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Abstract

Text-to-image synthesis has recently seen signifi-

cant progress thanks to large pretrained language

models, large-scale training data, and the intro-

duction of scalable model families such as dif-

fusion and autoregressive models. However, the

best-performing models require iterative evalua-

tion to generate a single sample. In contrast, gen-

erative adversarial networks (GANs) only need a

single forward pass. They are thus much faster,

but they currently remain far behind the state-

of-the-art in large-scale text-to-image synthesis.

This paper aims to identify the necessary steps

to regain competitiveness. Our proposed model,

StyleGAN-T, addresses the specific requirements

of large-scale text-to-image synthesis, such as

large capacity, stable training on diverse datasets,

strong text alignment, and controllable variation

vs. text alignment tradeoff. StyleGAN-T signifi-

cantly improves over previous GANs and outper-

forms distilled diffusion models — the previous

state-of-the-art in fast text-to-image synthesis —

in terms of sample quality and speed.

1. Introduction

In text-to-image synthesis, novel images are generated based

on text prompts. The state-of-the-art in this task has re-

cently taken dramatic leaps forward thanks to two key ideas.

First, using a large pretrained language model as an encoder

for the prompts makes it possible to condition the synthe-

sis based on general language understanding (Ramesh et al.,

2022; Saharia et al., 2022). Second, using large-scale train-

ing data consisting of hundreds of millions of image-caption

pairs (Schuhmann et al., 2022) allows the models to synthe-

size almost anything imaginable.
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Figure 1. Quality vs. speed in large-scale text-to-image synthesis.

StyleGAN-T greatly narrows the quality gap between GANs and

other model families while generating samples at a rate of 10 FPS

on an NVIDIA A100. The y-axis corresponds to zero-shot FID on

MS COCO at 256×256 resolution; lower is better.

Training datasets continue to increase rapidly in size and

coverage. Consequently, text-to-image models must be scal-

able to a large capacity to absorb the training data. Recent

successes in large-scale text-to-image generation have been

driven by diffusion models (DM) (Ramesh et al., 2022; Sa-

haria et al., 2022; Rombach et al., 2022) and autoregressive

models (ARM) (Zhang et al., 2021; Yu et al., 2022; Gafni

et al., 2022) that seem to have this property built in, along

with the ability to deal with highly multi-modal data.

Interestingly, generative adversarial networks (GAN) (Good-

fellow et al., 2014) — the dominant family of generative

models in smaller and less diverse datasets — have not been

particularly successful in this task (Zhou et al., 2022). Our

goal is to show that they can regain competitiveness.

The primary benefits offered by GANs are inference speed

and control of the synthesized result via latent space ma-

nipulations. StyleGAN (Karras et al., 2019; 2020; 2021)

in particular has a thoroughly studied latent space, which

allows principled control of generated images (Bermano

et al., 2022; Härkönen et al., 2020; Shen et al., 2020; Abdal

et al., 2021; Kafri et al., 2022). While there has been no-

table progress in speeding up DMs (Salimans & Ho, 2022;

Karras et al., 2022; Lu et al., 2022), they are still far behind

GANs that require only a single forward pass.
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We draw motivation from the observation that GANs lagged

similarly behind diffusion models in ImageNet (Deng et al.,

2009; Dhariwal & Nichol, 2021) synthesis until the discrim-

inator architecture was redesigned in StyleGAN-XL (Sauer

et al., 2021; 2022), which allowed GANs to close the gap.

In Section 3, we start from StyleGAN-XL and revisit the

generator and discriminator architectures, considering the

requirements specific to the large-scale text-to-image task:

large capacity, extremely diverse datasets, strong text align-

ment, and controllable variation vs. text alignment tradeoff.

We have a fixed training budget of 4 weeks on 64 NVIDIA

A100s available for training our final model at scale. This

constraint forces us to set priorities because the budget is

likely insufficient for state-of-the-art, high-resolution results

(CompVis, 2022). While the ability of GANs to scale to

high resolutions is well known (Wang et al., 2018; Karras

et al., 2020), successful scaling to the large-scale text-to-

image task remains undocumented. We thus focus primarily

on solving this task in lower resolutions, dedicating only a

limited budget to the super-resolution stages.

