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Abstract

End-to-end autonomous driving systems, predominantly trained through imitation
learning, have demonstrated considerable effectiveness in leveraging large-scale
expert driving data. Despite their success in open-loop evaluations, these systems
often exhibit significant performance degradation in closed-loop scenarios due
to causal confusion. This confusion is fundamentally exacerbated by the overre-
liance of the imitation learning paradigm on expert trajectories, which often contain
unattributable noise and interfere with the modeling of causal relationships between
environmental contexts and appropriate driving actions. To address this fundamen-
tal limitation, we propose Perception-Guided Self-Supervision (PGS)—a simple
yet effective training paradigm that leverages perception outputs as the primary
supervisory signals, explicitly modeling causal relationships in decision-making.
The proposed framework aligns both the inputs and outputs of the decision-making
module with perception results—such as lane centerlines and the predicted mo-
tions of surrounding agents—by introducing positive and negative self-supervision
for the ego trajectory. This alignment is specifically designed to mitigate causal
confusion arising from the inherent noise in expert trajectories. Equipped with
perception-driven supervision, our method—built on a standard end-to-end archi-
tecture—achieves a Driving Score of 78.08 and a mean success rate of 48.64% on
the challenging closed-loop Bench2Drive benchmark, significantly outperform-
ing existing state-of-the-art methods, including those employing more complex
network architectures and inference pipelines. These results underscore the effec-
tiveness and robustness of the proposed PGS framework, and point to a promising
direction for addressing causal confusion and enhancing real-world generalization
in autonomous driving.

1 Introduction

Autonomous driving, as a significant application of Al, has made impressive advancements in recent
years. End-to-end neural networks, which allow vehicles to make decisions directly from raw sensor
signals, are considered capable of overcoming the cumulative error issues inherent in traditional
modular approaches and offer the potential to scale with vast amounts of data. In mainstream systems,
perception, prediction, and planning tasks are integrated into a single network. The planning module
uses explicit or implicit representations of the environment provided by perception to plan the future
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behavior, with human or expert trajectories being used as the target of training. Researchers have
made significant efforts to leverage large-scale human driving data to enable models to learn the
relationship between environmental context and vehicle behavior.

As a classic paradigm for end-to-end systems, imitation learning became prominent alongside early
benchmarks such as nuPlan [3]], Argoverse [4], Oxford RobotCar [2]]. These benchmarks typically
provide open-loop metrics, with L2 error between predicted and ground-truth trajectories as the key
indicator. Consequently, researchers focus on designing complex network architectures, incorporating
multi-modal sensor information, and using imitation learning objective functions aligned with these
metrics, to enhance the model’s ability to fit expert trajectories. However, recent studies have shown
that trajectory fitting in open-loop evaluation cannot accurately reflect system performance in real-
world scenarios [[15, (19} 28]]. In closed-loop simulation tests, pure imitation learning models often
show significant degradation in safety, comfort, and feasibility in complex scenarios. This inability to
generalize in real-world environments has become a major challenge for end-to-end systems.

Among the factors affecting the closed-loop performance, the most significant is causal confusion.
Causal confusion refers to the model’s inability to associate driving behavior with the primary
causal factors in the environment, instead linking it to other noise factors. Although recent end-
to-end approaches have reduced input noise by using sparse instance-level representation [14] of
the environment, these methods still fail to fully address this problem. In this paper, We identify
causal confusion as an unavoidable byproduct of the imitation learning framework, stemming from its
reliance on suboptimal expert data. Expert or human trajectories often contain noise from factors like
driving style, time of day, or control errors, making them suboptimal supervision targets. Learning
from such noisy signals weakens the model’s ability to capture true causal relationships. We argue
that causal confusion stems not just from imperfect inputs, but more critically from noise in the
supervision itself.

Unlike prior approaches that treat perception and prediction modules merely as feature extractors,
we propose a framework leverages their outputs as primary supervision signals for decision-making.
By aligning both the inputs and outputs of the decision-making module with perception outputs, our
perception-guided self-supervision paradigm exhibits stronger causal modeling capabilities in closed-
loop evaluations than pure imitation learning. Specifically, we introduce three novel self-supervision
mechanisms: Multi-Modal Trajectory Planning Self-Supervision (MTPS), Spatial Trajectory Planning
Self-Supervision (STPS), and Negative Trajectory Planning Self-Supervision (NTPS). MTPS and
STPS utilize lane centerlines to enforce topological constraints and support multimodal decision-
making across available lanes. NTPS incorporates the predicted future trajectories of dynamic
agents as negative supervision to guide the ego vehicle away from potential collisions. In this
framework, human expert trajectories are used to filter or regularize self-supervision targets when
perception-based guidance is unavailable.

In summary, we propose an innovative training paradigm for end-to-end autonomous driving systems,
which does not rely on specialized network designs but emphasizes the use of perception-guided
self-supervision as the main learning objective. Our contributions include the following:

1. Multi-Modal Trajectory Planning Self-Supervision as Target Lane Selection: We
reformulate multi-modal ego decision-making as a target lane selection problem based
on lane perception. This approach enhances the system’s ability to associate surrounding
obstacles and available lanes with appropriate driving decisions, thereby improving the
performance of lane-change planning.

2. Spatial Trajecotry Planning Self-Supervision based on lane centerline: We take the
lane centerline outputted from perception module as a spatial trajectory without temporal
dependency, and use them as the primary learning target for planning ego trajectory. This
design effectively reduces lane departures and mitigating causal confusion induced by
inconsistent and noisy expert demonstrations.

3. Negative Trajectory Planning Self-Supervision from Dynamic Objects’ Future bound-
ing box: Our framework selects and utilizes the predicted future trajectories of surrounding
agents as negative supervision signals for ego trajectory learning, enforcing non-overlapping
constraints between future bounding boxes. This facilitates the learning of interactions with
dynamic agents and reduces collision risk.



4. We made minimal modifications to a simple end-to-end network architecture to adapt and
validate our proposed self-supervision training paradigm. In experiments on the challenging
closed-loop benchmark, Bench2Drive, the self-supervised model outperformed the pure
imitation learning version of the same architecture and recent works using more complex
network structures and pipelines by a large margin.

