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Abstract

Recent advances in behavior cloning and generative modeling of manipulation
behaviors have shown promising results in learning complex multi-modal
behavior distributions. However, a common limitation for all behavior
cloning methods has been the challenge of acquiring high-quality training
data. Existing state-of-the-art methods for policy learning face significant
limitations when expert demonstrations are low quality, and often require
the filtering or reweighting of failed or noisy demonstrations. To address this
challenge, we propose an e!cient o"ine reinforcement learning framework
which utilizes an implicit world model to regularize a behavior cloning
policy via predicted future returns. Our approach, Robust Imitation with
a Critic (RIC), utilizes a critic-regularized imitation learning objective to
incorporate both successful and failed demonstrations, steering imitation
learning towards better trajectories via a conservative critic. Our method
improves on prior works by accelerating the quality of learned policies by as
much as 20% in the presence of suboptimal expert training data. Our simu-
lated experiments consider di#erent types of data suboptimality, including
rollouts from a poor demonstrator policy and biased action perturbations
from controller error. We empirically evaluate di#erent algorithmic choices
for RIC, including comparisons of (1) o"ine reinforcement learning and
behavior cloning, (2) critic guidance via an implicit world-model and a
conservative critic estimate, and (3) di#erent behavior cloning methods,
including token and di#usion-based architectures.

1 Introduction

Behavior cloning is a highly e#ective method for o"ine learning of dexterous manipulation
policies, especially with the development of generative models such as Di#usion policies (3) and
VQ-BeT (4) which can learn multi-modal behavior distributions. Compared to Reinforcement
Learning (RL), behavior cloning has the advantage that it does not require a hand-engineered
reward function or autonomous interaction with the environment; however, it does assume
access to optimal expert demonstrations. Several studies demonstrate that learned dexterous
manipulation policies have significantly higher success rates when training data is collected
by an expert versus a non-expert demonstrator (5; 6; 7; 8). Mixed-quality demonstrations
are an inevitable challenge in imitation learning, since the quality of demonstrations can
vary depending on operator skill, e#ort, and tiredness, as well as ambient factors such as
controller calibration and noise. Additionally, even if the operator is an expert, noise in
the sensors used for data collection (such as in proprioception) can also lead to suboptimal
demonstrations.

A straightforward approach for dealing with suboptimal data is to simply filter out or
reweight suboptimal demonstrations so they contribute less to the learned policy. For
instance, Wu et al. (9) and Xu et al. (10) learn discriminators that can be used to identify
suboptimal trajectories and reweight them during training. The drawbacks of filtering or
downweighting suboptimal trajectories is that we are ignoring the inherent knowledge stored
in these trajectories on how not to perform the task and to what extent these actions are
suboptimal (11). This approach also reduces data diversity and therefore robustness in the
learned policy.
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Figure 1: Robust Imitation with a Critic Overview The first stage of training in-
volves training an observation encoder, world model, and critic, following the algorithm
of TDMPC2 (1). The world model learns the latent environment dynamics, which helps
generate latent environment rollouts that are used to train the critic. Once the critic is
trained, the critic is frozen and the second stage of training integrates the critic value estimate
into the behavior cloning policy objective. We also explore a variation of our method that
uses a conservative IQL critic (2) as opposed to a TDMPC2 critic, in which case we skip the
training of the world model.

In contrast to behavior cloning, o"ine-RL methods such as TDMPC2 (12) and CQL (13) have
demonstrated successful performance despite learning from datasets containing suboptimal
demonstrations. As proposed in (14), this is in part by stitching together sub-optimal chunks
of a trajectory. These methods utilize both optimal and suboptimal data to learn a value
function that can guide the policy away from unfavorable actions. However, o"ine RL is less
data e!cient than behavior cloning, and it relies on an accurate reward function which must
be either hand-engineered or learned via inverse RL (15). Additionally, traditional o"ine
RL methods are often outpaced by state of the art behavior cloning models like VQ-BeT
or di#usion policies if the degree of suboptimality in the dataset is not too large (11). In
this work, we combine the advantages of o"ine RL and behavior cloning by learning from
the entire dataset, including suboptimal trajectories, while retaining the data e!ciency of
state of the art models used by behavior cloning. We assume that we have access to only a
fixed o"ine dataset, which is common in many settings where it is expensive or infeasible to
collect new demonstrations. Our approach uses a learned TDMPC2 world-model to generate
latent trajectories that aid in training a conservative o"ine critic (1). We then use this
learned critic to guide the training of a di#usion policy on suboptimal trajectories (3).

