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ABSTRACT

Generative Large Language Models (LLMs) are widely utilized for their excel-
lence in various tasks. Estimating the correctness of generative LLM outputs is an
important task for enhanced reliability. Uncertainty Estimation (UE) in generative
LLMs is an evolving domain, where SOTA probability-based methods commonly
employ length-normalized scoring. In this work, we propose Meaning-Aware Re-
sponse Scoring (MARS) as an alternative to length-normalized scoring for UE
methods. MARS is a novel scoring function that considers the semantic contribu-
tion of each token in the generated sequence in the context of the question. We
demonstrate that integrating MARS into UE methods results in a universal and
significant improvement in UE performance. Code can be found here.

1 INTRODUCTION

Figure 1: Overview of Meaning-Aware Response Scoring (MARS). Each token in the response of a
generative LLM is assigned a weight based on its importance in the meaning by our Bert-like model.
The product of the weighted probabilities of these tokens yields the response score. MARS is then
used for Uncertainty Estimation (UE) methods in generative LLMs.

Generative Large Language Models (LLMs) have risen in popularity due to their remarkable ability
to understand, generate, and process human language at an unprecedented scale and accuracy Ye
et al. (2023); OpenAI (2023); Touvron et al. (2023). Despite their growing popularity and success,
generative LLMs are not infallible and can sometimes produce erroneous or misleading outputs.
Quantifying the uncertainty of generative LLM responses is not just beneficial but essential for
ensuring trustworthy operation. Uncertainty Estimation (UE) is a well-studied problem in classifi-
cation scenarios, especially in the computer vision domain. Recent work Malinin & Gales (2021),
formalizes how to adapt popular UE methods developed for classification tasks to the context of
generative LLMs. They propose using length-normalized scoring to estimate the likelihood of a
sequence generated by the model, and the subsequent works Kuhn et al. (2023); Lin et al. (2023);
Chen & Mueller (2023) utilize that idea of length-normalized scoring.

*This work does not relate to their position at Amazon.
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A downside of these existing UE techniques in the generative LLM literature is treating length-
normalized scoring like the class probabilities in classification tasks. However, better ways may exist
for estimating uncertainty than directly using the length-normalized score of a sequence, as it treats
all tokens equally. Hence, we argue that assigning more weight to semantically significant tokens in
the response score calculation can improve UE methods, resulting in more accurate predictions.

We propose a novel scoring function for generative LLMs called Meaning-Aware Response Scoring
(MARS), as outlined in Figure 1. To compute the LLM response score as an input to UE methods,
we first assign an importance coefficient to each token in the generation. This importance essen-
tially reflects the impact of masking a token in a sequence on the meaning of the generated response,
where tokens with a greater influence on the meaning receive higher importance. By leveraging these
meaning-aware coefficients (wi in Figure 1), MARS returns the multiplication of the weighted prob-
abilities of the tokens in the generated sequence. Our main contibutions are: (1) We propose a novel
scoring function for UE in generative LLMs named Meaning-Aware Response Scoring (MARS).
(2) We introduce a BERT-like model, efficiently assigning meaning-aware importance weights to
the tokens in a single model pass within MARS calculation. (3) We evaluate probability-based UE
metrics with MARS on question-answer datasets and show that MARS universally improves the UE
performance for an extensive list of LLMs.

2 BACKGROUND

Uncertainty Estimation (UE) of Auto-Regressive Generative Models: Malinin & Gales (2021)
formalizes posterior probability definition for auto-regressive generative models where the output
s is a sequence of tokens s = {s1, s2, ..., sL}. The probability of a sequence s for a given model
parametrized with θ is defined as the multiplication of probabilities of its tokens:

P (s|x, θ) =
L∏

l=1

P (sl|s<l,x; θ) (1)

where s<l ≜ s1, s2, .., sl−1 referring to generated tokens before the generation of sl.

Length-Normalized Scoring: One of the key issues with using sequence probability P (s|x, θ) lies
in its tendency to decrease as the sequence length increases. To overcome this issue, Malinin &
Gales (2021) uses a length-normalized scoring function instead of sequence probability.* Length-
normalized scoring P̃ (s|x, θ) is defined as follows:

P̃ (s|x, θ) =
L∏

l=1

P (sl|s<l,x; θ)
1
L , (2)

Entropy-Based UE for Generative LLMs: To obtain the entropy of the output for given input
x, Malinin & Gales (2021) uses Monte-Carlo approximation over beam-sampled generations of a
single model, as going through the entire answer set is infeasible due to its exponential computation
complexity. Approximated entropy is defined as:

H(x, θ) ≈ − 1

B

B∑
b=1

ln P̃ (sb|x, θ), (3)

where sb is an output sampled by beam-search and B is the total number of sampled generations.

Kuhn et al. (2023) proposes an alternative entropy definition, named Semantic Entropy (SE), con-
sidering the meaning of the generations. They use the same entropy definition in (3), but cluster
sampled generations based on their meaning. More formally, cluster scoring, and then, SE is de-
fined as:

P̃ (c|x, θ) =
∑
s,x∈c

P̃ (s|x, θ) SE(x, θ) = − 1

|C|

|C|∑
i=1

log P̃ (ci|x, θ), (4)

*A scoring function K takes two inputs: the predicted probability p of an event and its actual outcome o,
and returns a numerical score Gneiting & Raftery (2007).

2



Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

where ci refers to each semantic cluster and C is the set of all clusters. In Appendix B, we provide
a theoretical perspective for semantic entropy and length normalized scoring.