2 Related Work

End-to-end autonomous driving aims to generate planning trajectories directly from raw sensors. In
the field, advancements have been categorized based on their evaluation methods: open-loop and
closed-loop systems. We reviewed representative works based on these two evaluation schemes in
the first and second subsections, and summarized existing techniques and improvements addressing
the causal confusion in the third subsection.

2.1 Open-Loop End-to-End Driving Methods

In open-loop systems, UniAD [8]] proposes a unified framework that integrates full-stack driving tasks
with query-unified interfaces, enhancing task interaction. VAD [14] improves planning safety and
efficiency, as demonstrated by its performance on the nuScenes dataset. SparseDrive [23]] uses sparse
representations to mitigate information loss and error propagation in modular systems. ParaDrive [26]
organizes perception, motion prediction, and planning tasks in a parallelized architecture during train-
ing, retaining only the planning module in inference. This approach improves planning performance
and significantly reduces runtime latency

2.2 Closed-Loop End-to-End Driving Methods

Existing works (e.g., BEVPIlanner [19]) have found that metrics like L2 error and collision rate used
in open-loop evaluations do not comprehensively reflect model performance in real-world scenarios.
As a result, more approaches are being proposed for closed-loop evaluation. VADV2 [5] advances
vectorized autonomous driving by generating action distributions for vehicle control, achieving
outstanding performance on the CARLA Town05 benchmark. Transfuser [6] uses transformer
modules at multiple resolutions to fuse perspective and bird’s-eye view feature maps, outperforming
prior work on the CARLA leaderboard. Hydra-MDP [17] employs knowledge distillation from both
human and rule-based teachers to train the student model, enabling the selection of the trajectory with
optimal overall performance and securing first place in the Navsim challenge. DriveTransformer [13]]
delves into task parallelism and sparse representation in architecture design, significantly improving
driving scores and success rates on the Bench2Drive benchmark.

2.3 Techniques Addressing Causal Confusion in Autonomous Driving

Causal confusion has been a persistent challenge in imitation learning. In end-to-end driving,
ChauffeurNet [1] addresses this issue by using past ego-motion as intermediate BEV abstractions,
and randomly dropping them during training. PrimeNet [25]] improves performance by incorporating
predictions from a single-frame model as additional input to a multi-frame model. DriveAdapter [11]
mitigates the influence of noisy perception outputs by training a strong planner with privileged
perception information, and aligning perception model output with the planner’s input through an
adapter. RAD [7] proposes a 3DGS-based closed-loop reinforcement learning framework, which
uses specialized rewards to guide the policy in understanding real-world causal relationships more
effectively. These approaches primarily aim to mitigate causal confusion by suppressing noise in
the inputs to the planning module. In this paper, we propose a novel perspective and an innovative
training paradigm, where perception-guided self-supervision plays a key role in addressing causal
confusion by aligning the input and output of the planning module.

3 Method

In this section, we introduce a Prioritizing Perception-Guided Self-Supervision training paradigm
built upon a typical end to end architecture. On one hand, sparse instance-level features extracted
from perception are used as inputs to the unified decision and prediction module, helping minimize



input noise. On the other hand, the perception output is directly employed for self-supervision of
the planning process. This alignment plays an important role in helping the planner learn causal
relationships.

3.1 End-to-End Network Baseline
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Figure 1: Overall Model Architecture. (1) Perception network provides map elements and future
motions of dynamic agents. (2) The dashed box presents the proposed PGS, which generates three
self-supervised signals from perception outputs to enhance causal reasoning in ego planning.

Our baseline architecture is simple and similar to VAD [14]. As illustrated in Figure multi-view
images are encoded into high-dimensional features in perspective view using a Resnet-based encoder.
BEVFormer [[18]] then transform the features into BEV (Bird’s Eye View) space as Fygy.

For task-specific applications, learnable embeddings are used to query the BEV features, extracting
sparse representations of the environment. The map query interacts with the BEV features to
decode static road topology such as lane markings, lane centerlines, sidewalks, and other structures.
The object query decodes information about dynamic objects (pedestrians, cyclists, and vehicles),
including their positions, sizes, orientations, and velocities at the current timestep. The perception
process can be formally expressed as follows:

q, = PerceptionDecoder(g;, kv = Fiev),  Gi € Qmap U Qobjs @
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where ¢/ is the enhanced instance-level query, g, and § y ) are decoded information of map element
and dynamic object. The former are represented as polyline, where p( ") is the 2D coordinates of the

j-th point of map element, and ¢(*) denotes its class score. The latter includes the 2D coordinates of
the object’s center, its width and length, the heading angle, and the velocity components along the x
and y axes at time t.

Next, instead of adopting the cascaded prediction—decision architecture, a unified decoder for both
ego planning and object motion prediction is employed. Specifically, a learnable ego query geg, is
augmented with a goal point embedding and an intent embedding corresponding to the high-level

command c. For other agents, each motion query is formed by combining the updated object query

qf’bj with one of six implicit intent embeddings e. The two sets of queries are concatenated to form

the agent-level motion query for the current scenario:
Qumotion = Concat (MLPego(qego @ g @ c), MLPy, ({qgg.> e h=1.. . Ki=1... Nobj})) @

In the unified decoder, agent-level motion queries attend to each other via self-attention and to map
queries via cross-attention, enabling the model to capture interactions between agents constrained
by the current road topology. The refined motion queries are again split into those for the ego and
dynamic objects, which passes through seperated MLP for predicting the future trajectories. The
planning and motion prediction process can be formally expressed as follows:

Qfnotion = MotionDecoder(¢ = Qmotion, kv = Qrnyp) ©)
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Trajego = MLPlrajfe(mee) y Qm_e = leotion_ego (7)

where o denotes the sigmoid function; m§ represents the score of the k-th predicted modality for the
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7-th object, and Trajib ; denotes the corresponding trajectory over the prediction horizon T; Traj,,, is
the planned trajectory of the ego vehicle.

In training phase, the loss terms of perception are same as in VAD [14], with imitation loss of L1
norm:
Llotal - wdet_mapLdet_map + wdet_obj Ldet_obj + wmod_clsLmod_cls + wmotion_obj Lmotion_obj + wimiLimi (8)

The outputs of the perception and motion prediction tasks—namely, the implicit high-dimensional
features and the structured trajectories and polylines—constitute the foundation of our self-supervised
paradigm.

