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Abstract

While adversarial robustness in computer vision is a mature research field, fewer
researchers have tackled the evasion attacks against tabular deep learning, and
even fewer investigated robustification mechanisms and reliable defenses. We
hypothesize that this lag in the research on tabular adversarial attacks is in part
due to the lack of standardized benchmarks. To fill this gap, we propose Tabular-
Bench, the first comprehensive benchmark of robustness of tabular deep learning
classification models. We evaluated adversarial robustness with CAA, an en-
semble of gradient and search attacks which was recently demonstrated as the
most effective attack against a tabular model. In addition to our open bench-
mark https://github.com/serval-uni-lu/tabularbench where we wel-
come submissions of new models and defenses, we implement 7 robustification
mechanisms inspired by state-of-the-art defenses in computer vision and propose
the largest benchmark of robust tabular deep-learning over 200 models across five
critical scenarios in finance, healthcare, and security. We curated real datasets
for each use case, augmented with hundreds of thousands of realistic synthetic
inputs, and trained and assessed our models with and without data augmentations.
We open-source our library that provides API access to all our pre-trained robust
tabular models, and the largest datasets of real and synthetic tabular inputs. Finally,
we analyze the impact of various defenses on the robustness and provide actionable
insights to design new defenses and robustification mechanisms.

1 Introduction

Modern machine learning (ML) models have reached or surpassed human-level performance in
numerous tasks, leading to their adoption in critical settings such as finance, security, and healthcare.
However, concomitantly to their increasing deployment, researchers have uncovered significant
vulnerabilities in generating valid adversarial examples (i.e., constraint-satisfying) where test or de-
ployment data are manipulated to deceive the model. Most analyses of these performance drops have
focused on the fields of Computer Vision and Large Language Models where extensive benchmarks
for adversarial robustness are available (e.g., Croce et al. (2020) and Wang et al. (2023)).

Despite the widespread use of tabular data and the maturity of Deep Learning (DL) models for this
field, the impact of evasion attacks on tabular data has not been thoroughly investigated. Although
there are existing benchmarks for in-distribution (ID) tabular classification (Borisov et al., 2021), and
distribution shifts (Gardner et al., 2023), there is no available benchmark of adversarial robustness
for deep tabular models, in particular in critical real-world settings. We summarize in Table 1 these
related benchmarks.

The need for dedicated benchmarks for tabular model robustness is enhanced by the unique challenges
that tabular machine learning raises compared to computer vision and NLP tasks.
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Table 1: Existing related benchmarks and their differences with ours
Benchmark Domain Metric Realistic evaluation

Tabsurvey (Borisov et al., 2021) Tabular ID performance No
Tableshift (Gardner et al., 2023) Tabular OOD performance No

ARES (Dong et al., 2020) CV Adversarial performance No
Robustbench (Croce et al., 2020) CV Adversarial performance Yes

DecodingTrust (Wang et al., 2023) LLM Trust (incl adversarial) Yes

OURS Tabular Adversarial performance Yes

ML System

1. Some features are
immutable or computed
internally

Relationships
2. Feature relationships
constraints are used to
reject invalid input

ML Classifier

Constraints

Respected

Violated

Quarantine
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Figure 1: The main challenges for adversarial attacks in
Tabular Machine Learning: When an adversary perturbs
some features (red), it may not be aware of the new
features that are computed internally and added (blue),
or the relationships between features (green). If the
monitoring system detects a constraint violation, the
input is quarantined and a rejection (1) is returned.

One significant challenge is that tabular data
exhibit feature constraints, which are complex
relationships and interactions between features.
Satisfying these feature constraints can be a non-
convex or even nondifferentiable problem, mak-
ing established evasion attack algorithms rely-
ing on gradient descent ineffective in generat-
ing valid adversarial examples (i.e., constraint-
satisfying) (Ghamizi et al., 2020). Furthermore,
attacks designed specifically for tabular data of-
ten disregard feature-type constraints (Ballet
et al., 2019) or, at best, consider categorical fea-
tures without accounting for feature relation-
ships (Wang et al., 2020; Xu et al., 2023; Bao
et al., 2023), and are evaluated on datasets that
contain only such features. This limitation re-
stricts their applicability to domains with hetero-
geneous feature types.

Moreover, tabular ML models often involve spe-
cific feature engineering, that is, "secret" and inaccessible to an attacker. For example, in credit
scoring applications, the end user can alter a subset of model features, but the other features result
from internal processing that adds domain knowledge before reaching the model (Ghamizi et al.,
2020). This raises the need for new threat models that take into account these specificities. We
summarize the unique specificities of tabular machine learning and the challenges they pose to an
adversarial user in Figure 1.

Thus, the machine learning research community currently lacks not only (1) an empirical understand-
ing of the impact of architecture and robustification mechanisms on tabular data model architectures,
but also (2) a reliable and high-quality benchmark to enable such investigations. Such a benchmark
for tabular adversarial attacks should feature deployable attacks and defenses that reflect as accurately
as possible the robustness of models within a reasonable computational budget. A reliable benchmark
should also consider recent advances in tabular deep learning architectures and data augmentation
techniques, and tackle realistic attack scenarios and real-world use cases considering their domain
constraints and realistic capabilities of an attacker.

To address both gaps, we propose TabularBench, the first comprehensive benchmark of robustness of
tabular deep learning classification models. We evaluated adversarial robustness using Constrained
Adaptive Attack (CAA) (Simonetto et al., 2024), a combination of gradient-based and search-based
attacks that have recently been shown to be the most effective against tabular models. We take
advantage of our new benchmark and uncover unique findings on deep tabular learning architectures
and defenses. We focus our study on defenses based on adversarial training (AT), and draw the
following insights:

Test performance is misleading: Given the same tasks, different architectures have similar ID
performance but lead to very disparate robust performances. Even more, data augmentations that
improve ID performance can hurt robust performance.
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Figure 2: Summary of our main experiments; Y-axis: Robust Accuracy, X-axis ID accuracy

Importance of domain constraints: Disregarding domain constraints overestimates robustness and
leads to selection of sub-optimal architectures and defenses when considering the domain constraints.

Data augmentation effectiveness is task-specific. There is no data augmentation that is optimal
for both ID and robust performance across all tasks. Some simpler augmentations (like Cutmix) can
outperform complex generative approaches.

Contributions. To summarize, our work makes the following key contributions:

• Leaderboard (https://serval-uni-lu.github.io/tabularbench): a website with
a leaderboard based on more than 200 evaluations to track the progress and the current state
of the art in adversarial robustness of tabular deep learning models for each critical setting.
The goal is to clearly identify the most successful ideas in tabular architectures and robust
training mechanisms to accelerate progress in the field.

• Dataset Zoo : a collection of real and synthetic datasets generated with and without domain-
constraint satisfaction, over five critical tabular machine learning use cases.

• Model Zoo : a collection of the most robust models that are easy to use for any downstream
application. We pre-trained these models in particular on our five downstream tasks and we
expect that this collection will promote the creation of more effective adversarial attacks by
simplifying the evaluation process across a broad set of over 200 models.

• Analysis: based on our trained models, we analyze how architectures, AT, and data aug-
mentation mechanisms affect the robust performance of tabular deep learning models and
provide insights on the best strategies per use case.
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2 Background

Tabular data are one of the most common forms of data (Shwartz-Ziv and Armon, 2021), especially in
critical applications such as medical diagnosis (Ulmer et al., 2020; Somani et al., 2021) and financial
applications (Ghamizi et al., 2020; Cartella et al., 2021).

Traditional ML such as random forests and XGBoost often outperform DL on tabular data, primarily
due to their robustness in handling feature heterogeneity and interdependence (Borisov et al., 2022).

To bridge the gap, researchers have proposed various improvements, from regularization mechanisms
(e.g., RLN (Shavitt and Segal, 2018)) to attention layers (TabNet (Arik and Pfister, 2021)). These
innovations are catching up and even outperforming shallow models in some settings, demonstrating
the competitiveness of DL for Tabular Data.

The maturity of DL for ID tasks opens new perspectives for studying its performance in advanced
settings, such as out-of-distribution (OOD) performance and adversarial robustness. One major work
on OOD research is the Tableshift benchmark (Gardner et al., 2023), an exhaustive evaluation of the
OOD performance of a variety of DNN classifiers. There is, however, to the best of our knowledge,
no similar work on adversarial robustness, while the use cases when DL models are deployed for
tabular data are among the most critical settings, and many are prone to malicious users.

Our work is the first exhaustive benchmark for the critical property of adversarial robustness of DL
models. Our work is timely and leverages CAA (Simonetto et al., 2024), a novel attack previously
demonstrated as the most effective and efficient tabular attack in the literature in multiple classification
tasks under realistic constraints. CAA combines two attacks, CAPGD and MOEVA. CAPGD is an
iterative gradient attack that maximizes the error and minimizes the features’ constraint violations with
regularization losses and projection mechanisms. MOEVA is a genetic algorithm attack that considers
the three adversarial objectives: (1) classifier’s error maximization, (2) perturbation minimization,
and (3) constraint violations minimization, in its fitness function.

Although CAA was only evaluated against vanilla and simple madry AT, we have implemented
advanced robustification mechanisms, inspired by proven techniques from top-performing research in
the Robustbench computer vision benchmark Robustbench (Croce et al., 2020). Our work is the first
implementation and evaluation of state-of-the-art defense mechanisms for tabular DL models.

3 TabularBench: Adversarial Robustness Benchmark for Tabular Data

In Appendix A.3 we report the detailed evaluation settings such as metrics, attack parameters, and
hardware. We focus below on the datasets, classifiers, and synthetic data generators.

3.1 Tasks

We curated datasets meeting the following criteria: (1) open source: the datasets must be publicly
available with a clear definition of the features and preprocessing, (2) from real-world applications:
datasets that do not contain simulated data, (3) binary classification: datasets that support a mean-
ingful binary classification task, and (4) with feature relationships: datasets that contain feature
relationships and constraints, or they can be inferred directly from the definitions of features.

After an extensive review of tabular datasets, only the following five datasets match our requirements.

The CTU (Chernikova and Oprea, 2022) includes legitimate and botnet traffic from CTU University.
Its challenge lies in the extensive number of linear domain constraints, totaling 360. LCLD (George,
2018) is a credit-scoring containing accepted and rejected credit requests. It has 28 features and
9 non-linear constraints. The most challenging dataset of our benchmark is the Malware dataset
prepared by Dyrmishi et al. (2023). The very large number of features (24222), most of which are
involved in each constraint, make this dataset challenging to attack. URL (Hannousse and Yahiouche,
2021) is a dataset comprising both legitimate and phishing URLs. Featuring only 14 linear domain
constraints and 63 features, it represents the simplest case in our benchmark. The WiDS (Lee et al.,
2020) includes medical data on the survival of patients admitted to the ICU, with only 31 linear
domain constraints.
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Our datasets include varying complexity in terms of number of features and constraints and diverse
class imbalance intensity. We summarize the datasets and their relevant properties in Table 2 and
provide more details in Appendix A.1 .

Table 2: Properties of the use cases of our benchmark.
Dataset Domain Output to flip Total size # Features # Ctrs Inbalance

CTU Botnet detection Malicious connections 198 128 756 360 99.3/0.7
LCLD Credit scoring Reject loan request 1 220 092 28 9 80/20

Malware Malware detection Malicious software 17 584 24 222 7 45.5/54.5
URL Phishing Malicious URL 11 430 63 14 50/50

WIDS ICU survival Expected survival 91 713 186 31 91.4/8.6

3.2 Architectures

We consider five state-of-the-art deep tabular architectures from the survey by Borisov et al. (2021):
TabTransformer (Huang et al., 2020) and TabNet (Arik and Pfister, 2021), are based on transformer
architectures. RLN (Shavitt and Segal, 2018) uses a regularization coefficient to minimize a coun-
terfactual loss, STG (Yamada et al., 2020) improves feature selection using stochastic gates, while
VIME (Yoon et al., 2020) depends on self-supervised learning. We provide in Appendix A.2 the
details of the architectures and the training hyperparameters. These architectures are on par with
XGBoost, the top shallow machine-learning model for our applications.

3.3 Data Augmentation

Our benchmark considers synthetic data augmentation using five state-of-the-art tabular data gen-
erators. These generators were pre-trained to learn the distribution of the training data. Then, we
augmented each of our datasets 100-fold (for example, for URL dataset, we generated 1.143.000 syn-
thetic examples). Appendix A.4 details the generator architectures and the training hyperparameters.

WGAN (Arjovsky et al., 2017) is a typical generator-discriminator GAN model using Wasserstein
loss. We follow the implementation of Stoian et al. (2024) and apply a MinMax transformation for
continuous features and one-hot encoding for categorical to adapt this architecture for tabular data.

TableGAN (Park et al., 2018) is an improvement over standard GAN generators for tabular data. It
adds a classifier (trained to learn the labels and feature relationships) to the generator-discriminator
setup to improve semantic accuracy. TableGAN uses MinMax transformation for features.

