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Abstract

Gaze is an essential prompt for analyzing human behavior and attention. Recently, there
has been an increasing interest in determining gaze direction from facial videos. However,
video gaze estimation faces significant challenges, such as understanding the dynamic evolu-
tion of gaze in video sequences, dealing with static backgrounds, and adapting to variations
in illumination. To address these challenges, we propose a simple and novel deep learning
model designed to estimate gaze from videos, incorporating a specialized attention module.
Our method employs a spatial attention mechanism that tracks spatial dynamics within
videos. This technique enables accurate gaze direction prediction through a temporal se-
quence model, adeptly transforming spatial observations into temporal insights, thereby
significantly improving gaze estimation accuracy. Additionally, our approach integrates
Gaussian processes to include individual-specific traits, facilitating the personalization of
our model with just a few labeled samples. Experimental results confirm the efficacy of
the proposed approach, demonstrating its success in both within-dataset and cross-dataset
settings. Specifically, our proposed approach achieves state-of-the-art performance on the
Gaze360 dataset, improving by 2.5◦ without personalization. Further, by personalizing the
model with just three samples, we achieved an additional improvement of 0.8◦.

1 Introduction

The human gaze is an essential cue for conveying people’s intent, making it promising for real-world applica-
tions such as human-robot interaction (Moon et al., 2014; Palinko et al., 2016), AR/VR (Patney et al., 2016;
Padmanaban et al., 2017), and saliency detection (Rudoy et al., 2013; Parks et al., 2015). In addition, gaze
plays a vital role in several computer vision tasks, including but not limited to object detection (Vasudevan
et al., 2018), visual attention (Chong et al., 2018) and action recognition (Min & Corso, 2021). Despite
the primary research emphasis on gaze estimation from images, the potential benefits of understanding the
temporal dynamics of eye movements for video gaze estimation have been relatively overlooked. Construct-
ing an accurate video-based gaze estimation model requires addressing the unique challenges inherent to
videos. These include the evolution of eye movements throughout the video, correlations between gaze di-
rections in successive frames, the predominance of a static background in most pixels, and variations due to
individual-specific traits (Liu et al., 2018; Park et al., 2019b; Lindén et al., 2019). This work responds to
these challenges by aiming to develop an accurate gaze estimation technique for videos using deep networks.

Realizing the potential of spatial and motion cues in videos, prior research has utilized residual frames and
optical flows for several other vision tasks (Simonyan & Zisserman, 2014; Feichtenhofer et al., 2016; Wang
et al., 2018). Specifically, these methods integrate RGB and residual frames as different input streams,
requiring larger models with higher inference time and memory requirements (Karpathy et al., 2014; Wang
et al., 2015; Girdhar et al., 2017). Similarly, 3D convolutional neural networks (CNNs) can also capture
spatiotemporal information from videos, but they require many model parameters (Ji et al., 2012; Tran
et al., 2015; Wang et al., 2017; Carreira & Zisserman, 2017; Feichtenhofer et al., 2019; Li et al., 2020). In
addition, it is non-trivial to transfer knowledge from pre-trained 3D CNNs to new video tasks, as most pre-
trained models rely on large 2D image datasets such as the ImageNet dataset (Deng et al., 2009). Despite
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Figure 1: The figure illustrates a range of irrelevant factors for video gaze estimation, also referred to as
distractors: (a) and (b) depict alterations in facial expression, (c) highlight background movement, and (d)
represent a scenario without any distractors. These examples show the importance of accurately distinguish-
ing between spatial changes due to eye movements and irrelevant distractors for video gaze estimation task.

the critical role of detecting spatial and motion cues in videos, there is a strong need to design efficient
attention-based approaches for video-related tasks, including video gaze estimation.

In this work, we draw inspiration from the change captioning task to develop an approach for video gaze
estimation. The change captioning task requires describing the changes between a pair of before and af-
ter images, expressed through a natural language sentence (Park et al., 2019a; Qiu et al., 2021; Tu et al.,
2021). Both change captioning and gaze estimation tasks require differentiating irrelevant distractors, such
as background movement and facial expression changes, from the relevant ones. Specifically, change cap-
tioning focuses on recognizing object movements, whereas gaze estimation concentrates on detecting eye
movements. Similar to prior works (Park et al., 2019a; Qiu et al., 2021), our approach utilizes a spatial
attention mechanism to focus on gaze-relevant information while minimizing the impact of distractors. For
example, Figure 1 illustrates various distractors that may obfuscate gaze information in videos.

We introduce Spatio-Temporal Attention for Gaze Estimation (STAGE), a deep learning model for video
gaze estimation. STAGE utilizes spatial changes in consecutive frames to integrate motion cues via a Spatial
Attention Module (SAM) and captures global dynamics with a Temporal Sequence Model (TSM). The SAM
module focuses on gaze-relevant information by applying local spatial attention between consecutive frames
and effectively suppresses irrelevant distractors. Meanwhile, the TSM considers global dynamic movements
across the temporal dimension, enabling enhanced prediction of gaze direction sequences. STAGE adeptly
encodes motion information through the attention modules with fewer parameters than existing approaches
like 3D CNNs (Ji et al., 2012) or two-branch networks (Karpathy et al., 2014), thus offering a more feasible
solution for real-world applications.

To enhance the accuracy of gaze estimation models, previous studies have suggested personalization to
address significant variability in individual-specific traits, such as eye geometry and appearance (Liu et al.,
2018; Chen & Shi, 2019; Park et al., 2019b). Concretely, this is done by training a person-agnostic gaze
model on a large labeled dataset and then fine-tuning it for individual users with a small set of labeled data.
Consistent with this approach, we integrate Gaussian processes (GPs) (Rasmussen, 2004), known for their
effectiveness in low-data scenarios, to personalize the STAGE model for individual users.

