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ABSTRACT

Capturing object instances in different scales is a long-standing problem in the
tasks of visual recognition, e.g., object detection and instance segmentation. The
conventional way is to learn scale-invariant features, e.g., by summing up the
feature maps output by different layers in the backbone. In this paper, we propose
a novel and adaptive feature aggregation module based on attention where the
attention parameters can be learned to handle different situations, e.g., adding
shallow layers is learned to be conservative to mitigate the effect of noisy pixels,
while for deep layers, it tends to be audacious to incorporate high-level semantics.
To implement this module, we define two variants of attention: self-attention on
the summed-up feature map, and cross-attention between two feature maps before
summed up. The former uses the aggregated pixel values to capture global attention
(to improve the feature for the next layer of aggregation), while the latter allows
attention-based interactions between two features before aggregation. In addition,
we apply multi-scale pooling in our attention module to reduce computational costs,
and thus call the two variants Multi-Scale Self-Attention (MSSA) and Multi-Scale
Cross-Attention (MSCA), respectively. We incorporate each variant into multiple
baselines, e.g., the state-of-the-art object recognizer Cascade Mask-RCNN, and
evaluate them on MSCOCO and LVIS datasets. Results show our significant
improvements over baselines, e.g., boosting Cascade Mask-RCNN by 2.2% for
AP box and 2.7% for APmask on the MSCOCO dataset.

1 INTRODUCTION

Visual object detection and segmentation using deep learning models have achieved remarkable
success in the past few years (Ren et al., 2015; Tian et al., 2019; Liu et al., 2021; Zhu et al., 2021), e.g.,
the average precision of detecting thousands of objects on the MSCOCO challenge has been boosted
from 30% (Lin et al., 2014) to 61% (Xu et al., 2021) since 2015. However, there is still the long-
standing problem about how to capture the object instances of different scales that limits the model
performance. The common solution is to learn scale-invariant features such as by aggregating the
feature maps output by different layers that builds a pyramidal structure (Lin et al., 2017a) as shown
in Figure 1 (a). Existing methods implement this aggregation via brute-force stacking operations
such as summing up (Lin et al., 2017a; He et al., 2017; Huang et al., 2021) and concatenation (Zhang
et al., 2019; Ren et al., 2017). We argue that there are two issues. First, brute-force operations are
sub-optimal for feature extraction. For example, summing up is on two pixels at the same position
and does not consider any contextual relationships between distant pixels. Its aggregated result thus
fail to capture the global view on the features from different layers. Second, brute-force operations
can never be adaptive to different aggregation situations as they do not have learnable parameters.

In this paper, we tackle these issues by proposing an attention-based feature aggregation method.
Given a feature map, we let each pixel to attend to every others based on either the pixel values from
another-scale feature map (from the adjacent layer) or the summed-up values of two feature maps
(from the current and adjacent layers, respectively). Computing pixel-level attention is costly. We
thus apply a few multi-scale pooling layers after each layer and use only pooling features in the
subsequent computation. As shown in Figure 1 (b), our attention-based aggregation has two variants:
one is called Multi-Scale Self-Attention (MSSA) that computes the global self-attention on the sum
of pooling features, and the other one is called Multi-Scale Cross-Attention (MSCS) that yields the
global attention between two pooling features, i.e., one feature used as query and the other as key (and
value), and then applies the sum-up operation to produce the output feature. MSSA learns the global
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Figure 1: (a) is the network architecture that stacks the feature maps output by different layers
using an aggregation operation represented by OM. (b) compares the conventional operation sum-up
(used in a classical feature pyramid method FPN (Lin et al., 2017a)) with the two attention-based
operations proposed in this paper: MSSA and MSCA. Please note that the input feature maps Fi−1

and Pi are included in the illustration of OM in (b), while they are independently shown in (a) for a
better visualization of the structure.

attention on the summed feature map where each of the values is equally from two feature maps
(of different scales) and thus more convincing than that on any individual map. MSCA also learns
the global attention but it allows the features of different scales to interactively derive the attention
weights and then sum the weighted feature up to the shallow layer (as in FPN). Intuitively, MSSA
produces the shared attention based on commonly interested pixels of two feature maps, while MSCA
generates the specific attention for one feature map (from the deep layer) based on the global contexts
found in the other one (from the shallow layer) and then sum it up to the feature map of the shallow
layer. Both of them aim to capture global contexts across feature scales but define different sets of
query, key and value. Through either of them, the result features will be fed into the aggregation
module in the next layer (i.e., the shallower layer in FPN).