Our StyleGAN-T achieves a better zero-shot MS COCO

FID (Lin et al., 2014; Heusel et al., 2017) than current state-

of-the-art diffusion models at a resolution of 64×64. At

256×256, StyleGAN-T halves the zero-shot FID previously

achieved by a GAN but continues to trail SOTA diffusion

models. The key benefits of StyleGAN-T include its fast

inference speed and smooth latent space interpolation in

the context of text-to-image synthesis, illustrated in Fig. 1

and Fig. 2, respectively. Our implementation is available at

https://github.com/autonomousvision/stylegan-t.

2. StyleGAN-XL

Our architecture design is based on StyleGAN-XL (Sauer

et al., 2022) that — similar to the original StyleGAN (Kar-

ras et al., 2019) — first processes the normally distributed

input latent code z by a mapping network to produce an in-

termediate latent code w. This intermediate latent is then

used to modulate the convolution layers in a synthesis net-

work using the weight demodulation technique introduced

in StyleGAN2 (Karras et al., 2020). The synthesis network

of StyleGAN-XL uses the alias-free primitive operations

of StyleGAN3 (Karras et al., 2021) to achieve translation

equivariance, i.e., to enforce the synthesis network to have

no preferred positions for the generated features.

StyleGAN-XL has a unique discriminator design where

multiple discriminator heads operate on feature projec-

tions (Sauer et al., 2021) from two frozen, pretrained fea-

ture extraction networks: DeiT-M (Touvron et al., 2021a)

and EfficientNet (Tan & Le, 2019). Their outputs are fed

through randomized cross-channel and cross-scale mixing

modules. This results in two feature pyramids with four res-

Zero-shot FID30k ↓ CLIP score ↑

StyleGAN-XL 51.88 5.58

+ StyleGAN2 layers 51.60 5.61

+ Residual Convolutions 45.23 5.70

+ Split operation 45.10 6.02

+ Redesigned D 26.77 9.78

+ LCLIP 20.52 11.72

Table 1. Architecture ablation. Our architectural changes notably

improve sample quality and text alignment. Here, we use the

lightweight training configuration described in Appendix A.

olution levels each that are then processed by eight discrim-

inator heads. An additional pretrained classifier network is

used to provide guidance during training.

The synthesis network of StyleGAN-XL is trained progres-

sively, increasing the output resolution over time by intro-

ducing new synthesis layers once the current resolution

stops improving. In contrast to a previous progressive grow-

ing approach (Karras et al., 2018), the discriminator struc-

ture does not change during training. Instead, the early low-

resolution images are upsampled as necessary to suit the

discriminator. In addition, the already trained synthesis lay-

ers are frozen as further layers are added.

For class-conditional synthesis, StyleGAN-XL concatenates

an embedding of a one-hot class label to z and uses a pro-

jection discriminator (Miyato & Koyama, 2018).

3. StyleGAN-T

We choose StyleGAN-XL as our baseline architecture be-

cause of its strong performance in class-conditional Ima-

geNet synthesis (Sauer et al., 2022). In this section, we

modify this baseline piece by piece, focusing on the genera-

tor (Section 3.1), discriminator (Section 3.2), and variation

vs. text alignment tradeoff mechanisms (Section 3.3) in turn.

Throughout the redesign process, we measure the effect of

our changes using zero-shot MS COCO. For practical rea-

sons, the tests use a limited compute budget, smaller models,

and a smaller dataset than the large-scale experiments in Sec-

tion 4; see Appendix A for details. We quantify sample qual-

ity using FID (Heusel et al., 2017) and text alignment using

CLIP score (Hessel et al., 2021). Following prior art (Balaji

et al., 2022), we compute the CLIP score using a ViT-g-14

model trained on LAION-2B (Schuhmann et al., 2022).

To change the class conditioning to text conditioning in our

baseline model, we embed the text prompts using a pre-

trained CLIP ViT-L/14 text encoder (Radford et al., 2021)

and use them in place of the class embedding. Accordingly,

we also remove the training-time classifier guidance. This

simple conditioning mechanism matches the early text-to-

2
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Figure 2. Example images and interpolations. StyleGAN-T generates diverse samples matching the text prompt and allows for smooth

interpolations between prompts, illustrated as a single continuous interpolation in scanline order. Generating these 56 samples at 512×512

takes 6 seconds on an NVIDIA RTX 3090, while a comparable grid takes up to several minutes with current diffusion models. The

