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ABSTRACT

Learning with noisy labels is a challenging task in machine learning. Most ex-
isting methods explicitly or implicitly assume uniform label noise across all sam-
ples. In reality, label noise can be highly non-uniform in the feature space, e.g.
with higher error rate for more difficult samples. Some recent works consider
instance-dependent label noise but they require additional information such as
some cleanly labeled data and confidence scores, which are usually unavailable or
costly to obtain. In this paper, we consider learning with non-uniform label noise
that requires no such additional information. We propose a cluster-dependent sam-
ple selection algorithm followed by a semi-supervised training mechanism based
on the cluster-dependent label noise. Inspired by stratified sampling, the proposed
sample selection method increases the consistency of sample space by forcing
the selection of clean samples from the entire feature space. Despite its simplic-
ity, the proposed method can distinguish clean data from the corrupt ones more
precisely and achieve state-of-the-art performance on most image classification
benchmarks, especially when the number of training samples is small and the
noise rate is high.

1 INTRODUCTION

Deep Neural Networks (DNNs) have achieved great success in various machine learning tasks, such
as in computer vision, natural language processing, and information retrieval. Unfortunately, their
successes heavily rely on the carefully labeled data, which are expensive and time-consuming to
collect. Online queries (Xie et al., 2019) and crowdsourcing (Yu et al., 2018) are cheap alternatives,
which would produce datasets with noisy labels. Furthermore, the datasets in medical applications
are typically small and domain expertise is required to annotate medical data, which however often
suffers from inter- and intra-observer variability (Han et al., 2020; Xue et al., 2022). Song et al.
(2022) reports that the ratio of corrupted labels in real-world datasets range from 8.0% to 38.5%.

Due to the universal approximation ability of DNNs (Hornik et al., 1989), they can easily memorize
and eventually overfit to the corrupted labels, leading to poor generalization (Zhang et al., 2017).
Efforts have been taken to robust learning paradigms under noisy labels (Frénay & Verleysen, 2014;
Han et al., 2020; Song et al., 2022). Generally, existing methods on learning with noisy labels can
be categorized into two groups: loss correction methods (Patrini et al., 2017; Xia et al., 2019; Yao
et al., 2020; Xu et al., 2019; Xia et al., 2020b; Berthon et al., 2021) and sample selection methods
(Han et al., 2018; Yu et al., 2019; Li et al., 2020; Bai et al., 2021).

Methods in the first category mainly model label noise with label transition matrix. Patrini et al.
(2017); Xia et al. (2019) and Yao et al. (2020) assumed that label noises were class-dependent
but instance-independent (note as class-dependent noise, CDN). Xia et al. (2020b) and Berthon
et al. (2021) proposed to model instance-dependent noise (IDN). Obviously, the IDN transition
matrices are more realistic (see Figure 2) but unidentifiable in general (Liu, 2022), which require a
large number of parameters to be estimated. Additional information (Berthon et al., 2021) or extra
assumption (Xia et al., 2020b) is required to estimate instance-dependent transition matrix.

The methods of second type are designed to select confident clean samples from noisy datasets
based on the memorization effect of DNNs (Arpit et al., 2017), which tend to learn simple patterns
first before fitting the corrupt samples. Han et al. (2018) and Yu et al. (2019) train two networks
simultaneously where each network selects small-loss samples to train the other one. Furthermore,
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(a) Moon Data (b) T-Revision (c) DivideMix (d) Clean data selected by
DivideMix

Figure 1: An illustration of the moon dataset with gradually changed noise rate. (a) The moon
dataset. The local noise rate varies from 0% to 45% gradually, with the average of 27.15%. (b)
Visualization result of T-Revision (Xia et al., 2019) on the noisy moon data. T-Revision performs
loss correction by the noise transition matrix estimated a slack variable. (c) Visualization result of
DivideMix (Li et al., 2020) on the noisy moon data. DivideMix selects clean data through the small-
loss trick and then train the network with the semi-supervised paradigm. (d) Clean data selected by
DivideMix. The method fails to select samples from the heavy noise region, which shows the in-
consistency of sample selection under non-uniform noise. Besides, Appendix A shows the effective
experiment results based on the proposed cluster-dependent sample selection strategy.

semi-supervised technologies was used to explore both confident clean samples (as labeled data)
and corrupt samples (as unlabeled data) (Li et al., 2020; Bai et al., 2021).
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Figure 2: The noise rate distribu-
tion of 200 clusters on CIFAR-10
Noise dataset Wei et al. (2022). Pre-
trained features are used to pro-
duces the clusters.

Existing works explicitly or implicitly rely on the assumption
of uniform noise, while the noise rate of real dataset range
from 25% ∼ 60% in Figure 2. The methods of CDN tran-
sition matrix explicitly consider all the samples in the same
class have same noise rate and methods of IDN need addi-
tional information and extra assumption, which are not real-
istic and have poor performance experimentally. Without ex-
plicit assumption of uniform noise rate, the small-loss trick
would still select simple patterns first but regard all samples
in the hard regions as corrupt data (though part of the samples
have correct labels), resulting in inconsistent sample distribu-
tion (Cheng et al., 2020). Notably, Liu & Wang (2021) reports
that increasing label noise to balance can return more accurate
models.