For evaluation, we incorporate our method into the state-of-the-art object recognizers, Cascade
Mask-RCNN (Cai & Vasconcelos, 2018) and Mask-RCNN (He et al., 2017) using ResNet (He et al.,
2016) as backbones, and conduct experiments on two large-scale benchmarks, MSCOCO (Lin et al.,
2014) and LVIS (Gupta et al., 2019). Our results show that both of MSSA and MSCA significantly
outperform the conventional aggregation operations—summing up or concatenation. For example, our
MSCA-based models achieve 2.2% (1.9%) improvement for AP box, and 2.7% (2.7%) for APmask

on the MSCOCO (LVIS) dataset. Our main contributions in this paper thus can be summarized into
two points: 1) two adaptive feature aggregation operations based on attention—MSSA and MSCA
that can be learned to handle different situations of feature aggregation in the pyramidal networks,
and 2) extensive experiments on two large-scale benchmarks and in-depth performance evaluations
using multiple state-of-the-art object recognizers as baselines.

2 RELATED WORKS

Object Detection and Instance Segmentation. Object detection and segmentation are two funda-
mental computer vision tasks. Object detection aims to identify the category of object and localize
each instance using a bounding box. Instance segmentation can be viewed as a special case of
object detection, where the location of the instance is through a segmentation mask. The main-
stream of object detection and instance segmentation can be broadly categorized into two groups: 1)
proposal-based methods and 2) proposal-free methods. Proposal-based methods contain two stages:
generating region proposals, and classifying the regions and predicting the location coordinates.
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Faster R-CNN (Ren et al., 2015) is one of the most widely used method in this group. It first generates
a sparse set of region proposals by region proposal network (RPN), and then encodes each region
proposal into a fixed length vector via ROI Pooling, followed by region classifiers and bounding
box regressors. Based on Faster RCNN, He et al. (2017) proposed Mask-RCNN by appending
a mask predictor in parallel to the detection branch to do instance segmentation. The success of
Faster R-CNN and Mask-RCNN also lead to many other excellent works for object detection (Lin
et al., 2017a; Dai et al., 2017; Xizhou Zhu & Dai, 2019) and segmentation (Vu et al., 2021; Cai &
Vasconcelos, 2018). In contrast, proposal-free methods do not need to generate proposals but use
the whole image as input to identify the object instances. Popular methods include Yolo (Redmon
et al., 2016), SSD (Li & Zhou, 2017), FCOS (Tian et al., 2019) and RetinaNet (Lin et al., 2017b) for
object detection, and PolarMask (Xie et al., 2020), SOLO (Wang et al., 2020) and CondInst (Tian
et al., 2020) for instance segmentation. Compared to proposal-based methods, proposal-free methods
are usually less accurate but have faster inference speed—more suitable in real-time applications.

Feature Aggregation Methods. Deep CNN learns hierarchical features through multiple layers
which capture the instance feature in different scales, e.g., deeper-layer features capture more
semantics and are more helpful for recognizing larger instances. Lin et al. (2017a) proposed Feature
Pyramid Network (FPN) to learn scale-invariant features by subsequently rescaling and summing up
each layer features to its adjacent layer (the shallower layer). Based on FPN, there are many improved
variants (Ren et al., 2017; Wu et al., 2020; Jeong et al., 2017; Woo et al., 2018; Zhang et al., 2018).
Fu et al. (2017) and Cui (2018) applied element-wise production to aggregate two-layer features. Li
& Zhou (2017), Zhang et al. (2019) and Ren et al. (2017) proposed to use concatenation operation
instead (for aggregation). Liu et al. (2018) and Wu et al. (2020) improved FPN by using a dual feature
pyramid that reverses the conventional FPN based on both sum-up and concatenation operations.
Zhou et al. (2018) propose a dot-production aggregation block which generates high resolution
feature map based on the inter-scale consistency nature across different layer features. All these
pioneer works use brute-force feature aggregation operations (sum-up, concatenation, production,
etc.) thus fail to capture or utilize any global contexts from another feature scale. In contrast, our
attention-based operation provide a general and learnable way to achieve this.