accompanying video further demonstrates interpolations and contrasts them with diffusion models.
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Figure 3. Overview of StyleGAN-T. (a) Our generator architecture (Sec. 3.1) is closely related to StyleGAN2, with the learned constant

replaced with Fourier features and conditioning applied in a slightly different place. (b) For each resolution, a generator block is executed

and its contribution is accumulated to the image via a dedicated ToRGB layer. The generator blocks employ residual connections and

a new 2nd order style mechanism (Eq. 1). (c) Our discriminator (Sec. 3.2) processes the intermediate tokens of a DINO-trained vision

transformer using 5 identical discriminator heads. Text conditioning is done using projection at the end. (d) Text prompt is embedded

using CLIP and supplied to the generator and discriminator. We also employ a guidance term to further improve text alignment (Sec. 3.3).

image models (Reed et al., 2016a;b). Throughout this work,

we use CLIP ViT-L/14 for text conditioning as it offers a

good trade-off between synthesis performance and compu-

tational overhead, compared to using larger language mod-

els (Saharia et al., 2022). As shown in Table 1, this baseline

reaches a zero-shot FID of 51.88 and CLIP score of 5.58 in

our lightweight training configuration. Note that we use a

different CLIP model for conditioning the generator and for

computing the CLIP score, which reduces the risk of artifi-

cially inflating the results.

3.1. Redesigning the Generator

StyleGAN-XL uses StyleGAN3 layers to achieve transla-

tional equivariance. While equivariance can be desirable

for various applications, we do not expect it to be necessary

for text-to-image synthesis because none of the successful

DM/ARM-based methods are equivariant. Additionally, the

equivariance constraint adds computational cost and poses

certain limitations to the training data that large-scale image

datasets typically violate (Karras et al., 2021).

For these reasons, we drop the equivariance and switch to

StyleGAN2 backbone for the synthesis layers, including

output skip connections and spatial noise inputs that facili-

tate stochastic variation of low-level details. The high-level

architecture of our generator after these changes is shown in

Fig. 3a. We additionally propose two changes to the details

of the generator architecture (Fig. 3b).

Residual convolutions. As we aim to increase the model

capacity significantly, the generator must be able to scale in

both width and depth. However, in the basic configuration, a

significant increase in the generator’s depth leads to an early

mode collapse in training. An important building block in

modern CNN architectures (Liu et al., 2022b; Dhariwal &

Nichol, 2021) is an easily optimizable residual block that

normalizes the input and scales the output. Following these

insights, we make half the convolution layers residual and

wrap them by GroupNorm (Wu & He, 2018) for normaliza-

tion and Layer Scale (Touvron et al., 2021b) for scaling their

contribution. A layer scale of a low initial value of 10−5

allows gradually fading in the convolution layer’s contri-
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bution, stabilizing the early training iterations significantly.

This design allows us to increase the total number of layers

considerably — by approximately 2.3× in the lightweight

configuration and 4.5× in the final model. For fairness, we

match the parameter count of the StyleGAN-XL baseline.

Stronger conditioning. The text-to-image setting is chal-

lenging because the factors of variation can vastly differ per

prompt. Consider the prompts “a close-up of a face” and “a

beautiful landscape.” The first prompt should generate faces

with varying eye color, skin color, and proportions, whereas

the second should produce landscapes from different areas,

seasons, and daytime. In a style-based architecture, all of

this variation has to be implemented by the per-layer styles.

Thus the text conditioning may need to affect the styles

much more strongly than was necessary for simpler settings.

In early tests, we observed a clear tendency of the input

latent z to dominate over the text embedding ctext in our

baseline architecture, leading to poor text alignment. To

remedy this, we introduce two changes that aim to amplify

the role of ctext. First, we let the text embeddings bypass the

mapping network, following the observations by Härkönen

et al. (2022). A similar design was also used in LAFITE

(Zhou et al., 2022), assuming that the CLIP text encoder

defines an appropriate intermediate latent space for the text

conditioning. We thus concatenate ctext directly to w and

use a set of affine transforms to produce per-layer styles

s̃. Second, instead of using the resulting s̃ to modulate the

convolutions as-is, we further split it into three vectors of

equal dimension s̃1,2,3 and compute the final style vector as

s = s̃1 ⊙ s̃2 + s̃3. (1)

The crux of this operation is the element-wise multiplica-

tion ⊙ that effectively turns the affine transform into a 2nd

order polynomial network (Chrysos et al., 2020; Chrysos

& Panagakis, 2021), increasing its expressive power. The

stacked MLP-based conditioning layers in DF-GAN (Tao

et al., 2022) implicitly include similar 2nd order terms.