We use GPs to learn an additive bias correction and personalize the gaze estimate of the general STAGE
model with just a few labeled samples. GPs enable the estimation of personalized 3D gaze directions
and provide uncertainty measurements in interval form. These intervals represent a range of possible gaze
directions instead of a single vector, making our approach more suitable for practical applications, such as
monitoring attention on screens (Zhang et al., 2017b; Albiz et al., 2023). To evaluate the efficacy of the
proposed STAGE model and personalization using GPs, we use three publicly available video gaze datasets:
EYEDIAP (Funes Mora et al., 2014), Gaze360 (Kellnhofer et al., 2019) and EVE (Park et al., 2020).

In summary, our primary contributions are as follows:

• We introduce STAGE, a novel model for video gaze estimation. STAGE leverages an attention
mechanism that is sensitive to spatial changes in sequential frames, effectively extracting gaze-
relevant details from videos. This facilitates gaze prediction along the temporal axis for videos.
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• We propose a sample-efficient approach to personalize the STAGE model, aiming to learn a bias
correction model for gaze prediction using pre-trained Gaussian processes (Wang et al., 2021).

• Our approach either surpasses or matches to the state-of-the-art performance on three publicly
available datasets for video gaze estimation. In particular, we obtain state-of-the-art results on the
Gaze360 dataset in both cross-data and within-data experimental settings.

2 Related Work

Traditional methods of gaze estimation use an eye geometry model and exploit regression function to create
a mapping from the eye or face images to the gaze vector (Guestrin & Eizenman, 2006; Hansen & Ji, 2009;
Valenti et al., 2011; Nakazawa & Nitschke, 2012; Lu et al., 2016; Kar & Corcoran, 2017). While these
methods perform well in controlled settings with consistent subject features, head positions, and lighting,
their precision tends to drop in more varied and less controlled environments (Zhang et al., 2019).

Recently, with the emergence of deep learning methods, researchers employ CNNs to predict gaze direction
from eye or face images directly (Tan et al., 2002; Zhang et al., 2015; Krafka et al., 2016; Huang et al.,
2017; Fischer et al., 2018; Cheng et al., 2020). Image-based gaze estimation methods primarily use eye
images to predict gaze directions (Zhang et al., 2015; Park et al., 2018a;b; Lian et al., 2018). Additionally,
several approaches consider facial features such as head pose and facial appearance for estimating gaze
information (Krafka et al., 2016; Zhang et al., 2017a; Ren et al., 2021; Gu et al., 2021). Generally, facial
information for gaze estimation yields more accurate results than methods relying solely on eye images (Zhang
et al., 2017a). Similarly, we also rely on full-face images for extracting gaze information in this work.

While gaze estimation techniques have shown impressive results with static images, the exploration of dy-
namic gaze estimation has been limited, primarily due to the scarcity of fully annotated gaze video datasets.
Following the release of video gaze datasets (Funes Mora et al., 2014; Kellnhofer et al., 2019), several tem-
poral gaze estimation models have emerged. These models are designed to predict the direction of eye gaze
from a sequence of images. The initial work of Palmero et al. (2018) employs a recurrent CNN framework
that concatenates the static features of each frame and feeds into a recurrent module, which is then used to
predict the 3D gaze direction of the final frame in the sequence. Similarly, Kellnhofer et al. (2019) proposed
a bidirectional LSTM that utilizes both past and future frames, indirectly incorporating spatial information.

Wang et al. (2019) released a dataset that captures human eye images and the corresponding ground-truth
gaze positions on a screen while subjects engage in activities like browsing websites or watching videos.
They proposed a dynamic gaze transition network to detect the transitions of eye movements over time and
refine static gaze predictions using the dynamics learned from these transitions. Recently, Park et al. (2020)
collected a large-scale video-based eye-tracking dataset with ground-truth Point of Gaze (PoG) on a screen
and proposed a recurrent module to refine PoG estimates on video data. Our work aims to develop a deep
learning approach for video gaze estimation by capturing the nuanced spatial and temporal dynamics.

As stated earlier, the performance of gaze estimators can be notably influenced by individual-specific traits,
particularly when adapting these models to new subjects (Guestrin & Eizenman, 2006). However, in prac-
tical scenarios, there are typically only a few labeled samples available per subject and are insufficient for
fine-tuning contemporary deep learning models, which tend to be over-parameterized (Park et al., 2019b).
Previously, Liu et al. (2018) utilized a Siamese network to estimate gaze differences, employing a small
number of calibration samples for personalization. Similarly, Park et al. (2019b) employed meta-learning
techniques to achieve few-shot personalization, leveraging learned gaze embeddings. Chen & Shi (2019) in-
troduced a method to model person-specific biases during the training phase, enabling personalization during
testing with just a few samples. Our personalization approach is motivated by the efficacy of Gaussian pro-
cesses in scenarios with limited data (Rasmussen, 2004). Unlike Chen & Shi (2019), our personalization
approach outputs a different bias for each video frame and is designed to be compatible with any existing
gaze estimation technique without necessitating alterations to the training objective.
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Figure 2: A schematic overview of the proposed (person-agnostic) STAGE model. The proposed model has
three modules: spatial attention module (SAM), temporal sequence model (TSM), and gaze prediction layer
(GPL). The SAM is designed to extract information relevant to the gaze by concentrating on the spatial
differences between consecutive frames. In the figure, Xi represents features from ResNet, zi denotes the
motion-informed output of the SAM, and gi corresponds to the predicted gaze direction.