CTGAN (Xu et al., 2019a) uses a conditional generator and training-by-sampling strategy in a
generator-discriminator GAN architecture to model tabular data.

TVAE (Xu et al., 2019a) is an adaptation of the Variational AutoEncoder architecture for tabular data.
It uses the same data transformations as CTGAN and training with ELBO loss.

GOGGLE (Liu et al., 2023) is a graph-based model that learns relational and functional dependencies
in data using graphs and a message passing DNN, generating variables based on their neighborhood.

Cutmix (Yun et al., 2019) In computer vision, patches are cut and pasted among training images
where the labels are also mixed proportionally. We adapted the approach to tabular ML and for each
pair of rows of the same class, we randomly mix half of the features to generate a new sample.

For training, each batch of real examples is augmented with a same-size random synthetic batch
(without replacement). However, the evaluation only runs on real examples. In AT, we generate
adversarials from half of the real examples randomly selected and half of the synthetic examples.

3.4 Attack

To build our robustness benchmark, we leverage the Constrained Adaptive Attack (CAA) Simonetto
et al. (2024) as the attack algorithm. To the best of our knowledge, CAA is the most effective and
efficient tabular attack in the literature in multiple classification tasks under realistic constraints that
appear in real-world applications. These constraints can be of four types: (1) mutability (whether a
feature can be modified), (2) range (the minimum and maximum values a feature can take), (3) types
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(the type of the feature, e.g., categorical or numerical), and (4) relations (the dependencies between
features, e.g., the sum of two features must be equal to a third feature).

CAA is a novel attack that combines two attacks, Constrained Adaptive Projected Gradient Descent
(CAPGD) and Multi-Objective Evolutionary Adversarial (MOEVA) attack.

We denote by x ∈ Rd an input example and by y ∈ {1, . . . , C} its correct label. Let h : Rd → RC

be a classifier and hck(x) the classification score that h outputs for input x to be in class ck.

CAPGD (Simonetto et al., 2024) is an iterative attack that generates adversarial examples by comput-
ing the following perturbed example at each iteration:

z(k+1) = PS
(
x(k) + η(k)(∇L′(x(k))

)
(1)

x(k+1) = RΩ

(
PS

(
x(k) + α · (z(k+1) − x(k)) + (1− α) · (x(k) − x(k−1))

))
where PS is the projection operator onto the set of maximum perturbation δ denoted S , RΩ is a repair
operator for a subset of constraints Ω, η(k) is the step size, α is the momentum parameter, and L′

abbreviates the objective function to be maximized defined as:

L′(x) = L(x, y, h,Ω) = l(h(x), y)−
∑
ωi∈Ω

penalty(x, ωi). (2)

where l is the loss function of the model, and penalty is the penalty function for each relation
constraint ωi ∈ Ω.

MOEVA (Simonetto et al., 2022) multi-objective evolutionary algorithm based on NSGA-III that
generates adversarial examples by minimizing the following objectives:

minimise g1(x) ≡ h(x) (3)

minimise g2(x) ≡ Lp(x− x0) (4)

minimise g3(x) ≡
∑
ωi∈Ω

penalty(x, ωi) (5)

where x0 is the original input, Lp is the Lp norm, in our case L2.

CAA only applies MOEVA when CAPGD fails to find an adversarial example. The attack is
successful if it finds an adversarial example that is misclassified by the classifier and satisfies all the
constraints.

Although to the extent of our knowledge, CAA is the best attack, we acknowledge that better attacks
may be developed in the future. We provide the code for CAA in our repository, and we encourage
the community to develop new attacks and evaluate them on our benchmark. Additionally, CAA
is extendable in its design. Inspired by Auto-Attack, CAA is the sequential application of multiple
strong attacks and complementary attacks, from fastest to slowest to find the best adversarial example.
The attacks are complementary in the sense that they generate adversarial examples from different
examples in the input space. This design allows for the easy integration of new attacks into the
CAA framework. We encourage the development of new effective attacks and the evaluation of their
complementarity with CAA.

3.5 TabularBench API

To encourage the wide adoption of TabularBench as the go-to place for Tabular Machine Learning
evaluation, we designed its API to be modular, extensible, and standardized. We split its architecture
into three independent components. More details of each component are provided in Appendix C.

A dataset Zoo For each dataset in this study, we have collected, cleaned, and pre-processed the
existing raw dataset. We implemented a novel Constraint Parser where the user can write the
relations in a natural human-readable format to describe the relationships between features. The
processed datasets are loaded with a Dataset factory, then the user gets their associated meta-data
and pre-defined constraints. The datasets are automatically downloaded when not found.
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ds = dataset_factory.get_dataset("lcld_v2_iid")
metadata = ds.get_metadata(only_x=True)
constraints = ds.get_constraints ()

A model Zoo Our API supports five architectures, and for each, six data augmentation techniques (as
well as no data augmentation) and two training schemes (standard training and adversarial training).
Hence, 70 pre-trained models for each of our five datasets are accessible. Below, we fine-tune with
CAA AT and CTGAN augmentation a pre-trained Tabtransformer with Cutmix augmentation:

scaler = TabScaler(num_scaler="min_max", one_hot_encode=True)
scaler.fit(x, metadata["type"])
model = TabTransformer("regression", metadata , scaler=scaler ,

pretrained="LCLD_TabTr_Cutmix")
train_dataloader = CTGANDataLoader(dataset=ds, split="train", scaler=

scaler , attack="caa")
model.fit(train_dataloader)

A standarized benchmark To generate our leaderboard, we offer a one-line command that loads a
pre-trained model from the zoo, and reports the clean and robust accuracy of the model following our
benchmark’s setting (taking into consideration constraint satisfaction and L2 minimization):

clean_acc , robust_acc = benchmark(dataset=’LCLD’, model="TabTr_Cutmix"
, distance=’L2’, constraints=True)

4 Empirical Findings

In the main paper, we provide multiple figures to visualize the main insights. We only report scenarios
where data augmentation and adversarial training do not lead to performance collapse. We report in
Appendix B all the results and investigate the collapsed scenarios.

4.1 Without Data Augmentations

We report the ID and robust accuracies of our architectures prior to data increase in Table 3.

Table 3: Clean and robust performances across all architectures in the form XX/YY. XX is the
accuracy with standard training, and YY is the accuracy with adversarial training.

Dataset Accuracy TabTr. RLN VIME STG TabNet

CTU ID 95.3/95.3 97.8/97.3 95.1/95.1 95.3/95.1 96.0/0.2
Robust 95.3/95.3 94.1/97.1 40.8/94.0 95.3/95.1 0.0/0.2

LCLD ID 69.5/73.9 68.3/69.5 67.0/65.5 66.4/15.6 67.4/0.0
Robust 7.9/70.3 0.0/63.0 2.4/10.4 53.6/12.1 0.4/0.0

MALWARE ID 95.0/95.0 95.0/96.0 95.0/92.0 93.0/93.0 99.0/99.0
Robust 94.0/95.0 94.0/96.0 95.0/92.0 93.0/93.0 97.0/99.0

URL ID 93.6/93.9 94.4/95.2 92.5/93.4 93.3/94.3 93.4/99.5
Robust 8.9/56.7 10.8/56.2 49.5/69.8 58.0/90.0 11.0/91.8

WIDS ID 75.5/77.3 77.5/78.0 72.3/72.1 77.7/62.6 79.8/98.4
Robust 45.9/65.1 60.9/66.6 50.3/52.1 50.3/45.2 5.3/58.4

All models on malware dataset are robust without data augmentation. AT improves adversarial
accuracy for all the cases, but AT alone is not sufficient to completely robustify the models on URL
and WIDS datasets. All malware classification models are completely robust with and without
adversarial training; hence, we will restrict the study of improved defenses with augmentation in the
following sections to the remaining datasets.

4.2 Impact of Data Augmentations

With data augmentation alone, ID and robust performances are not aligned. In Figure 2 we
study the impact of data augmentation on ID and robust performance, both in standard and adversarial
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Figure 3: Robust performance while considering domain constraints (ADV+CTR: Y-axis) and without
(ADV: X-axis) on all our use cases confirms the relevance of studying constrained-aware attacks.

training. With standard training, ID performance is misleading in CTU and URL datasets. Although
all models exhibit similar ID performance, some of the augmentations lead to robust models, while
others decrease it. CTGAN data augmentation is the best data augmentation for ID performance in
all use cases, both with standard and adversarial training.

4.3 Impact of Adversarial Training

With data augmentation and AT, ID and robust performances are correlated. Although there
is no trend of relationship between ID performance and robust performance in standard training,
our study shows that robustness and ID performance are correlated after adversarial training. For
example, the Pearson correlation between ID and robust performance increases from 0.15 to 0.76 for
LCLD. All correlation values are in Appendix B.4.

Overall, all architectures can benefit from at least one data augmentation technique with adversarial
training; however, standard training with data augmentation can outperform adversarial training
without data augmentation (for e.g., on URL dataset using GOGGLE or CTGAN augmentations).

4.4 Impact of Architecture

In Figure 3 we study the robustness of each architecture with different defense mechanisms. We
report both the robustness against unconstrained attacks (attacks unaware of domain knowledge) and
attacks optimized to preserve the feature relationships and constraints.
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Figure 4: Impact of attack budget on the robust accuracy for URL dataset.

Evaluation with unconstrained attacks is misleading. Under standard training (orange scatters in
Fig. 3), there is no relation between robustness to unconstrained attacks and the robustness when
domain constraints are enforced. There is, however, a linear relationship under adversarial training
with data augmentation only for STG, Tabstransformer, and VIME architectures. These results show
that nonconstrained attacks are not sufficient to reliably assess the robustness of deep tabular models.
Detailed correlation values are in the Appendix B.4.

No data augmentation consistently outperforms the baselines with AT. Among the 20 scenarios
in Fig. 3, the original models achieve better constrained robustness than augmented models with
adversarial training only for 4 scenarios: TabNet architecture on URL, LCLD and WIDS, and STG
architecture on URL datasets. No data-augmentation technique consistently outperforms the others
across all architectures. Cutmix, the simplest data augmentation, is often the best (in 7/20 scenarios).

4.5 Impact of Attack Budgets

We evaluated each robustified model against variants of the CAA attack, varying the L2 distance of
the perturbation ϵ from 0.5 to {0.25, 1, 5}, the gradient iterations from 10 to {5, 20, 100}, and the
search iterations from 100 to {50, 200, 1000}. We report per architecture for each dataset the most
robust model with AT and augmentation, and the robust model with AT only. We present in Fig. 4 the
results for the URL dataset and refer to Appendix B.5 for the other use cases.

AT+Augmentations models remain robust even under stronger attacks. Our results show that the
best defenses with AT+Augmentations (continuous lines) remain robust against increased gradient
and search iteration budgets and remain more robust than AT alone (dashed lines) for VIME, RLN,
and Tabtransformer architectures. Against an increase in perturbation size ϵ, AT+Augmentations is
more robust than AT alone for TabNet, TabTransformer, VIME, and RLN architectures. In particular,
for ϵ = 5, the robust accuracy of TabNet architectures remains above 40% with AT+Augmentations
while the robust accuracy with AT alone drops to 0%.

5 Limitations

While our benchmark is the first to tackle adversarial robustness in tabular deep learning models,
it does not cover all the directions of the field and focuses on domain constraints and defense
mechanisms. Some of the orthogonal work is not addressed:

Generalization to other distances: We restricted our study to the L2 distance to measure imper-
ceptibility. Imperceptibility varies by domain, and several methods have been proposed to measure
it (Ballet et al., 2019; Kireev et al., 2022; Dyrmishi et al., 2023). These methods have not been
evaluated against human judgment or compared with one another, so there is no clear motivation
to use one or another. In our research, we chose to use the well-established L2 norm (following
Dyrmishi et al. (2023)). Our algorithms and benchmarks support other distances and definitions of
imperceptibility. We provide in Appendix B.6 an introduction to how our benchmark generalizes to
other distances.

Generalization to non-binary classification: We restricted our study to binary tabular classification
as it is the only case where we identified public datasets with domain constraints. The attacks used
in our benchmark natively support multi-class classification. Our live leaderboard welcomes new
datasets and will be updated if relevant datasets are designed by the community.
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Generalization to other types of defenses: We only considered defenses based on data augmentation
with adversarial training. Adversarial training-based defenses are recognized as the only reliable
defenses against evasion attack (Tramer et al., 2020; Carlini, 2023). All other defenses are proven
ineffective when the attacker is aware of them and performs adaptive attacks.

Generalization to other (adaptive) attacks: We only considered the Constrained Adaptive Attack
(CAA) as it is the most effective and efficient attack in the literature. We encourage the community
to develop new attacks and evaluate them on our benchmark. We provide the code for CAA in our
repository and encourage the community to develop new attacks and evaluate them on our benchmark.
In the face of new attacks, we will update our benchmark to include them. A limitation of our current
evaluation regarding attacks is the lack of adaptive attacks, that adapt their strategy based on the
defense mechanism. We welcome the development of new adaptive attacks and their evaluation on our
benchmark at https://github.com/serval-uni-lu/tabularbench/issues/new/choose.

