE

and ρπ . It uses a discriminator D(s, a)
to distinguish expert’s transitions (sEi , a

E
i ) ∼ D from the policy transitions (s, a) ∼ ρπ , which is

trained by maximizing the objective

L = E(si,ai)∼π[log(D(si, ai))] + E(sEi ,aE
i )∼D[log(1−D(sEi , a

E
i ))].

To achieve imitation, the agent policy is then required to fool the discriminator, which can only
be possible when the policy π resembles the expert πE . Specifically, GAIL defines an adversarial
reward r(st, at) = − log(1−D(st, at)), and trains π to maximize the expected return with respect
to this reward using on-policy RL algorithms.

3 POLICY CONTRASTIVE IMITAITON LEARNING

3.1 OVERVIEW

We propose a novel representation-learning-based approach called Policy Contrastive Imitation
Learning to improve the AIL reward. The overview of PCIL is illustrated in Figure 2. Our key
insight is to learn a policy-contrastive representation space. Unlike the contrastive learning studied
in previous AIL literature, the policy-contrastive representation here is obtained by anchoring on
policy, leading to meaningful representation that can compare different policies. We will discuss the
training of this representation in Section 3.2 and the reward design in Section 3.3. Then, we will
show the convergence of our algorithm in Section 3.4.

3.2 CONTRASTIVE POLICY REPRESENTATION FOR IMITATION

The vanilla AIL algorithms are based on unconstrained representations and can be very non-robust.
One possible approach to handle this problem is to learn a more meaningful representation by con-
trastive learning. Researchers (He et al., 2020) have found that it can usually learn semantically
meaningful representation, leading to better performance on downstream tasks, such as classifica-
tion. However, though it is effective in the field of supervised learning, prior work (Chen et al.,
2021) has found that it does not greatly improve AIL much.

To understand the reason behind this, we first recall that the contrastive learning method learns
by drawing the representation of one training sample x towards a similar positive sample xp, and
pulling it away from a dissimilar, negative sample xn. Some heuristic rules determine the choice
of positive and negative samples: the positive sample is usually defined as a data augmentation of
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Figure 2: Illustration of our contrastive learning approach. We first select an anchor state (the or-
ange) from the expert trajectory. Then, we select a positive state sample (the red) from another expert
trajectory and a negative state sample (the green) from the agent trajectory. We map these selected
states to the representation space. Finally, we push the representation of the anchor state and the
positive state together and pull the representation of negative samples away from the representation
of the anchor state.

x. Therefore, this augmentation decides what should be similar to the representation. Nevertheless,
we argue that the definition of similarity in the previous works is not strong enough for AIL. This is
because, in AIL, the representation should also be able to let us discern good behavior from the bad
behavior. However, the difference between good and bad behavior here can sometimes be very faint.
For example, consider a case where a robot misses the exact point to execute a certain action and, as
a result, fails to accomplish the task. The good and bad states right before this point may look very
similar. More specifically, the difference can simply be minor in a particular physical measurement,
like the distance. In this case, the representation should consider this as a semantic component and be
sensitive to such a difference to succeed. Unfortunately, the difference between the positive sample
and the anchor sample in the previous representation learning methods is usually very large and
overwhelms the difference between good and bad states. As a result, the model may not distinguish
between good and bad states effectively. Though combining the representation learning objective
and the AIL objective may help combat this problem by enforcing a hard distinguishing constraint
over contrastive representation, in practice we find this does not work well (Section 4.4).

These observations motivate us to learn a representation that is semantically meaningful and able to
distinguish between good and bad states. We find a surprisingly simple yet very effective approach:
we can consider the samples drawing from the same policy as the positive samples and the samples
from all the other policies as negative samples. In the case of imitation learning, our samples can
be naturally divided into two categories, namely expert and non-expert samples. Then given the
encoder Φ : S → S that maps the state to a representation vector in a high-dimensional sphere, we
define its infoNCE representation loss function as follows:

L = E
x0=(s,a)∼D,

xp=(sp,ap)∼D,
x̃i=(s̃i,ãi)∼ρπ

[
−Φ(x0)

TΦ(xp) + log

(
expΦ(x0)

TΦ(xp) +

n∑
i=1

expΦ(x0)
TΦ(x̃i)

)]
.

