
Towards Capturing the Temporal Dynamics for
Trajectory Prediction: a Coarse-to-Fine Approach

Xiaosong Jia1,2, Li Chen2, Penghao Wu1,2, Jia Zeng1,2, Junchi Yan1,2∗, Hongyang Li1,2, Yu Qiao2

∗corresponding author
1 Shanghai Jiao Tong University 2 Shanghai AI Laboratory

{jiaxiaosong, wupenghaocraig, jia.zeng, yanjunchi}@sjtu.edu.cn
{lichen, lihongyang, qiaoyu}@pjlab.org.cn

Abstract: Trajectory prediction is one of the basic tasks in the autonomous driv-
ing field, which aims to predict the future position of other agents around the ego
vehicle so that a safe yet efficient driving plan could be generated in the down-
stream module. Recently, deep learning based methods dominate the field. State-
of-the-art (SOTA) methods usually follow an encoder-decoder paradigm. Specif-
ically, the encoder is responsible for extracting information from agents’ history
states and HD-Map and providing a representation vector for each agent. Taking
these vectors as input, the decoder predicts multi-step future positions for each
agent, which is usually accomplished by a single multi-layer perceptron (MLP)
to directly output a Tx2 tensor. Though models with adoptation of MLP decoder
have dominated the leaderboard of multiple datasets, ‘the elephant in the room
is that the temporal correlation among future time-steps is ignored since there
is no direct relation among output neurons of a MLP. In this work, we examine
this design choice and investigate several ways to apply the temporal inductive
bias into the generation of future trajectories on top of a SOTA encoder. We find
that simply using autoregressive RNN to generate future positions would lead to
significant performance drop even with techniques such as history highway and
teacher forcing. Instead, taking scratch trajectories generated by MLP as input,
an additional refinement module based on structures with temporal prior such as
RNN or 1D-CNN could remarkably boost the accuracy. Furthermore, we examine
several objective functions to emphasize the temporal priors. By the combination
of aforementioned techniques to introduce the temporal prior, we improve the top-
ranked method’s performance by a large margin and achieve SOTA result on the
Waymo Open Motion Challenge.

Keywords: Autonomous Driving, Trajectory Prediction, Temporal Correlation

1 Introduction

Trajectory prediction aims to predict agents’ positions in the next several seconds, which is one of the
essential tasks for the autonomous driving. Recently, deep learning based methods have dominated
the field and they usually follow an encoder-decoder paradigm [1, 2]. The encoder takes all agents’
history states (position, velocity, heading, etc.) and HD-Map (lanes, road lines, traffic lights, etc.)
as inputs and outputs a representation vector for each agent. The decoder then generates future
trajectories for the agents based on these vectors. We observe that current top-ranked methods [3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14] on multiple datasets1 all adopt an MLP as the decoder to output a
T × 2 tensor and then reshape it into the final prediction.

1The investigation is based on their corresponding public leadrboard as of the date of the submission.
DCMS [3] and HiVT [4] on Argoverse [15], MultiPath++ [5], SceneTransformer [6], DenseTNT [7], and
HDGT [8] on Waymo Open Dataset [9], Multimodel Tranformer [10], GOHOME [11] and THOMAS [12] on
INTERACTION [16], PGP [13] and LaPred++ [14] on nuScenes [17].

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

Though the MLP design achieves satisfying performance empirically, we point out that it ignores
the temporal correlation among the future time-steps. Mathematically, we denote the hidden repre-
sentation vector of an agent as H ∈ RH and its predicted future trajectory as τ ∈ RT×2 where T
indicates the length of prediction horizon and 2 indicates the 2D coordinate. The MLP accomplishes
the mapping:

τ = W2δ(W1H).reshape(T, 2), (1)

where W1 ∈ RH′×H and W2 ∈ R(2T)×H′
are weight matrices, and δ(·) is a non-linear function.

We can find that every two rows of W2 contains the weights to generate the position for one specific
time-step. Since aforementioned SOTA works adopt either per-step negative log likelihood (NLL)
loss or per-step mean squared error (MSE) loss, the back-propagation updating for every two rows
of W2 is independent. Such design is based on the assumption of conditional independence among
future time-steps. However, the assumption is untenable in real-world scenarios and thus could be
harmful for the prediction.

In this work, we aim to discuss about ‘the elephant in the room’ and explore several approaches
to model the temporal correlation for future time-steps on top of a SOTA encoder. We find that
simply replacing the MLP with an autoregressive RNN leads to significant performance drop, even
with techniques such as teacher forcing [18] or history highway [19] to alleviate its drawbacks of
long-term dependencies and cumulative error. Inspired by the success of refine modules in the deep
learning based methods [20, 21, 22, 23] which ease the optimization difficulty of a single decoder
head, we find that when first using an MLP to generate a scratch trajectory and then using
a structure with temporal inductive bias (RNN/1D-CNN) to refine it, the SOTA model’s per-
formance could be boosted. We also explore different training objectives to apply temporal priors
on the output besides modifications of the neural network structure. We find that directly fitting the
velocity degenerates the performance, while accumulating the velocity into the displacement (i.e.,
calculating the integral of velocity over time) and still using the coordinates as the target would lead
to better prediction. By combining these discovered effective techniques, we significantly boost
the performance of a SOTA model on Waymo Open Motion Dataset, which verifies the benefit of
utilizing the temporal prior.