We evaluate our approach on dexterous manipulation tasks to see if we can improve behavior
cloning performance in the presence of suboptimal data. Specifically, we evaluate on the
PushT task (3), and D3IL stacking and sorting (16), all of which are challenging dexterous
tasks with multi-modal expert behavior distributions. We also create synthetic datasets
that simulate di#erent sources of suboptimality and show that our approach experiences less
performance degradation on these datasets compared to standard behavior cloning methods.

2 Related Work

The primary methods for learning policies from partially suboptimal o"ine datasets are
behavior cloning and o"ine reinforcement learning. This section reviews key contributions in
these areas, highlighting advancements in multi-modal policy learning, handling suboptimal
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demonstrations, and integrating value-based methods to enhance policy robustness when
suboptimal data is present.

2.1 Behavior Cloning

Behavior Cloning (BC) has been a foundational method for policy learning, primarily focusing
on directly mimicking expert actions from demonstration data. Recent advancements have
emphasized the importance of multimodal policy learning to capture the diverse strategies
that experts may employ to accomplish tasks. For instance, the Di#usion Policy framework (3)
leverages di#usion models to e#ectively handle the variability in demonstrations, and BeT (17),
and VQ-BeT (4) discretize the action space to better predict high dimensional actions.
Behavior cloning has achieved impressive results in dexterous manipulation tasks, but faces
challenges when the training dataset includes suboptimal trajectories (5; 6; 7; 8). The issue
arises because behavior cloning treats all trajectories equally, regardless of their quality,
leading the model to learn behaviors that might not be optimal.

2.2 Offline Reinforcement Learning

O"ine Reinforcement Learning (O"ine RL) seeks to learn optimal policies from previously
collected non-expert datasets. These methods are able to learn from the entire training set,
including suboptimal data, by learning to avoid low value actions and prioritize high value
actions. Recent o"ine RL methods, such as Conservative Q-Learning (13), and its variants
like Calibrated Q-Learning (18), focus on minimizing the discrepancy between the learned
policy and the behavior policy that generated the dataset, thereby ensuring policy stability
and reducing the chance of encountering out of distribution states. In contrast, Implicit
Q-Learning (2) enables improving over the behavior policy that collected the dataset, while
at the same time staying in distribution to the training data. Model-based approaches like
TDMPC2 (12) learn an implicit world model using latent observation representations and
use this world model to guide policy and critic learning.

O"ine RL methods e#ectively handle suboptimal trajectories, but are less data-e!cient
and more unstable than BC due to the need to estimate value functions for all actions.
Additionally, their performance may be limited when the reward functions are sparse or
poorly defined. While o"ine RL excels in noise and suboptimal data robustness, state-of-the-
art BC methods like VQ-BeT and Di#usion Policy often outperform it in policy performance,
especially when the degree of suboptimality in the dataset is not too large (11). Nonetheless,
the learned critics remain valuable for guiding policy learning away from detrimental actions.

Recent e#orts have also explored the integration of value-based o"ine RL methods with
behavior cloning to maintain data e!ciency while enhancing policy robustness. For example,
AWAC (19) trains an actor-critic framework, and incorporates a term that constrains the
actor to maximize the likelihood of the behavior policy while biasing towards high-advantage
actions. QVPO (20) employs a similar approach to train a di#usion policy and bias towards
high reward actions, but in an online setting. In contrast to these approaches, our approach
combines behavior cloning with value-based methods by training the critic on the o"ine
data first, and then running a second round of training integrating the critic and behavior
cloning losses. This ensures the critic’s reliability before guiding policy training.

