
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SCALING SPARSE AUTOENCODER CIRCUITS FOR IN-
CONTEXT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Sparse autoencoders (SAEs) are a popular tool for interpreting large language
model activations, but their utility in addressing open questions in interpretability
remains unclear. In this work, we demonstrate their effectiveness by using SAEs
to deepen our understanding of the mechanism behind in-context learning (ICL).
We identify abstract SAE features that encode the model’s knowledge of which
task to execute and whose latent vectors causally induce the task zero-shot. This
aligns with prior work showing that ICL is mediated by task vectors. We further
demonstrate that these task vectors are well approximated by a sparse sum of SAE
latents, including these task-execution features. To explore the ICL mechanism,
we adapt the sparse feature circuits methodology of Marks et al. (2024) to work for
the much larger Gemma-1 2B model, with 30 times as many parameters, and to
the more complex task of ICL. Through circuit finding, we discover task-detecting
features with corresponding SAE latents that activate earlier in the prompt, that
detect when tasks have been performed. They are causally linked with task-
execution features through the attention layer and MLP.

1 INTRODUCTION

Sparse autoencoders (SAEs; Ng (2011); Bricken et al. (2023); Cunningham et al. (2023)) are a
promising method for interpreting large language model (LLM) activations. However, the full
potential of SAEs in interpretability research remains to be explored, since most recent SAE research
either i) interprets a single SAE’s features rather than the model’s computation as a whole (Bricken
et al., 2023), or ii) performs high-level interventions in the model, but does not interpret the effect on
the downstream computation caused by the interventions Templeton et al. (2024b). In this work, we
address these limitations by interpreting in-context learning (ICL), a widely studied phenomenon
in LLMs. In summary, we show that SAEs enable a) the discovery of novel circuit components
(task-detection features; Section 4.2) and b) making existing interpretations of ICL more precise, by
e.g. decomposing task vectors (Todd et al., 2024; Hendel et al., 2023) into task-execution features
(Section 3).

In-context learning (ICL; Brown et al. (2020)) is a fundamental capability of large language models
that allows them to adapt to new tasks without fine-tuning. ICL is a significantly more complex and
important task than other behaviors commonly studied in circuit analysis (such as IOI in Wang et al.
(2022) and Kissane et al. (2024), or subject-verb agreement and Bias-in-Bios in Marks et al. (2024)).
Recent work by Todd et al. (2024) and Hendel et al. (2023) has introduced the concept of task vectors
to study ICL in a simple setting, which we follow throughout this paper.1 In short, task vectors
are internal representations of tasks formed by language models during the processing of few-shot
prompts, such as “hot → cold, big → small, fast → slow”. These vectors can be extracted and added
into different LLM forward passes to induce 0-shot task performance, making LLMs predict that
“slow” follows “fast →” without explicit context. Section 2.3 provides a full introduction.

To identify task-execution features, we decomposed task vectors using SAEs. To achieve this, we
needed to go beyond existing methods for solving the classical dictionary problem of decomposing
a vector into a sparse sum of dictionary vectors (Elad, 2010). To do this, we developed a bespoke

1Task vectors (Hendel et al., 2023) are also called “function vectors” (Todd et al., 2024), but we use “task
vectors” throughout this paper for consistency.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

method for LLMs we call the TASK VECTOR CLEANING (TVC) algorithm. By running the TVC
algorithm, we found task-execution features: features that can partially replace task vectors taken
alone and have highly interpretable max-activating token patterns. We validate the causal relevance
of these task features through a series of steering experiments on tasks, spanning several categories
like translation or factual recall. The experiments demonstrate that identified task features encode
crucial information about task execution, are causally implicated in the model’s ICL capabilities, and
can play the same role as task vectors.

We adapted the Sparse Feature Circuits (SFC) methodology of Marks et al. (2024) to work on the
more complex ICL task and the larger Gemma-1 2B model (Gemma Team, 2024). This adaptation
allowed us to discover and analyze the subgraph of key SAE latents involved in ICL, providing a more
comprehensive view of the ICL circuit. Using this adaptation, we found task-detection features with
SFC: features that play a crucial role in identifying the specific task being performed earlier in the
prompt. Task-detection features are tightly connected with task-execution features through attention,
as part of the whole ICL circuit.