In summary, the contributions of the paper are:

• We explore ways to incorporate the temporal structure in the decoder and propose an ef-
fective scratch-then-temporally-refine paradigm. By using an MLP and a temporal module
in two steps respectively, it explicitly models the temporal correlation among future time
steps without the burden of training an autoregressive RNN.

• We examine several objective functions to add temporal priors to the output. We report the
notable improvements by first generating velocity and then accumulating temporally into
coordinates to calculate per-step loss.

• We conduct thorough ablation study on the Waymo Open Motion Dataset to test different
ways of introducing the temporal prior into the decoding process. With the combination of
our effective attempts, the performance of a SOTA encoder is boosted by a large margin on
Waymo Public Leaderboard.

We consider the correlation among future time steps as a non-negligible factor, which is not exploited
by current SOTA methods. We hope the attempts and successful parts illustrated in this study could
provide useful information for this line of study in the trajectory prediction community.

2 Related Works

Pioneering works of deep learning based trajectory prediction models usually adopt an RNN decoder
to generate future trajectories in an autoregressive way. Social LSTM [24] applies an LSTM decoder
after the LSTM encoder, and adopts the NLL loss for each time-step. Its extension, Social GAN [25],
uses GAN [26] to encode different modalities and adopts per-step MSE loss. DESIRE [27] employs
a conditional variational autoencoder to sample a diverse set of hypothetical modalities and adopts
a GRU to generate future predictions. MFP [28] introduces a latent distribution to model the joint
modality of multiple agents and utilizes an RNN for decoding as well. Mulitpath [29] leverages a
fixed set of future state-sequence anchors that correspond to modes of the trajectory distribution and
regresses offsets along with uncertainties with respect to anchor waypoints by RNN. IDE-Net [30]

2

applies additional loss to infer the interaction types in an unsupervised fashion. To capture the
temporal dynamics, Trajecton++ [31] utilizes a GRU as the decoder to predict a bivariate Gaussian
distribution over control actions. By applying dynamically-extended unicycle models over the pre-
dicted control signals, it is able to guarantee that its trajectory samples are dynamically feasible.
DKM [32] designs an autoregressive differentiable dynamics layer to generate the control signal
per-step.

Though it is intuitive to use an autoregressive RNN to generate the sequence of future positions due
to its recurrent nature, modern methods with a concise MLP decoder outperform previous RNN-
based ones and dominate multiple public motion prediction leaderboards, including Waymo [9],
nuScenes [17], Argoverse [15] and INTERACTION [16]. [33] utilizes CNN to encode the scene
and generates trajectories directly by an MLP, while LaneGCN [2] encodes the scene by four distinct
graph convolutional network (GCN) layers. PGP [13] traverses the lane graph to incorporate the lane
topology while LaPred [14] applies attention mechanism on lanes. HiVT [4] designs a hierarchical
way to aggregate the local and global information efficiently. SceneTransformer [6] encodes the
spatial and temporal information in a factorized way. HDGT [8] models the driving scene as a
heterogeneous graph. TPCN [34] and its extension DCMS [3] encodes the scene in the form of point
cloud and apply an MLP on the pooled instance vector to generate future trajectories. VectorNet [1]
encodes both the agents and lanes as vectors on a global graph and decodes the future trajectories
based on the corresponding agents’ vectors with an MLP. Its extension TNT [35] and DenseTNT [7]
generate trajectories in a two-stage way: the stage one aims to predict the target/goal of agents
and the stage two aims to complete the entire trajectories conditioned on the predicted end point
by an MLP. GOHOME [11] and its extension THOMAS [12] output heatmaps for goals and then
sample trajectories based on the selected goals. LaneRCNN [36] follows the goal-based prediction
framework as well but they complete the trajectories with a polynomial prior and use an MLP to
refine the polyline. In PLOP [37], means of the distribution of future coordinates are generated in
polynomials of degree 4 of time. In the recent study - Multipath++ [5], they find that both polynomial
representations and control signal representations lead to degenerated performance compared to
directly regressing the coordinates.

Revisiting the existing literature, we can find that decoders and training objectives with different
types of temporal structure are proposed. However, they are usually entangled with the encoder
module and other settings, which makes it hard to draw a clear conclusion about the advantages
and disadvantages of these designs. In this work, we examine different choice of applying temporal
structure in the generation process of future trajectories while keep other settings such as the dataset,
the encoder, the training schedule, and the hyperparameter the same for a fair comparison. To the
best of our knowledge, we are the first to explore this design choice with the modern vector-based
encoder on large-scale autonomous driving datasets.