2.3 Robustness to Data Corruption and Suboptimal Demonstrations

Robustness to data corruption and the ability to learn from suboptimal demonstrations
are critical challenges in o"ine RL and behavior cloning. Behavior cloning approaches are
more data e!cient than o"ine RL, since they are simply trying to copy an optimal set
of actions. However, they do not naturally account for suboptimal data, and attempts to
reweight suboptimal data filters out useful information (9; 10).

On the other hand, o"ine RL methods naturally handle suboptimal trajectories by guiding
learned policies away from low value actions. They also are better able to handle noise in
dataset observations, actions, and rewards (21). However, these methods rely on the quality
of the reward functions and are far less data e!cient than behavior cloning.
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Our approach of combining behavior cloning with a critic loss o#ers a promising way to
address these limitations. The critic loss allows the model to evaluate and incorporate the
quality of actions directly into the learning process, even for suboptimal trajectories. By
integrating the strengths of behavior cloning (e!cient learning from trajectories) with those
of o"ine RL (leveraging value estimates), this hybrid approach can make better use of diverse
datasets, improve robustness to noisy reward signals, and yield more reliable performance
across a range of tasks. Compared to similar methods like AWAC (19) and QVPO (20),
our approach first trains a critic using TDMPC2 (12), ensuring critic robustness before
applying the critic to the behavior cloning loss. Additionally, our method works with a
simple success/failure reward function, since the critic is used only to guide behavior cloning
rather than estimate an exact value function.

3 Method

Algorithm 1 RIC with TD-M(PC)2-based Critic and World Model Training

1: Stage 1: TD-M(PC)
2

World Model and Critic Training

2: repeat

3: Sample a mini-batch {(ot, at, rt, ot+1, µt)} from D
4: Encode zt = hω(ot), zt+1 = hω(ot+1)
5: Predict reward r̂t = Rε(zt, at) and next latent z→t+1 = dε(zt, at)
6: Compute TD target: yt = rt + ω Ea→↑ϑ(·|zt+1) [Qϖ→(zt+1, a→)]
7: Update critic by minimizing: Lcritic(ε) = CE (Qϖ(zt, at), yt)
8: Update world model and encoder using consistency, reward, and value losses as in

TD-M(PC)2
9: until converged or max epochs reached

10: Fix the critic and world model parameters: ϑ,ε
11: Stage 2: Critic-Guided Di!usion Policy Training

12: repeat

13: Sample a mini-batch {(ot, at)} from D
14: Add noise ϖ to actions at a chosen di#usion step k: ã(k)t = at + ϱkϖ (di!usion forward

process)
15: For each k, predict the noise or score function ϖ̂t(k) = ςφ(ã(k)t , ot,ϱk)(denoising step,

conditioned on noise level) (denoising)
16: Recovered actions ât = ã(0)t by iteratively denoising from k = K to k = 0
17: Encode zt = hω(ot), estimate Qϖ(zt, ât)
18: Compute behavior cloning loss: LBC = →ϖ̂t ↑ ϖ→2
19: Compute critic regularization: LRL = ↑Qϖ

(
zt, ât

)

20: Update φ by minimizing LRIC(φ) = LBC + ↼LRL

21: (↼ balances BC vs. RL losses)
22: until converged or max epochs reached
23: Output: Critic-guided di#usion policy ςε

3.1 Critic Training Using Implicit World Models

We utilize TDMPC2, an o"ine RL algorithm, to train a critic from an o"ine dataset, though
RIC can work with other methods for critic training as well (see Experiment 3 for results
with an IQL (2) critic). We chose TDMPC2 over other algorithms like CQL (13) due to its
exceptional robustness. TDMPC2 has been shown to successfully train on 104 diverse tasks
with consistent hyperparameters, highlighting its generality (1).