Together, our changes to the generator improve FID and

CLIP score by ∼10%, as shown in Table 1.

3.2. Redesigning the Discriminator

We redesign the discriminator from scratch but retain

StyleGAN-XL’s key ideas of relying on a frozen, pretrained

feature network and using multiple discriminator heads.

Feature network. For the feature network, we choose

a ViT-S (Dosovitskiy et al., 2021) trained with the self-

supervised DINO objective (Caron et al., 2021). The net-

work is lightweight, fast to evaluate, and encodes semantic

information at high spatial resolution (Amir et al., 2021).

An additional benefit of using a self-supervised feature net-

work is that it circumvents the concern of potentially com-

promising FID (Kynkäänniemi et al., 2022).

Architecture. Our discriminator architecture is shown

in Fig. 3c. ViTs are isotropic, i.e., the representation size

(tokens × channels) and receptive field (global) are the

same throughout the network. This isotropy allows us to

use the same architecture for all discriminator heads, which

we space equally between the transformer layers. Multiple

heads are known to be beneficial (Sauer et al., 2021), and

we use five heads in our design.

Our discriminator heads are minimalistic, as detailed in

Fig. 3c, bottom. The residual convolution’s kernel width

controls the head’s receptive field in the token sequence.

We found that 1D convolutions applied on the sequence of

tokens performed just as well as 2D convolutions applied on

spatially reshaped tokens, indicating that the discrimination

task does not benefit from whatever 2D structure remains

in the tokens. We evaluate a hinge loss (Lim & Ye, 2017)

independently for each token in every head.

Sauer et al. (2021) use synchronous BatchNorm (Ioffe &

Szegedy, 2015) to provide batch statistics to the discrimi-

nator. BatchNorm is problematic when scaling to a multi-

node setup, as it requires communication between nodes and

GPUs. We use a variant that computes batch statistics on

small virtual batches (Hoffer et al., 2017). The batch statis-

tics are not synchronized between devices but are calculated

per local minibatch. Furthermore, we do not use running

statistics, and thus no additional communication overhead

between GPUs is introduced.

Augmentation. We apply differentiable data augmentation

(Zhao et al., 2020) with default parameters before the feature

network in the discriminator. We use random crops when

training at a resolution larger than 224×224 pixels (ViT-S

training resolution).

As shown in Table 1, these changes significantly improve

FID and CLIP score by further ∼40%. This considerable

improvement indicates that a well-designed discriminator

is critical when dealing with highly diverse datasets. Com-

pared to the StyleGAN-XL discriminator, our simplified re-

design is ∼2.5× faster, leading to ∼1.5× faster training.

3.3. Variation vs. Text Alignment Tradeoffs

Guidance (Dhariwal & Nichol, 2021; Ho & Salimans, 2022)

is an essential component of current text-to-image diffusion

models. It trades variation for perceived image quality in a

principled way, preferring images that are strongly aligned

with the text conditioning. In practice, guidance drastically

improves the results; thus, we want to approximate its be-

havior in the context of GANs.
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Guiding the generator. StyleGAN-XL uses a pretrained

ImageNet classifier to provide additional gradients during

training, guiding the generator toward images that are easy

to classify. This method improves results significantly. In

the context of text-to-image, “classification” involves cap-

tioning the images. Thus, a natural extension of this ap-

proach is to use a CLIP image encoder instead of a classifier.

Following Crowson et al. (2022), at each generator update,

we pass the generated image through the CLIP image en-

coder to obtain caption cimage, and minimize the squared

spherical distance to the normalized text embedding ctext:

LCLIP = arccos2(cimage · ctext) (2)

This additional loss term guides the generated distribution

towards images that are captioned similarly to the input text

encoding ctext. Its effect is thus similar to the guidance in

diffusion models. Fig. 3d illustrates our approach.

CLIP has been used in prior work to guide a pretrained

generator during synthesis (Nichol et al., 2022; Crowson

et al., 2022; Liu et al., 2021). In contrast, we use it as a part

of the loss function during training. It is important to note

that overly strong CLIP guidance during training impairs

FID, as it limits the distribution diversity and ultimately

starts introducing image artifacts. Therefore, the weight of

LCLIP in the overall loss needs to strike a balance between

image quality, text conditioning, and distribution diversity;

we set it to 0.2. We further observed that guidance is helpful

only up to 64×64 pixel resolution. At higher resolutions,

we apply LCLIP to random 64×64 pixel crops.