Our findings not only advance our understanding of ICL mechanisms but also demonstrate the
potential of SAEs as a powerful tool for interpretability research on larger language models. By
unifying the task vectors view with SAEs and uncovering two of the most important causally
implicated feature families behind ICL, we pave the way for future work to control and monitor ICL
further, to improve either the safety or capabilities of models.

Our main contributions are as follows:

1. We demonstrate that SAEs can be effectively used to explain mechanisms behind a complex
set of ICL tasks in a Gemma-1 2B, which has 10-35x more parameters than prior models
typically studied at this depth in comparable, circuits-style mechanistic interpretability
research (Wang et al., 2022; Marks et al., 2024). We show that causal circuit finding
algorithms and SFC specifically straightforwardly scale up to larger models and SAEs with
different architectures (Appendix B).

2. We identify two core bottlenecks in the ICL circuit – task-detection features and task-
execution features (see Appendix C, F, G) – and study their interactions (Section 3.2).
This provides new insights into how LLMs process and execute ICL tasks. Specifically, we
discover task-detection features that identify the task being performed earlier in the prompt,
which are then moved by attention heads to trigger task-execution features (Figure 8).

3. We present a novel transformer-specific sparse linear decomposition algorithm (Section 3.1)
that decomposes task vectors (Hendel et al., 2023) into a small set of mostly task-relevant
features, enabling more precise analysis of ICL mechanisms.

Figure 1: A diagram of the in-context learning circuit, showing task detection features (yellow)
causing task execution features (blue) which cause the model to output the antonym (left → right). A
more concrete circuit, along with texts these features activate on, can be seen in Figure 9.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 BACKGROUND

2.1 SPARSE AUTOENCODERS (SAES)

Sparse autoencoders (SAEs) are neural networks designed to learn efficient representations of data
by enforcing sparsity in the hidden layer activations (Elad, 2010). In the context of language model
interpretability, SAEs are used to decompose the high-dimensional activations of language models
into more interpretable features (Cunningham et al., 2023; Bricken et al., 2023). The basic idea
behind SAEs is to train a neural network to reconstruct its input while constraining the hidden layer
to have sparse activations. This process typically involves an encoder that maps the input to a sparse
hidden representation, a decoder that reconstructs the input from this sparse representation, and loss
task that balances reconstruction accuracy with sparsity 2. The encoding step is as follows, with f
denoting the pre-activation features and Wenc and benc the encoder weights and biases respectively:

f(x) = σ(Wencx + benc) (1)

For JumpReLU SAEs (Rajamanoharan et al., 2024b), the activation function and decoder are (with
H being the Heaviside step function, θ the threshold parameter and Wdec/bdec the decoder affine
parameters):

x̂(f) = Wdec(f ⊙H(f − θ)) + bdec (2)

In our work, we train SAEs on residual stream activations and attention outputs, and also train
transcoders3 on MLP layers, all of which use the improved Gated SAE architecture (Rajamanoharan
et al., 2024a).

2.2 SPARSE FEATURE CIRCUITS

Sparse Feature Circuits (SFCs) are a methodology introduced by Marks et al. (2024) to identify
and analyze causal subgraphs of sparse autoencoder features that explain specific model behaviors.
This approach combines the interpretability benefits of SAEs with causal analysis to uncover the
mechanisms underlying language model behavior. The SFC methodology involves several key steps:

1. Decomposing model activations into sparse features using SAEs

2. Calculating the Indirect Effect (IE, Pearl (2001) of each feature on the target behavior

3. Identifying a set of causally relevant features based on IE thresholds

4. Constructing a circuit by analyzing the connections between these features

The IE of a model component is measured by intervening on that component and observing the
change in the model’s output. For a component a and a metric m, the IE is defined using do-calculus
(Pearl, 2009) as in Marks et al. (2024) as:

IE(m; a) = m(x|do(a = a′))−m(x) (3)

Where m(x|do(a = a′)) represents the value of the metric when we intervene to set the value of
component a to a′, and m(x) is the original value of the metric. In practice, attribution patching (Syed
et al., 2023) is used to approximate IE, allowing for efficient computation across many components
simultaneously.