3 Proposed Method

The main goal of video gaze estimation is to learn a deep network f defined as f : V 7→ G that maps a
sequence of video frames V ∈ Rn×h0×w0×3 to a sequence of gaze directions G ∈ Rn×2, where n is the number
of frames and h0 and w0 are height and width of each frame, respectively. The output gaze sequence G
possesses pitch and yaw angles, which correspond to each frame in V .

The proposed STAGE model employs three modules for setting up the deep network f . Firstly, a ResNet-
based CNN model receives the input video and extracts feature maps for all the frames. Then, in the
following module of the STAGE model, we process feature maps using a Spatial Attention Module (SAM) to
focus on the spatial motion information between consecutive frames followed by a Temporal Sequence Model
(TSM) to learn temporal dynamics using past frame embeddings. Next, the gaze prediction layer (GPL)
maps the features from the output of the TSM block to a sequence of gaze directions defined in terms of
yaw and pitch angles. Figure 2 shows the schematic of the STAGE and its modules.

3.1 Spatial Attention Module (SAM)

Recall that SAM is aimed to distinguish gaze-relevant motion by analyzing differences between consecutive
frames, focusing on crucial cues like eye or head movements for gaze estimation while filtering out irrelevant
distractions like facial expressions or background movements. It aims to prioritize relevant video changes,
particularly eye movements, and disregard non-essential ones.

First, we convert each frame in the video sequence V to features X = [X1, X2, . . . , Xn] ∈ Rn×h×w×k, using
the ResNet-based CNN model, where w, h, and k are the width, height, and the number of channels of the
feature maps extracted by ResNet. The next step is to pass each consecutive feature pair (Xt−1, Xt) through
a shared SAM. Concretely, the SAM module aggregates information from RGB features of Xt−1 and Xt,
and the feature differences (Xt − Xt−1) through a fusion strategy. Figure 3 provides an overview of all three
SAM variants considered in this work. All SAM variants are optimized during model training and outputs
zt, a feature representation with spatial motion information for the tth frame of the video.
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Figure 3: Block diagram of SAM variants. For each variant, the input is a pair of the consecutive frame
features Xt−1 and Xt, and the output is a 1-dimensional feature vector encoding both RGB and motion
information. P2d are 2D positional embeddings with height and width that are the same as the input feature
map. The cross-attention block in Cross-SAM and Hybrid-SAM is a standard transformer operation. The
sum-pooling block applies feature pooling by summing them over height and width dimensions. In Hybrid-
SAM, the keys and values for the cross-attention block are residual features, i.e., the difference in features
at t and t − 1. This operation helps in capturing more nuanced spatial differences and motion cues.

Dual-SAM. Dual-SAM predicts separate spatial attention maps for both current Xt and past Xt−1 frame.
It compares the spatial attention maps of the current and past frames, and identifies the region that is most
relevant to the observed motion changes. If the spatial attention maps are very similar, SAM infers that
there is no substantial change between consecutive frames and encode these minimal differences in the output
vector zt ∈ R3k. Conversely, if there is a difference, SAM incorporates this change into the output vector zt.
This SAM variant is inspired by Park et al. (2019a) in the change captioning task and is shown in Figure-3a.

Cross-SAM. Unlike Dual-SAM, this variant utilizes cross-attention from transformer models (Vaswani
et al., 2017) to encapsulate dense correlation between each pair of image patches in the past and current
frames. This allows Cross-SAM to identify multiple changes between two frames, as opposed to Dual-SAM,
which can only capture a single change. Practically, detecting multiple changes and subsequently filtering
out irrelevant distractors is more useful for video gaze estimation tasks. Similar to the Dual-SAM, this
variant utilizes both RGB and transformed motion signal at the output. Qiu et al. (2021) motivates the
design of Cross-SAM and is shown in the Figure-3b.

Hybrid-SAM. The Hybrid-SAM combines the strengths of both Dual-SAM and Cross-SAM variants.
Dual-SAM focuses on one local change, while Cross-SAM focuses on global context and captures multiple
changes. Similar to Cross-SAM, Hybrid-SAM encapsulates multiple changes by applying a cross-attention
mechanism using global context through position embeddings. However, unlike the Cross-SAM variant, it
uses the difference between current and past frames as a key and value, emphasizing regions with the most
significant motion differences. The Dual-SAM is utilized as a pooling operator to selectively focus on the
most relevant changes, like eye or head movements, which are crucial for the task of gaze estimation.
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The Hybrid-SAM is given in the Algorithm 1, and Dual-SAM and Cross-SAM are deferred to Appendix A.1.
The input is features of the past frame Xt−1 the and current frame Xt, respectively. Both input features
are projected to the higher-dimensional feature maps using the convolution operation, and 2-D position
embeddings P2d ∈ Rh×w are added (Line 1). Line 2 computes difference features Xdiff for the video’s tth

frame, and cross-attention is applied in Line 3. Lines 5-8 correspond to the same operations as in Dual-SAM.

Algorithm 1 Hybrid-Spatial Attention Module (Hybrid-SAM)
Input: Xt−1, Xt ∈ Rh×w×k

Output: zt ∈ R3·d

1: Xt−1 = flat(conv(Xt−1) + 1h,w ⊙ P2d)
Xt = flat(conv(Xt) + 1h,w ⊙ P2d) ∈ Rh·w×d

2: Xdiff = Xt − Xt−1
3: Xt−1 = crossatten(Xt−1, Xdiff, Xdiff)

Xt = crossatten(Xt, Xdiff, Xdiff) ∈ Rh·w×d

4: Xt−1 = unflat(Xt−1, h × w)
Xt = unflat(Xt, h × w) ∈ Rh×w×d

5: X ′
t−1 = [Xt−1; Xt − Xt−1]

X ′
t = [Xt; Xt − Xt−1] ∈ Rh×w×2·d

6: At−1 = σ(conv(ReLU(conv(X ′
t−1))))

At = σ(conv(ReLU(conv(X ′
t)))) ∈ Rh×w×1

7: vt−1 =
∑

h,w At−1 ⊙ Xt−1

vt =
∑

h,w At ⊙ Xt ∈ Rd

8: zt = [vt−1; vt − vt−1; vt] ∈ R3·d

9: return zt

σ denotes the sigmoid function, 1h,w is a one-hot vector span-
ning the spatial dimensions, ⊙ is an element-wise dot product.