As shown in Table 1, CLIP guidance improves FID and

CLIP scores by further ∼20%.

Guiding the text encoder. Interestingly, the earlier meth-

ods listed above that use a pretrained generator did not report

encountering low-level image artifacts. We hypothesize that

the frozen generator acts as a prior that suppresses them. We

build on this insight to further improve the text alignment.

In our primary training phase, the generator is trainable and

the text encoder is frozen. We then introduce a secondary

phase, where the generator is frozen and the text encoder

becomes trainable instead. We only train the text encoder as

far as the generator conditioning is concerned; the discrimi-

nator and the guidance term (Eq. 2) still receive ctext from

the original frozen encoder. This secondary phase allows a

very high CLIP guidance weight of 50 without introducing

artifacts and significantly improves text alignment without

compromising FID (Section 4.2). Compared to the primary

phase, the secondary phase can be much shorter. After con-

vergence, we continue with the primary phase.

Explicit truncation. Typically variation has been traded to

higher fidelity in GANs using the truncation trick (Marchesi,

2017; Brock et al., 2019; Karras et al., 2019), where a sam-

ψ = 1.00

CS = 0.33

ψ = 0.60

CS = 0.36

ψ = 0.10

CS = 0.39

Figure 4. Truncation. Four samples for the prompt “a graphite

sketch of Eva Longoria” with different random z. Increasing

truncation (decreasing ψ) improves the text alignment according

to mean CLIP score per row (CS) at the cost of lower variation.

pled latent w is interpolated towards its mean with respect

to the given conditioning input. This way, truncation pushes

w to a higher-density region where the model performs bet-

ter. In our implementation, w = [f(z), ctext], where f(·)
denotes the mapping network, so the per-prompt mean is

given by w̃ = Ez[w] = [f̃ , ctext], where f̃ = Ez[f(z)]. We

thus implement truncation by tracking f̃ during training and

interpolating between w̃ and w according to scaling param-

eter ψ ∈ [0, 1] at inference time.

We illustrate the impact of truncation in Fig. 4. In practice,

we rely on the combination of CLIP guidance and truncation.

Guidance improves the model’s overall text alignment, and

truncation can further boost quality and alignment for a

given sample, trading away some variation.

4. Experiments

Using the final configuration developed in Section 3, we

scale the model size, dataset, and training time. Our final

model consists of ∼1 billion parameters; we did not ob-

serve any instabilities when increasing the model size. We

train on a union of several datasets amounting to 250M text-

image pairs in total. We use progressive growing similar

to StyleGAN-XL, except that all layers remain trainable.

The hyperparameters and dataset details are listed in Ap-

pendix A.

The total training time was four weeks on 64 A100 GPUs

using a batch size of 2048. We first trained the primary phase

for 3 weeks (resolutions up to 64×64), then the secondary

phase for 2 days (text embedding), and finally the primary

phase again for 5 days (resolutions up to 512×512). For

comparison, our total compute budget is about a quarter of

Stable Diffusion’s (CompVis, 2022).
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Model Model type Zero-shot FID30k Speed [s]

Stable Diffusion * Diffusion 8.40 –

eDiff-I Diffusion 7.60 26.0

LDM * Diffusion 7.59 –

GLIDE Diffusion 7.40 10.9

LAFITE * GAN 14.80 ∼0.01

StyleGAN-T GAN 7.30 0.06

* downsampled to 64×64 pixels using Lanczos – not available

Table 2. Comparison of FID on MS COCO 64×64. Inference

speeds are measured on an A100. For LAFITE we estimate what

its speed would be at a native 64×64 resolution.