6 Broader Impact

Our work proposes the first benchmark of robustness of constrained tabular deep learning against
evasion attacks. We focus on designing new defense mechanisms, inspired by effective approaches in
computer vision (by combining data augmentation and adversarial training). Hence, we expect that
our research will significantly contribute to the enhancement of defenses and will lead to even more
resilient models, which may balance the potential harms research on adversarial attacks can have.

Conclusion

In this work, we introduce TabularBench, the first benchmark of adversarial robustness of tabular
deep learning models against constrained evasion attacks. We leverage Constrained Adaptive Attack
(CAA), the best constrained tabular attack, to benchmark state-of-the-art architectures and defenses.

We provide a Python API to access the datasets, along with implementations of multiple tabular deep
learning architectures, and provide all our pre-trained robust models directly through the API.

We conducted an empirical study that constitutes the first large-scale study of tabular data model
robustness against evasion attacks. Our study covers five real-world use cases, five architectures,
and six data augmentation mechanisms totaling more than 200 models. Our study identifies the best
augmentation mechanisms for IID performance (CTGAN) and robust performance (Cutmix), and
provides actionable insights on the selection of architectures and robustification mechanisms.

We are confident that our benchmark will accelerate the research of adversarial defenses for tabular
ML and welcome all contributions to improve and extend our benchmark with new realistic use cases
(multiclass), models, and defenses.
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Table 4: The datasets evaluated in the empirical study, with the class imbalance of each dataset
(Balance in %).

Properties
Dataset Task Size # Features Balance

LCLD (George, 2018) Credit Scoring 1 220 092 28 80/20
CTU-13 (Chernikova and Oprea, 2022) Botnet detection 198 128 756 99.3/0.7
URL (Hannousse and Yahiouche, 2021) Phishing URL detection 11 430 63 50/50
WIDS (Lee et al., 2020) ICU patient survival 91 713 186 91.4/8.6

A Experimental protocol

A.1 Datasets

Our dataset design followed the same protocol as Simonetto et al.Simonetto et al. (2022). We present
in Table 4 the attributes of our datasets and the test performance achieved by each of the architectures.

Credit Scoring - LCLD (license: CC0: Public Domain) We develop a dataset derived from the
publicly accessible Lending Club Loan Data
footnotehttps://www.kaggle.com/wordsforthewise/lending-club. This dataset includes 151 features,
with each entry representing a loan approved by the Lending Club. However, some of these approved
loans are not repaid and are instead charged off. Our objective is to predict, at the time of the request,
whether the borrower will repay the loan or if it will be charged off. This dataset has been analyzed
by various practitioners on Kaggle. Nevertheless, the original dataset only contains raw data, and
to the best of our knowledge, there is no commonly used feature-engineered version. Specifically,
caution is needed when reusing feature-engineered versions, as many proposed versions exhibit data
leakage in the training set, making the prediction trivial. Therefore, we propose our own feature
engineering. The original dataset contains 151 features. We exclude examples where the feature
“loan status” is neither “Fully paid” nor “Charged Off,” as these are the only definitive statuses of
a loan; other values indicate an uncertain outcome. For our binary classifier, a “Fully paid” loan is
represented as 0, and a “Charged Off” loan is represented as 1. We begin by removing all features
that are missing in more than 30% of the examples in the training set. Additionally, we remove all
features that are not available at the time of the loan request to avoid bias. We impute features that
are redundant (e.g., grade and sub-grade) or too detailed (e.g., address) to be useful for classification.
Finally, we apply one-hot encoding to categorical features. We end up with 47 input features and one
target feature. We split the dataset using random sampling stratified by the target class, resulting in a
training set of 915K examples and a testing set of 305K examples. Both sets are unbalanced, with
only 20% of loans being charged off (class 1). We trained a neural network to classify accepted and
rejected loans, consisting of 3 fully connected hidden layers with 64, 32, and 16 neurons, respectively.
For each feature in this dataset, we define boundary constraints based on the extreme values observed
in the training set. We consider the 19 features under the control of the Lending Club as immutable.
We identify 10 relationship constraints (3 linear and 7 non-linear).

URL Phishing - ISCX-URL2016 (license CC BY 4.0) Phishing attacks are commonly employed
to perpetrate cyber fraud or identity theft. These attacks typically involve a URL that mimics a
legitimate one (e.g., a user’s preferred e-commerce site) but directs the user to a fraudulent website
that solicits personal or banking information. Hannousse and Yahiouche (2021) extracted features
from both legitimate and fraudulent URLs, as well as external service-based features, to develop a
classifier capable of distinguishing between fraudulent and legitimate URLs. The features extracted
from the URL include the number of special substrings such as “www”, “&”, “,”, “$”, “and”, the
length of the URL, the port, the presence of a brand in the domain, subdomain, or path, and the
inclusion of “http” or “https”. External service-based features include the Google index, page rank,
and the domain’s presence in DNS records. The full list of features is available in the reproduction
package. Hannousse and Yahiouche (2021) provide a dataset containing 5715 legitimate and 5715
malicious URLs. We use 75% of the dataset for training and validation, and the remaining 25% for
testing and adversarial generation. We extract a set of 14 relational constraints between the URL
features. Among these, 7 are linear constraints (e.g., the length of the hostname is less than or equal
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Table 5: The three model architectures of our study.

Family Model Hyperparameters

Transformer TabTransformer hidden_dim, n_layers,
learning_rate, norm, θ

Transformer TabNet
n_d, n_steps,
γ, cat_emb_dim, n_independent,
n_shared, momentum, mask_type

Regularization RLN
hidden_dim, depth,
heads, weight_decay,
learning_rate, dropout

Regularization STG hidden_dims, learning_rate, lam
Encoding VIME pm, α, K, β

to the length of the URL) and 7 are Boolean constraints of the form if a > 0 then b > 0 (e.g., if the
number of “http” > 0, then the number of slashes “/” > 0).

Botnet attacks - CTU-13 (license CC BY NC SA 4.0) This is a feature-engineered version of
CTU-13 proposed by Chernikova and Oprea (2019). It includes a combination of legitimate and
botnet traffic flows from the CTU University campus. Chernikova et al. aggregated raw network data
related to packets, duration, and bytes for each port from a list of commonly used ports. The dataset
consists of 143K training examples and 55K testing examples, with 0.74% of examples labeled as
botnet traffic (traffic generated by a botnet). The data contains 756 features, including 432 mutable
features. We identified two types of constraints that define what constitutes feasible traffic data. The
first type pertains to the number of connections and ensures that an attacker cannot reduce it. The
second type involves inherent constraints in network communications (e.g., the maximum packet size
for TCP/UDP ports is 1500 bytes). In total, we identified 360 constraints.

WiDS (license: PhysioNet Restricted Health Data License 1.5.0 1) Lee et al. (2020) dataset contains
medical data on the survival of patients admitted to the ICU. The objective is to predict whether
a patient will survive or die based on biological features (e.g., for triage). This highly unbalanced
dataset has 30 linear relational constraints.

Malware (license MIT) contains 24222 features extracted from a collection of benign and malware
Portable Executable (PE) files Dyrmishi et al. (2023). The features include the DLL imports, the API
imports, PE sections, and statistic features such as the proportion of each possible byte value. The
dataset contains 17,584 samples. The number of total features and the number of features involved in
each constraint make this dataset challenging to attack. The objective of the classifier is to distinguish
between malware and benign software.

A.2 Model architectures

Table 5 provides an overview of the family, model architecture, and hyperparameters adjusted during
the training of our models.

TabTransformer is a transformer-based model Huang et al. (2020). It employs self-attention to
convert categorical features into an interpretable contextual embedding, which the paper asserts
enhances the model’s robustness to noisy inputs.

TabNet is another transformer-based model Arik and Pfister (2021). It utilizes multiple sub-
networks in sequence. At each decision step, it applies sequential attention to select which features to
consider. TabNet combines the outputs of each step to make the final decision.

RLN or Regularization Learning Networks Shavitt and Segal (2018) employs an efficient hyperpa-
rameter tuning method to minimize counterfactual loss. The authors train a regularization coefficient
for the neural network weights to reduce sensitivity and create very sparse networks.

1https://physionet.org/content/widsdatathon2020/view-license/1.0.0/
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STG or Stochastic Gates Yamada et al. (2020) uses stochastic gates for feature selection in neural
network estimation tasks. The technique is based on a probabilistic relaxation of the l0 norm of
features or the count of selected features.

VIME or Value Imputation for Mask Estimation Yoon et al. (2020) employs self-supervised and
semi-supervised learning through deep encoders and predictors.

A.3 Evaluation settings

Metrics The models are fine-tuned to maximize cross-validation AUC. This metric is threshold-
independent and is not affected by the class unbalance of our dataset.

We only attack clean examples that are not already misclassified by the model and from the critical
class, that is respectively for each aforementioned dataset the class of phishing URLs, rejected loans,
malwares, botnets, and not surviving patients. Because we consider a single class, the only relevant
metric is robust accuracy on constrained examples. Unsuccessful adversarial examples count as
correctly classified when measuring robust accuracy.

We only consider examples that respect domain constraints to compute robust accuracy. If an attack
generates invalid examples, they are defacto considered unsuccessful and are reverted to their original
example (correctly classified).

We report in the Appendix 8 all the remaining performance metrics, including the recall, the precision,
and the Mattheu Correlation Coefficient (MCC).

Attacks parameters CAA applies CAPGD and MOEVA with the following parameters.

CAPGD uses Niter = 10 iterations. The step reduction schedule for CPGD uses M = 7. In CAPGD,
checkpoints are set as wj = ⌈pj ×Niter⌉ ≤ Niter, with pj ∈ [0, 1] defined as p0 = 0, p1 = 0.22,
and

pj+1 = pj +max pj − pj−1 − 0.03, 0.06.

The influence of the previous update on the current update is set to α = 0.75, and ρ = 0.75 for step
halving. MOEVA runs for ngen = 100 iterations, generating noff = 100 offspring per iteration.
Among the offspring, npop = 200 survive and are used for mating in the subsequent iteration.

Hardware Our experiments are conducted on an HPC cluster node equipped with 32 cores and
64GB of RAM allocated for our use. Each node is composed of 2 AMD Epyc ROME 7H12 processors
running at 2.6 GHz, providing a total of 128 cores and 256 GB of RAM.

A.4 Generator architectures

In our experimental study, we use the same five generative models as Stoian et al. (2024):

• WGAN (Arjovsky et al., 2017) is a GAN model trained with Wasserstein loss within a
standard generator-discriminator GAN framework. In our implementation, WGAN utilizes
a MinMax transformer for continuous features and one-hot encoding for categorical features.
It is not specifically designed for tabular data.

• TableGAN (Park et al., 2018) is one of the pioneering GAN-based methods for generating
tabular data. Besides the conventional generator and discriminator setup in GANs, the
authors introduced a classifier trained to understand the relationship between labels and
other features. This classifier ensures a higher number of semantically correct generated
records. TableGAN applies a MinMax transformer to the features.

• CTGAN (Xu et al., 2019b) employs a conditional generator and a training-by-sampling
strategy within a generator-discriminator GAN framework to model tabular data. The condi-
tional generator produces synthetic rows conditioned on one of the discrete columns. The
training-by-sampling method ensures that data are sampled according to the log frequency
of each category, aiding in better modeling of imbalanced categorical columns. CTGAN
uses one-hot encoding for discrete features and a mode-based normalization for continuous
features. A variational Gaussian mixture model (?) is used to estimate the number of
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modes and fit a Gaussian mixture. For each continuous value, a mode is sampled based on
probability densities, and its mean and standard deviation are used for normalization.

• TVAE (Xu et al., 2019b) was introduced as a variant of the standard Variational AutoEncoder
to handle tabular data. It employs the same data transformations as CTGAN and trains the
encoder-decoder architecture using evidence lower-bound (ELBO) loss.

• GOGGLE (Liu et al., 2023) is a graph-based method for learning the relational structure
of data as well as functional relationships (dependencies between features). The rela-
tional structure is learned by constructing a graph where nodes represent variables and
edges indicate dependencies between them. Functional dependencies are learned through a
message-passing neural network (MPNN). The generative model generates each variable
considering its surrounding neighborhood.

The hyperpameters for training these models are based on Stoian et al. (2024) as well:

For GOGGLE, we employed the same optimizer and learning rate configuration as described in
Liu et al. (2023). Specifically, ADAM was used with five different learning rates: {1× 10−3, 5×
10−3, 1× 10−2}.

For TVAE, ADAM was utilized with five different learning rates: {5 × 10−6, 1 × 10−5, 1 ×
10−4, 2× 10−4, 1× 10−3}.

For the other DGM models, three different optimizers were tested: ADAM, RMSPROP, and SGD,
each with distinct sets of learning rates.