(1)
Here, x0 is some state-action pair from the expert transitions; xp is some transition from the expert
data acting as positives; x̃i is some agent transition working as negatives. In other words, we require
Φ to draw the expert samples towards each other and pull all the policy samples away from the
expert samples.

Our proposed objective function is a strictly stronger constraint on the discriminator. The binary
classification discriminator can find any hyper-plane that separates the two types of transitions, with
no constraint on how the transitions are embedded. However, our objective enforces the pair-wise
distance constraint between any triplets. One can derive a binary expert-policy transition classifier
from a trained Φ by computing Φ(x0)

TΦ(x) > t, where x0 is any expert transition, x is the tran-
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sition to be classified and t is some threshold. However, on the other hand, the binary classification
induced latent space might not satisfy our constraint. As illustrated in Figure 1, the latent space
for the binary classification discriminator might have some expert-expert pairs that are even further
away than some expert-agent pairs.

Interestingly, our approach echoes the supervised contrastive learning (SCL) (Khosla et al., 2020),
which suggests that we consider all the samples in one class as similar, positive samples. Here we
also consider all the samples in the expert demonstrations as similar. However, unlike SCL, we
do not require the samples from the agents to be similar to each other. This is because the agent
transitions are generated from different policies during the training process.

3.3 SIMILARITY-BASED IMITATION REWARD

With a representation that can capture the difference between good and bad states, we can then
define a reward function to encourage imitation learning. Though using an AIL-style reward with
this representation is still possible, we find that a better choice is to use a cosine similarity metric to
define the reward. It has several advantages: it is bounded and appears relatively smooth in practice,
leading to more stable learning. Concretely, we define:

r(x) = Φ (x)
T ExE∼DΦ (xE) . (2)

Nevertheless, in practice evaluating the latter expectation can be time-consuming since Φ is fre-
quently updated. Therefore, we use a random expert sample for the reward calculation. From this
reward, we can see that a policy can only obtain high rewards when it frequently visits the expert’s
distribution. This naturally connects our method to the distribution matching, and we provide the
theoretical analysis of our algorithm in the following subsection.

3.4 THEORETICAL ANALYSIS

In this part, we show that PCIL can be reduced to Apprenticeship Learning (AL) (Abbeel & Ng,
2004). First, let us recall that an AL problem takes the following form (Ho & Ermon, 2016):

min
π

max
r∈R

E
x=(s,a)∼D

[r(x)]− E
x=(s,a)∼ρπ

[r(x)] , (3)

where R is a set of reward functions. AL plays a min-max game between the policy π and the reward
function r. Intuitively, in the inner loop we would like to find a cost function such that the expert
data’s cummulative return is higher than that of the agent’s, and their gap is maximized. Meanwhile,
the policy π tries to minimize this gap.

Now, let us consider how to reduce our objective to the AL formulation. For simplicity, we consider
the case that we only have one negative sample. We notice that Equation 1 is then

L = E
[
− log

expΦ(x0)
TΦ(xp)

expΦ(x0)TΦ(xp) + expΦ(x0)TΦ(xn)

]
. (4)

As suggested by (Khosla et al., 2020), we can apply the Taylor expansion trick to approximate this
loss function with the following form:

L ≈ E [∥Φ(x0)− Φ(xp)∥2 − ∥Φ(x0)− Φ(xn)∥2]. (5)

Note that we drop the constant terms and the scaling constant since they do not affect the optimiza-
tion objective. Moreover, since Φ embeds the data points to the sphere, we have ∥Φ(x)∥2 = 1,∀x.
As a result, we can further expand each term above and have

L = E
[
Φ(x0)

TΦ(xn)− Φ(x0)
TΦ(xp)

]
. (6)

Since the variables in this equation are independent from each other, we are minimizing

L = Exn∼ρπ [Ex0∼D[Φ(x0)]
TΦ(xn)]− Exp∼D[Ex0∼D[Φ(x0)]

TΦ(xp)]. (7)

Let the reward function rθ(x) = Ex0∼D[Φθ(x0)]
TΦθ(x) as we defined in Equation 2, then mini-

mizing the Equation 7 is exactly doing the maximization of

Ex∼D [rθ(x)]− Ex∼ρπ [rθ(x)] , (8)

which is exactly the inner maximization loop of AL. Then optimizing the policy with respect to this
rθ is exactly the outer loop. Hence, our algorithm is reduced to AL.
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4 EXPERIMENTS

In this section, we empirically evaluate PCIL on an extensive set of tasks from the DeepMind control
suite (Tassa et al., 2018), a widely used benchmark for continuous control. Our experiments are
designed to answer the following questions: (1) Can PCIL achieve expert performance, and how
sample efficient is PCIL compared to state-of-the-art imitation learning algorithms? (2) How does
the representation space of PCIL differ from that of the AIL methods? (3) How does our method
perform when we use different representation learning methods and reward design?

