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Abstract

Defending against adversarial examples remains an open problem. A common
belief is that randomness at inference increases the cost of finding adversarial
inputs. An example of such a defense is to apply a random transformation to
inputs prior to feeding them to the model. In this paper, we empirically and
theoretically investigate such stochastic pre-processing defenses and demonstrate
that they are flawed. First, we show that most stochastic defenses are weaker than
previously thought; they lack sufficient randomness to withstand even standard
attacks like projected gradient descent. This casts doubt on a long-held assumption
that stochastic defenses invalidate attacks designed to evade deterministic defenses
and force attackers to integrate the Expectation over Transformation (EOT) concept.
Second, we show that stochastic defenses confront a trade-off between adversarial
robustness and model invariance; they become less effective as the defended model
acquires more invariance to their randomization. Future work will need to decouple
these two effects. We also discuss implications and guidance for future research.

1 Introduction

Machine learning models are vulnerable to adversarial examples [4, 36], where an adversary can
add imperceptible perturbations to the input of a model and change its prediction [5, 24]. Their
discovery has motivated a wide variety of defense approaches [6, 8, 12, 29, 40, 42] along with the
evaluation of their adversarial robustness [2, 28, 38]. Current evaluations mostly rely on adaptive
attacks [2, 38], which require significant modeling and computational efforts. However, even when
the attack succeeds, such evaluations may not always reveal the fundamental weaknesses of an
examined defense. Without awareness of the underlying weaknesses, subsequent defenses may still
conduct inadvertently weak adaptive attacks; this leads to overestimated robustness.

One popular class of defenses that demonstrates the above is the stochastic pre-processing defense,
which relies on applying randomized transformations to inputs to provide robustness [12, 42]. Despite
existing attack techniques designed to handle randomness [2, 3], there is an increasing effort to
improve these defenses through a larger randomization space or more complicated transformations.
For example, BaRT [28] employs 25 transformations, where the parameters of each transformation
are further randomized. Due to the complexity of this defense, it was only broken recently (three
years later) by Sitawarin et al. [34] with a complicated adaptive attack. Still, it is unclear how future
defenses can avoid the pitfalls of existing defenses, largely because these pitfalls remain unknown.
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In this paper, we investigate stochastic pre-processing defenses and explain their limitations both
empirically and theoretically. First, we revisit previous stochastic pre-processing defenses and explain
why such defenses are broken. We show that most stochastic defenses are not sufficiently randomized
to invalidate standard attacks designed for deterministic defenses. Second, we study recent stochastic
defenses that exhibit more randomness and show that they also face key limitations. In particular,
we identify a trade-off between their robustness and the model’s invariance to their transformations.
These defenses achieve a notion of robustness that results from reducing the model’s invariance to
the applied transformations. We outline our findings below. These findings suggest future work to
find new ways of using randomness that decouples these two effects.

Most stochastic defenses lack sufficient randomness. While Athalye et al. [2] and Tramèr et al. [38]
have demonstrated the ineffectiveness of several stochastic defenses with techniques like Expectation
over Transformation (EOT) [3], it remains unclear whether and why EOT is required (or at least as a
“standard technique”) to break them. A commonly accepted explanation is that EOT computes the
“correct gradients” of models with randomized components [2, 38], yet the necessity of such correct
gradients has not been explicitly discussed. To fill this gap, we examine a long-held assumption that
stochastic defenses invalidate standard attacks designed for deterministic defenses.

Specifically, we revisit stochastic pre-processing defenses previously broken by EOT and examine
their robustness without applying EOT. Interestingly, we find that most stochastic defenses lack
sufficient randomness to withstand even standard attacks (that do not integrate any strategy to capture
model randomness) like projected gradient descent (PGD) [24]. We then conduct a systematic
evaluation to show that applying EOT is only beneficial when the defense is sufficiently randomized.
Otherwise, standard attacks already perform well and the randomization’s robustness is overestimated.

Trade-off between adversarial robustness and model invariance. When stochastic pre-processing
defenses do have sufficient randomness, they must fine-tune the model using augmented training data
to preserve utility in the face of randomness added. We characterize this procedure by the model’s
invariance to the applied defense, where we identify a trade-off between the model’s robustness
(provided by the defense) and its invariance to the applied defense. Stochastic pre-processing defenses
become less effective when their defended model acquires more invariance to their transformations.