3.2 Multi-Modal Trajectory Planning Self-Supervision (MTPS) as Target Lane Selection
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Figure 2: Environment-Aware Lane Command and Road Topology Guided Planning.

Lane status in the surrounding environment plays a crucial role in guiding the ego’s driving behavior.
It defines the drivable area and constrains the range of feasible trajectories. As shown in Figure 2a]
when the command is “LaneFollow” but an obstacle appears ahead, the ego can either decelerate
in the current lane or change lanes to overtake. This turns lateral multi-modal planning into a lane
selection problem shaped by the environment. This insight forms the basis of our Multi-Modal
Trajectory Planning Self-Supervision(MTPS).

MTPS leverages the surrounding lane structure to guide the selection of the ego vehicle’s planning
modality. As illustrated in Figure[2b] this module includes a Road Topology Guided Planning Head,
which generates both multi-modal decisions and corresponding ego trajectories, alongside a topology-

aligned self-supervision mechanism. Firstly, a geometry-based lane filter is leveraged to select ego-
relevant lane centerlines from the perception output. Given the set of lane centerline P = {P; };V;”f‘p,
with each P; represented as a sequence of centerline points, we compute the minimum Euclidean
distance d; and the relative angle ¢; between the ego vehicle’s current position Zeg,, heading Ocgo
and each centerline. The relevant lane set F'P = {(Fieft , Plett ) » (Furrent » Peurrent ) 5 (Fright ; Pright ) }

is constructed according to the following criteria, where F' denotes the implicit feature of each lane:

(Fe, Po) = (F;, P;), if3d; <0.5W
9 ’ (F17P1):(Fj7pj), lfad] S (O5VV715W] andgpj <0
0; = (P} — Tego) ¥ {Zﬁ?og] (Fy, P.) = (Fy,P;), if3d; € (0.5W,1.5W]and ¢; >0
cee (F,P)=(0,0), otherwise

d; = min ||Teeo —
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)
where p? is the nearest point in P; to the ego vehicle, W is the standard lane width, and the
subscripts ¢, [, and r denote the current, left, and right. If no centerline satisfies the above criteria, the
corresponding feature F' and point set P are set to zero.

This geometry-based filter is simple yet effective, allowing robust and efficient identification of the
ego vehicle’s current lane and adjacent lanes, thereby capturing all feasible lateral motion options.



Next, the implicit features of relevant centerlines are fused with the ego motion query. Two additional
MLPs are utilized to predict the lane selection score and the corresponding trajectory. These scores
are normalized by softmax operator, transforming the ego’s multi-modal trajectory planning into a
lane-level classification task, as described below:

H;=q®F;, VF; € FP, S = softmax(MLPcore(H)), Trajog, = MLPyyj (Horgmax(s))
(10)

During training, the index of target centerline is provided by measuring the average spatial distance
between the terminal portion of the ground-truth ego trajectory and each candidate lane centerline.
The index of the centerline with the minimal distance is designated as the target lane index [*, with
the corresponding feature and polyline as F'* and P*. The loss function of selecting target lane is
defined as:

Lyres = Leg(S, 1) Y

3.3 Spatial Trajectory Planning Self-Supervision (STPS) based on Lane Centerline

Lane centerlines, compared to other road topology cues like markings and boundaries, play a more
critical role in learning robust driving behaviors. Human trajectories often deviate slightly from the
centerline due to factors like driving style, weather, or control noise—difficult to attribute and thus
regarded by the model as learning noise. This noisy supervision can negatively impact the model’s
causal understanding of driving behaviors, particularly in scenarios involving intersection turning.
Lane centerlines naturally connect incoming and outgoing lanes, and training on trajectories that
deviate from them increases the risk of drifting into the wrong lane due to cumulative errors.

Building on this insight, we propose a Spatial Trajectory Planning Self-Supervision (STPS) mecha-
nism, in which the expert trajectory T'raj,; is replaced by a centerline-aligned version as the primary
supervision signal. Specifically, each expert trajectory point is checked against nearby target center-
line points (from the previous stage); if a matched centerline point is found, it replaces the original
point. Original expert point is retained only when no point is matched, which serves as a regular-
ization term to preserve the smoothness of the target trajectory. The resulting trajectory Traj’, gt
supervises the Road topology guided trajectory regression head, working as a spatial ground-truth
path—free of temporal bias but more causally aligned. Formally, for expert trajectory point Tra, j;t

at time step ¢, the resulting updated trajectory points T'ra;j’ i gt are given by:

P = argpgréig* ITrajy, — pjll2 (12)
J
/ if | Trajg, — pill < w
Traj'y, = 1 ' gt~ Prliz = 13
J tgt {Trajzt, otherwise (13)

This new trajectory Traj’, gt 18 then used to supervise the trajectory regression head as:

N
1 At .
Lstps = N E HTra’]ego - Tra],ffgt||1 (14)

t=1

Last but not least, since the regression head also takes the target centerline features F™* as input,
aligning the trajectory target with the centerline further strengthens causal reasoning in trajectory
prediction by jointly leveraging topological cues and supervision consistency.

3.4 Negative Planning Self-supervision (NPS) from Dynamic Objects’ Future Bounding Boxes

An autonomous systems must dynamically respond to surrounding agents. While MTPS and STPS
support positive causal modeling for general planning, safe interaction requires negative causal
modeling to proactively avoid risky outcomes—e.g., adjusting the ego trajectory to prevent overlap
with the predicted motion of an encroaching parked vehicle as shown in the Figure [3a]

Motivated by this insight, we propose the Negative Trajectory Planning Self-Supervision (NTPS)
mechanism, which imposes safety constraints on ego planning using the predicted future bounding
boxes of surrounding agents. As illustrated in Figure [3b} we construct future bounding box sequences
for both ego and dynamic objects using predicted trajectories and perceived object dimensions. The
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Figure 3: Negative Trajectory Planning Self-Supervision (NTPS) for Safety-Constrained Ego.

orientation at each timestep is estimated via trajectory offsets, and overlap detection is performed
using the Separating Axis Theorem (SAT) [9]. Upon detecting overlaps, we introduce a negative
supervision loss that penalizes ego trajectories encroaching into occupied space by encouraging
divergence from the overlapping region. as follows:

At At
LNTPS = Z max(O,ﬁ - ”Tra]ego - Trajobj_cd”?) (15)
t€Teon

where ¢t € Ty, denotes each timestep in the set of detected collision timesteps ¢y, and Trajolmc()l
represents the trajectory point of the surrounding object that is predicted to collide with the ego
vehicle at timestep ¢.