Vision Transformers. CNN has limited receptive fields—can not capture the long-range contexts in
the image. In contract, Vision Transformer (Dosovitskiy et al., 2021) (ViT) treats the input image
as a global sequence of patch tokens, learns the global attention, and thus has the potential to solve
the limitation of CNN. Based on ViT, there are many variants focused on the global design of the
backbone (Wang et al., 2021a;b; Yuan et al., 2021; Yang et al., 2021). DETR (Carion et al., 2020)
was proposed for object detection using a transformer decoder. It re-formulated the detection problem
as an end-to-end dictionary lookup problem via learnable query embeddings. The problem of DETR
is the high computational costs, e.g., it needs 500 epochs to converge to a satisfactory model (ours
takes only 12 epochs on the same training data). Deformable-DETR is an improved version to
accelerate the training by taking only a sparse set of feature maps. Its training epochs are reduced
to 50. Compared to these DETR-based methods, our work is focused on the feature aggregation
operations used in the encoder (not decoder). We take it as our future work to incorporate our encoder
with DETR-based decoders.

3 ATTENTION-BASED FEATURE AGGREGATION

As shown in Figure 1, our proposed attention-based module (either MSSA or MSCA) is used in
the pyramidal network to aggregate the features output by two adjacent network layers. Here is the
pipeline of the data flow. First, we input an image to the network to produce a set of feature maps Fi

after each Conv layer (e.g., Residual module) where we use i to denote the location of the layer in the
backbone. Second, we aggregate the deeper layer features Pi+1 to Fi via the aggregation operation
defined in OM. In Figure 1 (b), we show the difference between ours and the conventional operation,
i.e., the sum-up used in FPN (Lin et al., 2017a). Finally, we feed aggregated features to the decoder
to predict the class label and location (either bounding box or mask) for each instance in the image.

In the following subsections, we elaborate the implementation of MSSA and MSCA, including the
details of computing attention and applying multi-scale pooling layers.
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3.1 MULTI-SCALE SELF-ATTENTION (MSSA)

The operation of MSSA is shown in the second block of Figure 1 (b). The input features are
respectively Fi from the shallow layer and Pi+1 from the deep layer (right after the shallow layer).
Please note that Pi+1 is upsampled (i.e., using bilinear interpolation denoted as “Up”) to the same
size of Fi before fed into the attention computation module.

Ri = Fi + Up(Pi+1), (1)

and the result Ri is then fed into the attention computation module as follows,

Pi = MS-Att(Ri), (2)

where the details of MS-Att and Multi-Scale (MS) pooling are presented in the Section 3.3.

In MSSA, the input to the attention module is the summed-up features (a single set of feature maps),
therefore, it is to learn the “global self-attention” that highlights the shared high value pixels activated
in two layers (scales).

3.2 MULTI-SCALE CROSS-ATTENTION (MSCA)

The operation of MSCA is presented in the third block of Figure 1 (b). The input features are the same
with MSSA. The only different regarding the operation is that MSCA computes the cross attention
between Fi and the upsampled Pi+1 before the operation of sum-up. The detailed formulation is as
follows,

Si = MS-Att(Fi,Up(Pi+1)), (3)

where the results Si is summed-up to the shallow layer feature as in follows,

Pi = Fi + Si, (4)

where the MS-Att operation between two features allows the deep feature Up(Pi+1) to highlight
its valuable pixels based on the query of shallow feature Fi, and the sum-up operation yields the
aggregated results. Compared to MSSA, MSCA does not generate a common attention but a specific
attention for the deep layer based on the global contexts found in the shallow layer.
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(b) MS-Attention (MS-Att)

Figure 2: The framework of computing MS-Attention (MS-Att). Two kinds of inputs respectively
correspond to the computations of MSSA and MSCA. The attention computation module is the
same as in the Vision Transformer (Dosovitskiy et al., 2021). Specifically, two input features are
transformed into Q, K and V first and then fed into a multi-head attention module followed by an
MLP. Notably, we adopt a set of average pooling layers (each with a different stride) to generated
multi-scale features before computing attention. This helps to reduce the computational costs and
capture multi-scale contexts from each single feature map.
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3.3 MULTI-SCALE ATTENTION (MS-ATT)

Computing the Attention. We follow the same attention module used in the Vision Trans-
former (Dosovitskiy et al., 2021) to implement our computation of attention. As illustrated in
Figure 2 (b), the input into the “Attention” module is consisted of Query (Q), Key (K) and Value
(V ). The Query and Key share the same dimension dk. The Key and Value have the same number of
tokens. Figure 2 (a) shows the two sets of resource data to derive different values of Query, Key and
Value, respectively, for MSSA and MSCA. To get the Query, we flatten the input feature on the lower
branch (denoted by a circled 2) into a set of vectors fq across the spatial axis.