To empirically verify the poor performance of existing meth-
ods on non-uniform noisy data, we conduct a demo experi-
ment on moon data with gradually changed noise rate, shown in Figure 1. Non-uniform label noise
(IDN, noise rate range from 0% to 45%) is added to the moon dataset and different methods (Xia
et al., 2019; Li et al., 2020) are employed to learn the noise-robust classifier. As illustrated in Fig-
ures 1b and 1c, both existing loss correction and sample selection methods fail to classify the moon
dataset. Clearly, T-Revision with transition matrix explicitly suppose that all the samples share the
same noise rate, which is contradictory to the real noise distribution and leads to the poor perfor-
mance. Although the small-loss trick of DivideMix does not require the same noise rate, no sample
in the high noise rate region is selected despite the existence of correct samples, resulting in poor
decision boundary.

To address the above problem of inconsistent sample selection problem, we assume that label noise
is dependent on the clusters of features (Cluster-Dependent Noise, CluDN, Definition 3.1 for more
details), i.e. the samples share the same noise rate in the same cluster while have different noise rate
among clusters. Based on the idea of stratified sampling, we propose a cluster-dependent sample
selection algorithm followed by a semi-supervised training mechanism, which is named as Clus-
terMix. Cluster-dependent sample selection and semi-supervised training are conducted in turn and
precise clean data would be selected progressively. Based on the cluster-dependent sample selection,
samples in both simple and hard regions can be selected which eliminate the inconsistency defect
of existing sample selection methods. Experimental results on real non-uniform datasets verify the
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effectiveness of our proposed method, which outperforms all the baseline methods when the training
set is small and noise rate is high.

The rest of the paper is organized as follows. In Section 2, we review the related work briefly. In
Section 3, we first give the our intuition analysis of cluster-dependent label noise and then introduce
our proposed ClusterMix algorithm in details. Section 4 displays the experimental results on various
image classification benchmarks. Finally, concluding remarks are given in Section 5.

2 RELATED WORK

Learning with label noise has been extensively studied (Frénay & Verleysen, 2014; Han et al., 2020;
Song et al., 2022). Generally, existing methods on learning with noisy labels can be categorized into
two groups: loss correction methods and sample selection methods. The loss correction methods aim
to design risk-consistent training mechanism based on loss correction, while the sample selection
methods try to select clean samples from the entire noisy dataset and recently combine with semi-
supervised learning. As the experimental results demonstrates the effectiveness of sample selection
methods, we will focus on the sample selection methods in this paper.

Learning with loss correction. To deal with label noise, methods have been proposed to model the
relationship between clean labels and noisy labels by transition matrix and build loss functions to
correct it. Patrini et al. (2017); Goldberger & Ben-Reuven (2017); Xia et al. (2019) and Zhu et al.
(2021) provide methods to estimate transition matrix and use forward and backward procedures for
loss correction. Besides, Xu et al. (2019) proposes a information-theoretic loss function, which
is provably robust to instance-independent label noise. However, the instance-independent label
noise used in these methods is inconsistent with the non-uniform label noise in reality. To deal with
the instance-dependent label noise, methods (Xia et al., 2020b; Yang et al., 2021; Berthon et al.,
2021) estimate a separate transition matrix for each samples. Nevertheless, the number of matrices
parameters is large, resulting in large estimation error in practical applications. For example, given
a dataset with 10000 samples and 10 classes, 106 parameters are needed. Furthermore, Xia et al.
(2020a); Zhu et al. (2021) and Zhang et al. (2021) propose to estimate cluster-dependent transition
matrices. Although these methods have made certain progress, they are hard to handle a large
number of classes and struggling to estimate accurately for heavy noise.

Sample selection. The second strand tries to select clean samples from the noisy dataset, by exploit-
ing the memorization effect of DNNs (Arpit et al., 2017). A common method is to treat samples with
small loss as clean ones (Shen & Sanghavi, 2019). To utilize the property, Co-teaching (Han et al.,
2018) train two networks simultaneously and let them select clean samples for each other within
each mini-batch. Co-teaching+ (Yu et al., 2019) improves Co-teaching by maintaining disagree-
ment between the two networks. MentorNet (Jiang et al., 2018) use a mentor network to select
confident clean samples for the training of student network. To utilize the corrupt samples, some
works (Li et al., 2020; Bai et al., 2021; Chen et al., 2021) treat un-selected data as unlabeled data and
conduct semi-supervised learning (SSL) mechanism to train networks. DivideMix (Li et al., 2020)
employs two Gaussian Mixture Model (GMM) to select clean samples and MixMatch (Berthelot
et al., 2019) strategy to leverage corrupt examples with SSL frameworks. PES (Bai et al., 2021) se-
lect confident clean samples by progressive early stopping. SOP (Liu et al., 2022) propose to model
the label noise and learn to separate it from the data by over-parameterization. However, existing
methods usually adopt unified selection criteria across all samples, where all the hard samples would
be regarded as corrupt ones, resulting in inconsistent data space. In contrast, our method is designed
to select samples from each cluster separately. With variable selection criteria on different clusters,
our method is able to better exploit the whole data space and thus achieve superior performance.

3 METHOD

3.1 PRELIMINARIES

Suppose (X,Y ) ∈ (X ,Y) are drawn from an unknown joint distribution PD, where X ⊂ Rd is the
feature space and Y ⊂ {0, 1}C is the clean label space in a one-hot manner, where d is the feature
dimension and C is the number of categories. Then D = {(xn, yn)}n∈[N ] is a clean training dataset
with N samples.