In this process, SAT-based overlap detection identifies risk-inducing points along the trajectories of
surrounding agents. These are treated as negative supervision signals, guiding the ego trajectory to
diverge from potential collision zones and thereby enhancing safety in dynamic interactions.

3.5 Perception-Guided Self-supervision in Optimization

During training, the proposed PGS paradigm introduces guidance from perception by integrating the
three distinct self-supervision losses described above to total loss introduced in Section 3.1 as:

!
total = Liotal + Wwmtps Lvtps + Wstps Lstps + Wntps Lnps (16)

where w represent the relative importance of each loss component.

4 Experiment

4.1 Dataset & Metrics

Dataset: To evaluate the real-world effectiveness of our self-training paradigm, we evaluate on the
challenging closed-loop benchmark Bench2Drive [10], built on CARLA v2. The dataset includes
1,000 short clips across 44 complex scenarios (950 for training, 50 for open-loop validation) and 220
predefined routes for standardized closed-loop evaluation nd fair performance comparison.

Metrics: We adopt Bench2Drive’s official metrics: Driving Score, Success Rate, Efficiency, and
Comfortness for closed-loop evaluation, and L2 Displacement Error (L2) for open-loop evaluation.

4.2 TImplementation Details

The training process of PGS is divided into two stages, each with distinct learning objectives.

Stage 1 focuses on perception learning. We enhance the online map detection task by introducing
lane centerlines as a new class of map elements. While the task of motion prediction of dynamic
objects is trained in this phase as well. In addition, traffic light detection from front-view images is
incorporated to capture critical causal dependencies for safely navigating signalized intersections.
Training in this stage lasts for 6 epochs.



Stage 2 builds upon the perception capabilities from Stage 1 and introduces joint optimization of the
perception module and self-supervised objectives. Perception losses are retained to maintain accurate
environmental understanding, while three self-supervised losses—MTPS, STPS, and NTPS—are
introduced to supervise ego planning tasks. Stage 2 is also trained for 6 epochs.

Training is conducted on 16 NVIDIA RTX V100 GPUs using the AdamW [21]] optimizer, with a
weight decay of 0.01 and an initial learning rate of 4e-4. The loss weights are set to wytps = 1.0,
WSTPS — 03, and WNPS — 1.0.

4.3 Comparison with State-of-the-Art Methods

Table 1: Open-loop and Closed-loop results of planning in Bench2Drive. Avg. L2 is averaged over
the predictions in 2 seconds under 2Hz. * denotes expert feature distillation.

Method \ Avg. L2 | \ Driving Score T Success Rate (%) T Efficiency T Comfortness 1
AD-MLP [28] 3.64 18.05 0.00 48.45 22.63
UniAD-Base [8] 0.73 45.81 16.36 129.21 43.58
UniAD-Tiny [8] 0.80 40.73 13.18 123.92 47.04
VAD-Base [14] 0.91 42.35 15.00 157.94 46.01
VAD-Tiny [14] 1.15 34.28 10.45 70.04 66.86
SparseDrive [23] 0.87 44.54 16.71 170.21 48.63
GenAD [29] - 44.81 15.90 - -
DiFSD [22] 0.70 52.02 21.00 178.30 -
DriveTransformer [[13] 0.62 63.46 35.01 100.64 20.78
DiffAD [24] - 67.92 38.64 - -
WoTE [16] - 61.71 31.36 - -
BridgeAD 0.71 50.06 22.73 - -
PGS(Ours) 0.77 78.08 48.64 181.31 12.37
TCP-traj* [27] 1.70 59.90 30.00 76.54 18.08
ThinkTwice* [12] 0.95 62.44 31.23 69.33 16.22
DriveAdapter* [11] 1.01 64.22 33.08 70.22 16.01

Table || summarizes the comparative open-loop and closed-loop planning performance on
Bench2Drive. Compared to VAD-Base—the baseline model for our approach—PGS reduces the
open-loop L2 error from 0.91 to 0.77. more importantly, PGS achieves a remarkable Driving Score
of 78.08, outperforming VAD-Base (42.35) by 35.73 points in closed-loop evaluation. The Success
Rate improves significantly from 15.00% to 48.64%. These improvements are primarily attributed to
the enhanced causal reasoning capabilities introduced by our self-supervised planning framework.

The comparison with contemporaneous methods [13| 24} [16] further validates the effectiveness of
our proposed paradigm. These methods improve closed-loop performance by adopting more complex
architectures, leveraging multi-modal sensor inputs, employing diffusion models for multi-modal
decision, or combining trajectory generation with online ranking strategies, but still primarily rely
on imitation learning and lack explicit consideration of causal reasoning. In contrast, the self-
supervised, causality-driven PGS framework consistently outperforms these methods, highlighting
the effectiveness of perception-guided self-supervision in capturing causal relationships.

Furthermore, PGS surpasses methods based on knowledge distillation (e.g., [27, [12] [11]) as well.
Although distillation enhances planner robustness by transferring knowledge from expert models
trained with noise-free privileged information, it fails to model the causal dependencies between
redundant perception outputs and ego planning, and results in causal confusion and suboptimal
decision-making policies. These results further validate the superiority of PGS in achieving causally
grounded and robust driving performance.

Table 2] further compares the success rates of different approaches across specific driving scenarios.
A scenario is considered successful only if the ego vehicle reaches the designated destination without
any collisions or infractions. Our model consistently outperforms competitors across several critical
driving skills, achieving notably high success rates in Merging (35.00%), Overtaking (73.33%),
Emergency Braking (55.00%), and Give Way (60.00%). It also obtains the highest overall ability
score of 53.40%. These results highlight the strong generalization capability of our approach in
handling complex and highly interactive scenarios.