4.1 EXPERIMENTAL SETUP

Environments We experiment with 10 MuJoCo (Todorov et al., 2012) tasks provided by Deep-
Mind Control Suite. The selected tasks cover various difficulty levels, ranging from simple control
problems, such as the single degree of freedom cart pole, to complex high-dimensional tasks, such
as the quadruped run. The episode length for all tasks is 1000 steps, where a per-step ground truth
environment reward is in the unit interval [0, 1]. For each task, we train an expert policy using
DrQ-v2 (Yarats et al., 2021) with the true environment reward function and use it to collect 10
demonstrations. We refer readers to Appendix A for the full task list and more details about the
demonstrations.

Training Details To update the encoder, we randomly sample 128 expert transitions and 128 agent
transitions from a replay buffer. For arbitrary expert transition, any other expert transition is con-
sidered a positive sample, and all the agent transitions constitute the set of negative samples. We
update the encoder by minimizing Equation 1 with respect to these samples. We use DrQ-v2 (Yarats
et al., 2021) as the underlying RL algorithm to train the agent with the cosine similarity reward
given in Equation 2. We use a budget of 2M environment steps for all the experiments. Further
implementation details can be found in Appendix B.

Baselines We compare PCIL to Behavioral Cloning (BC) and two major classes of imitation learn-
ing algorithms:

1. Adversarial IRL: We consider Discriminator-Actor-Critic (DAC) (Kostrikov et al., 2018), a
state-of-the-art AIL method that employs an unbiased AIL reward function and performs off-
policy training to reduce environmental interactions.

2. Trajectory-matching IRL: Primal Wasserstein Imitation Learning (PWIL) (Dadashi et al.,
2020) and Sinkhorn Imitation Learning (SIL) (Papagiannis & Li, 2020) are two recently pro-
posed trajectory-matching imitation learning methods. PWIL computes the reward based on an
upper bound of Wasserstein distance. SIL computes the reward based on Sinkhorn distances (Cu-
turi, 2013).

To ensure a fair comparison, we implement all the baselines using the same RL algorithm. The
implementation details of these algorithms are in the Appendix.

4.2 MAIN RESULTS

We show the performance curves of 6 tasks in Figure 3, which are averaged over three random
seeds. More results on DeepMind control tasks are provided in Appendix D. We find that PCIL is
able to outperform the existing methods on all of these tasks. It achieves near-expert performance
within our online sample budget in all considered tasks except Hopper Hop. In terms of sample effi-
ciency, i.e., the number of environment interactions required to solve a task, PCIL shows significant
improvements over prior methods on five tasks: Cheetah Run, Finger Spin, Hopper Hop, Hopper
Stand, and Quadruped Run. For the remaining tasks, PCIL achieves similar results compared with
the state-of-the-art adversarial imitation learning method DAC. In particular, we notice that PCIL’s
performance gain is larger on more difficult tasks (e.g., Cheetah Run, Quadruped Run). On those
easier tasks (e.g., Walker Stand, Walker Walk), the baselines are also able to achieve strong results.
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Figure 3: Comparisons of algorithms on 6 selected tasks. See Appendix D for more tasks. For every
20k environment steps, we perform 10-episode rollouts of the policy without exploration noise and
report average episode returns over the 10 episodes. We plot the mean performance over 3 seeds
together with the shaded regions, which represent 95% confidence intervals.

DAC Cheetah Run

PCIL Cheetah Run PCIL Hopper Hop

DAC Hopper Hop

PCIL Finger Spin

DAC Finger Spin

Figure 4: t-SNE visualization results for DAC (top panels) and our PCIL method (bottom panels).
The blue color indicates the expert’s transition. The lighter (yellow) color indicates agent transitions
with higher real reward while the darker (green) indicates lower real reward.