For WGAN, the learning rates were {1× 10−4, 1× 10−3}, {5× 10−5, 1× 10−4, 1× 10−3}, and
{1× 10−4, 1× 10−3}, respectively.

For TableGAN, the learning rates were {5×10−5, 1×10−4, 2×10−4, 1×10−3}, {1×10−4, 2×
10−4, 1× 10−3}, and {1× 10−4, 1× 10−3}, respectively.

For CTGAN, the learning rates were {5× 10−5, 1× 10−4, 2× 10−4}, {1× 10−4, 2× 10−4, 1×
10−3}, and {1× 10−4, 1× 10−3}, respectively.

For each optimizer-learning rate combination, three different batch sizes were tested, depending
on the DGM model: {64, 128, 256} for WGAN, {128, 256, 512} for TableGAN, {70, 280, 500} for
CTGAN and TVAE, and {64, 128} for GOGGLE. The batch sizes for CTGAN are multiples of 10
to accommodate the recommended PAC value of 10 as suggested in Lin et al. (2018), among other
values.

A.5 Reproduction package and availability

The source code, datasets, and pre-trained models required to replicate the experiments in this
paper are publicly accessible under the MIT license on the repository https://github.com/
serval-uni-lu/tabularbench.

B Detailed results

B.1 Baseline models performances

We compare in 6 the ID performance of XGBoost and our deep learning models under standard
training. We confirm that DL models are on par with the performances achieved by shallow models.

B.2 Execution time

We provide in Table 7 the execution time in seconds for each dataset and architecture. We run the
benchmark on 1.000 examples each with the standard benchmark parameters (100 iterations, no time
limit). Given the search component MOEVA within CAA, the execution time linearly increases with
the complexity of the dataset. The malware dataset that we curated for this benchmark is very robust
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Table 6: AUC In-distribution performance of models
Dataset CTU LCLD MALWARE URL WIDS

RLN 0.991 0.719 0.993 0.984 0.869
STG 0.988 0.709 0.991 0.973 0.866

TabNet 0.996 0.722 0.994 0.986 0.870
TabTr 0.979 0.717 0.994 0.981 0.874
VIME 0.987 0.714 0.989 0.974 0.865

XGBoost 0.994 0.723 0.997 0.993 0.887

Table 7: Execution time of CAA in seconds, averaged over 5 seeds with 95 confidence interval.
TabTransformer RLN VIME STG TabNet

CTU 110± 5 112± 4 116± 2 119± 4 182± 4
LCLD 83± 2 10± 3 13± 1 57± 2 23± 0
MALWARE 1509± 125 936± 116 3006± 47 971± 103 4008± 220
URL 17± 1 19± 1 51± 2 73± 3 58± 1
WIDS 49± 1 49± 2 41± 1 59± 1 25± 1

to CAA (see Table 3 of our benchmark) and extremely costly to attack. These properties make it a
suitable use case to evaluate future attacks with our benchmark.

B.3 Data augmentation detailed results

Clean performance after data augmentation We report in Table 8 the clean performances of our
models under all the training scenarios. Notably, few training combinations lead to a collapse of
performance (MCC = 0). It is the case on CTU dataset for all data augmentations with adversarial
training, and CTGAN, Cutmix, and TVAE with standard training.

Table 8: Detailed results of clean performance for our augmented models
Dataset Arch AUC Accuracy Precision Recall Mcc Training Augment