Table 2: Multi-Ability Results of E2E-AD Methods. * denotes expert feature distillation.

Method | Ability (%) 1

| Merging Overtaking Emergency Brake ~ Give Way  Traffic Sign | Mean
AD-MLP [28] 0.00 0.00 0.00 0.00 4.35 0.87
UniAD-Tiny [8] 8.89 9.33 20.00 20.00 15.43 14.73
UniAD-Base [8] 14.10 17.78 21.67 10.00 14.21 15.55
VAD [14] 8.11 24.44 18.64 20.00 19.15 18.07
DriveTransformer [13] 17.57 35.00 48.36 40.00 52.10 38.60
DiffAD [24] 30.00 35.55 46.66 40.00 46.32 38.79
PGS (Ours) 35.00 73.33 55.00 60.00 43.68 53.40
TCP* [27] 16.18 20.00 20.00 10.00 6.99 14.63
TCP-ctrl* 10.29 4.44 10.00 10.00 6.45 8.23
TCP-traj* 8.89 24.29 51.67 40.00 46.28 34.22
TCP-traj w/o distillation 17.14 6.67 40.00 50.00 28.72 28.51
ThinkTwice* [12] 27.38 18.42 35.82 50.00 54.23 37.17
DriveAdapter* [11] 28.82 26.38 48.76 50.00 56.43 42.08

4.4 Ablation Study on Bench2Drive

We conduct extensive ablation experiments to assess the contribution of each component in our self-
supervised paradigm. For efficient closed-loop evaluation, we select the Merging and Overtaking
scenarios, which are both complex and highly interactive. Together, they account for more than half
of the total scenarios, making the evaluation metrics on them sufficiently representative.

Table 3: Ablation Study of the Proposed PGS Framework.

Method | Avg. L2 | Ability (%)

\ | Merging  Overtaking | Mean
VAD-Base 0.91 8.11 24.44 16.28
VAD-Tiny 1.15 9.33 11.11 10.22
PGSpBase 0.87 16.46 13.33 14.89
PGSpysetrsTrs 0.78 24.44 26.25 25.35
PGSpasesstrsivrps | 075 23.75 4444 | 34.10
PGS gy 0.77 35.00 73.33 54.17
PGSNTps 0.90 25.00 6.67 15.84
PGSser5 2.89 31.25 35.56 33.40

As shown in TableE], PGS pgse denotes our baseline model, where the perception network is trained
with the perception loss used in VAD, and the planning head is trained with the imitation loss.
Compared to VAD, it achieves a slightly lower L2 error and a comparable success rate. PGSsTps
introduces the centerline-aligned Spatial Trajectory Planning Self-Supervision, which strengthens
the alignment between road topology cues and the ego’s planned trajectory, leading to significant
improvements in both L2 error and success rate. Building upon this, PG Ssrpsymrps incorporates
a relevant lane filter and reformulates the multi-modal ego decision as a lane selection task within
this filtered set. This design yields a substantial performance boost in the Overtaking scenarios,
where frequent lane changes occur. Finally, PGS 4;; further adds Negative Trajectory Planning
Self-Supervision by identifying risky future positions of surrounding dynamic objects and penalizing
ego trajectories that overlap with them. This additional constraint reduces collision risk in both
selected scenarios. Overall, PGS 4;; achieves a mean success rate of 54.17%, with an improvement
of over 39% compared to PG.Sp,se, Which is trained purely via imitation learning. We further isolate
the effect of Negative Trajectory Planning Self-Supervision through a dedicated variant, PGSnyTps,
to assess model behavior in unstructured environments. Despite the absence of structured road
priors, this variant exhibits strong performance in Merging scenarios, demonstrating the capability of
NTPS to mitigate collision risks in complex, geometry-agnostic contexts. However, its performance
degrades in Overtaking scenarios, likely due to overly conservative behavior in the presence of static
obstacles and the lack of contextual lane information. These limitations are effectively addressed



when NTPS is integrated with STPS and MTPS, as structured priors offer richer spatial cues and
broaden the maneuver space, enabling more balanced and flexible decision-making.

Besides, we retrained a model, PGS ¢, using only PGS self-supervision, without any imitation loss.
As expected, the L2 error increases significantly due to the absence of expert trajectory knowledge.
However, it still achieves a respectable success rate of 33.40%, outperforming both PG Sp,s. and
V AD by a large margin. This underscores the importance of perception-consistent ego planning in
causal modeling.

5 Conclusion & Limitation

Conclusion: We introduce a perception-guided self-supervision paradigm for end-to-end au-
tonomous driving. By leveraging road topology and dynamic agent motion as both inputs and
supervisory signals, our approach aligns ego trajectory prediction with structured, causally relevant
cues, enabling stronger causal reasoning and state-of-the-art closed-loop performance. Extensive
ablation studies further substantiate the efficacy of our self-supervision mechanisms, highlighting a
promising direction for enhancing the real-world robustness of end-to-end autonomous driving.

Limitation: The framework’s success relies on accurate and robust perception of dynamic/static
agents and road structures. Limited perception accuracy or generalization may impair planning
performance, making perception robustness a key challenge for future work.

References

[1] M. Bansal, A. Krizhevsky, and A. Ogale. Chauffeurnet: Learning to drive by imitating the
best and synthesizing the worst in robotics: Science and systems xv. University of Freiburg,
Freiburg im Breisgau, Germany, 2019.

[2] D. Barnes, M. Gadd, P. Murcutt, P. Newman, and I. Posner. The oxford radar robotcar dataset:
A radar extension to the oxford robotcar dataset. In 2020 IEEE international conference on
robotics and automation (ICRA), pages 6433-6438. IEEE, 2020.

[3] H. Caesar, J. Kabzan, K. S. Tan, W. K. Fong, E. Wolff, A. Lang, L. Fletcher, O. Beijbom, and
S. Omari. nuplan: A closed-loop ml-based planning benchmark for autonomous vehicles. arXiv
preprint arXiv:2106.11810, 2021.