4.3 ANALYSIS OF REPRESENTATION SPACE

We visualize the representation space of PCIL and DAC using t-SNE (Van der Maaten & Hinton,
2008) in Figure 4. For DAC, since there is no explicit representation learning in the discriminator, we
treat the last hidden layer of its discriminator as the representation. We randomly sample 128 expert
transitions and 256 agent transitions for visualization. For a fair comparison, all the transitions of
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Methods Finger Spin Walker Run Hopper Stand Hopper Hop
PCL + Sim-reward (Ours) 964.2 ±24.2 778.4 ±14.1 771.2 ±142.1 243.2 ±20.1
TCN + Sim-reward 975.2 ±45.1 180.5 ±11.4 2.0 ±1.2 6.8 ±0.2
PCL + GAIL-reward 2.5 ±2.4 18.5 ±6.5 1.2 ±1.8 0.1 ±0.1
TCN + GAIL-reward 35.4 ±19.2 19.8 ±4.2 1.5 ±0.3 17.3 ±4.6

Table 1: Ablation studies on the policy contrastive representation and similarity-based imitation
reward. We report the average final returns on 4 selected tasks over 3 random seeds and standard
deviations are given in error bars.

PCIL and DAC are selected from the same episode during the training process on the same task.
We use color to indicate the real environment reward of the agent’s transitions. The lighter (yellow)
color indicates a higher reward for agent transition while the darker (green) indicates a lower reward
agent transition. The blue color indicates the expert’s transition.

We observe that in the representation space of PCIL, the expert transitions are concentrated in a
cluster. Moreover, the distance between each agent transition to the cluster of expert transition is
highly correlated with the real reward of that agent transition. This fact suggests that the contrastive
objective of PCIL indeed induces a meaningful representation space here. On the contrary, the
representation space of DAC is much less structured. The expert transitions are scattered throughout
the representation space of DAC. Moreover, we identify that in the DAC’s representation space, the
agent’s real ward does not correlate well with its distance to the expert transitions. These facts show
that our method indeed learns a better representation space.

4.4 ABLATION STUDIES

As described in our method, our method has two components: a policy contrastive representation
for imitation (Section 3.2) and a similarity-based imitation reward (Section 3.3). In this part, we
carry out ablation studies to analyze their effects. We first introduce our design choices as follows.

PCIL Representation v.s. TCN Representation We replace our proposed policy contrastive
objective with other contrastive learning methods. For this purpose, we adopt the popular self-
supervised representation learning method that leverages temporal information: Time-Contrastive
Networks (TCN) (Sermanet et al., 2018). In this case, the positive samples are selected within a
small window around the anchor sample, while the negative samples are selected from distant time
steps in the same rollout trajectory. See Appendix C for implementation details.

Similarity-based Reward v.s. GAIL-like Reward We also ablate the similarity-based reward in
PCIL by replacing the similarity-based imitation reward with a GAIL-like reward. Specifically, we
train a linear binary classifier on the policy contrastive embedding space to distinguish expert or
non-expert data. In this case, the embedding space is still trained by PCIL contrastive loss, and the
GAIL reward’s gradient is detached from the embedding network. We use the same reward predictor
as other GAIL-style methods (Kostrikov et al., 2018), i.e. log(D(x))− log(1−D(x)).

Analysis By comparing rows 1 and 2 in Table 1, we find that the approach with TCN encoder does
not work in three out of four environments. This is because the optimization goal of TCN is not to
distinguish between expert and non-expert data. Thus the reward produced by comparing expert
and non-expert data in the learned representation space is not necessarily meaningful. Note that the
case in row 2 is no longer an adversarial IRL method. We also consider a case (row 4 in Table 1)
where we use TCN and GAIL-like reward predictor, but the performance of this method is poor.
Moreover, we observe that in the absence of the similarity-based imitation reward (compare rows 1
and 3 in Table 1), our method does not work. This is because our representation space has metric-
space characteristics. As a result, we should use a distance-based metric to compute the reward. In
conclusion, the two components of our method are necessary for achieving good performance.
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5 RELATED WORK