To get the Key and Value, we conduct the similar flattening using the input feature on the upper
branch and denote the resulted vectors as fk,v . Please note that we introduce the multi-scale pooling
in the end of this section. Then, we feed these vectors through their respective transformation layers
(FC layers) and get:

Q =Wq ∗ fq,K =Wk ∗ fk,v, V =Wv ∗ fk,v (5)
where Wq , Wk and Wv denote the parameters of three FC layers.

We compute the dot-product between Key and Query and normalize the results using the square root
of the dimension of Key and Query (denoted as dk). Then, we apply the Softmax function σ to obtain
the weights on the Value. We multiply the Value by these weights to derive the attention (denoted as
Att).

Att =
σ(Q ∗KT )√

dK
∗ V. (6)

Typical transformer module require a fix-length learnable embedding for positional encoding, which
is not suitable for dense prediction since the length of input is not fixed. Inspired by Chu et al.
(2021) and Wang et al. (2021b), we learn position embedding directly from the input feature map by
a depth-wise convolution layer. We sum the learned attention Att with the Query and feed the result
into a Depth-Wise MultiLayer Perceptron encoder (DW-MLP) as follows,

pq = fq + DW-MLP(fq + Att). (7)

Typical transformer module require a fix-length learnable embedding for positional encoding, which
is not suitable for dense prediction since the length of input is not fixed. Inspired by Chu et al.
(2021) and Wang et al. (2021b), we learn position embedding directly from the input feature map
by a depth-wise convolution layer. We follow the same setting of PVTv2 (Wang et al., 2021b) to
implement the DW-MLP, where the input vectors go through a module consisted of a fully-connected
layer, a depth-wise convolution layer, an activation layer and a fully-connected layer. Finally, we
reshape pq into 3D output feature maps Pi, and feed Pi into the next layer of feature aggregation (as
illustrated in Figure 1 (a)).

Multi-Scale Pooling. The computation of attention is costly if input Query, Key and Value are of
high dimensions. To control the cost, we apply a set of pooling layers before generating the vectors of
Key and Value. Each layer has a different value of stride. Specifically in the i-th aggregation module,
we apply 2 average pooling layers with strides as ri and ri

2 , respectively, and then concatenate their
flattened pooling results as the output.

3.4 VISUAL RECOGNIZERS

In this paper, we incorporate our modules into the state-of-the-art visual recognizers: Cascade Mask-
RCNN (Cai & Vasconcelos, 2018) and Mask-RCNN (He et al., 2017) whose backbones are based on
the FPN architecture. Cascade Mask-RCNN and Mask-RCNN are extended from Cascade-RCNN
and Faster-RCNN (Ren et al., 2015), respectively, by appending an additional mask predictor in
parallel to the detection branches. They have the shared structure in encoders: taking an image as
input; passing it through multiple convolutional modules each of which produces a different scale of
features; and stacking all features to produce the scale-invariant features. Their decoders have the
similar structure. A region proposal network (RPN) is learned to generate region proposals that are
then fed into object classifiers, bounding box regressors and mask predictors. Their difference lies
in whether the prediction heads are trained sequentially in multi-stages, using the output to refine
the next stage training. For both recognizers, we follow the same training pipelines where the model
is optimized by the classification and localization losses. In the inference stage, we select the top-k
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regions with highest confidence scores as output, and then pass the predicted boxes to Non-Maximum
Suppression (NMS) to drive the final evaluation results.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Datasets. We conduct experiments on MSCOCO-2017 (Lin et al., 2014) and LVIS-1.0 (Gupta et al.,
2019) datasets. MSCOCO contains 80 categories with three splits, train set (115k images), validation
set (5k images) and test set (20k images), and LVIS contains 1,203 categories with 100k images for
training, 20k images for validation and 20k images for testing. For MSCOCO, we use train set to train
the model, validation set in the ablation study and test set for the final evaluation and comparison.
For LVIS, we train our models based on train set and evaluate on val set using the same values of
hyper-parameters chosen in MSCOCO experiments. We evaluate the models using two metrics:
bounding box AP (denoted as APbox) and mask AP (denoted as APmask) where AP indicates the
average precision.