[4] M.-F. Chang, J. W. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, D. Wang, P. Carr,
S. Lucey, D. Ramanan, and J. Hays. Argoverse: 3d tracking and forecasting with rich maps. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[5] S. Chen, B. Jiang, H. Gao, B. Liao, Q. Xu, Q. Zhang, C. Huang, W. Liu, and X. Wang.
Vadv2: End-to-end vectorized autonomous driving via probabilistic planning. arXiv preprint
arXiv:2402.13243, 2024.

[6] K. Chitta, A. Prakash, B. Jaeger, Z. Yu, K. Renz, and A. Geiger. Transfuser: Imitation with
transformer-based sensor fusion for autonomous driving. IEEE transactions on pattern analysis
and machine intelligence, 45(11):12878-12895, 2022.

[7] H. Gao, S. Chen, B. Jiang, B. Liao, Y. Shi, X. Guo, Y. Pu, H. Yin, X. Li, X. Zhang, et al. Rad:
Training an end-to-end driving policy via large-scale 3dgs-based reinforcement learning. arXiv
preprint arXiv:2502.13144, 2025.

[8] Y. Hu,J. Yang, L. Chen, K. Li, C. Sima, X. Zhu, S. Chai, S. Du, T. Lin, W. Wang, et al. Planning-
oriented autonomous driving. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 17853-17862, 2023.

[9] J. Huynh. Separating axis theorem for oriented bounding boxes. URL: jkh.
me/files/tutorials/Separating% 20Axis% 20Theorem% 20for% 200riented% 20Bounding%
20Boxes. pdf, 2009.

[10] X. Jia, Z. Yang, Q. Li, Z. Zhang, and J. Yan. Bench2drive: Towards multi-ability benchmarking
of closed-loop end-to-end autonomous driving. In The Thirty-eight Conference on Neural
Information Processing Systems Datasets and Benchmarks Track.

10



[11] X. Jia, Y. Gao, L. Chen, J. Yan, P. L. Liu, and H. Li. Driveadapter: Breaking the coupling
barrier of perception and planning in end-to-end autonomous driving. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 7953-7963, 2023.

[12] X. Jia, P. Wu, L. Chen, J. Xie, C. He, J. Yan, and H. Li. Think twice before driving: To-
wards scalable decoders for end-to-end autonomous driving. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 21983-21994, 2023.

[13] X. Jia, J. You, Z. Zhang, and J. Yan. Drivetransformer: Unified transformer for scalable
end-to-end autonomous driving. arXiv preprint arXiv:2503.07656, 2025.

[14] B.Jiang, S. Chen, Q. Xu, B. Liao, J. Chen, H. Zhou, Q. Zhang, W. Liu, C. Huang, and X. Wang.
Vad: Vectorized scene representation for efficient autonomous driving. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 8340-8350, 2023.

[15] H.Li, M. Yuan, Y. Zhang, C. Wu, C. Zhao, C. Song, H. Feng, E. Ding, D. Zhang, and J. Wang.
Xld: A cross-lane dataset for benchmarking novel driving view synthesis. CoRR, 2024.

[16] Y. Li, Y. Wang, Y. Liu, J. He, L. Fan, and Z. Zhang. End-to-end driving with online trajectory
evaluation via bev world model. arXiv preprint arXiv:2504.01941, 2025.

[17] Z. Li, K. Li, S. Wang, S. Lan, Z. Yu, Y. Ji, Z. Li, Z. Zhu, J. Kautz, Z. Wu, et al. Hydra-
mdp: End-to-end multimodal planning with multi-target hydra-distillation. arXiv preprint
arXiv:2406.06978, 2024.

[18] Z.Li, W. Wang, H. Li, E. Xie, C. Sima, T. Lu, Q. Yu, and J. Dai. Bevformer: learning bird’s-
eye-view representation from lidar-camera via spatiotemporal transformers. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2024.

[19] Z. Li, Z. Yu, S. Lan, J. Li, J. Kautz, T. Lu, and J. M. Alvarez. Is ego status all you need for
open-loop end-to-end autonomous driving? In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 14864—14873, 2024.

[20] C. Liang and X. Liu. The research of collision detection algorithm based on separating axis
theorem. Int. J. Sci, 2(10):110-114, 2015.

[21] I Loshchilov and F. Hutter. Decoupled weight decay regularization. In International Conference
on Learning Representations.

[22] H. Su, W. Wu, and J. Yan. Difsd: Ego-centric fully sparse paradigm with uncertainty de-
noising and iterative refinement for efficient end-to-end autonomous driving. arXiv preprint
arXiv:2409.09777, 2024.

[23] W. Sun, X. Lin, Y. Shi, C. Zhang, H. Wu, and S. Zheng. Sparsedrive: End-to-end autonomous
driving via sparse scene representation. arXiv preprint arXiv:2405.19620, 2024.

[24] T. Wang, C. Zhang, X. Qu, K. Li, W. Liu, and C. Huang. Diffad: A unified diffusion modeling
approach for autonomous driving. arXiv preprint arXiv:2503.12170, 2025.

[25] C. Wen, J. Qian, J. Lin, J. Teng, D. Jayaraman, and Y. Gao. Fighting fire with fire: Avoiding
dnn shortcuts through priming. In International Conference on Machine Learning, pages
23723-23750. PMLR, 2022.

[26] X. Weng, B. Ivanovic, Y. Wang, Y. Wang, and M. Pavone. Para-drive: Parallelized architecture
for real-time autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1544915458, 2024.

[27] P. Wu, X. Jia, L. Chen, J. Yan, H. Li, and Y. Qiao. Trajectory-guided control prediction for
end-to-end autonomous driving: A simple yet strong baseline. Advances in Neural Information
Processing Systems, 35:6119-6132, 2022.

[28] J.-T. Zhai, Z. Feng, J. Du, Y. Mao, J.-J. Liu, Z. Tan, Y. Zhang, X. Ye, and J. Wang. Rethink-
ing the open-loop evaluation of end-to-end autonomous driving in nuscenes. arXiv preprint
arXiv:2305.10430, 2023.

[29] W. Zheng, R. Song, X. Guo, C. Zhang, and L. Chen. Genad: Generative end-to-end autonomous
driving. In European Conference on Computer Vision, pages 87-104. Springer, 2024.