On the theoretical front, we present a theoretical setting where this trade-off provably exists. We show
from this trade-off that stochastic pre-processing defenses provide robustness by inducing variance on
the defended model, and must take back such variance to recover utility. We verify this trade-off with
empirical evaluations on realistic datasets, models, and defenses. We observe that robustness drops
when the defended model is fine-tuned on data processed by its defense to acquire higher invariance.

2 Related Work

Stochastic Pre-processing Defenses. Defending against adversarial examples remains an open
problem, where a common belief is that inference-time randomness increases the cost of finding
adversarial inputs. Early examples of such stochastic defenses include input transformations [12] and
rescaling [42]. These defenses were broken by Athalye et al. [2] using techniques like EOT [3] to
capture randomness. After that, more stochastic defenses were proposed but with inadvertently weak
evaluations [26, 29, 40, 44], which were found ineffective by Tramèr et al. [38]. Subsequent stochastic
defenses resort to larger randomization space like BaRT [28], which was only broken recently by
Sitawarin et al. [34]. In parallel to our work, DiffPure [25] adopts a complicated stochastic diffusion
process to purify the inputs. As we will discuss in Appendix F.1, this defense belongs to an existing
line of research that leverages generative models to pre-process input images [19, 32, 35], hence it
matches the settings in our work. On the other hand, randomized smoothing [6, 17, 31] leverages
randomness to certify the inherent robustness of a given decision. In this work, instead of designing
adaptive attacks for individual defenses, which is a well-known challenging progress [2, 34, 38], we
focus on the general stochastic pre-processing defenses and demonstrate their limitations.

Trade-offs for Adversarial Robustness. The trade-offs associated with adversarial robustness
have been widely discussed in the literature. For example, prior work identified trade-offs between
robustness and accuracy [39, 46] for deterministic classifiers. Pinot et al. [27] generalize this trade-off
to randomized classifiers with a similar form as randomized smoothing. Compared with these results,
our work provides a deeper understanding that stochastic pre-processing defenses explicitly control
such trade-offs to provide robustness. Recent work also investigated the trade-off between the model’s
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robustness and invariance to input transformations, such as circular shifts [33] and rotations [14].
These trade-offs characterize a standalone model’s own property — the model itself is less robust to
adversarial examples when it becomes more invariant to certain transformations, without any defense.
Our setting, however, is orthogonal to such analysis — the model that we consider is protected by a
stochastic pre-processing defense, and what we really aim to characterize is the performance of that
pre-processing defense, not the inherent robustness of the model itself.

3 Preliminaries

Notations. Let f : X ! RC denote the classifier with pre-softmax outputs, where X = [0, 1]d is
the input space with d dimensions and C is the number of classes. We then consider a stochastic
pre-processing defense t✓ : X ! X , where ✓ is the random variable drawn from some randomization
space ⇥ that parameterizes the defense. The defended classifier can be written as f✓(x) := f(t✓(x)).

Let F (x) := argmaxi2Y fi(x) denote the classifier that returns the predicted label, where fi is the
output of the i-th class and Y = [C] is the label space. Similarly, we use F✓ and f✓,i to denote the
prediction and class-output of the stochastic classifier f✓ . Since this classifier returns varied outputs
for a fixed input, it determines the final prediction by aggregating n independent inferences with
strategies like majority vote. We discuss these strategies and the choice of n in Appendix A.1.

Adversarial Examples. Given an image x 2 X and a classifier F , the adversarial example
x0 := x + � is visually similar to x but either misclassified (i.e., F (x0) 6= F (x)) or classified as
a target class y0 chosen by the attacker (i.e., F (x0) = y0). Attack algorithms generate adversarial
examples by searching for � such that x0 fools the classifier while minimizing � under some distance
metrics; for instance, the `p norm constraint k�kp  ✏ for a perturbation budget ✏.

Projected Gradient Descent (PGD). PGD [24] is one of the most established attacks to evaluate
adversarial example defenses. Given a benign example x0 and its ground-truth label y, each iteration
of the untargeted PGD attack (with `1 norm budget ✏) can be formulated as

xi+1  xi + ↵ · sgn
�
rL

�
f✓(x

i), y
� 

, (1)
where ↵ is the step size, L is the loss function, and each iteration is projected to the `1 ball around
x0 of radius ✏. We use PGD-k to denote the PGD attack with k steps. We outline formulations for
other settings and norms in Appendix A.2.