3



Under review as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Data points visulaization with class labels

(a) Data points with class index.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Data points visulaization with cluster labels

(b) Data points with cluster index.
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Figure 3: Visualization of CIFAR-10 data points and the noise distribution of CIFAR-10N Worst
Label. The data points are obtained by performing T-SNE dimension reduction algorithm on 512-d
features extracted by Resnet 18. The noise rate for each point is calculated by the average corrupt
rate among its cluster.

Instead of observing clean label Y , people can only collect noisy label Ỹ in various real-world
scenarios. Let noisy dataset D̃ = {(xn, ỹn)}n∈[N ]. We denote ỹn as corrupt label if ỹn ̸= yn and
clean otherwise. The noise rate for sample x is denote as τ(x) = Pr(ỹ ̸= y|x). And the noise rate
for the whole dataset is,

τ(D̃) = | {(xn, ỹn) : (xn, ỹn) ∈ D̃ & ỹn ̸= yn} |
| D̃ |

In the sample selection methods, the entire dataset D̃ would be grouped to K clusters and finally
divided into a clean subset D̃clean = {(xn, ỹn) : (xn, ỹn) ∈ D̃ & ỹn = yn} and a corrupted
subset D̃corrupt = {(xn, ỹn) : (xn, ỹn) ∈ D̃ & ỹn ̸= yn}. Our aim is to learn a robust classifier
f(·, θ) : X → Y based only on corrupted dataset D̃.

3.2 INTUITIONS

As shown in Figure 2, the CDN model, which assumes that all samples in the same class share same
noise rate, is unrealistic in general scenarios. Besides, IDN model is proposed to fit the real noise
but suffers the non-identifiability (Liu, 2022). Specifically, different combination of clean posterior
P (Y |X) and instance noise rate τ(X) can lead to the same noisy posterior P (Ỹ |X). To make a
trade-off between flexibility and identifiability, we assume that the real label noise is dependent on
the clusters. The samples in the same cluster share the same noise rate, as stated in Definition 3.1.

Definition 3.1 (Cluster-dependent Label Noise Model). Suppose a noisy dataset D̃ can be divided
into multiple clusters based on features. Cluster-Dependent Noise Model (CluDN) assumes that
the samples in each cluster share the same corrupt probability and the corrupt probabilities among
clusters can vary greatly.

In the paper, clusters are treated as the finer hierarchy than the classes (illustrated in Figures 3a
and 3b), i.e. one class can contain multiple clusters. On the contrary, clusters are not always the
sub-group of the classes, as the clusters on the class boundary can cross two- or multi- classes.
To further explore the validity of the proposed noise model, corresponding noise rate distribution
are visualized in Figure 3c, which illustrates the non-uniform noise distribution within each class.
Besides, Appendix E displays several images of two example clusters, which gives a potential source
of non-uniform noise on real dataset.

To design a robust learning mechanism under non-uniform noise, we combine the CluDN model
with existing sample selection methods. In CluDN model, samples among different clusters have dif-
ferent patterns and thus unified selection criteria among clusters is inappropriate under non-uniform
noise. Based on the idea of stratified sampling, we propose to select clean samples for each cluster
separately and aggregate them together to get the clean data D̃clean and corrupt data D̃corrupt. More
details will be discussed in the following subsection.
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Figure 4: An overview of proposed ClusterMix, which is robust to the non-uniform noise. (a) is the
semi-supervised co-training paradigm with cluster-dependent data division modules. (b) presents
the details of the cluster-dependent data division module. Using the small-loss trick, A Gaussian
Mixture Model (GMM) will divide the data into clean and corrupt parts for each cluster separately.
Afterwards, the clean and corrupt data in all clusters will merge respectively.

3.3 CLUSTERMIX: SEMI-SUPERVISED LEARNING WITH CLUSTER-DEPENDENT SAMPLE
SELECTION

Based on CluLN, we propose ClusterMix, a robust semi-supervised algorithm with cluster-
dependent sample selection module. An overview of the framework is shown in Figure 4. To
avoid the accumulation of confirmation bias in self-training, we train two identical network with
different random initialization simultaneously, following Han et al. (2018); Yu et al. (2019) and Li
et al. (2020).

As shown in Figure 4, the algorithm consists of two parts, i.e. cluster-based data division module
and SSL training paradigm, specifically MixMatch (Berthelot et al., 2019). The cluster-dependent
data division module will first divide the entire dataset D̃ into clean subset D̃clean and corrupt subset
D̃corrupt based on cluster and loss information. Then in the second part, the clean set will be treated as
labeled data while corrupt one as unlabeled data. The SSL module use the label co-refinement and
co-guess techniques (Li et al., 2020) to generate pseudo labels and MixMatch technique (Berthelot
et al., 2019) to perform SSL regularization.

Cluster-Dependent Data Division. As shown above, the samples in different clusters have different
noise rate. And samples with high noise rate are more difficult to classify, i.e. all of them would have
larger losses. Thus, the samples in the ambiguous feature space would all be regarded as corrupted
instances, resulting in inconsistent data distribution. To address the challenge of non-uniform label
noise, we propose to select clean and corrupt samples within clusters.