URL TabTr 0.981 0.940 0.943 0.937 0.880 Standard None
URL TabTr 0.974 0.931 0.923 0.941 0.862 Adversarial None
URL TabTr 0.976 0.933 0.927 0.941 0.866 Standard ctgan
URL TabTr 0.963 0.916 0.903 0.932 0.832 Adversarial ctgan
URL TabTr 0.968 0.930 0.954 0.905 0.862 Standard cutmix
URL TabTr 0.956 0.900 0.937 0.857 0.803 Adversarial cutmix
URL TabTr 0.974 0.931 0.932 0.930 0.862 Standard goggle
URL TabTr 0.964 0.915 0.913 0.918 0.830 Adversarial goggle
URL TabTr 0.980 0.934 0.934 0.934 0.869 Standard wgan
URL TabTr 0.970 0.921 0.916 0.927 0.843 Adversarial wgan
URL TabTr 0.975 0.928 0.955 0.899 0.858 Standard tablegan
URL TabTr 0.967 0.919 0.935 0.900 0.839 Adversarial tablegan
URL TabTr 0.978 0.937 0.925 0.950 0.873 Standard tvae
URL TabTr 0.969 0.925 0.917 0.934 0.850 Adversarial tvae
URL STG 0.973 0.920 0.908 0.934 0.839 Standard None
URL STG 0.949 0.862 0.812 0.943 0.734 Adversarial None
URL STG 0.967 0.910 0.898 0.925 0.820 Standard ctgan
URL STG 0.959 0.895 0.863 0.940 0.794 Adversarial ctgan
URL STG 0.960 0.867 0.924 0.800 0.741 Standard cutmix
URL STG 0.954 0.842 0.909 0.760 0.694 Adversarial cutmix
URL STG 0.962 0.903 0.876 0.940 0.809 Standard goggle
URL STG 0.954 0.882 0.842 0.941 0.770 Adversarial goggle
URL STG 0.970 0.913 0.903 0.926 0.826 Standard wgan
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URL STG 0.963 0.896 0.862 0.943 0.796 Adversarial wgan
URL STG 0.968 0.908 0.933 0.878 0.817 Standard tablegan
URL STG 0.956 0.888 0.862 0.923 0.777 Adversarial tablegan
URL STG 0.969 0.913 0.892 0.940 0.827 Standard tvae
URL STG 0.961 0.889 0.843 0.956 0.786 Adversarial tvae
URL TabNet 0.986 0.946 0.954 0.937 0.892 Standard None
URL TabNet 0.947 0.700 0.626 0.994 0.495 Adversarial None
URL TabNet 0.951 0.699 0.625 0.994 0.493 Standard ctgan
URL TabNet 0.943 0.853 0.819 0.905 0.709 Adversarial ctgan
URL TabNet 0.947 0.860 0.802 0.958 0.735 Standard cutmix
URL TabNet 0.935 0.860 0.815 0.934 0.729 Adversarial cutmix
URL TabNet 0.934 0.851 0.803 0.932 0.712 Standard goggle
URL TabNet 0.939 0.868 0.880 0.852 0.736 Adversarial goggle
URL TabNet 0.946 0.612 0.564 0.997 0.352 Standard wgan
URL TabNet 0.956 0.853 0.821 0.901 0.709 Adversarial wgan
URL TabNet 0.938 0.858 0.830 0.899 0.718 Standard tablegan
URL TabNet 0.929 0.504 1.000 0.008 0.063 Adversarial tablegan
URL TabNet 0.949 0.861 0.813 0.939 0.731 Standard tvae
URL TabNet 0.942 0.864 0.817 0.940 0.737 Adversarial tvae
URL RLN 0.984 0.945 0.945 0.946 0.891 Standard None
URL RLN 0.977 0.933 0.917 0.953 0.867 Adversarial None
URL RLN 0.980 0.939 0.938 0.941 0.878 Standard ctgan
URL RLN 0.973 0.925 0.914 0.939 0.851 Adversarial ctgan
URL RLN 0.983 0.944 0.945 0.942 0.887 Standard cutmix
URL RLN 0.977 0.933 0.924 0.944 0.866 Adversarial cutmix
URL RLN 0.978 0.938 0.937 0.940 0.877 Standard goggle
URL RLN 0.969 0.927 0.916 0.939 0.853 Adversarial goggle
URL RLN 0.982 0.940 0.945 0.934 0.880 Standard wgan
URL RLN 0.976 0.927 0.923 0.933 0.855 Adversarial wgan
URL RLN 0.980 0.934 0.953 0.913 0.868 Standard tablegan
URL RLN 0.971 0.925 0.933 0.915 0.850 Adversarial tablegan
URL RLN 0.982 0.941 0.939 0.944 0.883 Standard tvae
URL RLN 0.976 0.927 0.916 0.941 0.855 Adversarial tvae
URL VIME 0.974 0.928 0.929 0.927 0.856 Standard None
URL VIME 0.973 0.925 0.917 0.934 0.850 Adversarial None
URL VIME 0.968 0.916 0.906 0.927 0.831 Standard ctgan
URL VIME 0.965 0.912 0.913 0.911 0.824 Adversarial ctgan
URL VIME 0.971 0.922 0.921 0.924 0.844 Standard cutmix
URL VIME 0.967 0.918 0.915 0.921 0.836 Adversarial cutmix
URL VIME 0.960 0.900 0.908 0.891 0.801 Standard goggle
URL VIME 0.955 0.904 0.892 0.920 0.809 Adversarial goggle
URL VIME 0.968 0.917 0.913 0.923 0.835 Standard wgan
URL VIME 0.966 0.910 0.919 0.899 0.820 Adversarial wgan
URL VIME 0.963 0.905 0.930 0.875 0.811 Standard tablegan
URL VIME 0.960 0.906 0.923 0.887 0.813 Adversarial tablegan
URL VIME 0.968 0.914 0.919 0.907 0.828 Standard tvae
URL VIME 0.964 0.908 0.915 0.899 0.816 Adversarial tvae
LCLD TabTr 0.717 0.633 0.314 0.699 0.254 Standard None
LCLD TabTr 0.711 0.590 0.293 0.738 0.233 Adversarial None
LCLD TabTr 0.711 0.614 0.304 0.715 0.244 Standard ctgan
LCLD TabTr 0.694 0.526 0.271 0.803 0.212 Adversarial ctgan
LCLD TabTr 0.712 0.638 0.314 0.677 0.247 Standard cutmix
LCLD TabTr 0.702 0.596 0.294 0.723 0.230 Adversarial cutmix
LCLD TabTr 0.712 0.638 0.315 0.681 0.249 Standard goggle
LCLD TabTr 0.699 0.645 0.312 0.636 0.231 Adversarial goggle
LCLD TabTr 0.711 0.634 0.313 0.684 0.247 Standard wgan
LCLD TabTr 0.688 0.615 0.296 0.664 0.214 Adversarial wgan
LCLD TabTr 0.710 0.636 0.313 0.678 0.245 Standard tablegan
LCLD TabTr 0.694 0.651 0.313 0.614 0.225 Adversarial tablegan
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LCLD TabTr 0.716 0.634 0.314 0.693 0.252 Standard tvae
LCLD TabTr 0.702 0.620 0.304 0.691 0.235 Adversarial tvae
LCLD STG 0.709 0.646 0.317 0.660 0.245 Standard None
LCLD STG 0.679 0.788 0.432 0.172 0.170 Adversarial None
LCLD STG 0.705 0.503 0.266 0.841 0.215 Standard ctgan
LCLD STG 0.700 0.505 0.266 0.833 0.212 Adversarial ctgan
LCLD STG 0.707 0.766 0.404 0.347 0.231 Standard cutmix
LCLD STG 0.703 0.758 0.393 0.371 0.232 Adversarial cutmix
LCLD STG 0.704 0.677 0.331 0.591 0.242 Standard goggle
LCLD STG 0.698 0.616 0.300 0.687 0.229 Adversarial goggle
LCLD STG 0.705 0.669 0.326 0.606 0.241 Standard wgan
LCLD STG 0.699 0.657 0.318 0.617 0.234 Adversarial wgan
LCLD STG 0.702 0.710 0.349 0.509 0.238 Standard tablegan
LCLD STG 0.699 0.657 0.318 0.621 0.235 Adversarial tablegan
LCLD STG 0.706 0.652 0.319 0.645 0.244 Standard tvae
LCLD STG 0.706 0.625 0.307 0.687 0.239 Adversarial tvae
LCLD TabNet 0.722 0.656 0.326 0.668 0.262 Standard None
LCLD TabNet 0.656 0.799 0.000 0.000 0.000 Adversarial None
LCLD TabNet 0.687 0.785 0.270 0.042 0.031 Standard ctgan
LCLD TabNet 0.695 0.799 0.000 0.000 0.000 Adversarial ctgan
LCLD TabNet 0.700 0.799 1.000 0.000 0.003 Standard cutmix
LCLD TabNet 0.638 0.799 0.000 0.000 0.000 Adversarial cutmix
LCLD TabNet 0.673 0.799 0.000 0.000 0.000 Standard goggle
LCLD TabNet 0.683 0.201 0.201 1.000 0.000 Adversarial goggle
LCLD TabNet 0.665 0.799 0.000 0.000 0.000 Standard wgan
LCLD TabNet 0.688 0.799 0.000 0.000 0.000 Adversarial wgan
LCLD TabNet 0.689 0.793 0.255 0.016 0.015 Standard tablegan
LCLD TabNet 0.652 0.732 0.225 0.137 0.023 Adversarial tablegan
LCLD TabNet 0.667 0.799 0.248 0.000 0.002 Standard tvae
LCLD TabNet 0.696 0.799 0.000 0.000 0.000 Adversarial tvae
LCLD RLN 0.719 0.641 0.318 0.685 0.255 Standard None
LCLD RLN 0.716 0.628 0.309 0.693 0.245 Adversarial None
LCLD RLN 0.709 0.620 0.306 0.703 0.242 Standard ctgan
LCLD RLN 0.704 0.582 0.290 0.749 0.232 Adversarial ctgan
LCLD RLN 0.715 0.633 0.313 0.693 0.250 Standard cutmix
LCLD RLN 0.706 0.683 0.334 0.580 0.243 Adversarial cutmix
LCLD RLN 0.717 0.648 0.321 0.672 0.255 Standard goggle
LCLD RLN 0.710 0.644 0.317 0.666 0.247 Adversarial goggle
LCLD RLN 0.712 0.644 0.317 0.668 0.248 Standard wgan
LCLD RLN 0.705 0.646 0.316 0.653 0.241 Adversarial wgan
LCLD RLN 0.712 0.642 0.316 0.672 0.249 Standard tablegan
LCLD RLN 0.704 0.629 0.308 0.679 0.239 Adversarial tablegan
LCLD RLN 0.717 0.633 0.314 0.697 0.253 Standard tvae
LCLD RLN 0.708 0.635 0.312 0.676 0.244 Adversarial tvae
LCLD VIME 0.714 0.645 0.318 0.671 0.251 Standard None
LCLD VIME 0.713 0.651 0.321 0.657 0.250 Adversarial None
LCLD VIME 0.706 0.571 0.287 0.766 0.231 Standard ctgan
LCLD VIME 0.701 0.535 0.275 0.803 0.220 Adversarial ctgan
LCLD VIME 0.710 0.710 0.353 0.528 0.249 Standard cutmix
LCLD VIME 0.701 0.682 0.332 0.575 0.239 Adversarial cutmix
LCLD VIME 0.714 0.666 0.328 0.633 0.253 Standard goggle
LCLD VIME 0.703 0.685 0.334 0.569 0.239 Adversarial goggle
LCLD VIME 0.708 0.648 0.318 0.658 0.247 Standard wgan
LCLD VIME 0.699 0.660 0.320 0.618 0.237 Adversarial wgan
LCLD VIME 0.708 0.676 0.332 0.606 0.249 Standard tablegan
LCLD VIME 0.696 0.677 0.327 0.574 0.232 Adversarial tablegan
LCLD VIME 0.714 0.654 0.322 0.657 0.252 Standard tvae
LCLD VIME 0.705 0.628 0.308 0.684 0.240 Adversarial tvae
CTU TabTr 0.979 1.000 0.982 0.953 0.967 Standard None
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CTU TabTr 0.985 1.000 0.982 0.953 0.967 Adversarial None
CTU TabTr 0.630 0.044 0.008 1.000 0.017 Standard ctgan
CTU TabTr 0.627 0.045 0.008 1.000 0.017 Adversarial ctgan
CTU TabTr 0.977 1.000 0.982 0.953 0.967 Standard cutmix
CTU TabTr 0.980 1.000 0.982 0.953 0.967 Adversarial cutmix
CTU TabTr 0.982 1.000 0.982 0.953 0.967 Standard wgan
CTU TabTr 0.984 1.000 0.982 0.953 0.967 Adversarial wgan
CTU TabTr 0.978 1.000 0.987 0.951 0.969 Standard tablegan
CTU TabTr 0.979 1.000 0.987 0.953 0.970 Adversarial tablegan
CTU TabTr 0.977 0.943 0.111 0.963 0.317 Standard tvae
CTU TabTr 0.974 0.609 0.018 0.983 0.103 Adversarial tvae
CTU STG 0.988 1.000 0.982 0.953 0.967 Standard None
CTU STG 0.986 1.000 0.992 0.951 0.971 Adversarial None
CTU STG 0.990 0.999 0.890 0.956 0.922 Standard ctgan
CTU STG 0.986 0.930 0.092 0.961 0.286 Adversarial ctgan
CTU STG 0.986 1.000 0.982 0.953 0.967 Standard cutmix
CTU STG 0.985 1.000 1.000 0.946 0.972 Adversarial cutmix
CTU STG 0.986 1.000 0.982 0.953 0.967 Standard wgan
CTU STG 0.985 1.000 0.982 0.953 0.967 Adversarial wgan
CTU STG 0.986 1.000 0.982 0.953 0.967 Standard tablegan
CTU STG 0.984 1.000 1.000 0.951 0.975 Adversarial tablegan
CTU STG 0.984 0.890 0.061 0.963 0.227 Standard tvae
CTU STG 0.981 0.436 0.013 0.983 0.072 Adversarial tvae
CTU TabNet 0.996 0.999 0.958 0.961 0.959 Standard None
CTU TabNet 0.978 0.993 0.500 0.002 0.035 Adversarial None
CTU TabNet 0.986 0.993 0.000 0.000 0.000 Standard ctgan
CTU TabNet 0.977 0.016 0.007 1.000 0.008 Adversarial ctgan
CTU TabNet 0.982 0.993 0.000 0.000 0.000 Standard cutmix
CTU TabNet 0.982 0.993 0.000 0.000 0.000 Adversarial cutmix
CTU TabNet 0.983 1.000 0.985 0.951 0.967 Standard wgan
CTU TabNet 0.987 0.993 0.000 0.000 0.000 Adversarial wgan
CTU TabNet 0.980 1.000 0.982 0.953 0.967 Standard tablegan
CTU TabNet 0.993 0.993 1.000 0.015 0.121 Adversarial tablegan
CTU TabNet 0.987 0.993 0.000 0.000 0.000 Standard tvae
CTU TabNet 0.976 0.007 0.007 1.000 0.000 Adversarial tvae
CTU RLN 0.991 0.998 0.819 0.978 0.894 Standard None
CTU RLN 0.990 0.999 0.904 0.973 0.937 Adversarial None
CTU RLN 0.994 0.986 0.338 0.975 0.570 Standard ctgan
CTU RLN 0.992 0.985 0.327 0.975 0.561 Adversarial ctgan
CTU RLN 0.989 1.000 0.987 0.953 0.970 Standard cutmix
CTU RLN 0.987 1.000 1.000 0.953 0.976 Adversarial cutmix
CTU RLN 0.991 0.999 0.887 0.966 0.925 Standard wgan
CTU RLN 0.990 0.999 0.923 0.975 0.949 Adversarial wgan
CTU RLN 0.992 0.999 0.880 0.975 0.926 Standard tablegan
CTU RLN 0.990 0.999 0.896 0.975 0.934 Adversarial tablegan
CTU RLN 0.988 0.987 0.362 0.973 0.589 Standard tvae
CTU RLN 0.988 0.986 0.338 0.975 0.570 Adversarial tvae
CTU VIME 0.987 1.000 0.997 0.951 0.974 Standard None
CTU VIME 0.983 1.000 0.997 0.951 0.974 Adversarial None
CTU VIME 0.972 0.007 0.007 1.000 0.000 Standard ctgan
CTU VIME 0.741 0.007 0.007 1.000 0.000 Adversarial ctgan
CTU VIME 0.991 1.000 0.997 0.951 0.974 Standard cutmix
CTU VIME 0.976 1.000 0.997 0.951 0.974 Adversarial cutmix
CTU VIME 0.977 1.000 1.000 0.953 0.976 Standard wgan
CTU VIME 0.979 1.000 0.997 0.953 0.975 Adversarial wgan
CTU VIME 0.984 1.000 0.997 0.951 0.974 Standard tablegan
CTU VIME 0.979 1.000 0.997 0.951 0.974 Adversarial tablegan
CTU VIME 0.950 0.008 0.007 1.000 0.001 Standard tvae
CTU VIME 0.727 0.007 0.007 1.000 0.000 Adversarial tvae
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WIDS TabTr 0.874 0.810 0.287 0.755 0.383 Standard None
WIDS TabTr 0.869 0.794 0.272 0.772 0.373 Adversarial None
WIDS TabTr 0.868 0.799 0.279 0.780 0.383 Standard ctgan
WIDS TabTr 0.859 0.769 0.249 0.782 0.349 Adversarial ctgan
WIDS TabTr 0.866 0.835 0.314 0.708 0.395 Standard cutmix
WIDS TabTr 0.851 0.867 0.358 0.601 0.395 Adversarial cutmix
WIDS TabTr 0.873 0.805 0.285 0.784 0.392 Standard goggle
WIDS TabTr 0.853 0.784 0.261 0.764 0.357 Adversarial goggle
WIDS TabTr 0.866 0.797 0.273 0.763 0.371 Standard wgan
WIDS TabTr 0.864 0.788 0.264 0.764 0.361 Adversarial wgan
WIDS TabTr 0.869 0.808 0.284 0.748 0.378 Standard tablegan
WIDS TabTr 0.858 0.806 0.277 0.724 0.363 Adversarial tablegan
WIDS TabTr 0.871 0.801 0.280 0.776 0.383 Standard tvae
WIDS TabTr 0.858 0.790 0.264 0.747 0.356 Adversarial tvae
WIDS STG 0.866 0.782 0.260 0.776 0.361 Standard None
WIDS STG 0.865 0.875 0.381 0.627 0.424 Adversarial None
WIDS STG 0.852 0.638 0.183 0.878 0.285 Standard ctgan
WIDS STG 0.841 0.668 0.193 0.851 0.293 Adversarial ctgan
WIDS STG 0.863 0.885 0.400 0.567 0.414 Standard cutmix
WIDS STG 0.851 0.880 0.380 0.530 0.385 Adversarial cutmix
WIDS STG 0.851 0.780 0.253 0.742 0.342 Standard goggle
WIDS STG 0.837 0.727 0.218 0.787 0.310 Adversarial goggle
WIDS STG 0.863 0.800 0.274 0.744 0.366 Standard wgan
WIDS STG 0.855 0.855 0.334 0.625 0.384 Adversarial wgan
WIDS STG 0.861 0.846 0.326 0.676 0.396 Standard tablegan
WIDS STG 0.853 0.829 0.302 0.688 0.376 Adversarial tablegan
WIDS STG 0.857 0.776 0.252 0.758 0.345 Standard tvae
WIDS STG 0.845 0.807 0.271 0.678 0.341 Adversarial tvae
WIDS TabNet 0.870 0.777 0.259 0.796 0.365 Standard None
WIDS TabNet 0.835 0.104 0.090 0.984 0.003 Adversarial None
WIDS TabNet 0.853 0.090 0.090 1.000 0.000 Standard ctgan
WIDS TabNet 0.863 0.090 0.090 1.000 0.000 Adversarial ctgan
WIDS TabNet 0.866 0.910 0.000 0.000 0.000 Standard cutmix
WIDS TabNet 0.859 0.090 0.090 1.000 0.000 Adversarial cutmix
WIDS TabNet 0.856 0.090 0.090 1.000 0.000 Standard goggle
WIDS TabNet 0.862 0.090 0.090 1.000 0.000 Adversarial goggle
WIDS TabNet 0.865 0.795 0.275 0.787 0.381 Standard wgan
WIDS TabNet 0.855 0.090 0.090 1.000 0.000 Adversarial wgan
WIDS TabNet 0.864 0.090 0.090 1.000 0.000 Standard tablegan
WIDS TabNet 0.860 0.090 0.090 1.000 0.000 Adversarial tablegan
WIDS TabNet 0.857 0.104 0.090 0.984 0.003 Standard tvae
WIDS TabNet 0.864 0.090 0.090 1.000 0.000 Adversarial tvae
WIDS RLN 0.869 0.796 0.274 0.774 0.376 Standard None
WIDS RLN 0.867 0.789 0.268 0.779 0.370 Adversarial None
WIDS RLN 0.862 0.788 0.264 0.761 0.360 Standard ctgan
WIDS RLN 0.425 0.090 0.090 1.000 0.000 Adversarial ctgan
WIDS RLN 0.870 0.802 0.280 0.769 0.381 Standard cutmix
WIDS RLN 0.859 0.834 0.307 0.681 0.379 Adversarial cutmix
WIDS RLN 0.864 0.797 0.276 0.774 0.378 Standard goggle
WIDS RLN 0.857 0.777 0.256 0.782 0.358 Adversarial goggle
WIDS RLN 0.866 0.782 0.260 0.774 0.359 Standard wgan
WIDS RLN 0.858 0.770 0.249 0.776 0.347 Adversarial wgan
WIDS RLN 0.868 0.773 0.254 0.785 0.356 Standard tablegan
WIDS RLN 0.860 0.797 0.273 0.760 0.370 Adversarial tablegan
WIDS RLN 0.868 0.776 0.259 0.803 0.367 Standard tvae
WIDS RLN 0.854 0.756 0.237 0.774 0.332 Adversarial tvae
WIDS VIME 0.865 0.823 0.298 0.721 0.384 Standard None
WIDS VIME 0.858 0.817 0.291 0.720 0.376 Adversarial None
WIDS VIME 0.482 0.090 0.090 1.000 0.000 Standard ctgan
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WIDS VIME 0.482 0.090 0.090 1.000 0.000 Adversarial ctgan
WIDS VIME 0.857 0.833 0.309 0.697 0.387 Standard cutmix
WIDS VIME 0.849 0.878 0.374 0.543 0.385 Adversarial cutmix
WIDS VIME 0.849 0.812 0.280 0.700 0.358 Standard goggle
WIDS VIME 0.840 0.802 0.268 0.700 0.346 Adversarial goggle
WIDS VIME 0.861 0.796 0.270 0.753 0.365 Standard wgan
WIDS VIME 0.845 0.791 0.259 0.715 0.339 Adversarial wgan
WIDS VIME 0.864 0.828 0.305 0.716 0.389 Standard tablegan
WIDS VIME 0.853 0.882 0.388 0.553 0.399 Adversarial tablegan
WIDS VIME 0.858 0.808 0.280 0.726 0.367 Standard tvae
WIDS VIME 0.846 0.787 0.256 0.721 0.339 Adversarial tvae

For LCLD dataset only Goggle and WGAN data augmentations lead to MCC = 0. To uncover what
happens with some generated data, we study the distribution of artificial examples on the LCLD
dataset for 3 cases: Two cases where performance did not collapse: TableGAN and CTGAN and one
problematic case WGAN.