3 Problem Formulation

Given history states {Si
his|i = 1, ..., N} of N agents such as their coordinate, velocity, and heading

and their surrounding information Senv including lanes, traffic lights, etc., the goal is to predict their
future positions in the next T time-steps {τ i ∈ RT×2|i = 1, ..., N}. Current SOTA methods usu-
ally follow the encoder-decoder paradigm. The encoder takes all agents’ histories and environment
information as inputs and outputs a representation vector Hi ∈ RH for each agent i:

{Hi|i = 1, ..., N} = Encoder({Si
his|i = 1, ..., N},Senv). (2)

Conditioned on agents’ hidden feature Hi, the decoder aims to predict the distributions of their
future trajectories respectively:

p(τi|Hi) = p(Y1
i , ...,Y

T
i |Hi), i = 1, ..., N. (3)

Yt
i is agent i’s distribution of states at future time-step t.

As mentioned in Sec. 1, most SOTA works generate coordinates of different future time-steps with
an MLP and adopt a step-wise MSE or NLL loss, which assumes that the distributions of states on
different future time-steps are conditionally independent:

p(Y1
i , ...,Y

T
i |Hi) =

T∏
t=1

p(Yt
i |Hi), i = 1, ..., N. (4)

3

We argue that this assumption ignores the temporal correlation among future time-steps, which could
result in less consistent and physically infeasible trajectories. In this work, we explore two parts to
apply the temporal priors: the mapping function φ(Hi) = τ̂i = {Ŷt

i |t = 1, ...T} and the objective
function L(τi, φ(Hi)).

Experiments Setting: We examine different decoders and objective functions on the validation set
of Waymo Open Motion [9]. For all models, we adopt the same encoder module - HDGT [8], a
top-ranked encoder on Waymo Leaderboard. All experiments are conducted with the same setting
and hyperparameters. Please refer to Sec. 9 for more details. The following metrics are used: a) mi-
nADE (Minimum Average Distance Error): the minimum value of the Euclidean distance between
the prediction and ground truth averaged by the prediction length T , for K required predictions. b)
minFDE (Minimum Final Distance Error): similar to minADE, despite that it only calculates the
error at the final time-step T . c) MR (Missing Rate): the ratio of whether the Euclidean distance
between the prediction and ground truth at the final time-step T for all K predictions is larger than
2 meters.

4 Temporal Enhanced Decoder

4.1 Autoregressive RNN

H

MLP Decoder

RNN RNN

H

… RNN

RNN Decoder

RNN RNN

H

… RNN

RNN Decoder (Highway)

𝒑𝒑𝑮𝑮𝑮𝑮

GT

RNN RNN

H

… RNN

RNN Decoder (Teacher Forcing)

𝒑𝒑𝑮𝑮𝑮𝑮

GT

RNN

H

RNN

Mix

Figure 1: Illustration of the MLP, autoregressive RNN decoder, and their variants.

The autoregressive RNN predicts future trajectories in an iterative way with the assumption that
the coordinate distribution of each time-step depends on that from previous time-steps (for notation
brevity, we drop the subscript i of agents in the following sections):

p(Y1, ...,YT |H) =

T∏
t=1

p(Yt|Y1, ...Yt−1,H), (5)

The generation process is implemented by maintaining an internal state vector in RNN.

Table 1: Performance comparison of different de-
coder structure. H indicates the hightway technique
and TF indicates the teacher forcing technique. Note
that in Mix decoder, we adopt l = 20 which means
autoregressing for 4 steps.

Decoder minADE↓ minFDE↓ MR↓
MLP 0.6056 1.2328 0.1723
RNN 0.7259 1.4903 0.2116

RNN (H) 0.7454 1.5438 0.2272
RNN (TF) 0.7179 1.4575 0.2053

Mix 0.7002 1.4620 0.2033

Two commonly used RNN structures are
LSTM [38] and GRU [39] and we adopt an
LSTM here for its high capacity2. Mean-
while, there are two widely known draw-
backs of RNN: the difficulty to capture
long-term dependency due to the implicit
past information retention mechanism [40]
and the cumulative error [18]. As for
the first problem, inspired by highway
RNN [41, 42], we implement a variant of
LSTM which takes the vector H as an ad-
ditional input at each time-step so that the
history information is always accessible. To
alleviate the cumulative error of autoregressive model, we adopt the teacher forcing with scheduled
sampling strategy [18]. Specifically, at each time-step, the LSTM would have a possibility pGT to
take the ground-truth (GT) state as input instead of the predicted one, and the possibility pGT decays
as the training goes by. In this way, the model could be updated with less noise at the start of training
while at the end it could learn to robustly do the prediction based on its previous output [18]. To
futher explore the differences between the RNN and MLP decoder, we design a ‘mix’ of them. We

2Please refer to [38] for details about LSTM.

4

use an LSTM to autoregressively generates l steps’ representation vectors and then use an MLP to
predict positions of T/l time-steps with each step’s vector as input.