Negative length-normalized scoring of the most probable answer, standard sequence entropy in (3)
and semantic entropy in (4) are the most common probability-based UE methods for generative
LLMs Malinin & Gales (2021); Kuhn et al. (2023); Chen & Mueller (2023); Lin et al. (2023). These
methods depend on length-normalized scoring and recent work Duan et al. (2023) replaces that
scoring function by considering the meaning of the generation. Similar to Duan et al. (2023), we
aim to replace that scoring with MARS. We discussed the differences between our work and Duan
et al. (2023) in the Appendix A.

3 METHOD

Key Intuition: Existing literature utilizes length-normalized scoring in UE. Length-normalized
scoring, given in (2), assigns equal importance/weight (1/L) to each token in the generated sen-
tence. Such a normalization method may fall short in considering semantic contribution of tokens.
To illustrate, consider the following example: Question: “Which planet is known as the Red Planet?”
Generated Answer: “Mars is known as the Red Planet”. In this answer, the word “Mars” is rela-
tively more important as it directly addresses the question. Other words in the sentence primarily
serve syntactic purposes or help achieve human-like answer. Thus, while designing a scoring func-
tion, we should give more importance/weight to the word “Mars”. With this intuition, we want to
replace length-normalized scoring and propose an alternative scoring function that assigns impor-
tance/weight to each word in the sentence considering both its contribution to the overall meaning
in the given context and sequence length.

Meaning-Aware Response Scoring: Following our word importance intuition, we propose to re-
place length-normalized scoring P̃ (s|x, θ) in (2), (3), and (4) with Meaning-Aware Response Scor-
ing (MARS) defined as:

P̄ (s|x, θ) =
L∏

l=1

P (sl|s<l,x; θ)
w(s,x,L,l), (5)

where w(·) is the weighting function that assigns a weight to each token regarding the generated
answer, question context, and sequence length. We design w(·) as a convex combination of im-
portance coefficient and 1/L, which enables MARS to consider both sequence length and meaning
contribution of tokens. Formally, we define w(s,x, L, l) ≜ 1

2L + u(s,x,l)
2 , where u(·) is importance

function taking three arguments: generated sequence s, contextual information x, and the position l
of a token within the sequence. The function u(·) assigns an importance coefficient to each token,
where this coefficient ranges between 0 and 1.

Importance Function Design: We design the token importance function u(·) by measuring the
semantic impact of removing a specific token from the generated text. This evaluation of meaning
is context-sensitive. In question-answer tasks the context is defined as the question itself. Thus,
u(·) is designed to determine the importance of each token based on its influence on the overall
meaning of the response within the context of the question. To measure the amount of semantic
change in the given context, we employ a neural network model originally developed as a question-
answer evaluator by Bulian et al. (2022). This model, called BERT matching (BEM), takes three
inputs: question, ground truth answer, and predicted answer, returning a probability score indicating
answer correctness. For a question x and a generated answer s = {s1, s2, . . . , sL}, we determine
the importance of each token as follows: We mask token sl in the generated answer and feed the
question x, the original answer s, and masked response sequence s \ {sl} into the BEM model. The
output o, ranging from 0 to 1, indicates the impact of the masked token on answer correctness. A
token sl with substantial impact yields an output o close to 0, whereas a lesser impact results in an
output closer to 1. Hence, we define 1 − o as the preliminary coefficient of sl. Once we compute
preliminary coefficients for all tokens, we normalize them using a softmax function.

Addressing Token Dependency: Our initial approach for assigning importance coefficients to
tokens assumes their semantic independence even though tokens often exhibit semantic inter-
dependencies. For example, in the sentence “Hamlet is written by William Shakespeare,” tokens
“William” and “Shakespeare” are intrinsically linked. Treating such tokens independently ignores
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linguistic nuances, so we refine our methodology. Instead of masking tokens individually, we mask
tokens at the phrase level (details in Appendix C.1). In particular, a response s = {s1, s2, . . . , sL}
is composed of phrases {h1, h2, . . . , hK}, where each token sl belongs to a phrase hk. We mask
phrases one by one and find the importance coefficient of each phrase with BEM model. To translate
phrase-level importance coefficients into token-level coefficients, we distribute the importance score
to all tokens in the phrase equally. We summarize the enhanced algorithm in Appendix C.2. Further,
in Appendix E, we show that allocating importance score only to the most uncertain token within a
phrase also yields comparable results.

Reducing Computation: The necessity of performing a separate neural network pass for each
phrase to determine its importance score increases the computational load of the proposed approach.
Additionally, detecting phrases themselves requires another neural network pass, further increasing
the computational complexity. To address these challenges, we have developed a BERT-like neural
network model with 110M parameters (a significantly smaller model compared to LLMs). This
model is capable of performing both tasks simultaneously for a given sequence in a single neural
network pass: it identifies phrases within the generated text and their importance scores (see Figure
1 right). For detailed model architecture and performance metrics, please refer to Appendix C.

4 EXPERIMENTS

Experimental Design. We use three datasets ( TriviaQA Joshi et al. (2017), Natural Questions
Kwiatkowski et al. (2019), and WebQA Chang et al. (2022)); five pre-trained LLMs (Llama-
7B, Llama-7B-chat, Llama-13B Touvron et al. (2023), Mistral-7B Jiang et al. (2023), Falcon-7B
Almazrouei et al. (2023)). Our baselines are probability-based UE methods (Negative length-
normalized score (Confidence) (2), Entropy (3), SE (4)). We replace length-normalized scoring
with MARS. We use AUROC score for evaluation. Further details can be found at Appendix D.