Expectation over Transformation (EOT). Since the classifier f✓ is stochastic, the defense evalua-
tion literature [2, 38] argues that attacks should target the expectation of the gradient using Expectation
over Transformation (EOT) [3], which reformulates the PGD attack as

xi+1  xi + ↵ · sgn
n
E✓⇠⇥

h
rL

�
f✓(x

i), y
�io
⇡ xi + ↵ · sgn

n 1

m

mX

j=1

rL
�
f✓j (x

i), y
�o

, (2)

where m is the number of samples to estimate the expectation and ✓j
iid⇠ ⇥ are sampled parameters

for the defense. We use EOT-m to denote the EOT technique with m samples at each PGD step.

In addition, for a fair comparison among attacks with different PGD steps and EOT samples, we
quantify the attack’s strength by its total number of gradient computations. For example, attacks
using PGD-k and EOT-m will have strength k ⇥m. Although white-box attacks are typically not
constrained in this way, it allows for a fair comparison when attacks have finite computing resources
(e.g., when EOT is not parallelizable). We discuss more about this quantification in Appendix A.3.

4 Most Stochastic Defenses Lack Sufficient Randomness

Athalye et al. [2] and Tramèr et al. [38] demonstrate adaptive evaluation of stochastic defenses with
the application of EOT. However, it remains unclear why EOT is required (or at least as a “standard
technique”) to break these stochastic defenses. While a commonly accepted explanation is that EOT
computes the “correct gradients” of models with randomized components [2, 38], the necessity of
such correct gradients has not been explicitly discussed. To fill this gap, we revisit stochastic defenses
previously broken by EOT and examine their robustness without applying EOT. Interestingly, we find
that applying EOT is mostly unnecessary when evaluating existing stochastic defenses.
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Table 2: The missing ablation study of adaptive evaluations of stochastic defenses in the literature.
Notations: attack iterations k, EOT samples m, learning rate ↵, number of gradient queries k ⇥m.
The details of these defenses and their evaluation settings are in Appendix B.

Defenses Original Adaptive Evaluation (w/ EOT) Our Ablation Study (w/o EOT)
k m ↵ k ⇥m Success Rate k m ↵ k ⇥m Success Rate

Guo et al. [12] 1,000 30 0.1 30,000 100% 1,000 1 0.001 1,000 99.0%
Xie et al. [42] 1,000 30 0.1 30,000 100% 200 1 0.1 200 100%
Dhillon et al. [8] 500 10 0.1 5,000 100% 500 1 0.1 500 100%
Xiao et al. [40] 100 1,000 0.01 100,000 100% 40,000 1 0.1/255 40,000 98.4%
Roth et al. [29] 100 40 0.2/255 4,000 100% 4,000 1 0.1/255 4,000 96.1%

Table 1: Evaluation of the random
rotation with PGD-k and EOT-m.

Attacks k m Success Rate

Untargeted 10 5 100%
50 1 100%

Targeted 10 5 99.0%
50 1 99.0%

Case Study: Random Rotation. We start with a simple
stochastic defense that randomly rotates the input image for
✓ 2 [�90, 90] degrees (chosen at uniform) before classifica-
tion. This defense is representative for most pre-processing
defenses [12, 28, 42]. We evaluate this defense on 1,000 Im-
ageNet images with PGD-k and EOT-m under the constraint
k ⇥m = 50, as discussed in Section 3. All attacks use max-
imum `1 perturbation ✏ = 8/255 with step size chosen from
↵ 2 {1/255, 2/255}. The results are shown in Table 1, where
PGD-50 performs equally well as PGD-10 combined with EOT-5. This observation suggests that
some stochastic defenses are already breakable without applying EOT, casting doubt on a long-held
assumption that stochastic defenses simply invalidate attacks designed for deterministic defenses.

Comprehensive Evaluations. We then extend the above case study to other stochastic defenses
evaluated in the literature. Specifically, we replicate the (untargeted) adaptive evaluation of stochastic
defenses from Athalye et al. [2] and Tramèr et al. [38] with their official implementation. We only
change the attack’s hyper-parameters (e.g., number of iterations and learning rate) and disable EOT
by setting its number of samples to one (m = 1), which avoids potential implementation flaws if
removed from the source code. The comparison between evaluations with and without applying EOT
is summarized in Table 2, which serves as a missing ablation study of adaptive evaluations in the
literature. The experimental settings are identical within each row (detailed in Appendix B).