In Figure 1, we give illustrations of the aforementioned decoders. Table 1 is the performance of the
different decoder structures on Waymo Motion Dataset (validation set). We can conclude that:

• Autoregressive RNN performs worse than the MLP by a large margin, which explains why
most SOTA methods adopt the latter one.

• The cumulative error is one cause of autoregressive RNN’s bad performance. The teacher
forcing technique could alleviate this problem, but its performance is still worse than MLP.

• Concatenating the history feature H with each time-step’s state as input to RNN could
not solve the long-term dependency problem. Indeed, it leads to worse performance than
vanilla RNN. It might come from the difficulty of updating H for all T time-steps as the
input to RNN.

• The mix of the two structure has the performance between the MLP and RNN decoder.
By reducing the autoregressive steps, the optimization becomes easier. However, it is still
much worse than a concise MLP decoder.

In summary, we find that the inherent issues of autoregressive RNN make it hard to compete with the
MLP decoder in the trajectory prediction task. We should explore other ways to apply the temporal
inductive bias on the network structure.

4.2 Scratch-then-Temporally-Refine

H

Scratch MLP

�𝐘𝐘𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬

Ground-Truth

Scratch Loss

�𝐘𝐘𝐨𝐨𝐨𝐨𝐨𝐨𝐬𝐬𝐨𝐨𝐬𝐬

Refine
Module

Refine Loss -

Figure 2: The proposed scratch-then-temporally-refine paradigm. An MLP is first trained to generate
the scratch trajectory Ŷscratch. Taking Ŷscratch as the input, the refinement module predicts the
offset for each time-step. It could be a structure with temporal inductive bias (RNN/1D-CNN).

Through Section 4.1, we find that directly utilizing RNN to predict trajectories is hard because it
has to generate in an autoregressive fashion, which is troublesome. Thus, to utilize the RNN while
avoiding the autoregressive part, we need to generate proper input states to RNN for each time-step.
We notice the fact that a simple MLP is proven to be able to do the prediction accurately in the
existing literature, which inspires us to train an MLP to generate scratch trajectories and then
using structures with temporal prior (RNN or 1D-CNN) to refine the scratch.

Formally, given the hidden feature H from the encoder, we first train an MLP with the output shape
of T × 2, denoted as φscratch:

{Ŷt
scratch|t = 1, ...T} = φscratch(H). (6)

Based on the scratch trajectories {Ŷt
scratch|t = 1, ...T} as well as the feature H from the encoder

which encodes agents interactions and map information, we train a refinement module φrefine to
refine them:

{Ŷt
offset|t = 1, ...T} = φrefine({Ŷ

t
scratch|t = 1, ...T},H), (7)

where the objective for Yt
offset is the difference between Ŷt

scratch and the ground-truth Yt. Fig-
ure 2 gives an illustration of the proposed paradigm.

5

Table 2: Performance comparison of different re-
finement modules. 5 * 1D-CNN means 5 cascaded
1D-CNN refinement modules.

φrefine minADE↓ minFDE↓ MR↓
None 0.6056 1.2328 0.1723
MLP 0.6004 1.2300 0.1680
RNN 0.5931 1.2195 0.1637

1D-CNN 0.5908 1.2084 0.1625

5 * 1D-CNN 0.5871 1.1893 0.1554

Note that φscratch and φrefine could be trained
in an end-to-end fashion. In experiments, we
have different choices for φrefine: a) another
MLP, similar to [3], which takes the flattened
scratch trajectory as the input and output a T×2
tensor. b) an LSTM which takes the scratch tra-
jectory as the input of the tth time-step . c) 1D-
CNN, which serves as the local temporal infor-
mation filter. The results are shown in Table 2.
Additionally, for the variant with best perfor-
mance, 1D-CNN, we also conduct experiments
on cascading multiple refinement modules to explore the effects of the multi-granularity refinement.

We can conclude that: a) An additional refinement module could improve the performance notablely,
even if it is simply another MLP. b) Refinement modules with temporal inductive bias (RNN and 1D-
CNN) perform better than the one without such bias. c) By cascading multiple refinement modules,
the performance could be further boosted.

In summary, we find that the proposed scratch-then-temporally-refine paradigm could combine the
best of two worlds: the easy optimization of the MLP and the temporal inductive bias of RNN/1D-
CNN.