Masked Multi-
head Attention

LayerNorm

LayerNorm

Add

Add

MLP

LayerNorm

Figure 4: Block diagram of single
transformer layer used in the tem-
poral sequence model of the STAGE
method. MLP is a Multi-Perceptron
layer, and we use L blocks stacked to-
gether in the TSM.

3.2 Temporal Sequence Model (TSM)

The temporal sequence model subsumes spatially enhanced representations zt produced by the SAM module
and is intended to capture the temporal dynamics of the eye movements in the video. In particular, we
consider two variants for TSM: recurrent neural networks (RNN) (Sutskever et al., 2014), and transformer
network (Vaswani et al., 2017). The RNN consists of unidirectional LSTM layers (Hochreiter & Schmidhuber,
1997), and the transformer variant is a causal transformer decoder, which is prevalent in generative language
modeling, such as the GPT-2 model (Radford et al., 2019).

We incorporate learned temporal position embeddings to enable the transformer model to discern tempo-
ral relationships within the input feature sequence. These embeddings are uniquely associated with each
position, providing the model with explicit information about the relative ordering of elements within the
sequence. The embedded features are then passed through multiple layers, each consisting of masked multi-
head attention, LayerNorm (LN), and a Multi-Layer Perceptron (MLP) as shown in Figure 4. Masked
multi-head attention allows the transformer model to attend to only past frame features. The output of the
TSM is a feature sequence passed through an LN layer, similar to the GPT-2 model (Radford et al., 2019).

3.3 Gaze Prediction Layer and Training Objective

The gaze prediction layer is shared across all timestamps and uses an MLP to predict the gaze direction
from the frame embeddings generated by the TSM module. For ith sample and tth frame, let {gi

t} and {ĝi
t}

denote the sequences of true and predicted gaze directions, respectively. Similarly, {pi
t} and {p̂i

t} represent
the sequences of true and predicted 2D Point-of-Gaze (PoG). We use the following objective function for
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training STAGE model parameters (similar to Park et al., 2020):

Lfinal = 1
b · n

b∑
i=1

n−1∑
t=0

180
π

arccos
(

gi
t
T ĝi

t

|gi
t| · |ĝi

t|

)
+ λ · ||pi

t − p̂i
t|| (1)

Here, λ is the weight parameter that controls the trade-off between 3D gaze angular error and 2D PoG mean
absolute error. The second term is applied exclusively to datasets that have available ground-truth PoG.

3.4 Personalizing the STAGE model using Gaussian Processes

As previously mentioned, we propose person-specific Gaussian processes for modeling bias correction terms
for each user, which operates on top of the proposed (person-agnostic) STAGE model. Specifically, if
f : V 7→ G is the STAGE model, then the final prediction for person p is f̂p(V ) = f(V ) + rp(V ),
where rp is GP-based bias correction model for the person p, i.e., it predicts the residual in addi-
tion to the model-agnostic prediction. The GP rp models the components of gaze direction (i.e., yaw
and pitch) independently at the frame level, using two one-dimensional independent GPs. Concretely,
rp(V ) = [(rp,θ(V1), rp,ϕ(V1)), (rp,θ(V2), rp,ϕ(V2)), · · · , (rp,θ(Vn), rp,ϕ(Vn))], where rp,θ and rp,ϕ are the one-
dimensional GP predictions for pitch and yaw components, respectively.

For GP hyper-parameter tuning and inference, we collect a set of training frames D = {hi, yi}ℓ
i=1 that are

available for person p, where hi ∈ Rd are the flattened ResNet output features from the STAGE model, and
yi is either pitch or yaw of residual gaze angle, i.e., gi − ĝi, where, gi and ĝi are true gaze direction and
STAGE’s predicted direction, respectively. To represent the dataset D in matrix format, we let y ∈ Rℓ be
the vector of residual angles, where the ith entry equal to yi, and H ∈ Rℓ×d have its ith row equal to the
ResNet features hi. For brevity, we omit the person index p from henceforth discussion on GPs.

A Gaussian process associated with kernel (covariance) function k(h, h′) : Rd × Rd → R is a distribution
over functions that maps features to residual angles such that, for any h1, . . . , hℓ ∈ Rd:

r = [r(h1), ..., r(hℓ)] ∼ N (µ0, KH), (2)

where KH = [k(hi, hj)]ℓi,j=1 ∈ Rℓ×ℓ is the kernel (covariance) matrix on the data points H, and r has
a constant mean function with its value set to µ0. The observed residual angle yi is modeled as the i.i.d.
Gaussian noise, i.e., yi ∼ N (r(hi), σ2I). In particular, we use the (squared-exponential) automatic-relevance-

determination (ARD) kernel, given as k(h, h′) = τ · e
−
∑d

s=1

(
h(s)−h

′
(s)
)2

θ(s)2 , where τ and θ ∈ Rd are kernel
hyper-parameters. The ARD kernel’s per-dimension scaling, being more expressive than the RBF kernel’s
use of a single length-scale, often leads to superior practical performance (Neal, 1998). Intuitively, this
flexibility allows the model to adapt to varying feature relevance and noise levels, potentially leading to
improved accuracy and generalization (Delbridge et al., 2019). Upon conditioning the GP model on the
collected training dataset, the predictive posterior mean and covariance functions are as follows:

mean: µr|D(h) = kT
h (KH + σ2I)−1y

variance: σr|D(h) = k(h, h) − kT
h (KH + σ2I)−1kh

where the vector kh ∈ Rℓ has ith entry k(h, hi), i.e., kernel value between any feature vector h and ith

data point. The posterior mean function predicts the residual gaze angles and is utilized for correction. The
posterior covariance function determines the uncertainty in this prediction, as illustrated in Figure 8.