11



A Qualitative Analysis of Lane Centerline Perception

In CARLA, road topology information is stored using a graph structure, where each node represents an
individual lane. The attributes of each node include the global coordinates of the lane’s centerline, lane
width, and other geometric properties. For each frame of training data, the ground-truth centerlines
near the ego vehicle are generated by transforming all lane centerline coordinates from the global
map into the ego-centric local coordinate system based on the recorded ego pose.

(c) Perception results at intersections (d) Perception results in obstacle-present scenarios

Figure 4: Visualization of lane centerline perception under diverse road conditions

The qualitative examples presented in Figure ] demonstrate that, even in the absence of salient visual
features for lane centerlines, the map perception module in PGS can still reliably detect them by
leveraging visual context from the scene. This ability is particularly evident in complex areas such as
intersections. Such robust perception of centerlines forms the foundation for the effectiveness of the
self-supervised MTPS and STPS components in our framework.

B Relevant Lane Filtering and Target Lane Determination in MTPS

In the Multi-Modal Trajectory Planning Self-Supervision (MTPS), we frame the ego vehicle’s multi-
modal decision-making as a target lane selection task. The relevant lane filter extracts candidate
lanes—namely, the left, current, and right lanes—based on the perceived road topology. Then, by
referencing the ground-truth trajectory, the system identifies the target lane corresponding to the
intended driving behavior.

Visualization of Supervision Signal Construction for Target Lane Selection

This subsection visually illustrates how the Multi-modal Trajectory Planning (MTP) module leverages
the surrounding lane topology to inform the selection of the ego vehicle’s planning modality, as
described in Section 3.2. Figure 5] provides a step-by-step illustration of the pipeline for constructing
the supervision signal for target lane selection, starting from the perception outputs, moving through
the filtering of relevant candidate lanes, and culminating in the determination of the target lane by
referencing the endpoint of the ground-truth trajectory.

Classification Accuracy of the Target Lane Selection Task

To assess the effectiveness of the topology-guided supervision in MTPS, we evaluate the classification
accuracy and recall of target lane prediction on the B2D open-loop validation set. As shown in
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(a) Perceived lane centerlines (b) Selected relevant lane set (c) Selected target lane

Figure 5: Visualization of Target Lane Selection. Light pink points indicate the perceived lane
centerlines, while dark red points represent the selected relevant lane set. The final target lane is also
highlighted in dark red, with its name labeled in orange.

Table[d] training with the full 3-second ground-truth trajectory and standard cross-entropy (CE) loss
achieves high accuracy across all classes. However, due to severe class imbalance, the recall for rare
categories such as “oriented to left lane” and “oriented to right lane” remains relatively low, at 0.63
and 0.80 respectively.

Table 4: Accuracy and Recall of Target Lane Classification under Different Training Strategies.

Metric Label CE | Weighted CE | " cighted CE +
2s Trajectory

Oriented to current lane | 0.9685 0.9554 0.9690
Accuracy Oriented to left lane 0.9785 0.9669 0.9748
Oriented to right lane | 0.9887 0.9832 0.9909
Oriented to current lane | 0.9855 0.9586 0.9676
Recall Oriented to left lane 0.6268 0.7344 0.8788
Oriented to right lane | 0.7978 0.9011 0.9233

To mitigate this imbalance, we adopt a class reweighting strategy based on inverse class fre-
quencies. Specifically, class weights are computed from the training data distribution as
[1.074, 32.480, 26.505], corresponding to current, left, and right lane orientations, respectively.
This adjustment significantly improves recall for the left and right lane categories by approximately
10 percentage points.

Furthermore, when shortening the trajectory horizon used for matching from 3 seconds to 2 seconds,
both recall and precision improve. Shorter trajectories more accurately reflect immediate driving
intentions, reducing ambiguity. Based on these results, we adopt inverse frequency weighting and
2-second trajectory matching as the default configuration for PGS training in MTPS.

C Spatial Trajectory Generation in STPS
In STPS, we construct a spatial trajectory by combining the target lane centerline with the ground-

truth trajectory, which is then used as supervision for the trajectory regression head to facilitate better
causal modeling.
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(b) Ground-truth and STP trajectories in straight-driving scenarios

Figure 6: Comparison of STP-generated and ground-truth trajectories. Perceived lane centerlines
are rendered as light pink points, and other perceived lanes in orchid. Ground-truth trajectories are
visualized using red-to-yellow gradients, while STP trajectories are represented by blue gradients.

As illustrated in Figure[] we present two representative scenarios. In Figure[6a] when navigating
intersections, ground-truth trajectories occasionally deviate from the centerline of the designated
outbound lane—either drifting left or right. Such sporadic deviations, likely due to labeling noise or
imperfect execution, introduce spurious signals that hinder the model’s ability to capture causally
valid motion patterns. In contrast, STP trajectories, aligned with the intended lane centerline, exhibit
high directional consistency and semantic alignment, thereby facilitating more robust causal learning.

Similarly, in Figure[6b] ground-truth trajectories in straightforward driving scenarios exhibit oscilla-
tions around the lane centerline, potentially introducing ambiguity in lane-following behavior. The
STP-generated trajectories, by contrast, maintain a stable, forward-directed course, offering clearer
intent supervision and reducing trajectory-level noise.

D Separating Axis Theorem (SAT) Algorithm Description

In NTPS, the SAT[20] algorithm is employed to generate negative supervision signals for the ego
vehicle trajectory, conditioned on the predicted trajectories of surrounding agents.

SAT is a classical method for collision detection between convex polygons in 2D space. It is based
on the principle that two convex polygons do not intersect if and only if there exists a separating
axis—an axis along which the projections of the two polygons do not overlap. In practice, the set of
candidate axes is constructed by computing the outward normals of all edges from both polygons. If
a separating axis is found, the polygons are guaranteed to be disjoint. Otherwise, the polygons must
intersect.