5 Temporally Correlated Objective Function

Decoder

（�𝐱𝐱𝟐𝟐,�𝐲𝐲𝟐𝟐 ）（�𝐱𝐱𝟏𝟏,�𝐲𝐲𝟏𝟏 ） （�𝐱𝐱𝟑𝟑,�𝐲𝐲𝟑𝟑 ）

（𝐱𝐱𝟐𝟐,𝐲𝐲𝟐𝟐）（𝐱𝐱𝟏𝟏,𝐲𝐲𝟏𝟏） （𝐱𝐱𝟑𝟑,𝐲𝐲𝟑𝟑）
Coordinate Loss

Decoder

（�𝐯𝐯𝐱𝐱𝟐𝟐, �𝐯𝐯𝒚𝒚𝟐𝟐）（�𝐯𝐯𝐱𝐱𝟏𝟏, �𝐯𝐯𝒚𝒚𝟏𝟏） （�𝐯𝐯𝐱𝐱𝟑𝟑, �𝐯𝐯𝒚𝒚𝟑𝟑）

（𝐯𝐯𝐱𝐱𝟐𝟐, 𝐯𝐯𝐲𝐲𝟐𝟐）（𝐯𝐯𝐱𝐱𝟏𝟏, 𝐯𝐯𝐲𝐲𝟏𝟏） （𝐯𝐯𝐱𝐱𝟑𝟑, 𝐯𝐯𝐲𝐲𝟑𝟑）
Velocity Loss Cumulative Coordinate Loss (Ours)

（�𝐯𝐯𝐱𝐱𝟐𝟐, �𝐯𝐯𝒚𝒚𝟐𝟐）（�𝐯𝐯𝐱𝐱𝟏𝟏, �𝐯𝐯𝒚𝒚𝟏𝟏） （�𝐯𝐯𝐱𝐱𝟑𝟑, �𝐯𝐯𝒚𝒚𝟑𝟑）

（𝐱𝐱𝟐𝟐,𝐲𝐲𝟐𝟐）（𝐱𝐱𝟏𝟏,𝐲𝐲𝟏𝟏） （𝐱𝐱𝟑𝟑,𝐲𝐲𝟑𝟑）

Figure 3: Three objective functions for regression. Cumulative coordinate loss achieves the best
performance.

In addition to designing the neural network with the temporal structure, the temporal priors among
future time-steps could be applied on the objective function part as well. Existing works [1, 6, 30, 5]
usually calculate the regression loss per time-step and then take the mean of all time-steps as the
overall loss:

L({Ŷt|t = 1, ..., T}, {Yt|t = 1, ..., T}) = 1

T

T∑
t=1

Lstep(Ŷ
t,Yt), (8)

where Ŷt and Yt are the predicted and ground-truth coordinate at time-step t respectively, and
Lstep is the loss function applied on each time-step, which could either be the MSE loss [1, 7]
or NLL loss [6, 5]. This objective function assumes that agents’ future positions are independent
with each other, which ignores the physical constraint and could result in kinematically infeasible
prediction. Additionally, for the long-term trajectory prediction, agents might move hundreds of
meters in the predicted interval. As a result, the magnitude of the late time-steps’ coordinates might
be much larger than the early ones, which brings difficulty for the learning process.

One intuitive solution for the aforementiond issues is to predict the control signal instead [32, 31, 43]
and the coordinate could be obtained by physical models during inference. In this way, the network
explicitly learns the dynamics which provides strong prior knowledge to the model while keeping the
output magnitude of different time-steps similar. However, in our empirical experiments, predicting
velocity leads to performance drop, which is consistent with the conclusion in [5]. One burden for
predicting the control signal is the cumulative error which makes the model sensitive to noise. With
a prediction error occurring at the first time-step, the entire generated trajectory would shift from the
ground-truth, even if predictions at all other time-steps are correct.

6

Table 3: Performance comparison of different objective
functions. The third is the proposed cumulative coordi-
nate loss.

Loss Func minADE↓ minFDE↓ MR↓
Coordinate Loss 0.6056 1.2328 0.1723

Velocity Loss 0.6346 1.2590 0.1822
Cumu. Coord. Loss 0.5921 1.1851 0.1542

To alleviate the problem, we propose
to let the model output velocity while
calculating the regression loss between
the accumulation of the models’ out-
put and the ground-truth coordinate.
Formally, given the predicted velocity

{̂̇Yt|t = 1, ..., T} and the GT coordi-
nate {Yt|t = 1, ..., T}, the objective is:

Lcumulative =
1

T

T∑
t=1

Lstep(
t∑

m=1

̂̇Ym,Yt). (9)

In this way, we combine the best of the two worlds: the output is in the form of velocity which
introduces temporal correlation among time-steps while the early time-step’s influence on its later
coordinates is considered by the accumulation of the loss. Figure. 3 illustrates the three objective
functions mentioned above and Table. 3 gives their performance. The proposed cumulative coordi-
nate loss function achieves the best performance.

6 Results on the Public Leaderboard
Table 4: Performance comparison on Waymo Open Motion
leaderboard, test set.

Model minADE↓ minFDE↓ MR↓
ReCoAt [44] 0.7703 1.6668 0.2437

DenseTNT [7] 1.0387 1.5514 0.1573
SceneTransformer [6] 0.6117 1.2116 0.1564

MultiPath++ [5] 0.5557 1.1577 0.1340
golfer 0.5533 1.1608 0.1354

MTRA 0.5640 1.1344 0.1160

HDGT [8] 0.5933 1.2055 0.1511
HDGT + Ours 0.5703 1.1434 0.1440

Here we provide results on the test
set of Waymo Open Motion3 to ver-
ify that our conclusions are not over-
fitting the validation set, as shown
in Table 4. We can find that by
combining the proposed techniques,
the SOTA encoder HDGT’s perfor-
mance could be further boosted and
achieves competitive performance
on the learderboard4.