Method Llama2-7b Llama2-7b-chat Mistral-7b Falcon-7b Llama2-13b

Tr
iv

ia
Q

A

Confidence 70.18 70.40 72.55 68.47 68.19
Entropy 69.70 69.94 72.57 69.10 69.04
SE 81.10 76.19 82.17 76.78 79.49

O
ur

s Confidence + MARS 75.06 74.23 77.97 72.95 73.99
Entropy + MARS 75.94 73.82 78.51 72.87 74.95
SE + MARS 82.22 77.67 83.63 77.48 81.00

N
at

ur
al

Q
A Confidence 68.56 65.98 69.54 63.78 68.56

Entropy 67.08 65.23 68.05 63.28 68.34
SE 72.47 68.66 75.12 70.41 73.56

O
ur

s Confidence+ MARS 69.81 67.86 71.36 68.30 70.88
Entropy + MARS 69.32 67.41 70.71 67.51 70.63
SE + MARS 72.75 69.43 75.50 71.24 73.89

W
eb

Q
A

Confidence 64.76 64.06 65.66 66.56 62.60
Entropy 64.04 63.82 64.15 65.98 62.11
SE 69.44 67.11 69.51 73.16 67.31

O
ur

s Confidence + MARS 66.04 64.48 67.16 68.26 64.23
Entropy + MARS 65.83 64.69 65.76 68.44 64.02
SE + MARS 69.88 67.27 69.86 73.57 67.75

Table 1: AUROC performance of UE methods in various datasets with different pre-trained LLMs.

Results and Discussion. We present our detailed results in Table 1. Upon closer examination of
the results, it becomes apparent that the application of MARS consistently improves all baseline
methods across various datasets and models. Specifically, MARS yields improvements of up to
5.8 points for Confidence, 6.24 points for Entropy, and 1.51 points for SE. Note that the choice
among the baselines depends on the available computational resources. Confidence requires only
a single output generation. Entropy, demands multiple generations (5 in our experiments). SE is
the most computationally demanding, needing both multiple generations and O(n2) Natural Lan-
guage Inference model passes for clustering, where n is the number of generations. One of the
main contributions of MARS becomes evident when we compare SE with Confidence+MARS or
Entropy+MARS. With our method, we are able to increase the scores of Confidence+MARS and En-
tropy+MARS to a level they can compete with basic SE. Hence, given the computational overhead
of SE, Confidence+MARS and Entropy+MARS emerge as more practical and desirable alternatives.
Furthermore, in scenarios where sampling (i.e., multiple answer generation) is not feasible, the im-
provement offered by MARS to Confidence method becomes crucial with an average increase of
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2.8 points. We note that the additional computational and memory demands of MARS are rela-
tively minor, approximately 1.5% of the 7b models and 0.8% of the 13b models, because MARS’s
importance function is implemented with 110M Bert-like model.

4.1 ABLATION STUDIES

Effect of Phrase Separation. In Section 3, we suggest using a phrase-level separation instead of
token-level separation in designing the importance function so that tokens having strong relations
are evaluated together on their semantic impact on the sequence. To validate this design, we conduct
an experiment where we revert to token-level separation. The results in Table 2 demonstrate that
while token-level separation outperforms other baselines, phrase-level separation consistently yields
superior results, reaffirming the efficacy of our approach. We perform further ablation studies and
hyperparameter experiments as well as testing MARS on a medical dataset (See Appendix E).

Method Llama2-7b Mistral-7b

To
ke

n Confidence + MARS 72.53 75.31
Entropy + MARS 74.46 77.58
SE + MARS 81.55 83.25

P
hr

as
e Confidence + MARS 75.06 77.97

Entropy + MARS 75.94 78.51
SE + MARS 82.22 83.63

Table 2: AUROC score of UE methods + MARS with token/phrase-level importance functions on
TriviaQA.

5 CONCLUSION

We introduce Meaning-Aware Response Scoring (MARS), a novel scoring function designed to
replace length-normalized scoring in probability-based UE methods to evaluate generative LLMs.
MARS consistently and significantly boosts the performance of probability-based UE methods with
minimal additional computational overhead. The efficacy of MARS is shown in three QA datasets.

6 LIMITATIONS

The importance function model within MARS utilizes an unsupervised methodology, leveraging
pre-existing models for its formulation. Nonetheless, the performance of MARS can potentially
be further enhanced by using human labelers to assign importance coefficients for training the im-
portance function model. Besides, our analysis is limited to the closed-ended question-answering
domain in English, where a question has an objective ground-truth answer(s). Extensive analysis of
MARS and other probability-based UE methods on open-ended question-answering tasks and other
languages are beyond the scope of the current study and are left as future work.

7 ETHICS STATEMENT

Although probability-based UE methods combined with MARS have a remarkable prediction per-
formance on the correctness of generative LLM outputs, it is crucial to acknowledge that these
methods do not achieve 100% accuracy. Besides, as LLMs may have biases against gender, ethnic-
ity, age, etc., probability-based methods can carry those biases to UE outputs. Thus, one should be
aware of these potential risk factors before employing such probabilistic UE methods in real-world
systems. Ensuring fairness, transparency, and accountability in the deployment of these technologies
is important in mitigating risks and fostering trust in their application.