Backbones and Recognizers. In our experiments, we use ResNet-50 and ResNet-101 (He et al.,
2016) as backbone architectures for experiments, which are pre-trained on ImageNet classification
task. We incorporate our modules into the state-of-the-art detectors: Cascade Mask-RCNN and
Mask-RCNN. We use 5-level features for prediction (denoted as {P0, P1, P2, P3, P4}), each of which
is encoded by the feature aggregation module, with strides of 4, 8, 16, 32 and 64 compared with the
original input image. For each level of the feature map, a region proposal network (RPN) is attached
to generate proposals, The anchors used in RPN is set with single scale (8 pixels) and 3 aspect ratios
(0.5, 1.0, 2.0). During inference, top-100 predictions with highest confidence scores are used for
output. We set the NMS threshold as 0.7 in all experiments. For other training details, we follow the
default settings as Cai & Vasconcelos (2018).

MSCA and MSSA Details. There are totally 4 MSSA/MSCA operation modules. For each input
of MSCA or MSSA module, we first apply a 1x1 convolution layer to reduce the channels of input
features into 256 before feature aggregation. In MS-Attention module, we apply 2 average pooling
layers with different strides for multi-scale representation. Specifically, we set the strides r0 to r3 as
(16, 8, 4, 2). For attention computation, we set the number of head as 4 and for DW-MLP block, we
use GELU (Hendrycks & Gimpel, 2016) as the activation function and set expansion ratio in MLP as
2. We use layer normalization (Vaswani et al., 2017) to normalize the feature map before computing
attention and set drop rates as 0 for all dropout layers.

Optimization Settings. We follow the same data augmentation strategies as (Cai & Vasconcelos,
2018), where each image is resized into 800 × 1, 333 pixels, and a random size image patch will
be cropped for training. The whole framework is implemented on the mmdetection platform (Chen
et al., 2019). All the models are trained with the adamW optimization method (Hendrycks & Gimpel,
2016) for 12 epochs with 8 images per mini-batch. The initial learning rate is set as 1e-4, and it is
reduced 10 times in 8-th and 11-th epoch. The value of betas in adamW is set as (0.9 and 0.99) with
weight decay as 0.5. We conduct all the experiments on 8 A-100 cards.

4.2 EXPERIMENT RESULTS

Cascade Mask-RCNN. Table 1 shows the results on the COCO val set by comparing our methods
with baseline aggregation operations: sum-up and concatenation. It is clear that our proposed
aggregation operations MSSA and MSCA consistently and significantly outperform the baselines
on both backbones. For example, MSSA achieves 2.1% and 2.2% improvement for APbox, and
2.4% and 2.5% for APbox. MSCA achieves 2.2% and 2.5% improvement for APbox and 2.7% and
2.8% for APbox using ResNet-50. More encouragingly, 1) our best ResNet-50 model outperform the
baseline ResNet-101 model regarding the performance, and moreover, its inference is faster than
using ResNet-101; and 2) our overall performance improvements on the more challenging mask
prediction are higher than those for box prediction (e.g., APmask vs. APbox).

Table 2 shows the comparison to state-of-the-art object detectors using ResNet-50 on the COCO
test-dev set. We divide these methods into three groups due to the different encoders. Detectors
with convolution-based decoders are mainly proposal-free algorithms and their decoders contains

6



Under review as a conference paper at ICLR 2022

Modules Cascade Mask-RCNN
Backbone FPS APbox APbox

50 APbox
75 APmask APmask

50 APmask
75

Sum-up

ResNet-50

13.0 41.2 59.4 44.8 35.9 56.6 38.4
Concat. 12.8 40.9 59.1 44,3 35.8 56.2 38.4
MSSA 11.9 43.3 +2.1 62.4 +3.0 47.2 +2.4 38.3 +2.4 59.9 +3.3 41.2 +2.8