5.1 IMITATION LEARNING

Imitation learning is a class of algorithms that enables a robot to acquire behaviors from a demon-
stration dataset. There are two classes of imitation learning algorithms: behavioral cloning (BC) and
Inverse Reinforcement Learning (IRL) (Ng et al., 2000). BC is a simple supervised learning algo-
rithm that directly fits the expert’s action. However, some work suggests that it has some drawbacks:
it suffers from covariate shift problem (Ross et al., 2011), and it is hard to learn from a demonstration
dataset without expert actions (Torabi et al., 2018a). Instead, IRL (Abbeel & Ng, 2004) proposes
to recover the underlying policy by estimating the underlying reward function and then maximizing
the overall return with this reward. In particular, a recent branch of IRL is the AIL, which proposes
to match agents’ state-action distribution with experts via adversarial training. GAIL (Ho & Ermon,
2016) proposed a maximum entropy occupancy measure matching method which learns a discrim-
inator to bypass the need to recover the expert’s reward function. Later, several works proposed an
improved version of the GAIL methods (Ghasemipour et al., 2020; Blondé et al., 2022; Baram et al.,
2017; Kostrikov et al., 2018; Fu et al., 2017). AIRL (Fu et al., 2017) replaced the Shannon-Jensen
divergence used in GAIL by Kullback-Leibler divergence to measure similarity between state-action
pair distributions. Baram et al. (2017) bridges the GAIL framework to model-based reinforcement
learning. DAC (Kostrikov et al., 2018) improved the sample efficiency by leveraging a replay buffer
without importance sampling and dealing with the absorbing state problem. In contrast to these
works, we focus on the representation of AIL’s discriminator and reformulating AIL in a contrastive
embedding space.

5.2 REPRESENTATION LEARNING FOR POLICY LEARNING

In this work, we propose a representation-learning-based approach to improve imitation learning.
As imitation learning is a major class of policy learning algorithms, we review works that use self-
supervised learning to improve policy learning in this part. Pioneer works (Mirowski et al., 2016;
Jaderberg et al., 2016; Shelhamer et al., 2016; Lample & Chaplot, 2017) explore using auxiliary ob-
jectives (e.g., predict some property of the environment) as a self-supervision signal. Recent works
employ more general self-supervised objectives (Oord et al., 2018). In particular, Srinivas et al.
(2020) are based on contrastive representation learning. Sermanet et al. (2018) learn representation
from multiview video using time contrastive learning. Some other methods also explore the use of
self-supervised representation pretrained on environment data (Ha & Schmidhuber, 2018) or from
real-world images (Xiao et al., 2022; Parisi et al., 2022; Nair et al., 2022). In imitation learning,
Mandi et al. (2022) proposes to use contrastive learning for one-shot imitation learning in robotics.
Chen et al. (2021) investigate the use of representation for imitation learning. However, their result
suggests that self-supervised representation learning only provides a small improvement of imitation
learning algorithms’ performance. Our method differs from all these existing works by proposing to
anchor on different policies and learn a discriminative self-supervised representation for imitation
learning.

6 CONCLUSION

In this paper, we suggested a new approach to improve adversarial imitation learning algorithms: to
learn a more meaningful, discriminative representation space for imitation. To this end, we proposed
a new algorithm called PCIL. We conducted a theoretical analysis of our method and showed its
connection to apprenticeship learning. We also conducted experiments on the DeepMind Control
Suite and showed that PCIL could achieve state-of-the-art performance. Moreover, we used an
ablation study to highlight its difference from the previous representation learning method. In the
future, we will focus on further improving our loss function design. For example, can we anchor
on the agent policies at different training stages? It will also be interesting to extend the proposed
representation learning method in the relaxed setting of IL, like the scene where we can access both
the reward and demonstration.
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7 REPRODUCIBILITY

We implement our algorithm according to parameters and details described in Appendix B and
Section 4.1. We will release our code and data.
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A ENVIRONMENTS

We use 10 continuous control tasks from the DeepMind control suite (Tassa et al., 2018). The
summary for each task is provided in Table 2.

Task dim(S) dim(A)
Finger Spin 6 2
Hopper Stand 14 4
Pendulum Swingup 2 1
Walker Stand 18 6
Walker Walk 18 6
Acrobot Swingup 4 1
Cheetah Run 18 6
Hopper Hop 14 4
Quadruped Run 56 12
Walker Run 18 6

Table 2: A detailed description of each tasks used in our experiments.