5



Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

REFERENCES

Alan Akbik, Duncan Blythe, and Roland Vollgraf. Contextual string embeddings for sequence
labeling. In Emily M. Bender, Leon Derczynski, and Pierre Isabelle (eds.), Proceedings of
the 27th International Conference on Computational Linguistics, pp. 1638–1649, Santa Fe,
New Mexico, USA, August 2018. Association for Computational Linguistics. URL https:
//aclanthology.org/C18-1139.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra Co-
jocaru, Mérouane Debbah, Étienne Goffinet, Daniel Hesslow, Julien Launay, Quentin Malartic,
Daniele Mazzotta, Badreddine Noune, Baptiste Pannier, and Guilherme Penedo. The Falcon se-
ries of open language models, 2023. URL https://arxiv.org/abs/2311.16867.

Neil Band, Tim G. J. Rudner, Qixuan Feng, Angelos Filos, Zachary Nado, Michael W Dusenberry,
Ghassen Jerfel, Dustin Tran, and Yarin Gal. Benchmarking Bayesian deep learning on diabetic
retinopathy detection tasks. In Thirty-fifth Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track (Round 2), 2021. URL https://openreview.net/
forum?id=jyd4Lyjr2iB.

Jannis Bulian, Christian Buck, Wojciech Gajewski, Benjamin Börschinger, and Tal Schuster.
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A APPENDIX

A RELATED WORKS

Uncertainty Estimation (UE) has emerged as a vital concept in various machine learning domains,
particularly in Natural Language Processing (NLP). In the literature, UE is used as a proxy for
the correctness of the model output Malinin & Gales (2021); Gal & Ghahramani (2016); Lakshmi-
narayanan et al. (2017); Band et al. (2021). The study of Xiao et al. (2022) concentrates on the UE
for tasks like common-sense reasoning and sentiment analysis; Jiang et al. (2021) explores model
calibration for UE in the context of multiple-choice question answering; Desai & Durrett (2020)
tackles the challenge of UE in specific NLP tasks such as paraphrase detection and natural language
inference. These studies represent just a fraction of the UE works in the field of NLP and there
is an expanding corpus of research focusing on the investigation of UE in NLP Hu et al. (2023);
Xiao & Wang (2019); Vazhentsev et al. (2022). The vast majority of these studies only focus on
classification and regression tasks, unlike our work where the goal is to study UE for generative
LLMs.

Few recent works deal with UE of generative LLMs. Xiao et al. (2020) and Fomicheva et al. (2020)
propose heuristic-based uncertainty metrics for generative LLMs considering machine translation.
Chen & Mueller (2023), Lin et al. (2023), Cohen et al. (2023), and Kadavath et al. (2022) propose
black-box UE methods for generative LLMs under the assumption that the token probabilities are
not accessible. Although these works have experimental validation, they lack a mathematical foun-
dation. Malinin & Gales (2021) is the first study adapting popular uncertainty tools in Bayesian
UE literature to the generative LLMs. The main idea of Malinin & Gales (2021) is to utilize length-
normalized scoring in computing the entropy of the LLM answers. A more recent approach by Kuhn
et al. (2023) further improves this result by introducing the concept of semantic entropy, which con-
siders the meaning of the generated sentences in entropy calculation in uncertainty prediction. Our
work is distinct from these works as we no longer utilize length-normalized scoring. Instead, we
utilize the proposed MARS in entropy computations, by also taking into consideration token impor-
tance to the answer correctness, thereby achieving an improved UE performance.

A.1 DISCUSSION OF THE DIFFERENCES WITH TOKENSAR

There is a recent work that also considers the meaning of the words in the generation to estimate un-
certainty Duan et al. (2023). The fundamental difference with our work is that Duan et al. (2023)’s
method is designed as an alternative to the existing probability-based uncertainty methods, whereas,
in our work, we propose a scoring function, i.e., MARS, which is compatible with all existing
probability-based uncertainty estimation methods. This implies that one can in fact utilize MARS
within the framework of Duan et al. (2023). In particular, in Duan et al. (2023), authors propose
three schemes: TokenSAR (token-level weight assignment), SentSAR (sentence-level weight as-
signment), and SAR (both token and sentence-level weight assignment). SentSAR and SAR are
orthogonal to MARS. SAR is the version of SentSAR where the scoring function in SentSAR is re-
placed with TokenSAR. In a similar fashion, MARS can be incorporated into the SentSAR approach
instead of the TokenSAR.
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Thus, we need to discuss our distinction from TokenSAR, which can also be considered as a scoring
function. To avoid confusion and clarify our unique approach, below we discuss our distinction from
TokenSAR.

• MARS uses BERT-Matching instead of sentence similarity: In our algorithm, we utilize
the BERT-Matching (BEM) model which takes the question, ground truth answer, and
the generated answer as inputs and returns the probability of the generated answer being
correct. To assign importance weights, we remove a set of tokens (a phrase) from the
generated sentence and pass the question, generated answer (as ground truth) and token-
removed generated answer to the BEM model. We set (1 - output) as the importance weight
and normalize weights at the end. We further improve this process by fine-tuning a BERT-
like model and increase efficiency (explained in the third bullet). TokenSAR uses sentence
similarity model (cross-encoder Roberta-Large) unlike our approach. Sentence similarity
model takes two input sentences to measure similarity and they concatenate the question
for both inputs. However, we argue that using the BEM model achieves better performance
since the goal is to find a token’s importance based on its contribution to the correctness
of the generated answer. This difference becomes more visible when the answer is longer
and more complex as we demonstrate in the below example. In particular, TokenSAR
fails to detect words that actually answer the question so that it (almost) returns uniform
importance values. On the other hand, MARS successfully finds the important words and
assigns higher weights to them. Let’s consider the following example:
Question: What is the tallest building in the world?
Generated Answer: The Burj Khalifa in Dubai, soaring into the sky, holds the distinction
of being the tallest building in the world, a marvel of modern engineering and architecture.
To this question-answer pair, MARS returns the following importance weight assignment:
The Burj Khalifa (0.8428) in (0.0082) Dubai (0.0083) ,
(0.0082) soaring (0.0084) into (0.0082) the sky (0.0082) ,
(0.0082) holds (0.0083) the distinction (0.0083) of (0.0082)
being (0.0082) the tallest building (0.0082) in (0.0082)
the world (0.0082) , (0.0082) a marvel (0.0083) of (0.0083)
modern engineering and architecture (0.0088) . (0.0083)