7 Ablation Study

Table 5: Ablation study of the proposed techniques. Note that for the temporal refinement module,
we use the best setting, 5*1D-CNN.

Temporal
Refine

Cumu.
Coord. Loss minADE↓ minFDE↓ MR↓ TRI(%)↓ UR(%)↓ Time(s)

% % 0.6056 1.2328 0.1723 10.95 2.37 1146 ± 16.5
" % 0.5871 1.1893 0.1554 5.27 0.38 1181 ± 14.49
% " 0.5921 1.1851 0.1548 12.05 4.87 1153 ± 15.33
" " 0.5835 1.1833 0.1532 6.89 0.39 1206 ± 14.22

In this section, we study the effects
of the combination of the proposed
techniques. In addition to the commonly used metrics - minADE/minFDE/MR, to evaluate the
physical feasibility of predicted trajectories under different settings, we calculate the Turning Ra-
dius Infeasibility (TRI) [5]. If the turning radius (the circumradius constituting three consecutive
waypoints) along the predicted trajectories is less than a certain threshold, it is treated as a violation.
We set this threshold as 3.5m - the approximate minimum turning radius threshold for a midsize
sedan, following [5]. We also evaluate the smoothness of the trajectory by calculating the accelera-
tion and jerk, i.e., the second and third time derivative of the position. According to [45, 46], human
drivers’ maximum acceleration is around 5.0m/s2, and that of jerk is 2.0m/s3. Thus, we define the

3https://waymo.com/open/challenges/2022/motion-prediction/
4Note that some methods are with ensemble while ours is a single model.

7

https://waymo.com/open/challenges/2022/motion-prediction/

Unsmooth Ratio (UR) as: if at any time-step of a trajectory, its corresponding acceleration is larger
than 5.0m/s2 or jerk is larger than 2.0m/s3, it is considered as an unsmooth step.

The ablation study results are shown in Table 5. We can conclude that: both techniques could im-
prove the distance-based metrics of the baseline model and the combination of them could further
boost the performance. As for the Turning Radius Infeasibility (TRI) and Unsmooth Ratio (UR), the
temporal refinement module could make generated trajectories much more smooth and physically
feasible while the cumulative coordinate loss is harmful for them. We think it is because predic-
tions of different time-steps have more information interaction in the temporal refinement module,
which is helpful for their consistency. However, the cumulative coordinate loss entangles all the
information by the accumulation process which might be unstable compared to direct regression.

Also, to evaluate the impact of this modification is on the inference time of the origin model, we cal-
culcate the mean time and std of 30 runs while keeping the environment, devices, hyperparameters
like batch-size the same. The computational burden of Cumulative Coordinate Loss is neglectable
while the 5 cascaded refine modules takes 3-5% more inference time.

8 Conclusion

In this paper, we explore ways of applying the temporal priors on the generation process of trajecto-
ries. We find that intuitively using an autoregressive RNN would lead to degenerated performance
compared to the commonly used MLP decoder. To combine the best of two methods, we propose a
scratch-then-temporally-refine paradigm, which first generates a scratch trajectory by an MLP and
then incorporates the temporal structure to refine the trajectory. We also find that directly fitting
the velocity degenerates the performance, while accumulating the velocity and then still using the
coordinate as the target would lead to better performance. Finally, by combining these discovered
effective techniques, we boost the SOTA encoder - HDGT’s performance by a large margin in the
Waymo Motion Leaderboard, which verifies the benefits of utilizing our proposed temporal prior.

9 Implementation Details

We adopt HDGT [8] as the encoder for all models with the same hyperparameters. We use all agents
in the scene as a sample for the wholeness of the information while [8] uses every target agent and
its surrounding 16 agents as a sample. We use max-pooling as the aggregation function for the lane
node for less computational cost, which we find has few degeneration of the performance. We train
all ablation models with 30 epochs for quick verification of the idea and train the final submission
to the leaderboard with 120 epochs which has similar training steps with [8].

10 Limitation and Future Work

Experiments are only conducted on one SOTA encoder on the Waymo Open Motion Dataset
(WOMP). Though it is the largest public dataset for motion prediction, there still could be poten-
tial biased conclusion. To address this issue, in the future works, we might implement more SOTA
encoders and conduct experiments on more datasets to further verify the conclusion.

Autoregressive RNN, as an structure naturally with temporal prior, did not work well under the
simple attempts tried in this paper. More sophisticated and well-designed strcture could be explored
such as [47, 48] for better convergence and performance.