Demonstrations For each task, we train expert policies using DrQ-v2 (Yarats et al., 2021) on the
actual environment rewards. We run 3 seeds and pick the seed that achieves the highest return. Then
we use this expert policy to collect 10 demonstrations.

B ALGORITHM DETAILS

B.1 IMPLEMENTATION

RL agent We use DrQ-v2 as the underlying RL algorithm. DrQ-v2 is an off-policy actor-critic
algorithm for continuous control. The core of DrQ-v2 is Deep Deterministic Policy Gradient
(DDPG) (Lillicrap et al., 2015) augmented with n-step returns. The critic is trained using clipped
double Q-learning (Fujimoto et al., 2018) to reduce the overestimation bias in the target value.
The deterministic actor is trained using deterministic policy gradients (DPG) (Silver et al., 2014).
We also follows the setting of actor’s and critic’s neural network architectures in state-based DrQ-
v2 Yarats et al. (2021).

Contrastive encoder The contrastive encoder is implemented as a 4 layer MLP with hidden size
[256, 256, 256]. The output dimension is 64. Following the architecture in Yarats et al. (2021), the
contrastive encoder, the critic and the actor share the same encoder backbone. This shared encoder
is trained with the gradient of the critic alone, which is also following the suggestion of Kostrikov
et al. (2020); Yarats et al. (2021). The input of this shared encoder is state s of a transition.

Reward predictor Reward of the agent transition is computed according to Equation 2. Note
that cosine similarity between expert data points is high due to the optimization goal described in
Equation ??. Thus, we randomly sample one expert transition from the expert replay buffer to
compute agent reward. Empirically, we find that using the mean embedding of the expert data yields
similar performance.

Gradient penalty In order to make the algorithm more stable, we use the gradient penalty tech-
nique (Gulrajani et al., 2017) widely used in Wasserstein-GANs (Arjovsky et al., 2017). We make
minor adjustments to accommodate our policy contrastive loss. GAIL-like methods usually con-
strain the gradient norm of the discriminator’s output with respect to its input. While for PCIL, the
contrastive encoder’s output needs one more step. Specifically, the output embeddings are first used
to calculate rewards following Equation 2, then we compute and penalize the gradient norm of the
rewards. We use 10 as the weighting for the gradient penalty.
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B.2 HYPERPARAMETERS

Table 3 lists the hyperparameters that are used for all baseline methods and our method. Expert
data ratio in PCIL means the ratio between expert data and batch size. A ratio of 0.5 means that
half of the batch is expert data and the other half is the agent data. The contrastive learning usually
needs a temperature scaling after computing the cos-similarity, before computing the exponential.
For simplicity, we ignored it in the main text. In the experiment, we follow prior contrastive learning
work He et al. (2020) and use a typical value of 0.07 for the temperature.

Methods Parameter Value

all methods Replay buffer size 500k
Agent update frequency 2

Optimizer Adam
Learning rate 1e-4

Critic soft-update rate 0.01
Random seed 1,2,3
RL batch size 128

Discriminator training batch size 256
Hidden dim 256

PCIL Expert data ratio 0.5
Contrastive temperature 0.07

Table 3: The hyperparameters of baseline methods and our method.

C ABLATION STUDY IMPLEMENTATION DETAILS

C.1 TCN REPRESENTATION

TCN encoder shares the same network architecture as the PCL encoder. During the training process
in TCN encoder, for a random sampled anchor, we use data point adjacent to it as positive pair and
another random sampled data point as negative pair. We also set contrastive temperature to 0.07 and
batch size to 256, which is the same as PCL encoder.

C.2 GAIL-LIKE REWARD

GAIL reward predictor can be seen as a simplified version of GAIL discriminator which has only
one linear classifier layer. The reward predictor is trained independently to distinguish whether the
input is from a expert data or non-expert data with a binary classification loss.

D ADDITIONAL EXPERIMENTAL RESULTS

Figure 5 shows the performance of PCIL on the other 4 tasks from the DeepMind Control suite. We
notice that the performance of some relatively easy tasks has saturated. All the baselines achieve
expert performance on Pendulum Swingup. On Walker Stand and Walker Walk, PCIL is competitive
with DAC, which already demonstrates impressive sample efficiency.
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Figure 5: Comparisons of algorithms on the other 4 tasks.
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