Optimizing GP hyper-parameters using very few samples. GPs are non-parametric models and
thus do not require tuning many parameters (Rasmussen, 2004). However, they still necessitate optimizing
hyperparameters, which in our case are µ0, σ, τ , and θ, totaling d + 3 hyperparameters as |θ| = d. The
ARD kernel adds flexibility to the GP model but also increases the number of hyperparameters to be tuned.
Specifically, since d = 16384 when using features from the ResNet model, directly tuning hyperparameters
using the log-likelihood of data D is prone to overfitting, particularly when as few as three samples are
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present in D. To overcome this challenge, we propose the application of pre-trained GPs, similar to the
concurrent work by Wang et al. (2021). Pre-trained GPs entail the initial optimization of hyperparameters
on data used for training the STAGE model, coupled with the implementation of early stopping during
optimization to maximize the log-likelihood of dataset D for each individual. This methodology grants GPs
flexibility with expressive ARD kernel and ensures a robust starting point due to pre-training.

4 Experiments and Results

4.1 Experimental Setup

Datasets. EVE (Park et al., 2020) is a large-scale video-based gaze dataset comprising over 12 million
frames collected from 54 participants in a controlled indoor setting with four synchronized and calibrated
camera views. Following the splits used by Park et al. (2020), there are 40 subjects in training and 6 subjects
in the validation set. We discard the data from test subjects due to the unavailability of labels and evaluate
our models on the validation set. Gaze360 (Kellnhofer et al., 2019) is a large-scale, physically unconstrained
gaze dataset collected from 238 subjects in indoor and outdoor settings. The dataset includes a wide range
of head poses, with 129K training images, 17K validation images, and 26K test images. We evaluate our
models on all three subsets of the dataset: the full Gaze360 dataset, the front 180◦ subset, and the front 20◦

subset, as done by Kellnhofer et al. (2019). EyeDiap (Funes Mora et al., 2014) consists of 94 videos totaling
237 minutes, collected from 16 subjects in a laboratory environment. The EyeDiap dataset includes videos
for both screen and floating targets and we select VGA videos of screen targets.

Implementation Details. The input video sequence V consists of 30 frames containing a full-face image
of 128 × 128 pixels. We use ResNet-18 (Shafiq & Gu, 2022) initialized with GazeCLR (Jindal & Manduchi,
2023) weights shared between all timestamps to extract visual features from the image sequence. The third
convolutional layer block of ResNet-18 outputs features with a dimension of 256 × 8 × 8. We pass these
features through the SAM module, followed by TSM and gaze prediction layers. We train STAGE end-to-
end for 50K iterations using the SGD optimizer with an initial learning rate of 0.016 and momentum of 0.9.
The learning rate is decayed using cosine annealing (Loshchilov & Hutter, 2017), and batch size is set to 16.
We discuss more implementation details in Appendix A.2.

4.2 Evaluating the STAGE Model

In Section 4.2.1, we provide visual examples of attention maps superimposed on video frames, illustrating
the qualitative impact of the SAM block in improving the overall performance of the STAGE. In addition to
qualitative assessment, we provide quantitative evaluation of the SAM and TSM variants in two experimental
settings: within-dataset (in Section 4.2.2) and cross-dataset (in Section 4.2.3). The primary objective of these
experiments is to evaluate the effectiveness of incorporating a SAM block prior to the temporal sequence
model in enhancing video gaze estimation accuracy. In Section 4.2.4, we also benchmark our proposed method
against current leading methods in video gaze estimation for a within-dataset setting. Both qualitative and
quantitative evaluation of GP-based personalization on EyeDiap participants is provided in Section 4.3. We
discuss an ablation study on the number of SAM blocks in Appendix A.3.

Baselines. We benchmarked our framework against EyeNet (Park et al., 2020), which consists of ResNet-
18 and RNN layers and uses both eye image patches as input. We adopted EyeNet to our setting and trained
it on full-face images using Lfinal with λ = 0.001. We also train another variant of EyeNet by replacing the
RNN module with a TSM similar to that used in our framework. For a fair comparison, we also implement
EyeNet with our version of ResNet-18 initialized with GazeCLR (Jindal & Manduchi, 2023) weights and
call it EyeNet (GazeCLR). Further, we adapt the work of Chang et al. (2021) for gaze estimation, which
introduces motion-aware-unit (MAU) for the video-prediction task. We also compare with a simple baseline
by removing the SAM modules and concatenating Xt and Xdiff = (Xt − Xt−1) before passing through TSM,
termed Concat-Residual. Finally, we compare the three variants of SAM modules combined with two variants
of TSM for cross-dataset and within-dataset experiments. For the sake of completion, we also evaluate the
Hybrid-SAM method without the Dual-SAM module at the output, named as Hybrid-SAM†.
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(a) Background person running (b) Face movement (c) Expression change (d) Expression change

Figure 5: Illustration of attention maps At−1 and At, generated by the Hybrid-SAM, superimposed on
sequential video frames Vt−1 and Vt. The SAM module proficiently highlights the ocular area, key for ana-
lyzing eye movements, while simultaneously diminishing irrelevant distractions such as background motion
(a), tongue movement (b), and changes in emotional expressions (c and d).