SFC is described in detail in (Marks et al., 2024). We describe our modifications in Appendix E.

2Typically, the L1 penalty on activations is used (Bricken et al., 2023) with some modifications (Rajamanoha-
ran et al., 2024a; Conerly et al., 2024), although there are alternatives: Rajamanoharan et al., 2024b; Farrell,
2024; Riggs & Brinkman, 2024.

3Transcoders are a modification of SAEs that take MLP input and convert it into MLP output instead of
trying to reconstruct the residual stream.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.3 TASK VECTORS

Continuing from the high-level description in Section 1, task vectors were independently discovered
by Hendel et al. (2023) and Todd et al. (2024). The key idea behind task vectors is that they capture
the essence of a task demonstrated in a few-shot prompt, allowing the model to apply this learned
task to new inputs without explicit fine-tuning. Task vectors have several important properties:

1. They can be extracted from the model’s hidden states given ICL prompts as inputs.
2. When added to the model’s activations in a zero-shot setting, they can induce task perfor-

mance without explicit context.
3. They appear to encode abstract task information, independent of specific input-output

examples.

To illustrate the concept, consider the following simple prompt for an antonym task in the Example 1,
where boxes represent distinct tokens:

BOS Follow the pattern : \n

hot → cold \n

big → small \n

fast → slow

Example 1: All token types in an example
input: prompt , input , arrow , output ,

newline (target tokens for calculating
the loss on included)

n-shot ICL
prompts Task vectors SAE

features

Training
weights

Cleaned
weights

Reconstruct
TV

L1 normTask loss

Loss
Optimize

0-shot ICL
prompts

...hot -> cold...

...tall ->

on layer L

10-20 features
noisy

2-4 features
interpretable

Figure 2: Overview of the task vector cleaning algo-
rithm (see Figure 10; TV stands for task vector).

In this case, the task vector would encode the abstract notion of “finding the antonym” rather than
specific word pairs. Task vectors are typically collected by averaging the residual stream of “→”
tokens at a specific layer across multiple ICL prompts for a given task. This averaged representation
can then be used to study the model’s internal task representations and to manipulate its behavior in
zero-shot settings. We perform our analysis on the datasets derived from Todd et al. (2024). Details
can be found in Appendix A.

3 DISCOVERING TASK-EXECUTION FEATURES

3.1 DECOMPOSING TASK VECTORS

To gain a deeper understanding of task vectors, we attempted to decompose them using sparse
autoencoders (SAEs). However, several of our initial naive approaches faced significant challenges.
Firstly, direct SAE reconstruction, i.e. passing the task vector as input to the SAE, produced noisy
results with more than 10 nonzero SAE features on average on layers of interest4, most of which were
irrelevant to the task. Moreover, this reconstruction noticeably reduced the vector’s performance.
These issues arose partly because task vectors are out-of-distribution inputs for SAEs, as they
aggregate information from different residual streams rather than representing a single one.

We then explored inference-time optimization (ITO) (Smith, 2024) as an alternative. However, this
method also failed to reconstruct task vectors using a low number of SAE features while maintaining
high performance.

Given these observations, we developed a novel method called task vector cleaning. It produces
optimized SAE decomposition weights θ ∈ RdSAE for a task vector vtv . At a high level, the method:

1. Initializes θ with weights from SAE decomposition of vtv .
4Layers where steering with task vectors decreased loss significantly (Figure 3a). We found 3-5 interpretable

features. Our cleaning algorithm can usually reduce the number to 2-4. The usual residual SAE L0 is around 44.
as highlighted in the Figure 3b

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

5 10 15

−0.4

−0.2

0 Reconstruction type
Cleaning

SAE reconstruction

ITO (20)

Original Task vector

ITO (5)

Layer

A
ve

ra
ge

 re
la

tiv
e

lo
ss

 c
ha

ng
e

(a) The effect on the model’s loss by steering with dif-
ferent kinds of reconstructed task vectors, at each layer.
We see that cleaning performs similarly to the original
task vector until layer 14.