On the other hand, to the same pair, TokenSAR returns the following importance weight
assignment:
The (0.0225) Bur (0.0228) j (0.0318) K (0.0228) hal (0.0228)
ifa (0.0319) in (0.0227) Dub (0.0253) ai (0.0232) , (0.0228)
so (0.0237) aring (0.0294) into (0.0228) the (0.0228) sky
(0.0235) , (0.0229) holds (0.0228) the (0.0227) distinction
(0.0234) of (0.0228) being (0.0228) the (0.0229) tall
(0.0235) est (0.0227) building (0.0228) in (0.0228) the
(0.0228) world (0.0230) , (0.0229) a (0.0228) mar (0.0232)
vel (0.0232) of (0.0230) modern (0.0540) engineering
(0.0725) and (0.0336) architecture (0.0328) . (0.0232)

In this example, although the phrase “The Burj Khalifa” is the key word answering the
question, TokenSAR assigns low weights to its tokens. In fact, according to TokenSAR,
tokens of the phrase “The Burj Khalifa” are as important as some of the words/phrases that
appear in the question itself such as “the tallest building”. This is not ideal as TokenSAR
cannot distinguish between the actual answer and filler words. However, our proposed
MARS is able to actually find the important words in the answer thanks to the BEM model
we employ during weight assignment.

• MARS addresses token dependencies and process phrases instead of tokens: As we
explain in Section 3, we first divide a generated answer into phrases and then assign scores
to each of those phrases by using the procedure described in the first bullet point. On the
other hand, Duan et al. (2023) assumes that each generated token is meaningly independent
so that they remove tokens from the generation one-by-one and assign importance scores
accordingly. However, as we show in Table 2, ignoring token dependencies negatively
affects the performance of uncertainty methods. In this sense, our MARS provides a more
careful importance score assignment (as we demonstrate in the above example).
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• MARS is computationally efficient at inference: As we mention in Section 3, we improve
the computational performance of MARS by fine-tuning a BERT-like model that gives
importance scores with phrases in a single forward pass (this is an improvement over the
algorithm described in the first bullet). That is, our importance assignment does not depend
on the number of tokens in the generated sentence. In stark contrast, Duan et al. (2023)
uses cross-encoder Roberta-Large and their algorithm requires a number of tokens times
forward pass for a single generated sentence. Moreover, cross-encoder Roberta-Large has
approximately 355M parameters. However, we run our 110M BERT-like model only one
time for the generated sentence no matter its length. That is why for a generation comprised
of 10 tokens, MARS is 30x computationally more efficient than Duan et al. (2023).

B CONCEPTUALIZING THE RESPONSE SEMANTICS IN GENERATIVE LLM
PROBABILITIES

In classification tasks, the class probability reflects the model’s confidence in assigning a specific
class to an input. It is inherently tied to the semantics of the class. For instance, if a well-calibrated
classifier gives a 75% probability to the label “cat” for a given question, it suggests a 75% likelihood
that the answer of the question is indeed a cat. This output probability is not only a numerical
value; it conveys a semantic understanding of the image content as a cat. However, previously
proposed length-normalized scoring and semantic entropy definitions for generative LLMs (Section
2) do not directly correspond to the semantics of the LLM generation. Moreover, they are not
proper probability and entropy definitions, lacking theoretical background. Hence, we propose a
new random variable that is directly related to the semantics of the output and provide a justification
for the heuristic decisions of the previous works Kuhn et al. (2023); Malinin & Gales (2021).

Let Y be a random variable with arbitrary dimension corresponding to the meaning of the sequences
generated by an LLM parametrized with θ. The values of Y can be the set of all possible meanings
of generated sequences in a given context. Formally, the set is {g(s, x)}s∈S,x∈X , where g(·) is the
meaning function that takes generated sentence s and context x as inputs and returns the meaning as
output. By defining the properties of the meaning function g(·) and the distribution of Y , we can
rationalize the heuristic design choices made by previous works.

Malinin & Gales (2021) considers g(·) as a one-to-one function which means that each unique
sentence in the given context corresponds to different meanings. In this case, the distribution of Y
is defined by using the length-normalized scoring of the generated sequences. More formally

P (Y = y|θ) = P̃ (s|x, θ)∑
s∈S,x∈X P̃ (s|x, θ)

, (6)

where y = g(s, x) and P̃ (s|x, θ) is the length-normalized scoring defined as∏L
l=1 P (sl|s<l, x; θ)

1/L. To make the distribution of Y a valid probability distribution, we
normalize each P̃ (s|x, θ) by the sum of all possible scores, making their summation 1. By defining
Y as above, we essentially create an actual probability distribution of length-normalized scoring.