TDMPC2 learns an implicit, decoder-free world model to represent environment dynamics.
The model predicts future latent states ẑt+1 and rewards r̂t from a current latent state
zt = hω(ot) (encoded from the observation ot) and action at. The critic Q̂ϖ(zt, at) is trained
using latent one-step rollouts predicted by the implicit dynamics model. These rollouts
augment the training dataset and improve the Q-function, which is trained to minimize the
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cross entropy (CE ) between the predicted Q-value at timestep t, Q̂ϖ(zt, at) and the one-step
bootstrapped target q-value, which is maxa→ Q̂ϖ̄(ẑt+1, a→), yielding:

Lcritic = E
[
CE

(
Q̂ϖ(zt, at), rt + ωmax

a→
Q̂ϖ̄(ẑt+1, a

→)
)]

(1)

where ω is the discount factor. For additional details on how the critic is defined, refer to (1).

Latent rollouts use predicted latent states ẑt+1 rather than true latent states from the dataset,
e#ectively functioning as data augmentation via predictive future state encodings. While
we currently use true rewards and actions from the dataset for training, future work could
explore augmenting rollouts with predicted rewards and actions from the learned reward
model and TDMPC2 policy.

Notably, training the world model and critic requires only a basic sparse reward function,
since the goal of the critic is simply to guide behavior cloning rather than to exactly estimate
the value function. This is also the reason that the critic can be trained on rollouts from
suboptimal experts that generated the dataset, and its guidance can still e#ectively support
the training of a di#erent policy—the learned di#usion policy.

3.2 Critic-Guided Diffusion Training

We use the Di#usion Policy for behavior cloning due to its demonstrated success in dexterous
manipulation tasks and its natural ability to model multi-modal behavior distributions (3).
In baseline testing, the Di#usion Policy outperformed alternatives like VQ-BeT (4) and
TDMPC2 (12) on the PushT (3) and D3IL (16) tasks.

Di!usion Policy Overview The Di#usion policy learns to generate actions by iteratively
denoising a set of noisy actions conditioned on observations. At each step, a chunk of
actions at↓n:t↓n+h and the corresponding observation history ot↓n:t, where h > n, the model
predicts a noise-conditioned score function that estimates the gradient of the log probability
of the clean action, given the current noisy action ãt↓n:t↓n+h:

ãt↓n:t↓n+h = at↓n:t↓n+h + ϖt↓n:t↓n+h (2)

Formally, at each step k of the reverse di#usion process, given a noisy action ã(k)t↓n:t↓n+h and
observation history ot↓n:t, the model predicts the score ŝk(ã

(k)
t↓n:t↓n+h, ot↓n:t,ϱk), where ϱk

is the noise level at step k. The denoising process proceeds over multiple steps, gradually
removing noise from an initial random action sample, with the full loss being

LDi!usion = Ek,i

[
(ϖ̂(k)i ↑ ϖ(k)i )2

]
(3)

Predicted actions are computed as:

ât↓n:t↓n+h = ãt↓n:t↓n+h ↑ ϖ̂t↓n:t↓n+h (4)

RIC: Critic-Guided Di!usion Policy Training RIC augments the di#usion policy loss
with the TDMPC2 critic’s value estimate for the predicted actions. Given an action chunk
at↓n:t↓n+h, the predicted noise ϖ̂t↓n:t↓n+h, and the predicted actions ât↓n:t↓n+h:

LRIC = Ei

[
(ϖ̂i ↑ ϖi)

2
]
+ ↼Ei

[
↑Q̂(zi, âi)

]

The second term biases the policy away from low-value actions using the TDMPC2 critic.
Because the TDMPC2 critic is robust to noise, it is capable of predicting accurate values even
when the dataset contains noisy or suboptimal demonstrations. This not only de-emphasizes
suboptimal trajectories but actively helps the policy learn to avoid highly suboptimal actions,
thereby improving overall robustness and performance. During training, the critic is fixed,
and only the di#usion policy is updated based on this combined loss.
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In our implementation, we first train the di#usion policy without critic guidance for the
initial half of the training period (i.e., setting the second term of the RIC loss to zero). This
allows the policy to establish a strong baseline by focusing solely on imitation learning from
the dataset. In the second half of training, we introduce critic-guided distillation to refine the
policy further by steering it away from low-value actions. This two-stage approach ensures
that the policy first learns generalizable patterns from demonstrations before leveraging the
critic’s feedback to improve robustness.