Interestingly, we find it unnecessary to break these defenses with EOT, as long as the standard
attack runs for more iterations with a smaller learning rate. For such defenses, standard iterative
attacks already contain an implicit expectation across iterations to capture the limited randomness.
This observation implies that most stochastic defenses lack sufficient randomness to withstand even
standard attacks designed for deterministic defenses. Therefore, increasing randomness becomes a
promising approach to enhancing stochastic defenses, as adopted by recent defenses [6, 28]. Note
that this ablation study only aims to inspire potential ways of enhancing stochastic defenses; it does
not invalidate EOT for stronger adaptive evaluations of stochastic defenses.

5 Trade-offs between Robustness and Invariance

When stochastic pre-processing defenses do have sufficient randomness, they must ensure that the
utility of the defended model is preserved in the face of randomness. To achieve high utility, existing
defenses mostly rely on augmentation invariance through trained invariance [23]. In such a case, the
invariance is achieved by applying the defense’s randomness to the training data so as to guide the
model in learning their transformations. For defenses based on stochastic pre-processor t✓ , each data
sample from the dataset gets augmented with t✓ sampled from the randomization space ⇥, and the
risk is minimized over such augmented data.

The defended classifier F✓(x) := F (t✓(x)) is invariant under the randomization space ⇥ if

F (t✓(x)) = F (x), 8 ✓ 2 ⇥,x 2 X . (3)

As we can observe from the definition, invariance has direct implications on the performance of
stochastic pre-processing defenses. If the classifier is invariant under the defense’s randomization
space ⇥ as is defined in Equation (3), then the defense should not work – computing the model and
its gradients over randomization ✓ 2 ⇥ is the same as if t✓ was not applied at all. This observation
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(a) Undefended

less vulnerable
data points

(b) Defended (Lack of Invariance)

back to
undefended

(c) Defended (Trained Invariance)

Figure 1: Illustration of the binary classification task we consider. The curves are the probability
density function of two classes of data. Shadowed area denotes correct classification. Dotted area
denotes robustly correct classification under the `1-bounded adversary with perturbation budget ✏.

suggests a direct coupling between invariance and performance of the defense: the more invariant,
hence performant, the model is under a given randomization space, the less protection such a defense
would provide. In this section, we present a simple theoretical setting where this coupling provably
exists, as illustrated in Figure 1. Detailed arguments are deferred to Appendix C.1.

Binary Classification Task. We consider a class-balanced dataset D consisting of input-label pairs
(x, y) with y 2 {�1,+1} and x|y ⇠ N (y, 1), where N (µ,�2) is a normal distribution with mean µ
and variance �2. Moreover, an `1-bounded adversary perturbs the input with a small � to fool the
classifier for k�k1  ✏. We quantify the classifier’s robustness by its robust accuracy, i.e., the ratio
of correctly classified samples that remain correct after being perturbed by the adversary.

Undefended Classification. We start with the optimal linear classifier F (x) := sgn(x) without any
defense in Figure 1a. This classifier attains robust accuracy

Pr
⇥
F (x+ �) = y | F (x) = y

⇤
=

Pr
⇥
F (x+ �) = y ^ F (x) = y

⇤

Pr
⇥
F (x) = y

⇤ =
�(1� ✏)

�(1)
, (4)

where � is the cumulative distribution function of N (0, 1).

Defended Classification. We then try to improve adversarial robustness by introducing a stochastic
pre-processing defense t✓(x) := x+ ✓, where ✓ ⇠ N (1,�2) is the random variable parameterizing
the defense. This defense characterizes common pre-processing defenses that enforce randomness
while shifting the input distribution. Here, the processed input follows a shifted distribution t✓(x) ⇠
N (y + 1, 1 + �2) in Figure 1b. The defended classifier F✓(x) = sgn(x+ ✓) has robust accuracy

Pr
⇥
F✓(x+ �) = y | F✓(x) = y

⇤
=

Pr
⇥
F✓(x+ �) = y ^ F✓(x) = y

⇤

Pr
⇥
F✓(x) = y

⇤ =
�0(�✏) + �0(2� ✏)

�0(0) + �0(2)
, (5)

where �0(x) := �(x/
p
1 + �2) is the cumulative distribution function of N (0, 1 + �2). At this

point, we have not fit the classifier on processed inputs. Due to its lack of invariance, the defended
classifier has low utility yet higher robust accuracy than the undefended one in Equation (4).