4.2.1 Qualitative Evaluation

We conducted a qualitative analysis primarily centered on assessing the Hybrid-SAM ability to distinguish
between gaze-irrelevant distractors and gaze-relevant eye movements, which is crucial for video gaze es-
timation, as stated earlier. Specifically, we examined attention maps At−1 and At, strategically overlaid
on sequential video frames Vt−1 and Vt, as depicted in Figure 5. We analyzed several frames showcasing
scenarios from background activities to facial movements, all concurrent with dominant eye movements.

In Figure 5(a), the network adeptly focuses on eye movements in frame Vt (red pixels) and prior frame
changes (blue pixels) despite significant background pixel shifts from a walking person. This underscores
the effectiveness of spatial attention in filtering out irrelevant distractors to accurately identify subtle eye
movements and gaze direction. As a result, it eases the process of temporal modeling in video gaze estimation.
Additionally, as illustrated in Figure 5(b), although tongue movement presents a potential distraction, it is
efficiently disregarded. Moreover, changes in facial expressions, depicted in Figure 5(c, d), are effectively
overlooked by the Hybrid-SAM. These qualitative findings affirm that the spatio-temporal attention strategy
adeptly minimizes significant distractions, particularly in the eye region, which is essential for accurately
tracking gaze and eye movements in video gaze estimation tasks.

4.2.2 Within-dataset Evaluation

In the within-dataset experiments, we train and evaluate our model on the same domain dataset. Table 1
shows results for the within-dataset evaluation. We train our framework on the training subset of Gaze360
with λ = 0 and evaluate it over three test subsets as done in Kellnhofer et al. (2019). Our model demonstrates
superior performance compared to the baseline models, including ‘Concat-Residual’, across all three subsets.
Specifically, it achieves absolute improvements of 2.5◦, 2.2◦ and 2.5◦ on full Gaze360, front 180◦ and front
20◦ subsets, respectively. Furthermore, it is noteworthy that Hybrid-SAM performs better in comparison to
Hybrid-SAM†, illustrating the advantage of incorporating Dual-SAM as the pooling operator.

4.2.3 Cross-dataset Evaluation

We performed a cross-dataset evaluation, where the model was trained on the EVE dataset and evaluated on
two different domain datasets, EyeDiap and Gaze360. Table 2 shows the comparison of mean angular errors
(MAE) for the baselines and our proposed method. We observed a significant improvement in both datasets
even with a simple concatenation of Xt and Xdiff, i.e., Concat-Residual approach outperforms EyeNet
variants and MAU approach, which demonstrates that residual frames are an effective cue for video-gaze
estimation.

The Dual-SAM and Cross-SAM variants show improvements over the Concat-Residual approach, indicating
that the adapted methods are more accurate than naively using residual frames. Notably, the Hybrid-SAM
approach improves over baselines by 1.2◦ in absolute and 14.28% in relative, on the EyeDiap dataset. It
also outperformed the other Dual-SAM and Cross-SAM variants on all three evaluation sets. The last two
columns of Table 2 show results on the full and front 180◦ Gaze360 subsets, which are similar to the subsets
used in Kellnhofer et al. (2019). The Hybrid-SAM approach improved up to 3.6◦ on both subsets, further
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Table 1: Within-dataset Evaluation. Comparison of mean angular errors (in degrees) between the
proposed STAGE model, SAM and TSM variants, and other baseline approaches. Full, 180◦ and 20◦ are
subsets of the Gaze360 dataset. Tx is the transformer TSM model. The first and second best results are
bold-ed and underlined, respectively.

Method Full 180◦ Front 20◦

EyeNet (Park et al., 2020)(GazeCLR) 12.53 12.08 9.45
EyeNet + Tx 13.00 12.55 9.73
Concat-Residual + LSTM 10.35 10.16 7.45
Concat-Residual + Tx 12.22 11.78 9.09
Dual-SAM + LSTM 10.12 9.92 7.08
Dual-SAM + Tx 10.13 9.93 7.23
Cross-SAM + LSTM 12.00 11.59 9.51
Cross-SAM + Tx 10.12 9.91 7.34
Hybrid-SAM† + LSTM 12.69 12.26 9.66
Hybrid-SAM† + Tx 12.33 11.90 9.53
Hybrid-SAM + LSTM 10.05 9.84 6.92
Hybrid-SAM + Tx 10.10 9.90 7.33

Table 2: Cross-dataset Evaluation. Comparison of mean angular gaze error (in degrees) between the
proposed STAGE model, SAM and TSM variants, and other baseline approaches. Full and 180◦ are subsets
of the Gaze360 dataset. Tx is the transformer TSM model. For each column, the first best result is bold-ed,
and second best result is underlined.

Method EyeDiap Full 180◦

MAU 21.30 34.18 33.57
EyeNet (Park et al., 2020) 16.07 31.37 30.77
EyeNet (GazeCLR) 7.74 26.57 25.95
EyeNet + Tx 8.40 26.25 25.64
Concat-Residual+ LSTM 7.12 24.12 23.52
Concat-Residual+ Tx 7.27 24.26 23.64
Dual-SAM + LSTM 7.04 24.18 23.58
Dual-SAM + Tx 6.77 23.99 23.38
Cross-SAM + LSTM 8.42 23.19 22.61
Cross-SAM + Tx 8.75 22.57 22.01
Hybrid-SAM† + LSTM 8.48 23.31 22.72
Hybrid-SAM† + Tx 7.79 22.66 22.09
Hybrid-SAM + LSTM 6.70 23.73 23.13
Hybrid-SAM + Tx 6.54 23.77 23.17

emphasizing the effectiveness of the SAM module. It is also worth noting that the performance improvements
for the SAM variants hold for both LSTM and transformer-based TSM in both Tables 1 and 2. This shows
that the SAM is helpful irrespective of the choice of the TSM model.

