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Abstract

As machine learning techniques are increasingly used to make societal-scale de-
cisions, model performance issues stemming from data-drift can result in costly
consequences. While methods exist to quantify data-drift, a further classification
of drifted points into groups of similarly anomalous points can be helpful for prac-
titioners as a means to combating drift (e.g. by providing context about how/where
in the data pipeline shift might be introduced). We show how such characterization
is possible by making use of tools from the model explainability literature. We also
show how simple rules can be extracted to generate database queries for anomalous
data and detect anomalous data in the future.
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1 Introduction

Fielded machine learning systems help corporations such as banks and technology firms, as well as
governmental ad other institutions, make key decisions on a daily basis. However, these systems
are often used and trusted despite the fact that input covariates may be distributed differently than
they were during training. Demand-forecasting algorithms may be thrown off by new consumer
practices that began during the COVID-19 pandemic [1]. Fraud-detection algorithms may gradually
become ineffective as agents that intend to commit fraud develop more sophisticated strategies [2, 3].
While various techniques1 exist to measure the extent to which the distribution has shifted, such
measurements alone do not give practictioners intuition about what characterizes shifted points. These
characterizations can be especially difficult to construct and intuit when the correlations between
covariates shift as opposed to the marginal distributions: metrics that track univariate drift for each
feature are among the most interpretable, but in these cases they would fall short.

We propose a method based on tools from the explainable classification literature to (i) measure the
total multivariate covariate shift present, (ii) identify and characterize clusters of similarly anomalous
points, and (iii) construct simple rules that practitioners may use to isolate anomalous data for
further exploratory data analysis. Our approach fundamentally builds on the idea of discriminative
distance [5], wherein the statistical distance between two distributions is thought of in terms of the
performance of a classifier that aims to tell the two distributions apart. If the classifier is able to
distinguish between the two distributions easily, then we think of the two distributions as being far
apart and vice-versa. Our approach takes this idea a step further by making use of the classifier
itself (by means of tools from the model explainability literature) to characterize and identify data
points that are anomalous for similar reasons. While we evaluate our approach on tabular datasets,
in principle, our approach can be implemented on any form of data (e.g. images, text) for which
tractable classification algorithms with local additive explanations exist.

1See [4] for an in-depth exposition.
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Shape G |Rg| Potentially Shifted Features

DCCC (30000, 24) 2 1192, 1752

Fnum
1︷ ︸︸ ︷

PAY_4, BILL_AMT3, BILL_AMT4, BILL_AMT6,

F cat
1︷ ︸︸ ︷

PAY_2, PAY_6,
BILL_AMT3, PAY_AMT5, BILL_AMT2, BILL_AMT5︸ ︷︷ ︸

Fnum
2

, default︸ ︷︷ ︸
F cat

2

Statlog (1000, 20) 1 25
Dur._in_Cur_Addr., Type_of_Apt., No._Dependents, Guarantors︸ ︷︷ ︸

F cat
1

Table 1: Synthetically Drifted Data. Using the synthetic data generation scheme described in
Section 3, we generated drifted test datasets for the Default on Credit Card Clients dataset [12, 13]
and the Statlog (German Credit Data) dataset [13]. The reported shape is the size of the full dataset.
To obtain the drifted sets we first randomly split into a train and test set, where the test set comprises
25% of the original data, and then subsequently applied the methods described in Section 3.

2 Related Work

Isolation Forests and Statistical Divergences Isolation forests [6] are a common technique used
to identify anomalies in datasets. They function using the underlying intuition that anomalous
datapoints are likely to be separated in data-space from the non-anomalous points. However, for
detecting anomalies in model covariates, isolation forests may not obtain good performance relative
to discriminative approaches as they do not make use of the knowledge model designers have about
the explicit partitioning of data as either training or test data. Statistical divergences such as the
KL-Divergence are also often used to detect data drift, but due to issues that arise from data sparsity
in higher dimensions, they are typically only applied to compute univariate drift.

Discriminative Distance and Domain Classification Our work can be viewed as an extension of
discriminative distance/domain classification approaches [5, 7, 4]. These approaches measure the
statistical distance between two distributions in terms of the performance of an auxiliary classifier
that aims to distinguish between samples from the two distributions. We build on these approaches to
further use the learned model to characterize anomalies.

Local Additive Explanations Given a model f : Rd → R, a local additive explanation method
ϕ assigns to each point x ∈ Rd in the dataset and explanation vector ϕ(x) ∈ Rd that satisfies
ϕ0 +

∑
i ϕ(x)i = f(x) for some constant ϕ0. The components ϕ(x)i are intended to denote the

contribution of the value of feature i to the final model prediction. Examples of popular local additive
explanation methods include SHAP [8] and LIME [9]. We use SHAP in our approach to identify
similarly anomalous groups of points.

High-Dimensional Visualization To visualize and qualitatively understand the performance of our
approach, we make use of nonlinear dimensionality reduction tools to project high-dimensional point
clouds into two dimensions. We principally make use of an approach known as UMAP [10], which
assumes a Riemannian structure on the data manifold to make good visualizations. Other popular
tools such as TSNE [11] exist for this task as well.