Acknowledgments

This work was partly supported by NSFC (62206172, 62222607), Shanghai Municipal Science and
Technology Major Project (2021SHZDZX0102), and Shanghai Committee of Science and Technol-
ogy (21DZ1100100).

References
[1] J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C. Li, and C. Schmid. Vectornet: Encoding hd

maps and agent dynamics from vectorized representation. In CVPR, 2020.

8

[2] M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng, and R. Urtasun. Learning lane graph
representations for motion forecasting. In ECCV, 2020.

[3] M. Ye, J. Xu, X. Xu, T. Cao, and Q. Chen. Dcms: Motion forecasting with dual consistency
and multi-pseudo-target supervision, 2022.

[4] Z. Zhou, L. Ye, J. Wang, K. Wu, and L. Kejie. Hivt: Hierarchical vector transformer for multi-
agent motion prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2022.

[5] B. Varadarajan, A. Hefny, A. Srivastava, K. S. Refaat, N. Nayakanti, A. Cornman, K. Chen,
B. Douillard, C. P. Lam, D. Anguelov, et al. Multipath++: Efficient information fusion and
trajectory aggregation for behavior prediction. arXiv preprint arXiv:2111.14973, 2021.

[6] J. Ngiam, B. Caine, V. Vasudevan, Z. Zhang, H.-T. L. Chiang, J. Ling, R. Roelofs, A. Bewley,
C. Liu, A. Venugopal, et al. Scene transformer: A unified multi-task model for behavior
prediction and planning. arXiv preprint arXiv:2106.08417, 2021.

[7] J. Gu, C. Sun, and H. Zhao. Densetnt: End-to-end trajectory prediction from dense goal sets.
In ICCV, 2021.

[8] X. Jia, P. Wu, L. Chen, H. Li, Y. Liu, and J. Yan. Hdgt: Heterogeneous driving
graph transformer for multi-agent trajectory prediction via scene encoding. arXiv preprint
arXiv:2205.09753, 2022.

[9] S. Ettinger, S. Cheng, B. Caine, C. Liu, H. Zhao, S. Pradhan, Y. Chai, B. Sapp, C. Qi, Y. Zhou,
et al. Large Scale Interactive Motion Forecasting for Autonomous Driving: The Waymo Open
Motion Dataset. arXiv preprint arXiv:2104.10133, 2021.

[10] Z. Huang, X. Mo, and C. Lv. Multi-modal motion prediction with transformer-based neural
network for autonomous driving. arXiv preprint arXiv:2109.06446, 2021.

[11] T. Gilles, S. Sabatini, D. Tsishkou, B. Stanciulescu, and F. Moutarde. GOHOME: graph-
oriented heatmap output for future motion estimation. arXiv preprint arXiv:2109.01827, 2021.

[12] T. Gilles, S. Sabatini, D. Tsishkou, B. Stanciulescu, and F. Moutarde. Thomas: Trajectory
heatmap output with learned multi-agent sampling. arXiv preprint arXiv:2110.06607, 2021.

[13] N. Deo, E. Wolff, and O. Beijbom. Multimodal trajectory prediction conditioned on lane-graph
traversals. In 5th Annual Conference on Robot Learning, 2021.

[14] B. Kim, S. H. Park, S. Lee, E. Khoshimjonov, D. Kum, J. Kim, J. S. Kim, and J. W. Choi.
Lapred: Lane-aware prediction of multi-modal future trajectories of dynamic agents. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 14636–14645, June 2021.

[15] M.-F. Chang, J. W. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, D. Wang, P. Carr,
S. Lucey, D. Ramanan, and J. Hays. Argoverse: 3d tracking and forecasting with rich maps.
In Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[16] W. Zhan, L. Sun, D. Wang, H. Shi, A. Clausse, M. Naumann, J. Kummerle, H. Konigshof,
C. Stiller, A. de La Fortelle, et al. Interaction dataset: An international, adversarial and co-
operative motion dataset in interactive driving scenarios with semantic maps. arXiv preprint
arXiv:1910.03088, 2019.

[17] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan,
and O. Beijbom. nuscenes: A multimodal dataset for autonomous driving. In CVPR, 2020.

[18] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer. Scheduled sampling for sequence prediction
with recurrent neural networks. Advances in neural information processing systems, 28, 2015.

[19] J. G. Zilly, R. K. Srivastava, J. Koutnı́k, and J. Schmidhuber. Recurrent highway networks. In
Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17,
page 4189–4198. JMLR.org, 2017.

9

[20] Z. Cai and N. Vasconcelos. Cascade r-cnn: Delving into high quality object detection. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 6154–
6162, 2018.

[21] S. Zhang, L. Wen, X. Bian, Z. Lei, and S. Z. Li. Single-shot refinement neural network for
object detection. In Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 4203–4212, 2018.

[22] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko. End-to-end
object detection with transformers. In European conference on computer vision, pages 213–
229. Springer, 2020.

[23] H. Shao, L. Wang, R. Chen, H. Li, and Y. Liu. Safety-enhanced autonomous driving using
interpretable sensor fusion transformer. arXiv preprint arXiv:2207.14024, 2022.