4.2.4 Comparison with State-of-the-art Video Gaze Estimation Methods

Table 3 compares the proposed STAGE method with state-of-the-art approaches for a within-dataset set-
ting. Video-based gaze estimation methods such as the original work of Gaze360 (Kellnhofer et al., 2019)
and MSA+Seq (Mishra & Lin, 2020) employ the LSTM model and learn through the Pinball loss function.
We also compare our proposed gaze estimation approach with image-based methods such as L2CS-Net (Ab-
delrahman et al., 2022), both variants of GazeTR (Cheng & Lu, 2022), and self-supervised learning based
method SwAT (Farkhondeh et al., 2022). We report the performance of these methods from the original
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Table 3: STAGE vs. State-of-the-art. Comparison with state-of-the-art methods on Gaze360 data
subsets under within-dataset setting (Tx = transformer-based TSM). The metric is the mean angular error
(in degrees). The first and second best results are bold-ed and underlined, respectively.

Method Full 180◦ Front 20◦

Gaze360 (Kellnhofer et al., 2019) 13.50 11.40 11.10
MSA+Seq (Mishra & Lin, 2020) 12.50 10.70 -
SwAT (Farkhondeh et al., 2022) 11.60 - -
L2CS-Net (Abdelrahman et al., 2022) - 10.41 9.02
GazeTR-Pure (Cheng & Lu, 2022) - 13.58 -
GazeTR-Hybrid (Cheng & Lu, 2022) - 10.62 -
Hybrid-SAM + LSTM 10.05 9.84 6.92
Hybrid-SAM + Tx 10.10 9.90 7.33

(a) Comparison of Dual-SAM + Tx (b) Comparison of Hybrid-SAM + Tx

Figure 6: The figure shows the comparison of ℓ-shot GP personalization on the STAGE model with Chen
& Shi (2020) for the EyeDiap dataset. The bars indicate the mean angular error (in degrees) and standard
error over 10 iterations. The Proposed GPs consistently outperform the baseline for both SAM variants and
achieve the best results when used in conjunction with Chen & Shi (2020).

work and show a comparison with our method. Our best results outperform these methods by 1.5◦, 0.5◦

and 2.1◦ on full Gaze360, front 180◦ and front 20◦, respectively. The superior performance of our method
demonstrates the effectiveness of SAM and our choice for other components of the overall STAGE model.

4.3 Evaluating GPs for Personalization

As stated earlier, we first optimize the hyper-parameters of the GP model rp for residual gaze direction
prediction using the train subset of EVE dataset. Then, we adapt rp for personalization on the EyeDiap
participants. We randomly sample ℓ video frames for each participant 10 times and report the performance
in Figure 6. We perform GP personalization on two SAM variants: Dual-SAM and Hybrid-SAM, using a
transformer TSM model. The baseline method, proposed by Chen & Shi (2020), involves learning a single
person-specific bias during training and utilizing a few labeled samples to predict bias during inference.

We obtain an absolute improvement of around 0.8◦ with the Hybrid-SAM over the baseline with as few as 3
samples. Applying GPs with the baseline objective, i.e., “Chen et al+ GPs”, we see consistent improvements
over both GPs and the method proposed by Chen & Shi (2020). These results demonstrate that GPs’ are a
valuable tool and provide complementary strengths to Chen & Shi (2020). Unlike Chen & Shi (2020), GPs
do not require altering the objective for training the deep network. They can be utilized for adaptation with
any pre-trained existing model, such as STAGE.
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Figure 7: Comparison of Mean Angular Error (in de-
grees) of gaze components (yaw or pitch) with increas-
ing fraction of test samples sorted with respect to the
uncertainty of GP predictions. Plots exhibit that GPs
are more accurate when the prediction is relatively
more confident (with less variance).

For assessing the effectiveness of the GP model’s
uncertainty, we provide both qualitative and quan-
titative analysis of gaze predictions, as illustrated
in Figures 7 and 8. Our evaluation begins with
an analysis of the GP’s posterior variance diago-
nal. We arrange this in ascending order and then
apply different uncertainty thresholds to it. For
each selected threshold, we compute the MAE on
test samples that exhibit uncertainty levels below
the threshold. This procedure is repeated across
a range of different thresholds to evaluate perfor-
mance. Figure 7 presents a comparison of the MAE
for yaw and pitch against increasing fractions of test
data samples. These samples are sorted according to
the uncertainty in the GP prediction. This analysis
demonstrates that GPs tend to deliver more accu-
rate results when their variance is lower, signifying
greater confidence in the predictions. Therefore, the
uncertainty measure in the GP model can act as an
effective indicator to avoid making inaccurate pre-
dictions.

We then examine the qualitative results depicted in Figure 8, which showcase the differences between confi-
dent and uncertain gaze predictions after personalization using the EyeDiap dataset. Notably, the uncertainty
region typically includes the ground truth, as illustrated by the pink arrows falling within the green area. It is
crucial to note that gaze predictions with higher uncertainty often align with situations that are challenging
for human interpretation, like extreme head poses or closed eyes.

(a) Examples of certain predictions (b) Examples of uncertain predictions

Figure 8: The figure depicts a few certain (a) and uncertain (b) predictions for gaze directions after GP’s
personalization on the EyeDiap dataset. The blue and pink arrows show ground truth and predicted gaze
directions, respectively. The green-colored region offers uncertainty of the predictions in the pink arrows.

5 Conclusion

In this paper, we presented STAGE, a novel model for video gaze estimation, which utilizes an attention
mechanism to encode spatial motion cues and temporal modelling. The method employed a spatial attention
module to implicitly focus on the differences between consecutive frames, thereby highlighting relevant
changes. We demonstrated that the performance of the STAGE model could be further enhanced using a
few labeled samples with Gaussian processes. Future research could explore expanding the receptive field of
the attention modules and integrating long-term spatial and temporal dynamics for further enhancements.
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A Appendix

A.1 Proposed Method – Omitted Details

We provide the mathematical formulation of Dual-SAM and Cross-SAM in Algorithm 2 and 3, respectively.