Model Model type Zero-shot FID30k Speed [s]

LDM Diffusion 12.63 3.7

GLIDE Diffusion 12.24 15.0

DALL·E 2 Diffusion 10.39 –

Stable Diffusion * Diffusion 8.59 3.7

Imagen Diffusion 7.27 9.1

eDiff-I Diffusion 6.95 32.0

DALL·E Autoregressive 27.50 –

Ernie-ViLG Autoregressive 14.70 –

Make-A-Scene * Autoregressive 11.84 25.0

Parti-3B Autoregressive 8.10 6.4

Parti-20B Autoregressive 7.23 –

LAFITE GAN 26.94 0.02

StyleGAN-T * GAN 13.90 0.10

* downsampled to 256×256 pixels using Lanczos – not available

Table 3. Comparison of FID on MS COCO 256×256. Inference

speeds are measured on an A100, except for Imagen and Parti that

use a faster TPUv4 accelerator. The Stable Diffusion numbers are

from (Balaji et al., 2022; Lambda Labs, 2022); the other numbers

are obtained from the respective papers or through correspondence

with the authors.

4.1. Quantitative Comparison to State-of-the-Art

We use zero-shot MS COCO to compare the performance

of our model to the state-of-the-art quantitatively at 64×64

pixel output resolution in Table 2 and 256×256 in Table 3.

At low resolution, StyleGAN-T outperforms all other ap-

proaches in terms of output quality, while being very fast to

evaluate. In this test we use the model before the final train-

ing phase, i.e., one that produces 64×64 images natively. At

high resolution, StyleGAN-T still significantly outperforms

LAFITE but lags behind DMs and ARMs in terms of FID.

These results lead us to two conclusions. First, GANs

can match or even beat current DMs in large-scale text-

to-image synthesis at low resolution. Second, a powerful

superresolution model is crucial. While FID slightly de-

creases in eDiff-I when moving from 64×64 to 256×256

(7.60→6.95), it currently almost doubles in StyleGAN-T.

Therefore, it is evident that StyleGAN-T’s superresolution

stage is underperforming, causing a gap to the current state-

of-the-art high-resolution results. Whether this gap can be

bridged simply with additional capacity or longer training
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Figure 5. Comparing text alignment tradeoffs. We compare

FID–CLIP score curves of StyleGAN-T, distilled Stable Diffusion

(SD-distilled), and eDiff-I. We report values of SD-distilled at a

guidance scale ofw = 4. For a fair comparison, we report numbers

for CLIP-conditioned eDiff-I disabling additional conditioning

on T5-XXL text embeddings. The models use different methods

to increase the CLIP score (i.e., text alignment): StyleGAN-T

decreases truncation ψ = {1.0 . . . 0.0}, SD-distilled increases the

number of sampling steps {2, 4, 8}, eDiff-I increases guidance

scale w = {0 . . . 10}.

is an open question.

4.2. Evaluating Variation vs. Text Alignment

We report FID–CLIP score curves in Fig. 5. We compare

StyleGAN-T to a strong DM baseline (CLIP-conditioned

variant of eDiff-I) and a fast, distilled DM baseline (SD-

distilled) (Meng et al., 2022).

Using Truncation, StyleGAN-T can push the CLIP score to

0.305, successfully improving text alignment. StyleGAN-T

outperforms SD-distilled in both FID and CLIP scores yet

remains behind eDiff-I. Regarding speed, eDiff-I requires

32.0 seconds to generate a sample. SD-distilled is signif-

icantly faster and only needs 0.6 seconds at its best per-

formance at eight sampling steps. StyleGAN-T beats both

baselines, generating a sample in 0.1 seconds.

To isolate the impact of text encoder training, we evaluate

FID–CLIP score curves in Fig. 6. For this experiment, we

utilize the same generator network and only swap the text

encoder. As the generator has been frozen in the secondary

phase, it can handle both the original and fine-tuned CLIP

text embeddings as evidenced by their equal performance

measured by FID. Fine-tuning the text encoder significantly

improves the CLIP score without compromising FID.

4.3. Qualitative Results

Fig. 2 shows example images produced by StyleGAN-T,

along with interpolations between them. The accompanying

video shows this in animation and compares it to diffusion

models, demonstrating that the interpolation properties of

GANs continue to be considerably smoother. We provide

7



StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis

0.285 0.290 0.295 0.300 0.305

20

22

24

CLIP score (ViT-g-14)

Z
er

o
-s

h
o
t

F
ID

5
k

TE frozen

TE trained

Figure 6. Text encoder training. Training the CLIP text encoder

(TE) pushes the entire FID–CLIP score curve to the right, hence,

increasing overall text alignment.

“a victorian house” → “a modern house”

“a cute puppy” → “a cute blue puppy, Madhubani painting”

“a landscape in winter” → “a landscape in fall”

Figure 7. Latent manipulation. Samples (first column) can be

manipulated by following semantic directions in latent space.

more qualitative examples in Appendix B.