3.3 Test-Time Policy Execution

At test time, given an observation history ot↓n:t and a set of random actions ãt↓n:t↓n+h ↓
N (0, 1), the di#usion policy predicts the noise ϖ̂(ãt↓n:t↓n+h, ot↓n:t) to subtract from the
noisy actions:

ât↓n:t↓n+h = ãt↓n:t↓n+h ↑ ϖ̂t↓n:t↓n+h

The TDMPC2 critic is not used during test time. In practice, both during training and test
time we use relative delta actions for each timestep from at↓1, making each action roughly
centered around mean 0.

4 Experiments

Baselines
Method Di#usion VQ-BeT TDMPC2 IQL Ours
Uses data (o,a) (o, a) (o,a, r) (o, a, r) (o,a, r)
Training Method O"ine O"ine O"ine + Online O"ine O"ine
Domain Task Name

D3IL Stacking (1) 0.69± 0.02 0.43± 0.05 0.36± 0.11 0.00± 0.00 0.71± 0.06
Sorting (2) 0.95± 0.01 0.91± 0.02 0.41± 0.03 0.21± 0.10 0.93± 0.03

PushT PushT 0.91± 0.04 0.75± 0.08 0.08± 0.03 0.11± 0.02 0.94± 0.02

Table 1: Baseline comparisons on D3IL and PushT tasks using the original datasets. RIC
achieves performance comparable to the best baselines, showing that critic guidance does
not negatively impact imitation learning performance on predominantly optimal datasets.
In two out of three tasks, RIC slightly surpasses the baselines, suggesting that even these
datasets can benefit from critic guidance, perhaps due to small amounts of noise present.

(a) (b)

Figure 2: Side-by-side comparison showing the drop in per-task performance from (left)
best-case (i.e. expert demonstrations) to (right) demonstrations with action noise scenarios.
We find that RIC performs comparably to the best policy (Di#usion) when given only expert
demonstrations. All of the methods lose performance when action noise is added to the
datasets, but in this case RIC significantly outperforms the baselines due to the guidance
from critic value estimates. All error bars shown are the standard deviations for 5 random
seeds.
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Baselines

Method Di!usion VQ-BeT TDMPC2 IQL Ours

Uses data (o,a) (o,a) (o,a, r) (o,a, r) (o, a, r)
Training Method O"ine O"ine O"ine + Online O"ine O"ine

Domain Task Name

D3IL Stacking (1) 0.32± 0.10 0.17± 0.05 0.36± 0.04 0.01± 0.01 0.44± 0.09
PushT PushT 0.39± 0.08 0.28± 0.05 0.42± 0.04 0.03± 0.01 0.47± 0.05

Table 2: D3IL and PushT task success rates for di#erent algorithms when demonstrations
are perturbed by biased noisy actions. We note that the significant di#erence in performance
between RIC and di#usion is driven by the high success rates of TDMPC2, which is able
to still succeed at the task in the presence of noisy actions. This highlights the advantage
gained when using the implicit world model for critic estimates over model-free methods
when noise contaminates the data, as enough noise-free interactions exist in the data to
construct the world model that produces more accurate critic estimates.

Baselines

Method Di!usion Filtered Di!usion VQ-BeT TDMPC2 IQL Ours

Uses data (o, a) (o,a) (o,a) (o,a, r) (o,a, r) (o,a, r)
Training Method O"ine O"ine O"ine O"ine + Online O"ine O"ine

Domain Task Name

D3IL Sorting (2) 0.58± 0.00 0.79± 0.02 0.40± 0.03 0.53± 0.04 0.48± 0.15 0.91± 0.05
PushT PushT 0.55± 0.05 0.64± 0.04 0.37± 0.01 0.61± 0.06 0.11± 0.02 0.85± 0.06

Table 3: Baseline comparisons on D3IL and PushT tasks with suboptimal demonstrations.
RIC significantly outperforms both the behavior cloning and o"ine RL baselines, including a
baseline of a di#usion policy trained on a dataset filtered to only include successful trajectories.
Note that for this experiment, we evaluated RIC with an IQL critic instead of a TDMPC2
critic, as IQL value estimates were better when training on datasets containing a significant
number of unsuccessful demonstrations, rather than just with noisy trajectories.