On the other hand, Kuhn et al. (2023) claims different sequences can have equal meaning. By
considering g(·) as a many-to-one function, we can write their proposal with the new meaning
random variable Y as follows

P (Y = y|θ) =
∑

s,x∈cy
P̃ (s|x, θ)∑

s∈S,x∈X P̃ (s|x, θ)
(7)

where cy corresponds to the meaning cluster, formally written as cy = {s, x|g(s, x) = y}. By
employing this new probability definition within the standard entropy calculation in (3), we obtain
the concept of semantic entropy as follows

SE(x, θ) = − 1

B

B∑
b=1

logP (Y = yb|θ) (8)

With the new random variable Y , we essentially write the semantic entropy as the standard Monte-
Carlo approximated entropy over a total of B distinct meanings.
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Figure 2: In classification tasks, output probabilities give the probability of the semantic meaning.
In the case of generative LLMs, probabilities of semantic meaning are unknown. Thus, we propose
an alternative probability distribution MARS for generative LLMs.

Notice that the normalization term
∑

s∈S,x∈X P̃ (s|x, θ) featured in both (6) and (7), acts as a con-
stant across all P (Y = y|θ) calculations, ensuring that Y conforms to a valid probability distri-
bution. Therefore, it only shifts the proposed UE scores which does not affect the performance of
accurately predicting the correctness of the model generation. Moreover, by introducing the ran-
dom variable Y , we not only provide a theoretical foundation for heuristic choices of the previous
works but also create flexibility to define new distributions for Y which may potentially improve the
existing UE tools.

Using the definition of Y , we can also rationalize our scoring function MARS. We replace the length-
normalized scoring function with MARS as in (5). We believe that MARS is a better choice to
define the probability distribution of Y . This is because MARS considers the semantic contribution
of tokens and the values of Y are closely related to the semantics of the generated sentences in the
context of question.

Once we do that, the new probability distribution of P (Y = y|θ) becomes the following if we
consider g as a one-to-one function as the work of Malinin & Gales (2021)

P (Y = y|θ) = P̄ (s|x, θ)∑
s∈S,x∈X P̄ (s|x, θ)

. (9)

If we follow Kuhn et al. (2023) and make g a many-to-one function, we reach the following distri-
bution for P (Y = y|θ):

P (Y = y|θ) =
∑

s,x∈Cy
P̄ (s|x, θ)∑

s∈S,x∈X P̄ (s|x, θ)
. (10)

Overall, by defining the new random variable Y and the properties of meaning function g(·), we
build a theoretical background for the heuristic design choices of previous works Malinin & Gales
(2021); Kuhn et al. (2023). Moreover, this structure provides a background for further studies by
either changing length-normalized scoring (as we do with MARS) or by re-defining the probability
distribution of Y and properties of the meaning function g(·).

Question Answer Output

Which planet is known as
Red Planet? It is Mars It is Mars

0.017 0.017 0.956

What is the capital city of
Japan?

Tokyo is the capital city of
Japan

Tokyo is the capital city of Japan
0.994 0.001 0.003 0.001 0.001

Which element has the
chemical symbol ”O”?

The chemical symbol ”O”
represents Oxygen

The chemical symbol ”O” represents Oxygen
0.01 0.01 0.003 0.976

Table 3: Sample outputs of our BERT-like model used for importance function. Question and answer
are given to the model as input, and the model divides the answer into phrases while assigning
importance score.
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C TRAINING OF BERT-LIKE MODEL FOR IMPORTANCE FUNCTION

As described in Section 3, we optimize the computational efficiency of MARS by training a single
Bert-like model with 110M parameters to execute the importance function. This model is an adap-
tation of the pre-trained Bert-base-uncased†, modified by removing its last layer and incorporating
two independent fully-connected (FC) layers. The first FC layer focuses on phrase detection with
two output logits: “Begin Phrase” (BP) and “Inside Phrase” (IP), and classifies each token as BP if it
marks the start of a phrase or as IP otherwise. This setup enables sentence segmentation into phrases.
The second FC layer, tasked with assigning importance coefficients, produces a single output logit
for each token’s importance coefficient.

For training data, we take a subset of 69192 question samples from the TriviaQA training set and
questions of the whole training set of NaturalQA consisting of 87925. Then, we use these questions
as input and feed them to all 7B-sized baseline models (Llama2-7b, Llama2-7b-chat, Mistral-7b,
Falcon-7b) to yield the responses. This provides us with question-answer pairs. We use the Flair
phrase chunking model to determine phrase labels in the answers, as described in Appendix C.1.
For importance coefficient labels per token in the responses, we follow Algorithm 1.

Sample outputs of our model are provided in Table 3. Here, question and answer are inputs to the
model, and the model divides the answer into phrases while assigning importance score to them.

We train the model only for 1 epoch with 5e-5 learning rate and 32 batch size. The training process
involves a convex combination of two loss functions: cross-entropy for phrase chunking and negative
log-likelihood for importance coefficient assignment, with equal weight assigned to both losses.
Table 4 displays the training and validation losses at the end of the training, indicating that our
training objectives are effectively generalizable to test sets.

Classification Scoring
Loss Loss

Train 0.0275 0.1957
Validation 0.0205 0.1901

Table 4: Train and validation loss values calculated at the end of training of BERT-like importance
model. Classification loss stands for cross-entropy loss for phrase chunking, and Scoring loss indi-
cated negative log-likelihood loss for importance coefficient.