Defended Classification (Trained Invariance). As discussed above, one critical step of stochastic
pre-processing defenses is to preserve the defended model’s utility by minimizing the risk over
augmented data t✓(x), which leads to a new defended classifier F+

✓ (x) = sgn(x+✓�1) in Figure 1c.
As a result, this new defended classifier achieves higher invariance with robust accuracy

Pr
⇥
F+
✓ (x+ �) = y | F+

✓ (x) = y
⇤
=

Pr
⇥
F+
✓ (x+ �) = y ^ F+

✓ (x) = y
⇤

Pr
⇥
F+
✓ (x) = y

⇤ =
�0(1� ✏)

�0(1)
, (6)

which is less robust than the previous less-invariant classifier F✓ in Equation (5). However, one may
observe that this classifier, though loses some robustness compared with F✓, is still more robust
than the original undefended classifier F in Equation (4). This part of robustness comes from the
changed data distribution due to the defense’s randomness. It shows that we have not achieved perfect
invariance to the defense’s randomness, thus gaining some robustness at the cost of utility.

Defended Classification (Perfect Invariance). Furthermore, these defenses usually leverage majority
vote to obtain stable predictions, which finally produces a perfectly invariant defended classifier

F ⇤
✓ (x) = sgn

(
1

n

nX

i=1

F+
✓i
(x)

)
= sgn

(
1

n

nX

i=1

sgn(x+ ✓i � 1)

)
! sgn(x) = F (x), (7)
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where ✓i
iid⇠ N (1,�2) are sampled parameters. In such a case, the defended classifier reduces to the

original undefended classifier with the original robust accuracy:

Pr
⇥
F ⇤
✓ (x+ �) = y | F ⇤

✓ (x) = y
⇤
= Pr

⇥
F (x+ �) = y | F (x) = y

⇤
=

�(1� ✏)

�(1)
. (8)

Summary. The above theoretical setting illustrates how stochastic pre-processing defenses first induce
variance on the binary classifier we consider to provide adversarial robustness in Equation (5), and
how they finally take back such variance in Equations (6) and (8) to recover utility. We then extend
the above coupling between robustness and invariance to a general trade-off in the following theorem,
whose detailed descriptions and proofs are deferred to Appendices C.2 and C.3, respectively.
Theorem 1 (Trade-off between Robustness and Invariance). Given the above theoretical setting

and assumptions, when the defended classifier F✓(x) achieves higher invariance R(k) under the

defense’s randomization space to preserve utility, the adversarial robustness provided by the defense

strictly decreases.

In a nutshell, we prove the strictly opposite monotonic behavior of robustness and invariance when
the classifier shifts its decision boundary and employs majority vote to preserve utility. It shows that
stochastic pre-processing defenses provide robustness by explicitly reducing the model’s invariance
to added randomized transformations, and the robustness disappears once the invariance is recovered.

6 Experiments

Our experiments are designed to answer the following two questions.

Q1: What properties make applying EOT beneficial when evaluating stochastic defenses?
We show that applying EOT is only beneficial when the defense is sufficiently randomized; otherwise
standard attacks already perform well and leave no room for EOT to improve.

Q2: What is the limitation of stochastic defenses when they do have sufficient randomness?
We show a trade-off between the stochastic defense’s robustness and the model’s invariance to
the defense itself. Such defenses become less effective when the defended model achieves higher
invariance to their randomness, as required to preserve utility under the defense.

6.1 Experimental Settings

Datasets & Models. We conduct all experiments on ImageNet [30] and ImageNette [9]. For Ima-
geNet, our test data consists of 1,000 images randomly sampled from the validation set. ImageNette is
a ten-class subset of ImageNet, and we test on its validation set. We adopt various ResNet [13] models.
For defenses with low randomness, we evaluate them on ImageNet with a pre-trained ResNet-50 with
Top-1 accuracy 75.9%. For defenses with higher randomness (thus requiring fine-tuning), we switch
to ImageNette and a pre-trained ResNet-34 with Top-1 accuracy 96.9% to reduce the training cost like
previous work [34]. These models are fine-tuned on the training data processed by tested defenses.
As a special case, we also evaluate randomized smoothing on ImageNet using the ResNet-50 models
from Cohen et al. [6]. More details of datasets and models can be found in Appendices D.1 and D.2.