We evaluate our approach on a set of dexterous manipulation tasks, including the PushT
benchmark introduced by Di#usion Policy (20), and D3IL stacking and sorting (16). These
benchmarks provide o"ine datasets of demonstrations for training. Notably, the D3IL
benchmarks provide simple success/failure sparse reward functions, allowing us to evaluate
our approach in a sparse reward scenario. We evaluate first on the original datasets, which
themselves contain degrees of suboptimality. For each of the tasks, we then generate
synthetic datasets to represent di#erent sources of suboptimality. We consider the following
two common sources of suboptimality in demonstrations: (1) a poor demonstrator, which
we emulate by using rollouts from a partially trained policy, and (2) action perturbations,
which simulate common challenges with noise in teleoperated demonstrations.

Jia et al. (16) establish baselines for various models on the D3IL tasks; for instance, their
DDPM-based di#usion policy achieves approximately 90% success on the block sorting task
using state-based observations (block and agent positions). Motivated by this success, we
also focus on state-based observations in our evaluation for these tasks. For PushT, we
evaluate policies using both state-based observations and images.

For each task, we compare Di#usion Policy (20), VQ-BeT (4), TDMPC2 (1), IQL (2) and
our proposed approach to provide a comprehensive evaluation spanning behavior cloning
and o"ine RL baselines. To maintain consistency with prior work, we train the baselines
for 500 epochs for each task. For RIC, we train the critic for 250k+ steps (for most critics
we train for less than 250k steps, but for a few of our experiments the critic required more
steps to converge to its lowest value loss). Due to a small critic architecture, critic training
is much faster than training the baselines. We then train a di#usion policy for 125k steps,
and run an additional 125k steps of fine-tuning with critic distillation. This ensures that the
total number of training steps in RIC is comparable to the baselines. Additionally, we train
three random seeds per task and evaluate maximum success rates using 50 trials per seed,
where each trial involves randomized block or target positions.

7
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Figure 3: Plotting the predicted TDMPC2 normalized critic value for actions with di#erent
levels of noise (with ω = 0.995). The critic was trained with action noise perturbed
demonstrations, but still assigns higher expected values to high quality actions and low
values to low quality (noisy) actions. Therefore, the critic gradient is useful for RIC in
guiding the policy away from noisy actions.

4.1 Experiment 1: Performance on Standard Datasets

We begin by evaluating performance on the original o"ine datasets provided for each task.
This experiment ensures our approach maintains or improves performance relative to existing
baselines. Our results are shown in Table 1. Our experiments showed slightly improved
performance on both the D3IL and PushT tasks, indicating that even o"ine datasets without
significant suboptimality can benefit from critic guidance. In this case, the improvement may
be due to small amounts of noise present in the datasets that could limit the performance of
imitation learning baselines.

4.2 Experiment 2: Robustness to Noisy Control Inputs

To simulate teleoperation errors, we introduce episode-level action noise into the datasets by
adding Gaussian noise uniformly to all actions within an episode. This mimics a consistent
operator error throughout the episode, which can occur from a controller miscalibration.
The noise magnitude ranges from 2% to 25% of the standard deviation of each action dimen-
sion, representing varying levels of teleoperation errors across di#erent action dimensions.
Importantly, we keep the original reward labels, assuming that the operator adapted to the
miscalibration and still successfully completed the task. We evaluate our method alongside
baselines on the D3IL stacking and PushT tasks, presenting results in Table 2. In this
instance, the Sorting task is omitted due to the policy being unsuccessful in completing
any of the sorting rollouts when noise is applied, to contrast with both the PushT and
D3IL-Stacking domains. Additionally, Figure 2 visualizes the performance of the baselines
and RIC, both with and without added action noise.