Inspired by the idea of divide-and-conquer, we propose to first divide the entire dataset into several
cluster-based subset. According to the CluDN model, the samples in the same cluster have the
same noise rate and thus have comparable prediction losses. Therefore by using the small-loss trick
on each cluster, an independent 2-components GMM is used to fit the per-sample losses and the
samples clean probability ωi = p(g|li), where g is the component with lower mean and li is the loss
of sample i. Finally, the clean samples (ωi > 0.5) in all clusters will merge together as the labeled
data while the corrupted ones as the unlabeled data.

The visualization results in Appendix C illustrate the effectiveness of the proposed cluster-dependent
sample selection strategy, which actually adds another dimension and thus have variable criteria for
different clusters. The proposed method can select more precise and adequate clean samples and
thus achieve better evaluation accuracy.
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Algorithm 1: Cluster-Dependent Data Division Module.

Input: per-sample losses L, data clusters Clusters, Noisy dataset D̃ = {(xn, ỹn)}n∈[N ],
Clusters number K.

/* Divide the entire dataset and losses into clusters. */

1 D̃1, . . . D̃K = DataCluster(D̃,Clusters) ;
2 L̃1, . . . L̃K = LossesCluster(L,Clusters) ;
3 for k = 0; k < K; k+ = 1 do

/* Clean and corrupt samples selection for each cluster. */

4 D̃k
clean, D̃k

corrupt = GMM(D̃k,Lk) ;
5 end
/* Merge selected data together. */

6 D̃clean = Merge(D̃1
clean, . . . , D̃K

clean) ;
7 D̃corrupt = Merge(D̃1

corrupt, . . . , D̃K
corrupt) ;

8 return D̃clean, D̃corrupt.

Algorithm 2: ClusterMix: SSL with Cluster-Dependent Sample Selection
Input: Classifier f1(·) with parameters Θ1, f2(·) with parameters Θ2; feature extractors g1(·),

g2(·); Cluster function h(·), Noisy dataset D̃ = {(xn, ỹn)}n∈[N ], Clusters number K,
Training epochs E.

1 WarmUp(D̃, Θ1, Θ2);
2 for e < E do
3 L1,Clusters1 = CrossEntropyLoss(f2(X), Y ), h(g2(X),K);
4 L2,Clusters2 = CrossEntropyLoss(f1(X), Y ), h(g1(X),K);
5 for i = 1, 2 do

/* Cluster-dependent data division module. */

6 D̃(i)
clean, D̃

(i)
corrupt = DataDivision(Li,Clustersi, D̃,K) ;

/* Label co-refinement and co-guessing. */

7 X ← D̃(i)
clean, U ← D̃(i)

corrupt ;
8 X ′,U ′ ← X ,U // Samples MixMatch in mini-batch.

/* Co-training. (∼ i = 2 if i = 1, vice versa.) */
9 Training parameters Θ∼i with CE loss on X ′ and MSE loss on U ′.

10 end
11 end

Pseudo label generation. To account for the label noise, label co-refinement is employed to modi-
fied the labeled data and label co-guessing is used to generate pseudo label for unlabeled data using
the aggregate output of two networks. More details are shown in Li et al. (2020) and the step is
used in Algorithm 2, line 7. By the label co-refinement and co-guessing above, pseudo labels are
generated for both labeled dataset X and unlabeled dataset U .

Semi-supervised learning - MixMatch. With the generated pseudo labels, MixMatch (Berthelot
et al., 2019) is conducted for SSL, which utilizes unlabeled data by combining consistency regular-
ization and entropy minimization with the MixUp (Zhang et al., 2018) augmentation. For a pair of
samples (x1, ŷ1) and (x2, ŷ2), the mixed sample (x′, y′) is computed by

λ ∼ Beta(α, α), λ′ = max(λ, 1− λ),

x′ = λ′x1 + (1− λ′)x2, y′ = λ′ŷ1 + (1− λ′) ŷ2.

The mixed sets are denoted as X ′ and U ′. Finally parameters Θ1,Θ2 are trained with cross-entropy
(CE) loss on X ′ and mean-squared-error (MSE) loss on U ′.

Clustering. Different from the moon data shown in Figure 1 which can be grouped on the raw
2-dimensional data space, we use the features extracted by networks to divide the general dataset
into clusters. Clustering and network training take turns in each epoch, where clusters are used
for robust feature extraction and conversely extracted features would benefit the precise clustering.
Various clustering methods have been proposed recently, e.g. partition-based clustering, spectral
clustering, manifold clustering, and subspace clustering etc. As our method is robust to the clustering
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Table 1: Test accuracy (%) with realistic label noise on CIFAR-N. For CIFAR-10N, we use noisy
label aggregate (τ = 9.03%), random 1 (τ = 17.23%), and Worst (τ = 40.21%). And for CIFAR-
100N, we use the fine noisy label with τ = 40.20%. Bold means the highest reported accuracy and
underline is the second highest accuracy.

Methods CIFAR-10N CIFAR-100N
Aggregate (9.03%) Random 1 (17.23%) Worst (40.21%) Fine (40.20%)

CE (Standard) 89.87 84.15 76.86 55.96
T-Revision 89.39 87.99 82.10 54.45

PTD 89.93 89.83 80.16 16.01
ELR+ 94.81 94.54 90.89 67.04

DivideMix 95.15 95.12 92.71 71.13
SOP 95.61 95.28 93.24 67.81

ClusterMix(ours) 95.63 95.46 93.47 71.60

algorithm, we adopt K-Means for convenience. Besides, experimental result shows the robustness
of our method to the clusters number.