Defenses & Metrics. We focus on stochastic defenses allowing us to increase randomness: random-
ized smoothing [6] and BaRT [28]. For randomized smoothing, we vary the variance of the added
Gaussian noise. For BaRT, we vary the number  of applied randomized transformations. Note that
we have evaluated other stochastic defenses and discussed their low randomness in Section 4. We
measure the defense’s performance by the defended model’s benign accuracy and the attack’s success

rate, all evaluated with majority vote over n = 500 predictions. The attack’s success rate is the ratio
of samples that do not satisfy the attack’s objective prior to the attack but satisfy it after the attack.
For example, we discard samples that were misclassified before being perturbed in untargeted attacks.
Details of the evaluated defenses can be found in Appendix D.3.

Attacks. We evaluate defenses with standard PGD combined with EOT and focus on the `1-bounded
adversary with a perturbation budget ✏ = 8/255 in both untargeted and targeted settings. We only
use constant step sizes and no random restarts for PGD. We only conduct adaptive evaluations,
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(a) Untargeted (step size = 1/255) (b) Untargeted (step size = 2/255) (c) Untargeted (step size = best)

(d) Targeted (step size = 1/255) (e) Targeted (step size = 2/255) (f) Targeted (step size = best)

Figure 2: Evaluation of BaRT’s noise injection defense on ImageNet. Standard PGD without applying
EOT (i.e., applying EOT-1) is already good enough, leaving limited space for EOT to improve.

where the defense is included in the attack loop with non-differentiable components captured by
BPDA [2]. We also utilize AutoPGD [7] to avoid selecting the step size when it is computationally
expensive to repeat experiments in Section 6.3. More details and intuitions of the attack’s settings
and implementation can be found in Appendix D.4. Our code is available at https://github.com/
wi-pi/stochastic-preprocessing-defenses.

6.2 Q1: Evaluate the Benefits of Applying EOT under Different Settings

In Section 4, we showed that standard attacks are sufficient to break most stochastic defenses due to
their lack of randomness. Here, we aim to understand what properties make applying EOT beneficial
when evaluating stochastic defenses. We design a systematic evaluation of stochastic defenses with
different levels of randomness and check if applying EOT improves the attack.

Stochastic Defenses with Low Randomness. We start with BaRT’s noise injection defense, which
perturbs the input image with noise of distributions and parameters chosen at random. While this
defense has low randomness, it yields meaningful results. We evaluate this defense with various
combinations of PGD and EOT1. The performance of untargeted and targeted attacks is shown in
Figure 2. We test multiple step sizes and summarize their best results (discussed in Appendix E.1).

In this case, standard PGD attacks are already good enough when the defense has insufficient
randomness, leaving no space for improvements from EOT. In Figure 2f, both (1) PGD-10 combined
with EOT-10 and (2) PGD-100 combined with EOT-1 have near 100% success rates. This result is
consistent with our observations in Section 4 in both untargeted and targeted settings2.

Stochastic Defenses with Higher Randomness. We then examine the randomized smoothing
defense that adds Gaussian noise to the input image. Although this defense was originally proposed
for certifiable adversarial robustness, we adopt it to evaluate how randomness affects the benefits of
applying EOT. Similarly, we evaluate this defense with PGD and EOT of different settings with a
focus on the targeted attack. The results are shown in Figure 3.

We observe that EOT starts to improve the attack when the defense has a higher level of randomness.
For a fixed number of PGD steps, applying EOT significantly improves the attack in most of the
settings. For a fixed attack strength (i.e., number of gradient computations), applying EOT always
outperforms standalone PGD. In Figure 3f, for example, PGD-100 combined with EOT-10 is 5.5%
higher than PGD-1,000 with EOT-1 (40.3% vs. 34.8%).

1Note that we do not intend to find a heuristic for the best combination of PGD-k and EOT-m, as it is out of
the scope of the question that we want to answer. However, it is still possible to correlate the choice of k and m
with the convergence analysis of stochastic gradient descent, which we will briefly discuss in Appendix A.3.