[24] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese. Social lstm:
Human trajectory prediction in crowded spaces. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 961–971, 2016.

[25] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi. Social gan: Socially acceptable
trajectories with generative adversarial networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2255–2264, 2018.

[26] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C.
Courville, and Y. Bengio. Generative adversarial nets. In NIPS, 2014.

[27] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr, and M. Chandraker. Desire: Distant future
prediction in dynamic scenes with interacting agents. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 336–345, 2017.

[28] Y. C. Tang and R. Salakhutdinov. Multiple futures prediction. Advances in neural information
processing systems, 2019.

[29] Y. Chai, B. Sapp, M. Bansal, and D. Anguelov. Multipath: Multiple probabilistic anchor
trajectory hypotheses for behavior prediction. arXiv preprint arXiv:1910.05449, 2019.

[30] X. Jia, L. Sun, H. Zhao, M. Tomizuka, and W. Zhan. Multi-agent trajectory prediction by
combining egocentric and allocentric views. In Conference on Robot Learning, pages 1434–
1443. PMLR, 2022.

[31] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone. Trajectron++: Dynamically-feasible
trajectory forecasting with heterogeneous data. In ECCV, 2020.

[32] H. Cui, T. Nguyen, F.-C. Chou, T.-H. Lin, J. Schneider, D. Bradley, and N. Djuric. Deep
kinematic models for kinematically feasible vehicle trajectory predictions. In 2020 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages 10563–10569. IEEE, 2020.

[33] H. Cui, V. Radosavljevic, F.-C. Chou, T.-H. Lin, T. Nguyen, T.-K. Huang, J. Schneider, and
N. Djuric. Multimodal trajectory predictions for autonomous driving using deep convolutional
networks. In 2019 International Conference on Robotics and Automation (ICRA), pages 2090–
2096. IEEE, 2019.

[34] M. Ye, T. Cao, and Q. Chen. Tpcn: Temporal point cloud networks for motion forecasting.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 11318–11327, June 2021.

[35] H. Zhao, J. Gao, T. Lan, C. Sun, B. Sapp, B. Varadarajan, Y. Shen, Y. Shen, Y. Chai, C. Schmid,
C. Li, and D. Anguelov. Tnt: Target-driven trajectory prediction. In CoRL, 2020.

[36] W. Zeng, M. Liang, R. Liao, and R. Urtasun. Lanercnn: Distributed representations for graph-
centric motion forecasting. In 2021 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 532–539, 2021. doi:10.1109/IROS51168.2021.9636035.

10

http://dx.doi.org/10.1109/IROS51168.2021.9636035

[37] T. Buhet, É. Wirbel, and X. Perrotton. Plop: Probabilistic polynomial objects trajectory plan-
ning for autonomous driving. ArXiv, abs/2003.08744, 2020.

[38] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–
1780, 1997.

[39] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio. On the properties of neural machine
translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259, 2014.

[40] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
sukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

[41] J. G. Zilly, R. K. Srivastava, J. Koutnı́k, and J. Schmidhuber. Recurrent highway networks.
ArXiv, abs/1607.03474, 2017.

[42] Y. Zhang, G. Chen, D. Yu, K. Yao, S. Khudanpur, and J. R. Glass. Highway long short-
term memory rnns for distant speech recognition. 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 5755–5759, 2016.

[43] P. Wu, X. Jia, L. Chen, J. Yan, H. Li, and Y. Qiao. Trajectory-guided control prediction for end-
to-end autonomous driving: A simple yet strong baseline. arXiv preprint arXiv:2206.08129,
2022.

[44] Z. Huang, X. Mo, and C. Lv. Recoat: A deep learning framework with attention mechanism
for multi-modal motion prediction. Workshop on Autonomous Driving, CVPR, 2021.

[45] L. Svensson and J. C. Eriksson. Tuning for ride quality in autonomous vehicle : Application
to linear quadratic path planning algorithm. 2015.

[46] I. Bae, J. Moon, and J. Seo. Toward a comfortable driving experience for a self-driving shuttle
bus. Electronics, 2019.

[47] A. G. ALIAS PARTH GOYAL, A. Sordoni, M.-A. Côté, N. R. Ke, and Y. Bengio. Z-forcing:
Training stochastic recurrent networks. Advances in neural information processing systems,
30, 2017.

[48] T. Trinh, A. Dai, T. Luong, and Q. Le. Learning longer-term dependencies in rnns with aux-
iliary losses. In International Conference on Machine Learning, pages 4965–4974. PMLR,
2018.

11

	Introduction
	Related Works
	Problem Formulation
	Temporal Enhanced Decoder
	Autoregressive RNN
	Scratch-then-Temporally-Refine

	Temporally Correlated Objective Function
	Results on the Public Leaderboard
	Ablation Study
	Conclusion
	Implementation Details
	Limitation and Future Work