Interpolating between different text prompts is straightfor-

ward. For an image generated by an intermediate latent

w0 = [f(z), ctext0], we substitute the text condition ctext0

with a new text condition ctext1. We then interpolate w0

towards the new latent w1 = [f(z), ctext1] as shown in

Fig. 7. This approach is similar to DALL·E 2’s text diff op-

eration that interpolates between CLIP embeddings. Previ-

ous work for manipulating GAN-generated images (Patash-

nik et al., 2021) typically discovers these latent directions

via a training process that needs to be repeated per prompt

and is, therefore, expensive. Meaningful latent directions

are a built-in property of our model, and no extra training is

needed.

By appending different styles to a prompt, StyleGAN-T can

generate a wide variety of styles as shown in Fig. 8. Subjects

tend to be aligned for a fixed latent z, which we showcase

in the accompanying video.

“real photo” “cubism painting” “made of beads and yarn”

“chalk art” “van Gogh painting” “anime”

Figure 8. Styles. Samples generated by StyleGAN-T for a fixed

random seed and the caption “astronaut, {X}”, where X is denoted

below each image.

“a red cube on

a blue cube”

“astronaut, child’s

drawing”

“a sign that says

deep learning”

Figure 9. Failure cases. StyleGAN-T can struggle to bind at-

tributes to objects, and to produce coherent text.

5. Limitations and Future Work

Similarly to DALL·E 2 that also uses CLIP as the underly-

ing language model, StyleGAN-T sometimes struggles in

terms of binding attributes to objects as well as producing

coherent text in images (Fig. 9). Using a larger language

model would likely resolve this issue at the cost of slower

runtime (Saharia et al., 2022; Balaji et al., 2022).

Guidance via CLIP loss is vital for good text alignment, but

high guidance strength results in image artifacts. A possible

solution could be to retrain CLIP on higher-resolution data

that does not suffer from aliasing or other image quality

issues. In this context, the conditioning mechanism in the

discriminator may also be worth revisiting.

Truncation improves text alignment but differs from guid-

ance in diffusion models in two important ways. While trun-

cation is always towards a single mode, guidance can at

least theoretically be arbitrarily multi-modal. Also, trunca-

tion sharpens the distribution before the synthesis network,

which can reshape the distribution in arbitrary ways, thus,

possibly undoing any prior sharpening. Therefore, alterna-

tive methods to truncation might further improve the results.

Improved super-resolution stages (i.e., high-resolution lay-

8
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ers) through higher capacity and longer training are an obvi-

ous avenue for future work. Concurrent work (Kang et al.,

2023) indicates that GAN-based upsamplers can outperform

DMs in a large-scale setting, given enough capacity and

compute. Training directly in a pretrained token space, del-

egating superresolution to a pretrained decoder, presents an-

other potential route. Recent evidence from MUSE (Chang

et al., 2023) supports its effectiveness for fast text-to-image

synthesis.

Methods for “personalizing” diffusion models have become

popular (Ruiz et al., 2022; Gal et al., 2022). They finetune

a pretrained model to associate a unique identifier with a

given subject, allowing it to synthesize novel images of the

same subject in novel contexts. Such approaches can be

similarly applied to GANs (Nitzan et al., 2022).
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A. Configuration Details

Table 4 lists the training and network architecture hyperparameters for our two configurations: lightweight (used for

ablations) and the full configuration (used for main results). Table 5 details the training schedules.

Lightweight training configuration. We train using the CC12M dataset (Changpinyo et al., 2021) at 64×64 resolution,

without using progressive growing.

Full training configuration. We train using a union of several datasets: CC12m (Changpinyo et al., 2021),

CC (Sharma et al., 2018), YFCC100m (filtered) (Thomee et al., 2016; Singh et al., 2022), Redcaps (Desai et al., 2021),

LAION-aesthetic-6+ (Schuhmann et al., 2022). This amounts to a total of 250M text-image pairs. We use progressive grow-

ing similar to StyleGAN-XL, except that all layers remain trainable.

B. Qualitative Results

Fig. 10 shows additional examples of truncation. Fig. 11 shows qualitative comparisons to Latent Diffusion (Rombach

et al., 2022), Stable Diffusion (Rombach et al., 2022), DALL·E 2 (Ramesh et al., 2022). We use the same prompts as in the

truncation study.