3 Synthetic Data Generation

Before describing our method in full, we first outline the synthetic testing framework that we used to
evaluate and visualize our approach. To make our testing setup as realistic as possible, we developed
a method that takes as input a tabular dataset, and splits the dataset into a training dataset and a drifted
test set. By inputting different real-world datasets, we are able to test our approach on a variety of
realistic data manifolds.

To construct a synthetically drifted test set from some original test set with numerical columns
N ∈ Rm×n and categorical columns C ∈ Objectm×c, we first randomly select a number G to
determine the number of anomalous groups we will construct. For each g ∈ [G], we randomly select
some disjoint subset Rg ⊂ [m] of rows to belong to group g, and subsequently randomly select a
(small) subset of numerical features Fnum

g ⊂ [n] of size snum and a similar subset of categorical
features F cat

g ⊂ [c] of size scat to perturb for each element in the group.
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To build a rich class of non-linear possible numerical data drifts, we first generate a random group-
specific affine transformation Tnum

g : Rsnum → Rsnum , and repeatedly apply it to build the drifted
numerical columns N ′ ∈ Rm×n. As any smooth non-linear transformation can be approximated
by the resulting polynomial operator, we are able to tractably sample realistic data drifts. Formally,
for some k ∈ N, we let N ′[Rg, F

num
g ] := Tnum

g ◦ · · · ◦ Tnum
g︸ ︷︷ ︸

k times

(
N [Rg, F

num
g ]

)
and subsequently

let the remainder of N ′ be unchanged (i.e. N ′[Rg, Fnum
g ] := N [Rg, Fnum

g ], N ′
[⋂

g∈[G] Rg, :
]
:=

N
[⋂

g∈[G] Rg, :
]
). We define Tnum

g (Z) := (Isnum×snum
+ ϵg)Z + Sg where ϵg ∈ Rsnum×snum

and Sg ∈ Rsnum×snum are randomly generated Gaussian noise.

To shift the categorical features, we first select an element αi at random from the respective support of
each column i ∈ F cat

g to be shifted. We then “lock” the feature values for each row in group g to be
the corresponding αi. Formally, we let the shifted categorical columns be given by C ′ ∈ Objectm×c,

and let C ′[Rg, F
cat
g ] :=

αi1 . . . αiscat

...
. . .

...
αi1 . . . αiscat

. As before, we let the remainder of C ′ be unchanged

from C: C ′[Rg, F cat
g ] := C[Rg, F cat

g ] and C ′
[⋂

g∈[G] Rg, :
]
:= C

[⋂
g∈[G] Rg, :

]
.

Running Examples We use our data generator to generate synthetically drifted test data for two
datasets, which we use as running examples for the remainder of the paper. Details regarding the
datasets and the anomalous groups generated can be found in Table 1.

4 Identifying and Characterizing Anomalies

We now illustrate the function of our method on our two running examples. In the Default on Credit
Card Clients (DCCC) example, the underlying dataset and the two anomalous groups are relatively
larger (constituting a net ≈ 30% of the test dataset), and they have been perturbed by a greater extent.
In the Statlog example, the underlying dataset is 30 times smaller, and the anomalous data makes
up just 10% of the test data. Ultimately, we will show that in both cases, it is indeed possible to
approximately recover all of the information contained in Table 1 given just the training and drifted
test set alone.

Measuring Drift We first describe how to quantify the net distributional shift that has occurred in a
way that takes into account changes not only in marginal distributions, but also in correlations. While
there are a few well-known approaches to do this (see Section 2), we take a discriminative distance
approach. More specifically, we train a random forest classifier f to distinguish between training and
test instances. We visualize the train and test sets, as well as the predicted score generated by the
random forest on a holdout set.

Figure 1: UMAP Visualizations of Data Drift. On the left panel of each of the two figures, we plot
the true train and (synthetic) test distributions, and on the right panel we color-code points in the
classifier’s holdout set by the predicted score (a brighter color implies a higher likelihood of being
anomalous). The left figure corresponds to the Default on Credit Card Clients example and the right
figure corresponds to the Stalog example. The holdout AUCs were approximately 0.7 and 0.5 for the
Default on Credit Card Clients and Stalog examples respectively.
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In the Default on Credit Card Clients example, the two anomalous groups can be clearly seen, and
indeed the random forest is able to clearly identify those points as anomalous. While it is unclear
exactly where the anomalous points are located in the Statlog example, the random forest score does
seem to increase in regions where more orange test points are visible. We propose to measure the
distributional shift through the AUC2 of f on a holdout set. If the AUC is close to 0.5, then the
net shift is negligible, and if the AUC is close to 1, then the shift is extreme. Indeed, the AUCs as
reported in Figure 1 correspond with our intuition regarding the extent of the shift.