Kernel Density Estimation. We first compare the artificial examples distributions in Figure 5. The
results show that the labels and the main features of TableGAN, a "healthy" generator are closer to
the distribution of the "problematic" generator WGAN than to the distribution of CTGAN, another
"healthy" generator. Feature and label distributions are not problematic.
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Figure 5: Impact of attack budget on the robust accuracy for LCLD dataset.

Statistical analysis. We perform the following statistical tests to compare the distributions quantita-
tively between the examples generated by the three generators. Kolmogorov-Smirnov test, t-test, or
MWU test. We report the results in Table 9. Across all statistical tests, there is no specific pattern to
the faulty generator "WGAN" compared to CTGAN and TableGAN.
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Table 9: Statistical tests between the distributions of the 3 generators: W:WGAN, T:TableGAN,
C:CTGAN, MWU:Mann-Whitney U.

GAN Test Amount Term Rate Installment Sub-grade Label

(W/T) KS Statistic 0.047 0.120 0.055 0.046 0.031 0.095
(W/T) KS p-value 0.000 0.000 0.000 0.000 0.000 0.000

(W/T) t-test Statistic 35.923 10.782 -7.687 40.512 0.224 140.654
(W/T) t-test p-value 0.000 0.000 0.000 0.000 0.823 0.000

(W/T) MWU Statistic 1.3× 1011 1.2× 1011 1.2× 1011 1.3× 1011 1.2× 1011 1.3× 1011

(W/T) MWU p-value 0.000 0.000 0.000 0.000 0.000 0.000

(W/C) KS Statistic 0.112 0.056 0.105 0.089 0.037 0.194
(W/C) KS p-value 0.000 0.000 0.000 0.000 0.000 0.000

(W/C) t-test Statistic 80.112 -21.286 40.896 61.097 30.043 -221.351
(W/C) t-test p-value 0.000 0.000 0.000 0.000 0.000 0.000

(W/C) MWU Statistic 1.3× 1011 1.2× 1011 1.2× 1011 1.3× 1011 1.2× 1011 9.8× 1010

(W/C) MWU p-value 0.000 0.002 0.000 0.000 0.000 0.000

(T/C) KS Statistic 0.079 0.070 0.093 0.044 0.027 0.289
(T/C) KS p-value 0.000 0.000 0.000 0.000 0.000 0.000

(T/C) t-test Statistic -43.986 31.467 -51.028 -20.991 -30.376 364.250
(T/C) t-test p-value 0.000 0.000 0.000 0.000 0.000 0.000

(T/C) MWU Statistic 1.2× 1011 1.2× 1011 1.2× 1011 1.2× 1011 1.2× 1011 1.6× 1011

(T/C) MWU p-value 0.000 0.000 0.000 0.000 0.000 0.000

Classification performance. We build a new classifier to identify examples generated by WGAN
and by TableGAN. We leverage Oodeel2, a library that performs post-hoc deep OOD (Out-of-
Distribution) detection.

The classifier reaches achieves a random accuracy (0.5) confirming that no specific features are
sufficient to distinguish both generators.

Next, we evaluate the Maximum Logit Score (MLS) detector and report the histograms and AUROC
curve of the detector in Figure 6.

Both the ROC curves and the histograms confirm that WGAN and TableGAN are not distinguishible.

Conclusion: From all our analysis, we confirm that the collapse of performance of training with
WGAN data augmentation is not due to some evident properties in the generated examples.
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Figure 6: Performance of the OOD detector on the WGAN samples.

2https://github.com/deel-ai/oodeel
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Robust performance after data augmentation We report below the robustness of our 270 models
trained with various combinations of arhcitecture, data augmentation, and adversarial training.

Table 10: Detailed results of adversarial robustness with constrained (CTR) and unconstrained attacks
(ADV) across our 5 seeds. Adv. means adversarial training, Std. means standard training.