Lightweight Full

Generator channel base 32768 65536

Generator channel max 512 2048

Number of residual blocks per generator block 3 4

Generator parameters 75 million 1.02 billion

Text encoder parameters 123 million 123 million

Latent (z) dimension 64 64

Discriminator’s feature network DINO ViT-S/16 DINO ViT-S/16

Discriminator head’s input feature space size 384 384

Discriminator head’s feature space size at text conditioning 64 64

Dataset size 12M 250M

Number of GPUs 8 64

Batch size 2048 2048

Optimizer Adam Adam

Generator learning rate 0.002 0.002

Generator Adam betas (0, 0.99) (0, 0.99)

Discriminator learning rate 0.002 0.002

Discriminator Adam betas (0, 0.99) (0, 0.99)

EMA 0.9978 0.9978

CLIP guidance weight 0.2 0.2 (primary phase), 50 (secondary phase)

Progressive growing No Yes

Table 4. Generator, discriminator, and training hyperparameters for the two setups used in this paper: Lightweight and Full configuration.

Lightweight Full

Primary Phase

64x64 for 50 A100 days (25 million iterations)

Primary Phase

16x16 for 450 A100 days (118,000 iterations)

32x32 for 450 A100 days ( 78,000 iterations)

64x64 for 450 A100 days ( 57,000 iterations)

Secondary Phase

190 A100 days (20,000 iterations)

Primary Phase

128x128 for 96 A100 days (10,000 iterations)

256x256 for 70 A100 days ( 6,000 iterations)

512x512 for 30 A100 days ( 3,000 iterations)

Table 5. Training schedules for the two training configurations used in this paper. The times are listed as the number of days it would

have taken on a single NVIDIA A100 GPU. An iteration corresponds to 2048 real and generated examples.

12



StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis

ψ = 1.00

CS = 0.34
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ψ = 0.60

CS = 0.31

ψ = 0.10

CS = 0.36

ψ = 0.10

CS = 0.32

“A painting of a fox in the style of starry night” “A surrealist dream-like oil painting by Salvador Dalı́ of a cat playing checkers”

ψ = 1.00

CS = 0.26

ψ = 1.00

CS = 0.32

ψ = 0.60

CS = 0.28

ψ = 0.60

CS = 0.33

ψ = 0.10

CS = 0.31

ψ = 0.10

CS = 0.34

“Robots meditating in a vipassana retreat” “A teddy bear on a skateboard in times square”

ψ = 1.00

CS = 0.28

ψ = 1.00

CS = 0.39

ψ = 0.60

CS = 0.29

ψ = 0.60

CS = 0.40

ψ = 0.10

CS = 0.30

ψ = 0.10

CS = 0.40

“A still of Kermit The Frog in WALL-E (2008)” “A transformer robot with legs and arms made out of vegetation and leaves”

Figure 10. Additional truncation grids. We show samples for 6 different prompts and 5 different random latents, shared between the

prompts. Increasing truncation (decreasing ψ), improves the text alignment according to mean CLIP score per row, CS, at the cost of

lower variation.
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“A painting of a fox in the style of starry night” “A surrealist dream-like oil painting by Salvador Dalı́ of a cat playing checkers”
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Diffusion
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“Robots meditating in a vipassana retreat” “A teddy bear on a skateboard in times square”
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Diffusion
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Diffusion

StyleGAN-T StyleGAN-T

“A still of Kermit The Frog in WALL-E (2008)” “A transformer robot with legs and arms made out of vegetation and leaves”

Figure 11. Qualitative Comparisons. We show samples for 6 different prompts and 5 different random latents, shared between the

prompts. For StyleGAN-T, we set ψ = 0.6. LDM and Stable Diffusion utilize 250 and 50 sampling steps, respectively, utilizing the

DDIM / PLMS sampler (Liu et al., 2022a). For DALL·E 2, we generate images via the official DALL·E service (OpenAI, 2022).

14


	Introduction
	StyleGAN-XL
	StyleGAN-T
	Redesigning the Generator
	Redesigning the Discriminator
	Variation vs. Text Alignment Tradeoffs

	Experiments
	Quantitative Comparison to State-of-the-Art
	Evaluating Variation vs. Text Alignment
	Qualitative Results

	Limitations and Future Work
	Configuration Details
	Qualitative Results