C.1 DIVIDING A SENTENCE TO PHRASES

To divide a sentence into phrases, we use the Flair phrase chunking model‡ Akbik et al. (2018),
that uses 10 tags which are adjectival, adverbial, conjunction, interjection, list marker, noun phrase,
prepositional, particle, subordinate clause and verb phrase. For example, the Flair model divides the
sentence “The happy man has been eating at the dinner” as “The happy man”, “has been eating”,
“at”, “the diner”.

C.2 PSEUDOCODE OF THE IMPORTANCE FUNCTION ALGORITHM

The pseudocode of the importance function algorithm is given in Algorithm 1.

D EXPERIMENTAL DETAILS

Datasets. We use three closed-book Question-Answer (QA) datasets for evaluation: TriviaQA Joshi
et al. (2017), Natural Questions Kwiatkowski et al. (2019), and WebQA Chang et al. (2022). We
employ the validation split of the Natural Questions dataset, comprising 3610 samples. Following
Kuhn et al. (2023), a subset of 8000 QA pairs is selected from the validation split of the TriviaQA

†https://huggingface.co/bert-base-uncased
‡https://huggingface.co/flair/chunk-english
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Algorithm 1 Phrase-Level Importance Function

Input: Question x, generated answer s = {s1, s2, . . . , sL}, phrases {h1, h2, . . . , hK}, token
probabilities {pi = P (si|s<i,x; θ)}si∈s, temperature τ
Output: Importance scores I
I ← []

1: for k = 1 to K do
2: smasked ← s \ {sl}sl∈hk

3: ok ← BEM(x, s, smasked)
4: for each token sl in phrase hk do
5: I[l]← (1− ok)/|hk|
6: I ← softmax(I, τ)
7: return I

Question Answer

Tr
iv

ia
Q

A

Which American-born Sinclair won the Nobel Prize
for Literature in 1930? Sinclair Lewis

Which musical featured the song Thank Heaven for
Little Girls? Gigi

What was the first movie western called? Kit Carson

N
at

ur
al

Q
A When did the eagles win last super bowl? 2017

Who was the ruler of england in 1616? James I

What is the hot coffee mod in san andreas? a normally inaccessible mini-game

W
eb

Q
A

what character did natalie portman play in star wars? Padmé Amidala

what country is the grand bahama island in? Bahamas

where did saki live? United Kingdom

Table 5: Data samples from the datasets we use to evaluate UE methods: TriviaQA, NaturalQA, and
WebQA.
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dataset. For WebQA, we combine its training and test splits to form a combined dataset of 6642
samples.

Models. Our evaluation consists of 5 popular open-source LLMs. First two models are Llama-7B
and Llama-7B-chat, where the latter one is fine-tuned for dialogue use cases Touvron et al. (2023).
We also use Mistral-7B Jiang et al. (2023) as well as Falcon-7B Almazrouei et al. (2023) which is
fine-tuned on a mixture of chat/instruct datasets. To extend our analysis to larger models, we include
Llama-13B Touvron et al. (2023). We do not perform any further training on these models, rather
we use their pre-existing configurations. Following Kuhn et al. (2023), we abstain from assuming
any ensemble of the models, considering the significant size and time requirements associated with
LLMs.

Baselines. As we focus on the probability-based UE methods, we do not include heuristic-based
and black-box methods. We use 3 SOTA probability-based UE methods as baselines: 1. Negative
length-normalized score (Confidence), which provides the confidence score of the most likely gen-
eration only by using its token probabilities as in (2). 2. Entropy as in (3), which requires generating
multiple answers to obtain the score for the most likely answer. 3. Semantic Entropy (SE), which
considers the meaning of the generated answer while computing entropy, as shown in (4). All 3
baselines depend on length-normalized scoring. We replace length-normalized scoring with MARS
and arrive at Confidence + MARS, Entropy + MARS, SE + MARS.

Metrics. Following previous works Malinin & Gales (2021); Kuhn et al. (2023), we use Area
Under the Receiver Operating Characteristic Curve (AUROC) score for our UE performance metric.
AUROC quantifies a method’s ability to distinguish between two classes by plotting the true positive
rate against the false positive rate for various threshold values. AUROC score is the area under this
curve, ranging from 0 to 1. Higher AUROC score indicates a superior performance, while a score of
0.5 implies a random chance. In our case, ground truth is the correctness§ of the model response to
the question and the prediction is the output of an UE method.

Example Samples from Datasets. We provide data samples from the datasets we used in the
evaluation of UE methods in Table 5.

Number of Sampling and Temperature. Following previous work Kuhn et al. (2023), we sampled
5 samples and used 0.5 as the temperature value for the results presented in Table 1.

Generation Configurations. We use the Huggingface library’s generate function for model gen-
erations. We set token “.” as eos token id which prevents model to generate long paragraphs to
closed-book questions. We set num beams = 1 which corresponds to greedy decoding.

Computational Cost. We use 40 GB Nvidia A-100 GPUs for all the experiments. The total GPU-
hours for Table 1 is approximately 400. Labeling of the data used for training of BERT-like impor-
tance model takes approximately 200 GPU-hours. Fine-tuning of BERT-like model on the impor-
tance dataset takes 7 GPU-hours. Due to expensive computational demands, all presented results
are the output of a single run.

Prompts. We use the same 2-shot prompt for all of the models and the datasets for answer genera-
tion:

Answer these questions:
Question: What is the capital city of
Australia?
Answer: The capital city of Australia is
Canberra.