Mean Std

Dataset Arch Training Augment ID CTR ADV ID CTR ADV

CTU STG Adv. None 0.951 0.951 0.951 0.000 0.000 0.000
CTU STG Adv. ctgan 0.961 0.960 0.959 0.000 0.001 0.002
CTU STG Adv. cutmix 0.946 0.945 0.946 0.000 0.001 0.000
CTU STG Adv. tablegan 0.951 0.951 0.951 0.000 0.000 0.000
CTU STG Adv. tvae 0.983 0.983 0.982 0.000 0.000 0.001
CTU STG Adv. wgan 0.953 0.953 0.953 0.000 0.000 0.000
CTU STG Std. None 0.953 0.953 0.953 0.000 0.000 0.000
CTU STG Std. ctgan 0.956 0.953 0.956 0.000 0.000 0.000
CTU STG Std. cutmix 0.953 0.953 0.953 0.000 0.000 0.000
CTU STG Std. tablegan 0.953 0.953 0.953 0.000 0.000 0.000
CTU STG Std. tvae 0.963 0.961 0.963 0.000 0.000 0.000
CTU STG Std. wgan 0.953 0.953 0.953 0.000 0.000 0.000
CTU TabNet Adv. None 0.002 0.002 0.002 0.000 0.001 0.001
CTU TabNet Adv. ctgan 1.000 1.000 1.000 0.000 0.000 0.000
CTU TabNet Adv. cutmix 0.000 0.000 0.000 0.000 0.000 0.000
CTU TabNet Adv. tablegan 0.015 0.014 0.014 0.000 0.001 0.001
CTU TabNet Adv. tvae 1.000 1.000 1.000 0.000 0.000 0.000
CTU TabNet Adv. wgan 0.000 0.000 0.000 0.000 0.000 0.000
CTU TabNet Std. None 0.961 0.000 0.961 0.000 0.000 0.000
CTU TabNet Std. ctgan 0.000 0.000 0.000 0.000 0.000 0.000
CTU TabNet Std. cutmix 0.000 0.000 0.000 0.000 0.000 0.000
CTU TabNet Std. tablegan 0.953 0.953 0.953 0.000 0.000 0.000
CTU TabNet Std. tvae 0.000 0.000 0.000 0.000 0.000 0.000
CTU TabNet Std. wgan 0.951 0.951 0.951 0.000 0.000 0.000
CTU TabTr Adv. None 0.953 0.953 0.953 0.000 0.000 0.000
CTU TabTr Adv. ctgan 1.000 0.944 1.000 0.000 0.010 0.000
CTU TabTr Adv. cutmix 0.953 0.953 0.953 0.000 0.000 0.000
CTU TabTr Adv. tablegan 0.953 0.953 0.953 0.000 0.001 0.000
CTU TabTr Adv. tvae 0.983 0.983 0.983 0.000 0.000 0.000
CTU TabTr Adv. wgan 0.953 0.953 0.953 0.000 0.000 0.000
CTU TabTr Std. None 0.953 0.953 0.953 0.000 0.000 0.000
CTU TabTr Std. ctgan 1.000 0.944 1.000 0.000 0.005 0.000
CTU TabTr Std. cutmix 0.953 0.949 0.953 0.000 0.003 0.000
CTU TabTr Std. tablegan 0.951 0.939 0.951 0.000 0.001 0.000
CTU TabTr Std. tvae 0.963 0.961 0.963 0.000 0.000 0.000
CTU TabTr Std. wgan 0.953 0.953 0.953 0.000 0.000 0.000
CTU RLN Adv. None 0.973 0.971 0.973 0.000 0.000 0.000
CTU RLN Adv. ctgan 0.975 0.967 0.975 0.000 0.001 0.000
CTU RLN Adv. cutmix 0.953 0.953 0.953 0.000 0.000 0.000
CTU RLN Adv. tablegan 0.975 0.975 0.975 0.000 0.001 0.000
CTU RLN Adv. tvae 0.975 0.968 0.975 0.000 0.002 0.000
CTU RLN Adv. wgan 0.975 0.974 0.975 0.000 0.001 0.000
CTU RLN Std. None 0.978 0.940 0.978 0.000 0.003 0.000
CTU RLN Std. ctgan 0.975 0.956 0.975 0.000 0.002 0.000
CTU RLN Std. cutmix 0.953 0.953 0.953 0.000 0.000 0.000
CTU RLN Std. tablegan 0.975 0.814 0.975 0.000 0.026 0.000
CTU RLN Std. tvae 0.973 0.932 0.973 0.000 0.011 0.000
CTU RLN Std. wgan 0.966 0.950 0.966 0.000 0.001 0.000
CTU VIME Adv. None 0.951 0.940 0.942 0.000 0.005 0.006
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CTU VIME Adv. ctgan 1.000 1.000 1.000 0.000 0.000 0.000
CTU VIME Adv. cutmix 0.951 0.943 0.947 0.000 0.004 0.002
CTU VIME Adv. tablegan 0.951 0.855 0.894 0.000 0.016 0.008
CTU VIME Adv. tvae 1.000 1.000 1.000 0.000 0.000 0.000
CTU VIME Adv. wgan 0.953 0.952 0.953 0.000 0.001 0.000
CTU VIME Std. None 0.951 0.408 0.951 0.000 0.049 0.000
CTU VIME Std. ctgan 1.000 1.000 1.000 0.000 0.000 0.000
CTU VIME Std. cutmix 0.951 0.350 0.951 0.000 0.029 0.000
CTU VIME Std. tablegan 0.951 0.670 0.951 0.000 0.021 0.000
CTU VIME Std. tvae 1.000 1.000 1.000 0.000 0.000 0.000
CTU VIME Std. wgan 0.953 0.229 0.953 0.000 0.022 0.000
LCLD STG Adv. None 0.156 0.121 0.156 0.000 0.001 0.000
LCLD STG Adv. ctgan 0.820 0.812 0.820 0.000 0.001 0.000
LCLD STG Adv. cutmix 0.376 0.362 0.376 0.000 0.000 0.000
LCLD STG Adv. goggle 0.694 0.682 0.694 0.000 0.000 0.000
LCLD STG Adv. tablegan 0.627 0.601 0.627 0.000 0.001 0.000
LCLD STG Adv. tvae 0.689 0.678 0.689 0.000 0.000 0.000
LCLD STG Adv. wgan 0.613 0.597 0.613 0.000 0.000 0.000
LCLD STG Std. None 0.664 0.536 0.664 0.000 0.001 0.000
LCLD STG Std. ctgan 0.833 0.595 0.833 0.000 0.004 0.000
LCLD STG Std. cutmix 0.352 0.222 0.352 0.000 0.002 0.000
LCLD STG Std. goggle 0.577 0.433 0.577 0.000 0.002 0.000
LCLD STG Std. tablegan 0.510 0.442 0.510 0.000 0.001 0.000
LCLD STG Std. tvae 0.649 0.505 0.649 0.000 0.001 0.000
LCLD STG Std. wgan 0.614 0.377 0.614 0.000 0.002 0.000
LCLD TabNet Adv. None 0.000 0.000 0.001 0.000 0.000 0.000
LCLD TabNet Adv. ctgan 0.000 0.000 0.001 0.000 0.000 0.000
LCLD TabNet Adv. cutmix 0.000 0.000 0.001 0.000 0.000 0.000
LCLD TabNet Adv. goggle 1.000 1.000 1.000 0.000 0.000 0.000
LCLD TabNet Adv. tablegan 0.116 0.114 0.117 0.000 0.000 0.000
LCLD TabNet Adv. tvae 0.000 0.000 0.001 0.000 0.000 0.000
LCLD TabNet Adv. wgan 0.000 0.000 0.001 0.000 0.000 0.000
LCLD TabNet Std. None 0.674 0.004 0.674 0.000 0.001 0.000
LCLD TabNet Std. ctgan 0.029 0.021 0.030 0.000 0.001 0.000
LCLD TabNet Std. cutmix 0.000 0.000 0.001 0.000 0.000 0.000
LCLD TabNet Std. goggle 0.000 0.000 0.001 0.000 0.000 0.000
LCLD TabNet Std. tablegan 0.013 0.010 0.014 0.000 0.001 0.000
LCLD TabNet Std. tvae 0.000 0.000 0.001 0.000 0.000 0.000
LCLD TabNet Std. wgan 0.000 0.000 0.001 0.000 0.000 0.000
LCLD TabTr Adv. None 0.739 0.703 0.739 0.000 0.001 0.000
LCLD TabTr Adv. ctgan 0.795 0.785 0.795 0.000 0.001 0.000
LCLD TabTr Adv. cutmix 0.725 0.710 0.725 0.000 0.001 0.000
LCLD TabTr Adv. goggle 0.636 0.605 0.636 0.000 0.002 0.000
LCLD TabTr Adv. tablegan 0.608 0.564 0.608 0.000 0.003 0.000
LCLD TabTr Adv. tvae 0.687 0.665 0.687 0.000 0.001 0.000
LCLD TabTr Adv. wgan 0.665 0.628 0.665 0.000 0.002 0.000
LCLD TabTr Std. None 0.695 0.079 0.695 0.000 0.006 0.000
LCLD TabTr Std. ctgan 0.724 0.081 0.724 0.000 0.004 0.000
LCLD TabTr Std. cutmix 0.677 0.073 0.677 0.000 0.008 0.000
LCLD TabTr Std. goggle 0.689 0.079 0.689 0.000 0.004 0.000
LCLD TabTr Std. tablegan 0.693 0.101 0.693 0.000 0.005 0.000
LCLD TabTr Std. tvae 0.703 0.048 0.703 0.000 0.003 0.000
LCLD TabTr Std. wgan 0.701 0.055 0.701 0.000 0.005 0.000
LCLD RLN Adv. None 0.695 0.630 0.695 0.000 0.001 0.000
LCLD RLN Adv. ctgan 0.737 0.543 0.737 0.000 0.001 0.000
LCLD RLN Adv. cutmix 0.581 0.470 0.581 0.000 0.003 0.000
LCLD RLN Adv. goggle 0.678 0.320 0.678 0.000 0.005 0.000
LCLD RLN Adv. tablegan 0.688 0.479 0.688 0.000 0.004 0.000
LCLD RLN Adv. tvae 0.670 0.643 0.670 0.000 0.000 0.000
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LCLD RLN Adv. wgan 0.661 0.402 0.661 0.000 0.004 0.000
LCLD RLN Std. None 0.683 0.000 0.683 0.000 0.000 0.000
LCLD RLN Std. ctgan 0.705 0.001 0.705 0.000 0.001 0.000
LCLD RLN Std. cutmix 0.689 0.000 0.689 0.000 0.000 0.000
LCLD RLN Std. goggle 0.673 0.000 0.673 0.000 0.000 0.000
LCLD RLN Std. tablegan 0.693 0.001 0.693 0.000 0.001 0.000
LCLD RLN Std. tvae 0.700 0.000 0.700 0.000 0.000 0.000
LCLD RLN Std. wgan 0.679 0.005 0.679 0.000 0.002 0.000
LCLD VIME Adv. None 0.655 0.104 0.655 0.000 0.002 0.000
LCLD VIME Adv. ctgan 0.789 0.768 0.789 0.000 0.000 0.000
LCLD VIME Adv. cutmix 0.570 0.529 0.570 0.000 0.001 0.000
LCLD VIME Adv. goggle 0.568 0.532 0.568 0.000 0.002 0.000
LCLD VIME Adv. tablegan 0.563 0.537 0.563 0.000 0.000 0.000
LCLD VIME Adv. tvae 0.678 0.661 0.678 0.000 0.001 0.000
LCLD VIME Adv. wgan 0.617 0.530 0.617 0.000 0.002 0.000
LCLD VIME Std. None 0.670 0.024 0.670 0.000 0.001 0.000
LCLD VIME Std. ctgan 0.773 0.018 0.773 0.000 0.002 0.000
LCLD VIME Std. cutmix 0.523 0.020 0.523 0.000 0.001 0.000
LCLD VIME Std. goggle 0.644 0.005 0.644 0.000 0.001 0.000
LCLD VIME Std. tablegan 0.607 0.005 0.607 0.000 0.001 0.000
LCLD VIME Std. tvae 0.668 0.007 0.668 0.000 0.001 0.000
LCLD VIME Std. wgan 0.659 0.007 0.659 0.000 0.002 0.000
URL STG Adv. None 0.943 0.900 0.903 0.000 0.001 0.001
URL STG Adv. ctgan 0.939 0.798 0.803 0.000 0.012 0.014
URL STG Adv. cutmix 0.755 0.427 0.422 0.000 0.032 0.032
URL STG Adv. goggle 0.939 0.856 0.860 0.000 0.010 0.008
URL STG Adv. tablegan 0.921 0.809 0.816 0.000 0.004 0.003
URL STG Adv. tvae 0.957 0.795 0.804 0.000 0.017 0.015
URL STG Adv. wgan 0.942 0.812 0.813 0.000 0.003 0.003
URL STG Std. None 0.933 0.580 0.596 0.000 0.008 0.007
URL STG Std. ctgan 0.922 0.693 0.770 0.000 0.008 0.006
URL STG Std. cutmix 0.794 0.397 0.444 0.000 0.009 0.010
URL STG Std. goggle 0.939 0.745 0.759 0.000 0.005 0.006
URL STG Std. tablegan 0.876 0.469 0.575 0.000 0.005 0.008
URL STG Std. tvae 0.941 0.688 0.733 0.000 0.002 0.006
URL STG Std. wgan 0.925 0.655 0.752 0.000 0.007 0.006
URL TabNet Adv. None 0.995 0.918 0.919 0.000 0.002 0.001
URL TabNet Adv. ctgan 0.901 0.899 0.899 0.000 0.000 0.000
URL TabNet Adv. cutmix 0.930 0.897 0.896 0.000 0.001 0.001
URL TabNet Adv. goggle 0.848 0.665 0.666 0.000 0.022 0.019
URL TabNet Adv. tablegan 0.008 0.000 0.000 0.000 0.000 0.000
URL TabNet Adv. tvae 0.940 0.872 0.870 0.000 0.018 0.018
URL TabNet Adv. wgan 0.898 0.896 0.896 0.000 0.000 0.000
URL TabNet Std. None 0.934 0.110 0.299 0.000 0.005 0.004
URL TabNet Std. ctgan 0.994 0.948 0.948 0.000 0.002 0.001
URL TabNet Std. cutmix 0.954 0.893 0.894 0.000 0.001 0.001
URL TabNet Std. goggle 0.932 0.896 0.896 0.000 0.001 0.000
URL TabNet Std. tablegan 0.896 0.878 0.875 0.000 0.010 0.011
URL TabNet Std. tvae 0.938 0.891 0.892 0.000 0.002 0.003
URL TabNet Std. wgan 0.998 0.952 0.953 0.000 0.002 0.001
URL TabTr Adv. None 0.939 0.567 0.578 0.000 0.009 0.009
URL TabTr Adv. ctgan 0.930 0.660 0.664 0.000 0.004 0.004
URL TabTr Adv. cutmix 0.850 0.403 0.404 0.000 0.011 0.012
URL TabTr Adv. goggle 0.917 0.541 0.554 0.000 0.006 0.007
URL TabTr Adv. tablegan 0.898 0.409 0.421 0.000 0.010 0.011
URL TabTr Adv. tvae 0.934 0.612 0.615 0.000 0.008 0.003
URL TabTr Adv. wgan 0.927 0.569 0.580 0.000 0.008 0.010
URL TabTr Std. None 0.936 0.089 0.825 0.000 0.002 0.001
URL TabTr Std. ctgan 0.942 0.253 0.880 0.000 0.006 0.005
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URL TabTr Std. cutmix 0.904 0.018 0.687 0.000 0.000 0.000
URL TabTr Std. goggle 0.930 0.049 0.051 0.000 0.001 0.001
URL TabTr Std. tablegan 0.899 0.020 0.020 0.000 0.000 0.000
URL TabTr Std. tvae 0.952 0.168 0.901 0.000 0.002 0.002
URL TabTr Std. wgan 0.936 0.200 0.887 0.000 0.006 0.002
URL RLN Adv. None 0.952 0.562 0.566 0.000 0.007 0.006
URL RLN Adv. ctgan 0.938 0.625 0.628 0.000 0.005 0.007
URL RLN Adv. cutmix 0.943 0.608 0.609 0.000 0.003 0.007
URL RLN Adv. goggle 0.939 0.661 0.665 0.000 0.008 0.006
URL RLN Adv. tablegan 0.913 0.555 0.557 0.000 0.009 0.005
URL RLN Adv. tvae 0.941 0.598 0.602 0.000 0.003 0.003
URL RLN Adv. wgan 0.933 0.547 0.552 0.000 0.002 0.005
URL RLN Std. None 0.944 0.108 0.901 0.000 0.002 0.001
URL RLN Std. ctgan 0.942 0.219 0.855 0.000 0.005 0.001
URL RLN Std. cutmix 0.941 0.086 0.926 0.000 0.002 0.002
URL RLN Std. goggle 0.936 0.039 0.039 0.000 0.000 0.000
URL RLN Std. tablegan 0.910 0.039 0.039 0.000 0.000 0.000
URL RLN Std. tvae 0.942 0.081 0.912 0.000 0.002 0.002
URL RLN Std. wgan 0.935 0.214 0.911 0.000 0.002 0.002
URL VIME Adv. None 0.934 0.698 0.727 0.000 0.006 0.004
URL VIME Adv. ctgan 0.910 0.669 0.690 0.000 0.005 0.007
URL VIME Adv. cutmix 0.920 0.686 0.707 0.000 0.010 0.012
URL VIME Adv. goggle 0.919 0.737 0.749 0.000 0.013 0.011
URL VIME Adv. tablegan 0.887 0.645 0.652 0.000 0.005 0.004
URL VIME Adv. tvae 0.899 0.636 0.711 0.000 0.004 0.004
URL VIME Adv. wgan 0.897 0.650 0.705 0.000 0.004 0.004
URL VIME Std. None 0.925 0.495 0.533 0.000 0.005 0.003
URL VIME Std. ctgan 0.927 0.548 0.910 0.000 0.004 0.001
URL VIME Std. cutmix 0.925 0.467 0.913 0.000 0.004 0.001
URL VIME Std. goggle 0.893 0.445 0.857 0.000 0.003 0.001
URL VIME Std. tablegan 0.875 0.430 0.750 0.000 0.005 0.003
URL VIME Std. tvae 0.909 0.444 0.886 0.000 0.005 0.003
URL VIME Std. wgan 0.922 0.519 0.905 0.000 0.008 0.003
WIDS STG Adv. None 0.626 0.452 0.626 0.000 0.002 0.000
WIDS STG Adv. ctgan 0.853 0.738 0.853 0.000 0.002 0.000
WIDS STG Adv. cutmix 0.532 0.412 0.523 0.000 0.001 0.003
WIDS STG Adv. goggle 0.788 0.660 0.788 0.000 0.002 0.000
WIDS STG Adv. tablegan 0.689 0.566 0.688 0.000 0.003 0.001
WIDS STG Adv. tvae 0.677 0.598 0.677 0.000 0.001 0.001
WIDS STG Adv. wgan 0.626 0.464 0.623 0.000 0.002 0.001
WIDS STG Std. None 0.776 0.638 0.773 0.000 0.002 0.000
WIDS STG Std. ctgan 0.878 0.712 0.877 0.000 0.003 0.000
WIDS STG Std. cutmix 0.567 0.385 0.559 0.000 0.004 0.000
WIDS STG Std. goggle 0.742 0.572 0.739 0.000 0.003 0.000
WIDS STG Std. tablegan 0.677 0.498 0.671 0.000 0.004 0.000
WIDS STG Std. tvae 0.759 0.621 0.755 0.000 0.003 0.000
WIDS STG Std. wgan 0.746 0.583 0.744 0.000 0.002 0.000
WIDS TabNet Adv. None 0.984 0.584 0.825 0.000 0.002 0.000
WIDS TabNet Adv. ctgan 1.000 1.000 1.000 0.000 0.000 0.000
WIDS TabNet Adv. cutmix 1.000 0.374 0.671 0.000 0.003 0.007
WIDS TabNet Adv. goggle 1.000 1.000 1.000 0.000 0.000 0.000
WIDS TabNet Adv. tablegan 1.000 1.000 1.000 0.000 0.000 0.000
WIDS TabNet Adv. tvae 1.000 1.000 1.000 0.000 0.000 0.000
WIDS TabNet Adv. wgan 1.000 0.992 0.996 0.000 0.004 0.002
WIDS TabNet Std. None 0.797 0.053 0.731 0.000 0.004 0.002
WIDS TabNet Std. ctgan 1.000 1.000 1.000 0.000 0.000 0.000
WIDS TabNet Std. cutmix 0.000 0.000 0.000 0.000 0.000 0.000
WIDS TabNet Std. goggle 1.000 1.000 1.000 0.000 0.000 0.000
WIDS TabNet Std. tablegan 1.000 1.000 1.000 0.000 0.000 0.000
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WIDS TabNet Std. tvae 0.984 0.406 0.475 0.000 0.001 0.000
WIDS TabNet Std. wgan 0.786 0.000 0.456 0.000 0.000 0.003
WIDS TabTr Adv. None 0.773 0.651 0.767 0.000 0.002 0.000
WIDS TabTr Adv. ctgan 0.781 0.681 0.776 0.000 0.003 0.001
WIDS TabTr Adv. cutmix 0.600 0.508 0.599 0.000 0.003 0.001
WIDS TabTr Adv. goggle 0.765 0.675 0.755 0.000 0.002 0.001
WIDS TabTr Adv. tablegan 0.726 0.622 0.724 0.000 0.002 0.001
WIDS TabTr Adv. tvae 0.747 0.667 0.743 0.000 0.002 0.001
WIDS TabTr Adv. wgan 0.765 0.652 0.759 0.000 0.002 0.002
WIDS TabTr Std. None 0.755 0.459 0.746 0.000 0.003 0.000
WIDS TabTr Std. ctgan 0.780 0.441 0.776 0.000 0.005 0.000
WIDS TabTr Std. cutmix 0.710 0.434 0.705 0.000 0.003 0.000
WIDS TabTr Std. goggle 0.786 0.383 0.733 0.000 0.004 0.000
WIDS TabTr Std. tablegan 0.750 0.376 0.750 0.000 0.008 0.000
WIDS TabTr Std. tvae 0.776 0.493 0.763 0.000 0.003 0.001
WIDS TabTr Std. wgan 0.763 0.376 0.763 0.000 0.005 0.000
WIDS RLN Adv. None 0.780 0.666 0.773 0.000 0.002 0.000
WIDS RLN Adv. ctgan 1.000 1.000 1.000 0.000 0.000 0.000
WIDS RLN Adv. cutmix 0.681 0.599 0.675 0.000 0.002 0.001
WIDS RLN Adv. goggle 0.783 0.691 0.774 0.000 0.003 0.001
WIDS RLN Adv. tablegan 0.760 0.661 0.754 0.000 0.002 0.001
WIDS RLN Adv. tvae 0.775 0.711 0.772 0.000 0.003 0.002
WIDS RLN Adv. wgan 0.776 0.676 0.776 0.000 0.003 0.001
WIDS RLN Std. None 0.775 0.609 0.771 0.000 0.002 0.000
WIDS RLN Std. ctgan 0.762 0.472 0.759 0.000 0.007 0.000
WIDS RLN Std. cutmix 0.770 0.587 0.767 0.000 0.002 0.000
WIDS RLN Std. goggle 0.773 0.525 0.750 0.000 0.001 0.000
WIDS RLN Std. tablegan 0.788 0.589 0.786 0.000 0.004 0.000
WIDS RLN Std. tvae 0.802 0.621 0.796 0.000 0.004 0.000
WIDS RLN Std. wgan 0.775 0.574 0.775 0.000 0.002 0.000
WIDS VIME Adv. None 0.721 0.521 0.721 0.000 0.003 0.000
WIDS VIME Adv. ctgan 1.000 1.000 1.000 0.000 0.000 0.000
WIDS VIME Adv. cutmix 0.543 0.435 0.535 0.000 0.002 0.001
WIDS VIME Adv. goggle 0.702 0.592 0.699 0.000 0.002 0.001
WIDS VIME Adv. tablegan 0.553 0.423 0.553 0.000 0.002 0.000
WIDS VIME Adv. tvae 0.721 0.618 0.721 0.000 0.001 0.000
WIDS VIME Adv. wgan 0.715 0.606 0.715 0.000 0.002 0.000
WIDS VIME Std. None 0.723 0.503 0.713 0.000 0.002 0.000
WIDS VIME Std. ctgan 1.000 1.000 1.000 0.000 0.000 0.000
WIDS VIME Std. cutmix 0.699 0.476 0.694 0.000 0.002 0.000
WIDS VIME Std. goggle 0.702 0.491 0.697 0.000 0.003 0.000
WIDS VIME Std. tablegan 0.718 0.501 0.718 0.000 0.004 0.000
WIDS VIME Std. tvae 0.726 0.506 0.726 0.000 0.004 0.000
WIDS VIME Std. wgan 0.755 0.512 0.754 0.000 0.001 0.000
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B.4 Correlations between ID and robust performances