2The only caveat is that targeted attacks are more likely to benefit from EOT, as their objectives are stricter
and may have better performance with gradients of higher precision.
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(a) � = 0.25 (step size = 2/255) (b) � = 0.25 (step size = 4/255) (c) � = 0.25 (step size = best)

(d) � = 0.50 (step size = 2/255) (e) � = 0.50 (step size = 4/255) (f) � = 0.50 (step size = best)

Figure 3: Evaluation of randomized smoothing on ImageNet (targeted attacks). PGD performs well
on lower variance (� = 0.25) if running for more steps. For a larger variance (� = 0.50), applying
EOT starts to improve the attack significantly (for a fixed number of gradient computations).

Takeaways. Applying EOT is only beneficial when the defense has sufficient randomness, such as
randomized smoothing with � = 0.5. This observation suggests that stochastic defenses only make
standard attacks suboptimal when they have sufficient randomness. However, most existing stochastic
defenses did not achieve this criterion, as we showed in Section 4. We also provide visualizations of
adversarial examples under different settings and CIFAR10 results in Appendices E.3 and E.4.

6.3 Q2: Evaluate the Trade-off between Robustness and Invariance

In Section 5, we present a theoretical setting where the trade-off between robustness and invariance
provably exists; stochastic defenses become less robust when the defended model achieves higher
invariance to their randomness. Here, we demonstrate this trade-off on realistic datasets, models, and
defenses. In particular, we choose defenses with sufficient randomness (achieved in different ways)
and compare their performance when being applied to models of different levels of invariance, where
the invariance is achieved by applying the defense’s randomness to the training data so as to guide
the model in learning their transformations.

Randomness through Transformations. We first examine the BaRT defense, which pre-processes
input images with  randomly composited stochastic transformations. It represents defenses aiming
to increase randomness through diverse input transformations. Since our objective is to demonstrate
the trade-off, it suffices to evaluate a subset of BaRT with   6 transformations; this also avoids the
training cost of evaluating the original BaRT with  = 25. Figure 4 shows the performance of this
defense with models before and after fine-tuning on its processed training data.

In Figures 4a and 4c, we first observe that fine-tuning indeed increases the model’s invariance to
the applied defense’s randomness; the utility’s dashed green curves are improved to the solid green
curves beyond 90%. However, as the model achieves higher invariance, the defense becomes nearly
ineffective; the attack’s dashed red curves boost to the solid red curves near 100%. The same attack’s
effectiveness throughout the fine-tuning procedure further verifies this observation, as shown in
Figures 4b and 4d. It shows a clear trade-off between the defense’s robustness and the model’s
invariance. That is, stochastic defenses start to lose robustness when their defended models achieve
higher invariance to their transformations.

Randomness through Noise Levels. We then examine the randomized smoothing defense that adds
Gaussian noise to the input image. Unlike BaRT’s diverse transformations, randomized smoothing
increases randomness directly through the added noise’s variance �2. This allows us to rigorously
increase the randomness without unexpected artifacts like non-differentiable components. We evaluate
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(a) Targeted Attacks
(view by size)

(b) Targeted Attacks
(view by epochs)

(c) Untargeted Attacks
(view by size)

(d) Untargeted Attacks
(view by epochs)

Figure 4: Performance of the BaRT defense on ImageNette with different numbers of transformations
before and after fine-tuning the model. While the model achieves higher invariance, the defense
becomes nearly ineffective3, as evident from the top solid red curves in (a) and (c).

(a) Targeted Attacks
(view by levels)

(b) Targeted Attacks
(view by epochs)

(c) Untargeted Attacks
(view by levels)

(d) Untargeted Attacks
(view by epochs)

Figure 5: Performance of the randomized smoothing defense on ImageNette with different noise
levels before and after fine-tuning the model. While the model achieves higher invariance, the defense
becomes less effective4, as evident from the gap between dashed and solid red curves in (a) and (c).

the performance of this defense (�  0.5) with models before and after fine-tuning on training data
perturbed with designated Gaussian noise. The results are shown in Figure 5.

In Figures 5a and 5c, fine-tuning improves the model’s invariance, but the defense also becomes
significantly weaker during this process. For example, the targeted attack is nearly infeasible when
the model is variant to the large noise (� � 0.3), yet is significantly more effective when the model
becomes invariant. The fine-tuning process in Figures 5b and 5d also verifies that stochastic defenses
become weaker when their defended models become more invariant to their randomness.

Takeaways. For both the BaRT and the randomized smoothing defense, we observe a clear trade-off
between the defense’s robustness and the model’s invariance to randomness, especially in the targeted
setting. In particular, we find that stochastic defenses lose adversarial robustness when their defended
models achieve higher invariance to their randomness. Our finding implies that such defenses would
become ineffective when their defended models are perfectly invariant to their randomness.