4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTATION DETAILS

Datasets: We evaluate our method on three real noisy dataset CIFAR-10N, CIFAR-100N (Wei et al.,
2022), Clothing1M (Xiao et al., 2015), and (mini) WebVision (Li et al., 2017). CIFAR-10N and
CIFAR-100N equipe the training sets of CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009) with
human-annotated real-world noisy labels coleected from Amazon Mechanical Turk. Both CIFAR-
10 and CIFAR-100 contain 50K training images and 10K test images with size 32×32. CIFAR-10N
provides several set of real-world noisy labels for training set, i.e. Aggregate (noise rate τ = 9.03%),
Random 1(τ = 17.23%), and Worst (τ = 40.21%) etc. And CIFAR-100N provides noisy labels,
denoted as Fine (τ = 40.20%). To further discover the performance under different size of training
set, we randomly select training samples from CIFAR-10N dataset, where the noise rate barely
changes (variation range < 1%), as shown in Table 2. Clothing1M is a large-scale clothing dataset
with real-world noisy labels, whose images are crawled from several online shopping websites and
labels are generated from the surrounding texts. In our setting, we use 1M training images with
noisy label for training and 10K test images with clean label for evaluation. WebVision contains
2.4 million images crawled from the web whose training set contains many real-world noisy labels.
Then following previous work (Li et al., 2020; Chen et al., 2019), baseline methods are compared on
the first 50 classes of the Google image subset (approximately 66 thousand images). Models trained
on mini WebVision are evaluated on both WebVision and ImageNet ILSVRC12 validation set.

Baselines: As introduced before, existing methods consist of loss correction and sample selection
methods. To make comprehensive comparison, We select state-of-the-art methods from different cat-
egories. Specifically, (1) CE (Standard): standard training with cross-entropy loss. (2) T-Revision
(Xia et al., 2019): loss correction with label transition matrix estimated without anchor points. (3)
PTD (Xia et al., 2020b): estimate part-dependent label noise based on non-negative matrix factoriza-
tion (NMF). (4) ELR+ (Liu et al., 2020): prevent memorization of the false labels by early-learning
regularization. (5) DivideMix (Li et al., 2020): uses data division and MixMatch (Berthelot et al.,
2019) mechanism to leverage corrupt data. (6) SOP (Liu et al., 2022): model label noise via an-
other sparse over-parameterization and separate the underlying corruptions by exploiting implicit
algorithmic regularizations .

Network structure and parameters: Our method is implemented by PyTorch v1.12. Baseline
methods are implemented by the public codes with the same hyper-parameter settings in the original
papers. For the methods with multiple networks, final test accuracy is evaluated with the average
among the networks. To guarantee the comparability, we use the same backbone networks among
the baseline methods for the same task.

For the CIFAR-10/100N datasets, we use 18/34-layer PreAct ResNet as backbone (He et al., 2016),
following Li et al. (2020). The networks are trained for 300 epochs and SGD is used with a mo-
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Table 2: Test accuracy (%) with different training samples on CIFAR-10N. The training data are
randomly sampled from CIFAR-10N Worst set, with balanced categories and noise rate τ = 40%±
1%. N is the number of training data. Bold means the highest reported accuracy and underline is
the second highest accuracy.

Methods CIFAR-10N (τ ≈ 40%)
N = 500 2000 5000 10000 20000 40000 50000

CE (Standard) 32.54 41.05 49.58 58.61 63.84 74.33 76.86
T-Revision 28.54 29.64 32.69 63.47 77.37 80.66 82.10

PTD 18.99 26.59 39.01 65.85 66.69 70.97 80.16
ELR+ 38.39 56.29 67.24 75.26 84.30 89.77 90.89

DivideMix 36.52 58.43 70.03 77.77 87.38 91.83 92.71
SOP 37.21 54.68 67.43 75.15 85.52 91.88 93.24

ClusterMix(ours) 41.51 62.12 74.27 83.59 89.44 92.63 93.47

mentum of 0.9 and a weight decay of 0.0005. The initial learning rate is set as 0.02 and reduced
by a factor of 10 after the 150-th epoch. The batch size is 128, clustering interval is 10 epochs, and
K-Means is used as cluster method. 10 warm-up epochs are used for CIFAR-10 and 30 warm-up
epochs for CIFAR-100. For Clothing1M datasets, we use a 50-layer ResNet with ImageNet pre-
trained weights. The networks are trained for 100 epochs and SGD with a momentum of 0.9, a
weight decay of 0.001 is used. The initial learning rate is set as 0.002 and reduced by a factor of
10 after the 50-th epoch. The batch size is 32, clustering interval is 10 epochs, K-Means is used as
cluster method, and 5 warm-up epochs are used. As Clothing1M is a large dataset with 1 million
images, we randomly select 1000 batches with in each epoch. For (mini) WebVision dataset, we
use the inception-resnet v2 (Szegedy et al., 2017), following the previous work. The networks are
trained for 100 epochs and SGD with a momentum of 0.9, a weight decay of 0.001 is used. The
initial learning rate is set as 0.01 and reduced by a factor of 10 after the 50-th epoch. The batch size
is 32, clustering interval is 10 epochs, K-Means is used as cluster method, and 5 warm-up epochs
are used. More parameters keep same with Li et al. (2020).