Algorithm 2 Dual-Spatial Attention Module (Dual-SAM)
Input: Xt−1, Xt ∈ Rh×w×k

Output: zt ∈ R3·k

1: X ′
t−1 = [Xt−1; Xt − Xt−1]

X ′
t = [Xt; Xt − Xt−1] ∈ Rh×w×2·k

2: At−1 = σ(conv(ReLU(conv(X ′
t−1))))

At = σ(conv(ReLU(conv(X ′
t)))) ∈ Rh×w×1

3: vt−1 =
∑

h,w At−1 ⊙ Xt−1

vt =
∑

h,w At ⊙ Xt ∈ Rk

4: zt = [vt−1; vt − vt−1; vt] ∈ R3·k

5: return zt

A.2 Additional Implementation Details

The Dual-SAM consists of two convolutional layers with kernel size 1 and output feature maps of 64 and 1,
respectively. The first convolutional layer has a group normalization layer (Wu & He, 2018) applied to the
output features, followed by a dropout layer with p = 0.5. In Cross-SAM and Hybrid-SAM, we project the
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Algorithm 3 Cross-Spatial Attention Module (Cross-SAM)
Input: Xt−1, Xt ∈ Rh×w×k

Output: zt ∈ R3·d

1: Xt−1 = flat(conv(Xt−1) + 1h,w ⊙ P2d)
Xt = flat(conv(Xt) + 1h,w ⊙ P2d) ∈ Rh·w×d

2: Xt−1 = crossatten(Xt−1, Xt, Xt)
Xt = crossatten(Xt, Xt−1, Xt−1) ∈ Rh·w×d

3: vt−1 =
∑

h,w unflat(Xt−1, h × w)
vt =

∑
h,w unflat(Xt, h × w) ∈ Rd

4: zt = [vt−1; vt − vt−1; vt] ∈ R3·d

5: return zt

incoming features to higher channels through a convolution layer with d = 512 and a kernel size 1. After
adding 2D positional embeddings to the projected feature maps, they go through the cross-attention encoder,
which consists of four heads and two layers with an embedding size of 64.

The TSM model has two variants: an LSTM variant and a transformer variant. The LSTM variant consists
of one unidirectional LSTM layer with a hidden dimension of 128. The transformer variant is based on
GPT-2 (Radford et al., 2019) network with 6-heads and 6-layers, operating on a dimension of d = 128, and
initialized randomly. The gaze prediction layer consists of two fully connected (FC) layers. The first FC
layer has a SeLU activation function and a hidden dimension of the same size as the input dimension. The
second FC layer outputs the 2D gaze direction angles, pitch and yaw.

Our STAGE model is implemented in PyTorch (Paszke et al., 2017). We set λ = 0.001 for cross-data and
λ = 0 for within-data evaluations. For GP hyper-parameter optimization, we use Adam optimizer with a
learning rate of 0.001, implemented using GPytorch (Gardner et al., 2018). Our code and trained models
will be made publicly available in the future and are zipped in supplementary.

A.3 Ablation Study

In the ablation study, we study the impact of adding multiple SAM blocks in the STAGE model, where the
output of one SAM goes as input to the next. The ablation study on the number of Dual- and Hybrid-SAM
blocks (four blocks vs. one block) for within-data and cross-data settings are shown in Tables 4(a) and (b),
respectively. We observe no significant improvements over a single block of SAM, indicating that one SAM
block is enough to provide spatial motion cues between consecutive frame features and improve performance.

Table 4: Ablation Study: Comparison of different numbers of SAM blocks employed in our STAGE
method. Tx is transformer-based TSM, and training is performed for within-data and cross-data settings in
(a) and (b), respectively. The metric reported is mean angular errors (in degrees).

(a) Within-dataset evaluation

Method Full 180◦ 20◦

Dual-SAM(1-block)+Tx 10.13 9.93 7.23
Hybrid-SAM(1-block)+Tx 10.10 9.90 7.33
Dual-SAM(4-blocks)+Tx 12.13 11.68 9.33
Hybrid-SAM(4-blocks)+Tx 10.25 10.08 7.27

(b) Cross-dataset evaluation

Method EyeDiap Full 180◦

Dual-SAM(1-blocks)+Tx 6.77 23.99 23.38
Hybrid-SAM(1-blocks)+Tx 6.54 23.77 23.17
Dual-SAM(4-blocks)+Tx 7.27 23.34 22.74
Hybrid-SAM(4-blocks)+Tx 7.55 23.52 22.91

A.4 More Visualizations

Here, we provide additional visualizations of the predictions from personalized GP on top of the STAGE
model, similar to Figure 8 in the main manuscript. Figure 9a and 9b respectively show certain and uncertain
prediction images from the EYEDIAP dataset after performing GP personalization. The ground truth and

18



Under review as submission to TMLR

(a) Certain predictions for EYEDIAP dataset

(b) Uncertain Predictions for EYEDIAP dataset

Figure 9: The figure depicts a few confident 9a and uncertain 9b predictions for gaze directions after GP’s
personalization on the EYEDIAP dataset. Blue and pink arrows show ground truth and predicted gaze
directions, respectively. The green-colored region offers uncertainty of the predictions in pink arrows. The
uncertainty region often covers the ground truth, i.e., the pink arrows are in the green-colored area.

predicted gaze directions are respectively shown with blue and pink colored arrows, and the corresponding
uncertainty of prediction is shown with the green colored triangle.
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