7 Discussions

In this section, we discuss several questions that arose from our study of stochastic pre-processing
defenses. Discussions about extensions, limitations, and broader topics can be found in Appendix F.

What do stochastic pre-processing defenses really do? We show that stochastic pre-processing
defenses do not introduce inherent robustness to the prediction task. Instead, they shift the input
distribution through randomness and transformations, which results in variance and introduces errors
during prediction. The observed “robustness”, in an unusual meaning for this literature, is a result of
these errors. This is fundamentally different from the inherent robustness provided by adversarial
training [24]. Although defenses like adversarial training still cost accuracy [39, 46], they do not
intentionally introduce errors like stochastic pre-processing defenses.

3The defense may not grow stronger with more transformations, which is a drawback of BaRT that we will
discuss in Appendix D.3. Yet, our evaluations focus on the fact that solid curves are above the dashed curves.

4One may also observe a trade-off between robustness and utility by examining the curve’s horizontal trend.
However, we focus on the trade-off between robustness and invariance, which manifests in the vertical gap.
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What are the concrete settings that stochastic pre-processing defenses work? These defenses
do make the attack harder when the adversary has only limited knowledge of the defense’s transfor-
mations, e.g., in a low-query setting. In such a case, the defense practically introduces noise to the
attack’s optimization procedure, making it difficult for a low-query adversary to find adversarial ex-
amples that consistently cross the probabilistic decision boundary. However, it is still possible for the
adversary to infer pre-processors in a black-box model and compute their expectation locally [10, 41],
unless the randomization space changes over time. Our theoretical analysis considers a powerful
adversary with full knowledge of the defense’s randomization space; hence it can optimize directly
towards the defended model’s decision boundary in expectation. The other setting is randomized
smoothing, which remains effective in certifying the inherent robustness of a given decision.

What are the implications for future research? Our work suggests that future defenses should try to
decouple robustness and invariance; that is, either avoid providing robustness by introducing variance
to the added randomness or the variance only applies to adversarial inputs. This implication is crucial
as the research community continues improving defenses through more complicated transformations.
For example, in parallel to our work, DiffPure [25] adopts a complicated stochastic diffusion process
to purify the inputs. However, fully understanding DiffPure’s robustness requires substantial effort
due to its complications and high computational costs, as we will discuss in Appendix F.1

How should we improve stochastic defenses? Stochastic defenses should rely on randomness that
exploits the properties of the prediction task. One promising approach is dividing the problem into
orthogonal subproblems. For example, some speech problems like keyword spotting are inherently
divisible in the spectrum space [1], and vision tasks are divisible by introducing different modali-
ties [43], independency [18], or orthogonality [45]. In such cases, randomization forces the attack to
target all possible (independent) subproblems, where the model performs well on each (independent
and) non-transferable subproblem. As a result, defenses can decouple robustness and invariance,
hence reducing the effective attack budget and avoiding the pitfall of previous randomized defenses.
While systematic guidance for designing defenses (and their attacks) remains an open question, we
summarize some critical insights along this direction in Appendix F.2.

What are the implications for adaptive attackers? Our findings suggest that an adaptive attacker
needs to consider the spectrum of available standard attack algorithms, instead of just focusing on a
given attack algorithm because of the defense’s design. As we discover in this paper, EOT can be
unnecessary for seemingly immune stochastic defenses, yet its application to break these said defenses
gives a false impression about their security against weak attackers. When evaluating the robustness
of a defense, the adaptive attack should start by tuning standard approaches, before resorting to more
involved attack strategies. This approach helps us to identify the minimally capable attack that breaks
the defense and develop a better understanding of the defense’s fundamental weaknesses.

8 Conclusion

In this paper, we investigate stochastic pre-processing defenses and explain their limitations both
empirically and theoretically. We show that most stochastic pre-processing defenses are weaker than
previously thought, and recent defenses that indeed exhibit more randomness still face a trade-off
between their robustness and the model’s invariance to their transformations. While defending against
adversarial examples remains an open problem and designing proper adaptive evaluations is arguably
challenging, we demonstrate that stochastic pre-processing defenses are fundamentally flawed in their
current form. Our findings suggest that future work will need to find new ways of using randomness
that decouples robustness and invariance.
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