4.2 CLASSIFICATION ACCURACY EVALUATION

In this section, experiment results are shown on original CIFAR-N datasets, CIFAR-N datasets with
different training samples, CIFAR-10 dataset with synthetic noise, clothing1M dataset, and We-
bVision dataset etc. More experiments are shown in the Appendix. Specifically, accuracy curve
in Appendix D, experiments with synthetic label noise in Appendix F, sensitivity analysis for the
number of clusters K and cluster methods in Appendix G, and contrast experiments for the sample
selection module and the training module in Appendix H.

Experiment results on original CIFAR-N datasets. We first evaluate the test accuracy on the
original CIFAR-N datasets, as shown in Table 1. Specifically, we select aggregate (τ = 9.03%),
random 1 (τ = 17.23%), and Worst (τ = 40.21%) noisy label for CIFAR-10N and fine (τ =
40.20%) noisy label for CIFAR-100N. We report the averaged test accuracy over the last 10 epochs.
In the original large dataset, our method reach state-of-the-art accuracy and outperforms slightly.

Experiment results on CIFAR-10 with different number of training samples. As the non-
uniform noise would have greater impact with less training samples, we conduct experiments on
CIFAR-10N Worst dataset with different number of training samples (500 –50000), as shown in Ta-
ble 2. The samples are randomly sampled from the CIFAR-10N Worst dataset. The categories keep
balance and the noise rate holds in 40%± 1%. We report the averaged test accuracy over the last 10
epochs. ClusterMix outperforms state-of-the-art methods with various number of training samples.
Notably, our method make greater improvement when training set goes smaller. The results demon-
strate the effectiveness of our approach to suppress the inconsistent data space problem after sample
selection, as the problem has greater impact when the training set is smaller.

Experiment results on Clothing1M and WebVision datasets. To validity the effectiveness of the
proposed method on more general noisy datasets, experimental results on Clothing1M and (mini)
WebVision datasets are shwon in Table 3. For Clothing1M, we design two experiments with different
training samples: Clothing1M-I: Training with all 1 million samples available. Clothing1M-II:
Training with randomly selected 5000 samples. The two tasks evaluate the performance of our
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Table 3: Experimental results for Clothing1M and (mini) WebVision datasets. Clothing1M-I: Train-
ing with all 1 million samples of Clothing1M. Clothing1M-II: Training with randomly selected 5000
samples. The test accuracy (%) is evaluated on Clothing1M validation set, WebVision validation set,
and ILSVRC12 validation set respectively. * means the result is copied from the original paper. Bold
means the highest reported accuracy and underline is the second highest accuracy.

Methods Clothing1M-I Clothing1M-II WebVision ILSVRC12
CE (Standard) 69.55 45.11 - -

T-Revision 74.18* 40.32 - -
PTD 71.67* 25.33 - -

ELR+ 74.81* 60.67 77.78* 70.29*
DivideMix 74.76* 56.57 77.32* 75.20*

SOP 73.50* 48.78 76.60* 69.10*

ClusterMix(ours) 74.34 61.36 78.19 75.54

Table 4: Test accuracy (%) on CIFAR-10 dataset with synthetic class-dependent non-uniform label
noise. The class-dependent noise randomly selects five classes as low-noise classes (with noise rate
τlow) and the others as high-noise ones (τhigh). The second row of the table means the skewness
(τlow, τhigh) of noise rates. The generation details of the noisy labels are discussed in Appendix F.
Bold means the highest reported accuracy and underline is the second highest accuracy.

Methods CIFAR-10 (Average noise rate: 40%)
(0%, 80%) (10%, 70%) (20%, 60%) (30%, 50%) (40%, 40%)

CE (Standard) 63.93 66.83 70.98 73.95 78.99
T-Revision 69.57 73.01 76.72 81.03 84.11

PTD 69.73 70.93 75.86 78.98 82.15
ELR+ 81.13 85.32 89.98 91.32 92.97

DivideMix 84.05 87.29 92.14 93.63 94.41
SOP 80.95 85.94 91.32 93.75 94.52

ClusterMix(ours) 87.04 91.88 93.47 94.82 95.47

method with different training data size. Although our method does not achieve the state-of-the-art
accuracy on the very large dataset (in Task I), it outperforms all baseline methods when the number
of samples reduces to a smaller quantity (in Task II). For (mini) WebVision dataset, we evaluate
the models, which are trained on the mini WebVision training set, on WebVision validation set and
ILSVRC12 validation set. Our method performs well on the both validation sets.

Experiments on CIFAR-10 dataset with synthetic label noises. To evaluate the performance
under different skewness of the noise distribution, we conduct experiments on CIFAR-10 dataset
with synthetic label noises. Table 4 shows the test accuracy for class-dependent label noise with
varying skewness. Empirical results verify the effectiveness of the proposed method on the non-
uniform noise. Besides, The results of symmetric and asymmetric noise are also available in Table 5,
Appendix F.

5 CONCLUSION

Due to the memorization effect of DNNs (Arpit et al., 2017), the small-loss trick would select simple
patterns (which usually have lower noise rate) first but regard all samples in the hard regions as
corrupt data, resulting in inconsistent data space. Furthermore, the inconsistency problem would be
harder when the training set is small and the label noise is heavy.