MSCA 11.9 43.4 +2.2 62.8 +3.4 47.1 +2.3 38.6 +2.7 60.1 +3.5 41.6 +3.2

Sum-up

ResNet-101

10.9 42.9 61.0 44.6 37.3 58.2 40.1
Concat. 10.0 42.4 60.3 46.2 37.0 57.7 40.1
MSSA 9.6 44.4 +1.5 63.3 +2.3 48.5 +3.9 39.2 +1.9 60.8 +2.6 42.2 +1.9

MSCA 9.6 44.3 +1.4 63.3 +2.3 48.2 +2.8 39.0 +1.7 60.7 +2.5 42.0 +1.9

Table 1: Our experiments results compared to those of baseline operations. FPN uses summing-up
and FPN-cat replaces summing up with concatenation, for feature aggregation. All models are trained
on the MSCOCO train set for 12 epochs, and evaluated on MSCOCO val set with 8 A-100 cards.

a few Conv layer before the prediction layers (Tian et al., 2019; Lin et al., 2017b; Li et al., 2021).
Detectors with transformer-based decoders generate a set of query vectors using a sequence of
attention modules (Zhu et al., 2021; Carion et al., 2020). Our recognizers (He et al., 2017; Cai
& Vasconcelos, 2018) belongs to the region-based group which makes the prediction without any
additional layers or modules—the simplest decoder. We can see that our models outperform all
the others using convolution or region decoders, and achieves comparable results as those with
transformer-based decoders. We highlight that our method is applied to the encoder, and is orthogonal
to the decoder. We leave the combination with transformer-based decoders as one of our future work,
due to the expensive computation (e.g., DETR (Carion et al., 2020) using 500 epochs vs. ours using
12 epochs to achieve the model convergence on the same dataset).

Object Detectors Decoder AP AP50 AP75 APS APM APL

RetinaNet (Lin et al., 2017b)

Convolution

36.5 55.4 39.1 20.4 40.3 48.1
FCOS (Tian et al., 2019) 37.1 55.9 39.8 21.3 41.0 47.8
FCOS-impr (Tian et al., 2019) 38.5 57.4 41.4 22.3 42.5 49.8
FSAF (Zhu et al., 2019) 37.4 56.8 39.8 20.4 41.1 48.8
Reppoints (Yang et al., 2019) 39.1 60.0 42.1 22.1 41.9 48.4
ATSS (Zhang et al., 2020) 39.6 58.2 42.9 23.3 42.4 48.5
GFLv1 (Li et al., 2020) 40.2 58.6 43.4 23.0 44.3 53.0
Reppoints v2 (Chen et al., 2020) 41.3 59.8 44.0 24.0 44.6 54.7
PolarNet (Wu et al., 2021) 39.6 57.9 42.9 23.2 43.5 51.8
GFLv2 (Li et al., 2021) 41.1 58.8 44.9 23.5 44.9 53.3
DETR∗(Carion et al., 2020)

Transformer
36.2 57.0 37.4 16.3 39.2 53.9

DETR-full†(Carion et al., 2020) 43.3 63.1 45.9 22.5 47.3 61.1
Deform-DETR∗(Zhu et al., 2021) 43.8 62.6 47.7 26.4 47.1 58.0
CenterMask (Lee & Park, 2020)

Region

41.0 - - 24.8 45.1 54.5
TSD (Song et al., 2020) 42.0 59.9 45.4 24.3 45.5 57.1
CasMRCN (Cai & Vasconcelos, 2018) 41.4 59.7 45.1 23.3 44.1 52.7
CasMRCN-MSSA (ours) 43.5 63.1 47.3 25.4 46.0 55.4
CasMRCN-MSCA (ours) 43.5 63.1 47.3 25.1 46.0 55.9
∗ This entry reports the model is trained with 50 epochs.
† This entry reports the model is trained with 500 epochs.

Table 2: Comparing to state-of-the-art models for the object detection task. All models 1) use
ResNet-50 backbone; 2) are trained on the MSCOCO train set; and 3) are evaluated on the MSCOCO
test-dev set. Please note that “CasMRCN” is the abbreviation of “Cascade Mask-RCNN”.