A key observation is the substantial performance gap—up to 44%—between o"ine RL
methods and RIC when action noise is added to the datasets. This discrepancy likely arises
because o"ine RL policies depend on learned Q-values, which can be sensitive to small
inaccuracies. At test time, slight errors in Q-value estimates may push the policy out of
distribution, where Q-values become highly unreliable. Noisy actions exacerbate this issue
by increasing the likelihood of such deviations. In contrast, behavior cloning (BC) policies
remain closer to the training distribution since they directly imitate dataset actions. However,
when the dataset itself contains noise, BC policies replicate these errors rather than correcting
them, as reflected in their performance drop in Figure 2 when action noise is introduced.

In contrast, RIC, which integrates behavior cloning with o"ine RL, benefits from both
approaches. Its imitation learning component helps keep it in distribution, while the critic
refines actions by providing corrective feedback. As shown in Figure 3, a trained TDMPC2
critic’s estimated value decreases as action noise increases. Despite being trained on noisy
data, the critic still supplies meaningful gradients that guide RIC away from poor actions.
The critic’s robustness to noise likely arises from the TDMPC2-learned world model, which

8
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generates latent rollouts that support learning a reliable value function. Consequently, RIC
achieves approximately a 10% improvement in success rate on average over a pure di#usion
policy on the noisy datasets.

4.3 Experiment 3: Robustness to Suboptimal Demonstrators

To evaluate robustness to suboptimal expert demonstrations, we generate new datasets using
a partially trained policy. Specifically, we use di#usion policies trained for 25K steps on
each task, resulting in datasets with success rates of 57.5% on D3IL sorting and 57.1% on
PushT. These synthetic datasets are kept the same size as the original datasets to ensure a
fair comparison. We then evaluate our method and the baselines on these datasets, with
results presented in Table 3.

In this experiment, we introduce an additional baseline: a di#usion policy trained on a
filtered version of the dataset that retains only successful trajectories. Filtering out failed
demonstrations is a common approach for handling suboptimal expert data, and our results
confirm that this strategy enhances di#usion policy performance compared to training on
the full suboptimal dataset. However, RIC is able to surpass this performance by leveraging
information from the entire dataset, including failed trajectories. Specifically, a critic is
trained on the full dataset, and imitation learning with critic guidance is then applied to the
filtered dataset.

Interestingly, we observed that using a TDMPC2 critic with RIC did not improve di#usion
policy performance in this setting. However, replacing it with an IQL (2) critic led to
a substantial 12-20% improvement over the best baseline, which was a di#usion policy
trained on the filtered dataset. We hypothesize that this is because the TDMPC2 critic may
overestimate value estimates, especially when learning from suboptimal data which includes
many failed demonstrations, whereas IQL learns a conservative value function that remains
more reliable in the presence of a large number of failed trajectories (i.e. if the success rate
< 70%). Future research could explore methods such as (22) to enhance the reliability of
TDMPC2 critic estimates when dealing with high proportions of unsuccessful trajectories.
This would allow us to retain the benefits of the TDMPC2 world model, enabling latent
rollouts and improving robustness to noise in the critic distillation.

5 Conclusion

We present our method, Robust Imitation with a Critic (RIC), as an approach to mitigate
one of the key challenges in behavior cloning: learning with suboptimal demonstration data.
By leveraging policy guidance from a model-based critic trained via O"ine RL, we show
that our method is robust to suboptimal demonstrations, similar to data-quality experiments
done in prior work (7; 21). We evaluate RIC by a) adding an episode level action bias
to expert demonstrations, and b) using a suboptimal policy to generate demonstration
trajectories with partial failures. Empirically, our results demonstrate that hybrid critic-
guided behavior cloning outperforms standard behavior cloning methods—even when filtering
out all suboptimal demonstrations—by leveraging value-based policy iteration alongside
the behavior cloning objective. However, we observe limitations when the demonstration
dataset contains a high proportion of failed demonstrations, where conservative Q-learning
approaches such as IQL (2) outperform the model-based O"ine RL critic we use, TDMPC2
(1). To address this limitation, future work could focus on developing a model-based critic
that mitigates action-value overestimation when used for policy guidance.
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