As shown in Algorithm[T] the SAT algorithm iteratively tests all potential separating axes derived
from the polygon edges.
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Algorithm 1: Separating Axis Theorem (SAT)

Input: Vertex sets of polygons A and B
Output: Whether they intersect (true/false)
for each polygon P € {A, B} do
for each edge e of P do
Compute edge normal as projection axis axis;
Project polygons A and B onto axis, obtaining intervals proja and projg;
if proja and projg do not overlap then
| returnfalse; // Separating axis found - polygons don’t intersect

return true ; // No separation found on any axis - polygons intersect

E Visualization of Closed-loop Evaluation

Representative Cases in Diverse and Complex Scenarios

Figure [7] presents the closed-loop evaluation results of our model, PGS 4y, in the CARLA simulation
environment. These visualizations are drawn from the full set of 220 closed-loop test scenarios
in the Bench2Drive benchmark, encompassing a diverse spectrum of challenging conditions, such
as adverse weather (e.g., heavy rain, dense fog), varied lighting (e.g., daytime, nighttime), and
complex traffic scenes (e.g., intersections, lane merging, overtaking, and traffic light negotiation).
As illustrated, the model consistently produces smooth, goal-directed trajectories that respect the
intended global route while dynamically responding to contextual hazards.

The results indicate that PGS 4; is capable of dynamically adjusting its trajectory to avoid obstacles
while maintaining route fidelity. The model exhibits a strong capacity to align its predictions with the
underlying semantic road structure, reflecting a nuanced understanding of the causal relationships
between environmental cues and appropriate driving behavior. This capability contributes to reliable
and safe autonomous decision-making in closed-loop execution.

Limitations and Failure Case Analysis

While PGS 4;; demonstrates robust performance across a wide range of scenarios, we observe several
failure cases that expose current limitations in perception and causal reasoning.

As shown in Figure [8a] the ego vehicle fails to avoid a parked car with an opened door. This failure is
attributed to the perception module treating such vehicles the same as regular static obstacles, without
distinguishing the opened door as a separate semantic element. Consequently, the model fails to learn
the causal relationship between door-opening events and the necessity of avoidance. Similarly, in
Figure [8b] the model does not yield to an approaching emergency vehicle from behind, likely due to
the absence of semantic differentiation between emergency and regular vehicles in the perception
process.

These cases suggest the need to enhance the perception module by introducing specialized object
categories or refining bounding box representations (e.g., to cover opened doors or siren-bearing
vehicles). Such improvements would allow the model to better capture the causal structures required
for socially compliant and context-aware planning in these critical situations.

Supplementary Visualizations and Reproducibility

To further support our analysis, we provide an extended set of visualizations in video format,
accessible via the following GitHub repository: Supplementary Materials, Within this repository,
the folder O_representative_cases contains two subfolders, DiverseChallengingScenarios
and FailureScenarios, which showcase representative cases that highlight both the strengths and
limitations of the proposed model.

Full closed-loop evaluation results are available in the folder 1_PGS_all_metric_files, which
contains merged. json (overall results) and merged_ability. json (per-scenario metrics). Frame-
level logs for all 220 scenarios, including ego states, control commands (steering, throttle, brake),
predicted traffic light states, and high-level decisions, are stored in eval_PGS_all.The evaluation
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(d) Pedestrian avoidance in straight-road scenarios
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(h) Vehicle yielding right of way
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e: 0.0, troffic: RED, 4

(j) Merging into highway with a parked vehicle ahead

(k) Pedestrian violation crossing the road at night

1.0, troffic: RED, 4.4126

(1) Obstacle avoidance when other vehicles merge into the lane

Figure 7: Visualization of representative closed-loop scenarios from the Bench2Drive benchmark.
The wp or way point denotes predicted trajectory points. The target is the mid-range goal issued by
the global route planner in simulation environment, encoded as input to the PGS planning network.
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(b) Failure to yield to an approaching emergency vehicle.

Figure 8: Representative failure cases due to incomplete perception and missing causal cues.

process can be reproduced for each individual town by following the instructions in the Metric section
of the Eval Tools.

F PID Controller Configuration

We build upon the original PID controller parameters from Bench2Drive[10] and modify the aim
point selection strategy. Instead of using a fixed 4.0-meter target, we adopt a dynamic approach based
on vehicle speed: selecting a near aim point of 4.0 meters for low-speed scenarios (below 6.5 m/s) and
a far aim point of 10.0 meters for high-speed scenarios (above 6.5 m/s). This design stems from the
principle that at higher speeds, the vehicle requires a longer look-ahead distance to follow the planned
trajectory accurately. By providing sufficient foresight, the farther aim point facilitates smoother
steering adjustments, thereby enhancing trajectory stability and reducing oscillations observed during
high-speed maneuvers in our experiments.

G Experiments compute resources
All experiments were conducted with the following specifications:

Hardware Configuration

* CPU: Each node is equipped with dual Intel(R) Xeon(R) Gold 6278C @ 2.60GHz processors,
providing 52 physical cores and 104 threads per node. With 2 nodes in total, the system
utilizes 4 CPU sockets and 208 logical processors.

* Memory: 512 GB RAM per node
* GPU: 16 NVIDIA V100 GPUs (32 GB each), with 8 GPUs per node across 2 nodes
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Training Time

» Stage 1 Training: Completed in approximately 1 day using 16 GPUs, equivalent to around
384 GPU hours.

* Stage 2 Training: Completed in approximately 1 day using 16 GPUs, equivalent to around
384 GPU hours.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we have thoroughly detailed the background,
motivation, scope, main experimental results, and contributions of our work.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work are discussed in section [3
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The full set of assumptions and complete proofs are provided in section[3]and
section 4] of the main paper.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The proposed method is implemented with a public closed-loop dataset
benchmark. All the implementation details are reported in the main paper.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The datasets used in this paper are publicly available, and the code will be
released upon acceptance of the paper.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The experimental details are presented in section [4]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We adopt standard evaluation datasets and metrics, which areaccompanied by
statistical significance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Computer resources are provided in both section 4|and the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research conducted in the paper strictly conforms the code of ethics.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The broader impacts of this work are discussed in the main paper.
Guidelines:
» The answer NA means that there is no societal impact of the work performed.
* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations

(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The datasets and benchmarks used are all publicly available with licensees and
are properly acknowledged in our paper.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The code will be made public upon acceptance.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: No LLMs were involved in the development of the core methods presented in
this paper.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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