Table 11: Pearson correlations between constrained robust accuracy and: ID accuracy (ID), and non
constrained-accuracy (ADV)

Dataset Training ID(corr) ID(p-val) ADV(corr) ADV(p-val)

CTU Adversarial 1 1.4e-26 1 1.9e-31
CTU Standard 0.22 0.28 0.22 0.28

LCLD Adversarial 0.76 1.8e-06 0.76 1.8e-06
LCLD Standard 0.15 0.39 0.15 0.39

URL Adversarial 0.7 3.6e-06 1 7.2e-37
URL Standard 0.19 0.26 0.46 0.0053

WIDS Adversarial 0.79 1e-06 0.91 7e-11
WIDS Standard 0.031 0.87 0.62 0.00025
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B.5 Impact of budgets, detailed results

1 2 3 4 5
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0
R

ob
us

t
A

cc
ur

ac
y

(a) Maximum ϵ perturbation

20 40 60 80 100
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

R
ob

us
t

A
cc

ur
ac

y

(b) Gradient attack iterations

200 400 600 800 1000
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

R
ob

us
t

A
cc

ur
ac

y

(c) Search attack iterations

Figure 7: Impact of attack budget on the robust accuracy for LCLD dataset.
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Figure 8: Impact of attack budget on the robust accuracy for CTU dataset.
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(b) Gradient attack iterations

200 400 600 800 1000
Epsilon

0.0

0.2

0.4

0.6

0.8

1.0

R
ob

us
t

A
cc

ur
ac

y

(c) Search attack iterations

Figure 9: Impact of attack budget on the robust accuracy for WIDS dataset.
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Figure 10: Impact of attack budget on the robust accuracy for Malware dataset.
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B.6 Generalization to other distances

We define for all attacks a distance function. This method is used for MOEVA (the evolution attack)
to measure the fitness value related to the distance objective, and in the evaluation method to validate
the correctness of the adversarial examples.

By default, it supports L∞ and L2 distances 3:

from tabularbench.utils.typing import NDBool , NDInt , NDNumber

def compute_distance(x_1: NDNumber , x_2: NDNumber , norm: Any) ->
NDNumber:

if norm in ["inf", np.inf , "Linf", "linf"]:
distance = np.linalg.norm(x_1 - x_2 , ord=np.inf , axis=-1)

elif norm in ["2", 2, "L2", "l2"]:
distance = np.linalg.norm(x_1 - x_2 , ord=2, axis=-1)

else:
raise NotImplementedError

return distance

One can define any new distance metric, like structural similarity index measure (SSIM), or some
semantic measure after embedding the features x1 and x2. The distance used here does not need to
be differentiable and is not backpropagated in the gradient attacks.

Hence, for CAPGD component of the benchmark attack, we need to define a custom
project mechanism for each distance. We implemented a projection over sphere of
L∞ and L2 distances https://github.com/serval-uni-lu/tabularbench/blob/main/
tabularbench/attacks/capgd/capgd.py#L196.

To extend the projected gradient attacks to other distances, custom projection mechanisms are then
needed.

C API

The library https://github.com/serval-uni-lu/tabularbench/tree/main/
tabularbench is split in 4 main components. The test folder provides meaningful exam-
ples for each component.

C.1 Datasets

Our dataset factory support 5 datasets: CTU, LCLD, MALWARE, URL, and WIDS. each dataset can
be invoked with the following aliases:

from tabularbench.datasets import dataset_factory

dataset_aliases= [
"ctu_13_neris",
"lcld_time",
"malware",
"url",
"wids",

]

for dataset_name in dataset_aliases:
dataset = dataset_factory.get_dataset(dataset_name)
x, _ = dataset.get_x_y ()
metadata = dataset.get_metadata(only_x=True)
assert x.shape[1] == metadata.shape[0]

3https://github.com/serval-uni-lu/tabularbench/blob/main/tabularbench/attacks/
utils.py
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Each dataset can be defined in a single .py file (example: https://github.com/serval-uni-lu/
tabularbench/blob/main/tabularbench/datasets/samples/url.py).

A dataset needs at least a source (local or remote csv) for the raw features, and a definition of feature
constraints. The said definition can be empty for non-constrained datasets.

C.2 Constraints

One of the features of our benchmark is the support of feature constraints, in the dataset definition
and in the attacks.

Constraints can be expressed in natural language. For example, we express the constraint F0 =
F1 + F2 such as:

from tabularbench.constraints.relation_constraint import Feature
constraint1 = Feature(0) == Feature(1) + Feature(2)

Given a dataset, one can check the constraint satisfaction over all constraints, given a tolerance.

from tabularbench.constraints.constraints_checker import
ConstraintChecker

from tabularbench.datasets import dataset_factory

dataset = dataset_factory.get_dataset("url")
x, _ = dataset.get_x_y ()

constraints_checker = ConstraintChecker(
dataset.get_constraints (), tolerance

)
out = constraints_checker.check_constraints(x.to_numpy ())

In the provided datasets, all constraints are satisfied. During the attack, Constraints can be fixed as
follows:

import numpy as np
from tabularbench.constraints.constraints_fixer import

ConstraintsFixer

x = np.arange(9).reshape(3, 3)

constraints_fixer = ConstraintsFixer(
guard_constraints=[constraint1],
fix_constraints=[constraint1],

)

x_fixed = constraints_fixer.fix(x)

x_expected = np.array([[3, 1, 2], [9, 4, 5], [15 , 7, 8]])

assert np.equal(x_fixed , x_expected).all()

Constraint violations can be translated into losses and one can compute the gradient to repair the
faulty constraints as follows:

import torch

from tabularbench.constraints.constraints_backend_executor import (
ConstraintsExecutor ,

)

from tabularbench.constraints.pytorch_backend import PytorchBackend
from tabularbench.datasets.dataset_factory import get_dataset

ds = get_dataset("url")
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constraints = ds.get_constraints ()
constraint1 = constraints.relation_constraints[0]

x, y = ds.get_x_y ()
x_metadata = ds.get_metadata(only_x=True)
x = torch.tensor(x.values , dtype=torch.float32)

constraints_executor = ConstraintsExecutor(
constraint1 ,
PytorchBackend (),
feature_names=x_metadata["feature"].to_list (),

)

x.requires_grad = True
loss = constraints_executor.execute(x)
grad = torch.autograd.grad(

loss.sum(),
x,

)[0]

C.3 Models

All models need to extend the class BaseModelTorch4 . This class implements the definitions, the fit
and evaluation methods, and the save and loading methods. Depending on the architecture, scaler and
feature encoders can be required by the constructors.

So far, our API natively supports: multi-layer perceptrons (MLP), RLN, STG, TabNet, TabTrans-
former, and VIME. Our implementation is based on Tabsurvey Borisov et al. (2021). All models
from this framework can be easily adapted to our API.

C.4 Benchmark

The leaderboard is available on https://serval-uni-lu.github.io/tabularbench/.

This leaderboard will be updated regularly, and all the models listed in leaderboard are downloadable
using our API

Figure 11: Screenshot of the TabularBench leaderboard on 12/06/2024

4https://github.com/serval-uni-lu/tabularbench/blob/main/tabularbench/models/
torch_models.py
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The benchmark leverages Constrained Adaptive Attack (CAA) by default and can be extended for
other attacks.

clean_acc , robust_acc = benchmark(dataset=’LCLD’, model="TabTr_Cutmix"
, distance=’L2’, constraints=True)

The model attribute refers to a pre-trained model in the relevant model folder. The API infers the
architecture from the first term of the model name, but it can be defined manually. In the above
example, a TabTransformer architecture will be initialized.
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Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] The paper’s method and empirical study are about the
first benchmark or adversarial robustness for deep tabular models, which is the claim
of the abstract and introduction.

(b) Did you describe the limitations of your work? [Yes] In section 5.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] In section

6.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes] Yes, our work conforms to them.
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] Yes, all
replication elements are provided in the public repository: https://github.com/
serval-uni-lu/tabularbench

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] In appendix A

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] We report the mean values in the plots of the main
paper and report the mean, standard deviation, and the 95% confidence intervals in the
appendix B.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] In appendix A.3

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] In section 3.1.
(b) Did you mention the license of the assets? [Yes] In Appendix A.1.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

The public repository contains all the transformed assets (datasets) and trained models.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] The datasets used are all with open-source license that allow
their usage in this work.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] No identifiable information or offensive
content is present in our assets.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] No crowdsourcing or conducted research with human subjects.
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A] No crowdsourcing or conducted research
with human subjects.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] No crowdsourcing or conducted research
with human subjects.
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