§We use GPT-3.5-turbo for evaluating the correctness of the model, as in Lin et al. (2023); Chen & Mueller
(2023).
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Question: Who painted the famous
artwork "Starry Night"?
Answer: "Starry Night" was painted by
Vincent van Gogh.
Question: {sample[’question’]}?
Answer:

To evaluate the correctness of the generated answer, we use gpt-3.5-turbo as the evaluator. The
prompt for gpt-3.5-turbo is the following:

You will behave as a question-answer
evaluator. I will give you a question,
the ground truth of the question
and a generated answer by a language
model. You will output "correct"
if the generated answer is correct
regarding question and ground truth.
Otherwise, output "false".
Question: {question}?,
Ground Truth: {answer},
Generated Answer: {generation}

E FURTHER EXPERIMENTS

E.1 ABLATION STUDIES

Importance Coefficient Distribution in Phrases. In Section 3, we state that we equally distribute
the importance of phrases to each token. Alternative distribution strategies might include prioritiza-
tion of the least or most uncertain token. Those strategies assign the phrase importance coefficient
to the least or most uncertain token of that phrase. In Table 6, we provide AUROC performances
when different distribution strategies are adopted. Notably, we find that max-uncertain distribution
is nearly as effective as our adopted equally assigning approach. In contrast, the min-uncertain as-
signing strategy underperforms. This outcome can be contextualized with a hypothetical scenario:
Consider the model’s response is “Shakespeare” to the query “Who wrote Hamlet?”, which is tok-
enized into “Shake” and “-speare”. Once “Shake” is produced, the subsequent arrival of “-speare”
is almost assured. The uncertainty primarily resides in the token “Shake”, making the probability
of “-speare” relatively uninformative. Consequently, focusing on the least uncertain (most uninfor-
mative) token in a phrase drops the performance of MARS significantly, and focusing on the most
uncertain token only is still reasonable.

Figure 3: AUROC scores for various temperatures and sampling numbers.

E.2 EFFECT OF SAMPLING HYPERPARAMETERS

We explore the influence of key hyperparameters on the performance of UE methods that rely on
sampling, specifically Entropy and SE. We focus on two critical hyperparameters: Temperature,
which adjusts the diversity of the sampling process, and the number of sampling, which dictates
how many samples are sampled in entropy calculation.
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Method Distribution Llama2-7b Mistral-7b

Confidence
+ MARS

Min 69.92 72.20
Max 75.13 77.73
Equal 75.06 77.97

Entropy
+ MARS

Min 70.56 72.75
Max 77.11 79.22
Equal 75.94 78.51

SE +
MARS

Min 81.67 82.33
Max 82.07 83.62
Equal 82.22 83.63

Table 6: AUROC score of UE methods + MARS with different coefficient distributions in phrases
in importance function on TriviaQA.

Temperature. The temperature parameter determines the smoothness of the probabilities while
sampling. A higher (lower) temperature value indicates more (less) diverse sampling. Figure 3
presents the AUROC scores for Entropy, SE, and their enhancements via MARS for the Llama2-13b
and Mistral-7b models on the TriviaQA dataset. The improvement of MARS is consistent for all
temperature values. The choice of temperature is application-dependent: higher temperatures are
advisable for tasks demanding creativity, whereas lower temperatures are preferable for applications
where consistency is important.

Number of Sampling. The number of sampled sequences is important for entropy and seman-
tic entropy calculation. More sampling leads to better entropy estimation; however, the cost also
increases. Beyond the sampling expense, SE incurs an additional cost from Natural Language In-
ference (NLI) model passes. In Figure 3, we provide the AUROC performance of Llama2-13b and
Mistral-7b models on TriviaQA with various sampling numbers. Notably, the efficacy of MARS
remains stable across diverse sampling numbers, with its advantages becoming more obvious under
lower sampling numbers.

Method Medicine-Chat-7b
Confidence 62.41
Entropy 59.58
SE 62.89

O
ur

s Confidence + MARS 62.89
Entropy + MARS 60.33
SE + MARS 64.48

Table 7: AUROC score of UE methods on medical QA.

E.3 UE IN MEDICAL QA DATASET

Next, we evaluate the UE methods using a medical QA dataset. Publicly available medical QA
datasets typically fall into two categories: those with multiple-choice questions Pal et al. (2022);
Kotonya & Toni (2020); Jin et al. (2021) and those without clear ground truths Zhu et al. (2019;
2020). To tackle this, we create a subset from the MedMCQA multiple-choice dataset Pal et al.
(2022), selecting questions that can be answered objectively without multiple choices. For this,
we collaborate with medical professionals to ensure the accuracy and relevance of the selected
questions, yielding a dataset of 415 samples. We use AdaptLLM’s Medicine-Chat Cheng et al.
(2023), a medical-domain adapted LLaMA-2-Chat-7B model¶. To evaluate the correctness of
model-generated responses, we leverage GPT-4 OpenAI (2023) and assess response validity in the
medical domain.

In Table 7, we provide the AUROC performance of the UE methods. Although MARS still con-
sistently improves the performance of probability-based UE methods, AUROC scores are still low
compared to Table 1. This might be because of the nature of medical questions. General knowl-
edge questions mostly require a straight, single-sentence answer. On the other hand, although we
curated closed-ended questions, medical questions still require a more complex explanation span-
ning multiple sentences. This difference between domains can affect the prediction performance of

¶https://huggingface.co/AdaptLLM/medicine-chat

17



Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

the probability-based methods. This observation emphasizes the necessity for further investigation
across various specialized fields, including medicine and law. Customized explorations are essential
to address domain-specific challenges and optimize UE methods accordingly.
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