Mask-RCNN. Table 3 shows the results of MSSA and MSCA in Mask-RCNN compared to the
baseline Mask-RCNN (using sum-up operation). We evaluate all models on the validation set of
MSCOCO and LVIS. On the MSCOCO dataset, the MSSA and MSCA outperform baseline by
0.7% and 0.5% on APbox, and 1.1% and 0.9% on APmask. On the LVIS dataset, they outperform
baseline by 1.6% and 1.9% on APbox, and 2.4% and 2.7% on APmask. In terms of datasets, our
method obtains higher improvement on the LVIS dataset. In terms of tasks, ours improves more for
the segmentation task. These verify that the cross-scale global contexts captured by our attention
modules are more helpful for tackling more challenging problems.
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Modules Mask-RCNN
Benchmarks FPS APbox APbox

50 APbox
75 APmask APmask

50 APmask
75

Sum-up
COCO

16.1 38.0 58.6 41.4 34.4 55.1 36.7
MSSA 14.8 38.7 +0.7 60.4 +0.8 41.8 +0.4 35.5 +1.1 57.3 +2.2 37.8 +1.1

MSCA 14.8 38.5 +0.5 60.0 +0.4 41.5 +0.1 35.3 +0.9 56.8 +1.7 37.6 +0.9

Sum-up
LVIS

14.0 22.5 36.9 23.8 21.7 34.3 23.0
MSSA 12.3 24.1 +1.6 40.1 +3.2 25.3 +1.5 24.1 +2.4 37.8 +2.5 25.4 +1.6

MSCA 12.3 24.4 +1.9 40.0 +3.1 25.9 +2.1 24.4 +2.7 37.9 +3.6 25.9 +2.9

Table 3: Experiments results of proposed modules based on Mask-RCNN frameworks. All the
models are trained with train set of the corresponding datasets for 12 epochs and evaluated on val set.
ResNet-50 is used as backbone which is pre-trained on ImageNet.

4.3 ABLATION STUDY

Here we conduct an ablation study to evaluate the proposed method regarding the following factors:
aggregating how many layers, using different pooling layers and using different types of backbones
in the encoder. We use MSSA plugged in Cascade Mask-RCNN for all experiments. We train the
models on the MSCOCO train set and evaluate them on the val set.

Aggregation Operations. Table 4 shows the results of gradually replacing the conventional sum-up
operation with MSSA from deep to shallow layers in the backbone. Row 1 is the baseline of using
only sum-up in all layers of aggregation. Comparing it with Row 2, we see that using a single MSSA
module (replacing the sum-up on the top layer of aggregation) boosts 1.3% and 1.9% for APbox and
APmask, respectively. These improvements are increased when using more MSSA modules.

Modules Cascade Mask-RCNN
OMs APbox APbox

50 APbox
75 APmask APmask

50 APmask
75

Sum-up - 41.2 59.4 44.8 35.9 56.6 38.4
MSSA (P3) 42.5 61.7 46.2 37.8 59.2 40.6
MSSA (P2, P3) 42.7 61.9 46.3 38.0 59.5 40.9
MSSA (P1, P2, P3) 43.1 62.5 46.7 38.3 59.8 41.3
MSSA (P0, P1, P2, P3) 43.4 62.8 47.1 38.6 60.1 41.6

Table 4: Using different numbers of MSSA modules. All models are trained on the train set of
MSCOCO for 12 epochs and evaluated on the val set. We use ResNet-50 as the backbone.

Different Pooling Layers. In our MS-Att, we apply two multi-scale pooling layers to reduce the
size of Key and Value as well as to extract multi-scale feature representation from each single feature
map. In this ablation study, we try another two types of pooling layers, single-scale pooling and
adaptive pooling, and show the results in Table 5. The single-scale pooling layer have the stride as
(16,8,4,2) to compute attention. The adaptive pooling layer generates an n × n feature map with
arbitrary input size, and we set n = 7 in our experiments. From the table, we can see that these two
alternatives achieve comparable results to the multi-scale version, e.g., for APbox (APmask) they are
slightly lower, respectively, by 0.2% (0.5%) and 0.3% (0.4%). These two alternatives can be served
as fast models due to the fast inference speed and good performance.