Therefore in this paper, we propose a novel ClusterMix algorithm to solve the inconsistent sam-
ple selection problem. ClusterMix combines the cluster-dependent sample selection method with a
semi-supervised learning mechanism to distinguish and leverage the corrupt labels. Based on the
idea of stratified sampling, our proposed cluster-dependent sample selection method would divide
the dataset with variable criteria for samples in different clusters, which guarantees the sample se-
lection from the entire sample space. Experiment results demonstrate that our method can suppress
the inconsistent sample selection problem effectively and our ClusterMix outperforms all baseline
methods on the datasets with a small number of training samples.
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Ethics Statement. In this paper, our studies are not related to human subjects, practices to data
set releases, potentially harmful insights, potential conflicts of interest and sponsorship, privacy
and security issues, legal compliance, and research integrity issues. In real Scenarios, discrimina-
tion/bias/fairness may also result in the non-uniform annotated noisy labels. Due to the memoriza-
tion effect of DNNs (Zhang et al., 2017), general training paradigms would also memorize the group
bias of the annotators. Our proposed method makes a step for the robust and unbiased training with
the non-uniform label noise.

Reproducibility. Experimental details are discussed in Section 4.1 and we will release the code
upon acceptance.
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A EXPERIMENT RESULTS ON MOON DATA OF OUR CLUSTER-DEPENDENT
SAMPLE SELECTION

As shown in Figure 1, existing methods cannot solve the classification problem of moon data on
non-uniform label noise. Figure 5 shows the classification result and sample selection result of our
cluster-dependent sample selection. Based on the idea of stratified sampling, we select clean samples
from each cluster separately, using the small-loss trick and clean-label-dominate-the-cluster trick.
The clean-label-dominate-the-cluster trick means that there are more cleanly labeled data in each
cluster.

(a) Classification result (b) Clean data (c) Corrupt data

Figure 5: Experimental results on moon data of our cluster-dependent sample selection mechanism.
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B NOISE RATE DISTRIBUTION ON EACH CLASS

As a supplementary of Figure 2, Figure 6 shows the noise rate varies not only on the entire dataset
but also on each separate class. The results in Figure 6 illustrates the reality of our cluster-dependent
sample selection rather than class -dependent sample selection.
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Figure 6: CIFAR-10 N Worst noise rate distribution on each class.
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C ILLUSTRATION OF THE PROPOSED SAMPLE SELECTION STRATEGY

Figure 7 illustrates the effectiveness of the proposed cluster-dependent sample selection strategy. In
the process of the small-loss samples selection, the proposed method adds another dimension and
thus have variable criteria for different clusters. The proposed method can select more precise and
adequate clean samples and thus achieve better evaluation accuracy. Besides, Figure 7b also shows
the variability of the noise distribution inside each class.

(a) Clusters are sorted by the selection criteria. (b) Clusters are first grouped by the main classes and
then sorted by the selection criteria.

Figure 7: Comparison of the proposed cluster-dependent sample selection strategy and the naive
sample selection. The red lines are the decision lines for the clean sample selection, i.e. The samples
on the left of the lines will be selected as clean samples in the algorithms. In Figure 7a, the clusters
are sorted by the selection criteria of the proposed cluster-dependent strategy. And in Figure 7b, the
clusters are first sorted by main class index (The clusters between the adjacent green lines) and then
the selection criteria of the proposed method.

D ACCURACY CURVE

Figure 8 shows the accuracy curve and standard deviation of the methods with different number of
training samples. Our method performs slightly high than the baseline methods with large number
of training samples. And the gap goes larger when the training samples are inadequate.

Figure 8: Accuracy curve on CIFAR-10N Worst dataset. ClusterMix (ours), DivideMix (baseline),
and SOP (baseline) are shown in the figure. N denotes the number of training samples. The lines
shows the mean values and shadows represent the std values with 5 repeats for each setting.
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E EXAMPLE IMAGES OF CLUSTERS ON CIFAR-10 DATASET

Figure 9 shows several bird images of two clusters. The images in the same cluster share similar
patterns and thus have similar corrupt probabilities. Conversely, the images in different clusters have
far different patterns and have very different noise rate. The visualization of the real clusters further
verify the validity of the proposed non-uniform noise model.

Cluster 1
Noise rate: 21%

Cluster 2
Noise rate: 60%

Figure 9: Example images of two bird clusters from CIFAR-10 dataset. The images in cluster 1 have
similar simple patterns and would share similar lower corrupt probabilities. The images in cluster 2
have hard patterns and would have higher noise rate.

F EXPERIMENTS WITH SYNTHETIC LABEL NOISE

F.1 GENERATION OF THE SYNTHETIC NOISE

The generation of symmetric and asymmetric label noise is strictly following Li et al. (2020). Specif-
ically, the symmetric label noise flips the labels in the uniform way, i.e. all the label share the same
noise rate and flip to the other classes in a symmetric manner. The asymmetric label noise also flips
labels with the same probabilities but just flip to the specific class for each class. The experiment
results are shown in Table 5.

To further explore the methods with non-uniform noise, we synthesise a new class-dependent non-
uniform noise on CIFAR-10 dataset. Specifically, we randomly select five classes as the low-noise-
rate classes (noise rate is denoted as τlow) and the other as the high-noise-rate ones (noise rate is
denoted as τhigh). Then the noisy labels are generated with corresponding classes noise rates. The
experiment results are shown in Table 4. In this experiments, we vary the skewness of the classes
noise rate while keep the average noise rate the same. The experiment results are shown in Table 4.