Identifying Anomalous Groups We now show how with a local additive explanation method, we
can use the classifier f to approximately recover the information contained in Table 1. We make use
of the SHAP package [8, 15] to generate these explanations for our random forest classifier. When
identifying groups of points that are similarly anomalous, it is important to note that such points may
be located far from each other in data-space. For example, if a group of Americans and Europeans
adopt the same fraud strategy, this anomalous group might be represented in data-space as two blobs
that are spaced apart due to differences in location. Indeed, in the Statlog example, we know that 25
points were shifted in the same way, but their locations are not concentrated together. We can already
make some insights about the features that were shifted by looking at the SHAP summary plots (see
Figure 5 in Appendix A).

To identify groups of similarly anomalous points, we make use of local additive explanations. For
each point in data-space, we get a corresponding vector of explanations with the same dimensionality,
such that the sum of the explanations is equal to predicted score (as returned by f ). If two points are
close in explanation-space, we know that their predicted anomaly score is similar, since the sum of the
components must be similar. Furthermore, the reason why the points are similarly anomalous must
also similar, since the explanation vectors are similar. Thus, by clustering points in explanation-space,
we can identify the anomalous groups! We use DBSCAN [16] for clustering, and use Kneedle [17]
for hyperparameter tuning as first introduced in [18] (see Figure 6 for details). Clustering is done
in high-dimensional space – not in the UMAP visualization. See Figure 2 for a description of the
anomaly scores over explanation space.

Figure 2: Clustering in Explanation Space. The left and right sides of each figure are given by
explanation-space and data-space respectively. The left figure corresponds to the Default on Credit
Card Clients example and the right figure corresponds to the Stalog example. Colors correspond to
clusters identified by DBSCAN.

By looking at the SHAP signatures of the identified anomalous blobs, we can approximately recover
Fnum
g and F cat

g .

Figure 3: SHAP Signatures for Anomalous Clusters. The top SHAP features for cluster 1 (left)
and cluster 2 (middle) of the Default on Credit Card Clients example, as well as cluster 1 (right) for
the Stalog example are shown. Notice the overlap between these and the features from Table 1.

2By AUC, we refer to the area under the receiver operating characteristic curve. We direct the reader to [14]
for a comprehensive introduction.
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From the clustering, we estimate the sizes of the anomalous DCCC clusters to be 960 and 1560, and
the size of the Statlog cluster to be 22. The performance of our approach on the Statlog example is
particularly impressive as the size of the anomalous group and the magnitude of the shift is quite
small (indeed, the shift is practically imperceptible in the UMAP projection). See Figure 8 for more
details. In addition to these synthetically drifted datasets, we have also tested our approach on the
Shifts dataset [19]: a real-world shifted dataset containing seasonal weather data.

Building Simple Rules Finally, using the Skope-Rules package [20], we can extract simple rules
that approximately isolate anomalous clusters. These rules (e.g., “PAY_2 > 5.0 and PAY_4 ≤ 2.5”
in the DCCC case) can be used as database queries that practitioners can use for exploratory data
analysis, or as a means for detecting future anomalous instances. See Figure 4 for more information.

Cluster Rule Precision/Recall
DCCC 1 PAY_2 > 5.0 and PAY_4 ≤ 2.5 1/1
DCCC 2 BILL_AMT5 > 884308.0 1/1
Statlog 1 Guarantors > 1.5 and Dur._in_Cur_Addr. ≤ 1.5 0.61/1

Figure 4: Skope Rules. To build simple rules that isolate anomalous clusters, we use the Skope-Rules
package [20] to fit an ensemble of decision trees that aim to classify each anomalous cluster. The
number of splits per decision tree is limited, so that the final rule depends only on a few features.
The top two plots visualize (in orange) the test data satisfying each generated rule for the anomalous
clusters in the Default on Credit Card Clients example.
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A Additional Figures

Figure 5: SHAP Summary Plots. Mean absolute feature importance is plotted for each feature in
the (left) Default on Credit Card Clients and (right) Statlog examples. The top few features are a
combination of those that have the highest variation, and those that are actually shifted (as given in
Table 1).

Figure 6: Kneedle for Hyperparameter Tuning. To tune the ϵ parameter in DBSCAN [16], we
first set the min_samples parameter to a reasonable value, and subsequently sort the distances from
each point to its min_samples nearest neighbor. We then find ϵ by finding the “knee” of this sorted
plot, as first suggested in [18].
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Figure 7: Anomaly Scores in Expalanation Space. Points in explanation space are color-coded
by the anomaly score as predicted by f in the (left) Default on Credit Card Clients and (right)
Statlog examples. A brighter color corresponds to a more anomalous score. Points tend to disperse
into a highly non-anomalous cluster (in blue), a medium anomalous cluster (in green), and highly
anomalous cluster(s) (in yellow).

Figure 8: SHAP Signatures and Anomaly Scores for Anomalous Clusters. The top SHAP
features for cluster 1 (left) and cluster 2 (middle) of the Default on Credit Card Clients example, as
well as cluster 1 (right) for the Stalog example are shown. We also plot a histogram of the anomaly
scores among points in the anomalous clusters. The classifier f does well at identifying these clusters
as highly anomalous. Notice the overlap between these and the features from Table 1.
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