Modules Cascade Mask-RCNN
Pooling Type FPS APbox APbox

50 APbox
75 APmask APmask

50 APmask
75

MSSA Single-Scale 13.0 43.2 62.7 47.0 38.1 60.1 41.0
MSSA Adaptive 14.1 43.1 62.3 46.8 38.2 59.4 41.1
MSSA Multi-Scale 11.9 43.4 62.8 47.1 38.6 60.1 41.6

Table 5: Using different types of pooling layers for MSSA. All models are trained on the train set of
MSCOCO for 12 epochs and evaluated on the val set. We use ResNet-50 as the backbone.

Transformer-Based Backbone. In this section, we replace the ResNet with a transformer-based
backbone Swin-T (Liu et al., 2021) to evaluate the performance of our MSSA. We report the results
in Table 6. On this stronger backbone, we still obtain clear and consistent improvement using MSSA
over the baseline (sum-up), e.g., 0.8% for both APbox and APmask.

8



Under review as a conference paper at ICLR 2022

Modules Cascade Mask-RCNN
Backbones FPS APbox APbox

50 APbox
75 APmask APmask

50 APmask
75

Sum-up Swin-T 11.2 48.0 66.8 51.6 41.5 64.1 44.9
MSSA Swin-T 9.8 48.8 67.9 52.7 42.3 65.0 45.6

Table 6: Using the vision-transformer-based backbone called Swin-T and plugging MSSA in. All
models are trained on the train set of MSCOCO for 12 epochs and evaluated on the val set.

4.4 QUALITATIVE RESULTS

We make the qualitative comparison between our methods (MSSA and MSCA) and the baseline
methods (sum-up and concatenation) and show the results in Figure 3. The models are trained on
the MSCOCO train set using ResNet-101 as the backbone. From the examples, we can see that
the improvements by MSSA and MSCA are mainly due to the corrected recognition of small or
confusing objects in the image. For example on Row 3, “frisbee” has a very limited visibility in
the image—small, occluded and having a confusing color. Both baseline models fail to detect it.
While our proposed MSCA and MSSA capture it. We believe that this is because MSCA and MSSA
use attention to capture different scales of information in surrounding contexts (such as from “dog”
and “grass”) and can achieve a better “understanding” of the objects even in small scales, e.g., the
“frisbee” can be predicted if the model attends to the pixels close to the “mouth” region of the “dog”
but different with the pixels of “grass”.

(a) Source Image

bed

person bed

horse

dog

dog
dog

dog
dog

(b) Concatenation

person

bed

dog

horse

dog

dog

dog
dog

surfboard
toilet

(c) Sum-up

person
bed

laptop

dog

dog

dog
dog

dog
frisbee

dog

scissors

(d) MSCA

person

laptopbed

dog

dog

dog
dog

dog frisbeedog

scissors

(e) MSSA

Figure 3: The qualitative comparison between the proposed feature aggregation modules (MSCA and
MSSA) and baselines (sum-up and concatenation). All models are based on Cascade Mask-RCNN
uniformly trained on the MSCOCO train set and evaluated on the val set. We use ResNet-101 as the
backbone. We set the confidence threshold for visualization as 0.6 (zoom-in for a better view).

5 CONCLUSIONS

In this paper, we present two adaptive attention-based operations named MSSA and MSCA, for
improving the feature aggregation in pyramidal models. We aim to not only capture global contexts
in different scales of feature maps and but also aggregate them based on the extracted global attention
that helps to mitigate noisy feature pixels from the shallow layer. We validate that object detectors and
segmenters with MSSA or MSCA plugged in can achieve significant and consistent improvements
over the baselines on both MSCOCO and LVIS datasets. In the future work, we plan to explore more
in incorporating our modules into stronger backbones and detectors, such as the transformer-based
DETR and Deformable DETR, meanwhile not incurring additional computational costs.
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Computational costs. Our methods are based on deep learning models and require intensive usage
of computation resource, it is not climate-friendly. It calls for future research into proposing more
effective training strategies that can train deep learning models without GPU.

Privacy issues. In our experiments, all the datasets and platform are publicly available, and thus we
do not have privacy issues.

Licenses. We use the open-source platform mmdetection (Chen et al., 2019) which is under Apache
License 2.0.

Datasets. We use two public datasets in our paper:LVIS-1.0 (Gupta et al., 2019) and MSCOCO (Lin
et al., 2014). Both datasets are available from their official websites, and allowed to use for non-
commercial usage.
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