F.2 RESULTS FOR THE SYMMETRIC AND ASYMMETRIC LABEL NOISE

Table 5 shows the experimental results on synthetic symmetric and asymmetric noise. From the
experimental results on various synthetic noises (Tables 4 and 5), our proposed method can perform
well under various distributional scenarios, especially when the noise rate is non-uniform and the
noise is heavy. The empirical results verify the effectiveness of our method.
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Table 5: Test accuracy (%) on CIFAR-10 dataset with synthetic symmetric and asymmetric label
noise. Bold means the highest reported accuracy and underline is the second highest accuracy. *
means the result is copied from the related papers.

Methods CIFAR-10
Sym. 20% Sym. 40% Sym. 60% Sym. 80% Sym. 90% Asy. (40%)

CE (Standard) 86.81 81.42 76.32 62.90 42.71 74.32
T-Revision 88.10 84.11 79.12 60.32 20.64 80.03

PTD 88.76 82.15 75.77 39.32 16.63 84.12
ELR+ 94.60 93.58 92.82 91.10 75.20 92.07

DivideMix 95.97 94.82 93.40 92.76 75.40 92.05
SOP 93.18* 90.09* 86.76* 68.32* 67.78 91.43

ClusterMix(ours) 96.35 95.50 95.36 91.54 77.94 92.63

G SENSITIVITY ANALYSIS

In this section, we investigate the hyper-parameter sensitivity for the number of clusters K and
cluster methods, respectively. For convenience, all the experiments in this section are conducted
on the CIFAR-10N Worst dataset with 5000 randomly selected training samples. The 5000 selected
samples are same with experiments in Table 2. The test accuracy and training time are reported from
the same NVIDIA GeForce RTX 3090 GPU.

Different number of clusters. We first evaluate the test accuracy and training time for different
number of clusters in our ClusterMix. The results are shown in Table 6. Both the test accuracy
and training time increase with the increase of the number of clusters K, except K > 800. The
experiment illustrate the effectiveness of stratified sampling. However, the training time and number
of samples limit the number of clusters not too much. To balance the training effect and time,
we prefer to select a intermediate value, which is 200 clusters (for 5000 samples) in the previous
experiments.

Table 6: Test accuracy (%) and training time (h) with different number of clusters. The experiments
are conducted on CIFAR-10N Worst dataset with 5000 training samples.

#Clusters K 1 5 10 50 100 200 500 800 1000

Accuracy 69.78 70.35 71.02 72.85 73.30 74.27 75.26 76.03 74.37

Training time 2.2h 2.3h 2.4h 2.6h 2.7h 3.0h 4.5h 5.0h 5.5h

Different clustering methods. Second, we analyse the sensitivity for the choices of different clus-
tering methods. The results are shown in Table 7. Specifically, we compare the test accuracy and
training time of four different clustering methods in our ClusterMix. K-Means, K-Means++, and
Ward Hierarchical clustering require a specified number of cluster centers, which is set as 100 in
the experiment. In contrast, Density-Based Spatial Clustering of Applications with Noise (DB-
SCAN) can determine the number of clusters by itself. The experiment results demonstrate that
our method achieves similar test accuracy and training time among different clustering algorithms,
except DBSCAN. Therefore, we adopt K-Means as our clustering algorithm in all other experiments
for convenience.

Table 7: Test accuracy (%) and training time (h) with different clustering methods. The experiments
are conducted on CIFAR-10N Worst dataset with 5000 training samples.

Methods K-Means K-Means++ Hierarchical clustering DBSCAN

Accuracy 74.27 74.10 74.25 70.84

Training time 3h 3h 3h 2.5h
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H CONTRAST EXPERIMENTS FOR THE SAMPLE SELECTION MODULE AND
THE TRAINING MODULE

To evaluate the effectiveness and applicability of the proposed cluster-dependent sample selection
method, we combine the basic small-loss trick/cluster-dependent sample selection with two different
training mechanisms (i.e. supervised learning and semi-supervised learning), as shown in Table 8.
The experimental results validate the effectiveness and applicability of the proposed method.

• Effectiveness. Compared with basic small-loss trick, the proposed cluster-based sample
selection strategy can improve the performance both in the supervised and semi-supervised
mechanisms. Besides, the proposed method plays a greater role when the training samples
are inadequate.

• Applicability. The proposed cluster-based sample selection strategy can be used to two
label noise learning methods (one is supervised and the other is semi-supervised). Both of
methods can improve the performance over the basic small-loss trick.

Table 8: Contrast experiments for the sample selection module and the training module. SL: super-
vised learning, SSL: semi-supervised learning. All the experiments are conducted on CIFAR-10N
Worst dataset, as discussed in Table 8. N means the number of training samples. The first column
of the table shows the sample selection methods and the second row shows the training mechanisms.
And the number values are the experiment results of the combination of corresponding sample se-
lection methods and training mechanisms.

N = 5000 N = 50000

SL SSL SL SSL

no selection 49.58 - 76.86 -
small-loss trick 66.41 70.03 84.47 92.71

cluster-dependent (ours) 71.96 74.27 88.53 93.47
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