Cleaned TV TV
0

5

10

Vector type

A
ve

ra
ge

 L
0

(b) Average L0 for cleaned task vec-
tors vs. original task vectors at layer
12 (which corresponds to the elbow in
Figure 3a).

2. Reconstructs a new task vector vθ from θ; steers the model with vθ on a batch of zero-shot
prompts and computes negative log-likelihood loss LNLL(θ) on them.

3. Optimizes θ to minimize L = LNLL(θ)+ l∥θ∥1, where l is the L1 regularization coefficient.

This approach allows us to maintain or even improve the performance of task vectors while reducing
the amount of active SAE features to less than 4 on average (Figure 3b) for Gemma 1 2B. The
algorithm overview can be found in Figure 10. Further details are in Appendix D.

We compare it with the four baselines: original task vectors, naive SAE reconstruction, ITO with
target L0 norm set to 5, and ITO with target L0 set to 20. To compare them, we steer the zero-shot
prompt using the reconstructed task vector and calculate relative log-likelihood loss improvement.
We then average it across all tasks. Layer-wise comparison results can be found in Figure 3a. We
have also conducted sweeps for L1 regularization coefficient l across several models and SAEs,
including multiple widths and target sparsities for Gemma 2 2B and 9B. Their results are included in
Appendix D.1 and show that the method can consistently reduce the amount of active SAE features
by 50-80% while preserving the performance of task vectors. They also suggest that the method
benefits from SAEs with higher target L0.

Using this method, we broke down task vectors into a small set of features. Many of these features
were easy to interpret and clearly related to the task at hand. We found a particularly interesting
group of features, which we called “task-execution features” (or ”executor features”). These features
have two key characteristics:

1. They activate when the model encounters examples of the relevant task in normal text.
2. In these encounters they activate on the token just before the task is completed.

For instance, imagine an antonym task feature processing the phrase “ hot and cold .” It would
activate on the token “ and ,” suggesting that the model expects an antonym to follow. This tells us
that the model recognizes it’s dealing with an antonym pair before seeing the complete pair. See
Figure 4 for examples of such features. Appendix I contains more examples of such features with their
max activating examples on SAE training data, which show that the features often have task-related
max activating patterns.

To analyze the activation patterns of executor features, we split all ICL prompt tokens into several
types (highlighted in Example 1 and discussed later in Section 4.1.1). For each executor feature, we
calculate its token type activation masses: the sum of all its activations on tokens of a particular type
across a batch of ICL prompts. Table 1 shows the percentages of total mass split among different
token types for executor features. We can see that executors activate largely on arrow tokens.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) Antonyms executor feature
11618.

(b) Translation to English execu-
tor feature 5579.

(c) Prediction of city/country fea-
ture 850.

Figure 4: A subset of max activating examples for executor features from Appendix I.

3.2 STEERING EXPERIMENTS

To validate the causal relevance of our decomposed task features, we conducted a series of steering
experiments. To observe the features’ impact on task performance across different contexts and
model layers.

The experiments were performed on the dataset of diverse tasks taken from Todd et al. (2024). We
first extracted relevant task features using our cleaning algorithm. Then steered the zero-shot prompt
using them and calculated relative loss improvement, normalizing and clipping it after that. Further
details and additional experiments that include other models can be found in Appendix F.

Figure 5 shows a heatmap of steering results for each pair of tasks and task-relevant features. Higher
values indicate greater improvement in the loss after steering. It can be seen that most tasks have
a single feature with a high effect on them, and this feature generally does not significantly affect
unrelated tasks. Another notable detail is that features from related tasks (like the translation group)
at least partially affect all tasks within the group.

We have manually examined the features with the highest effect and found that their maximum
activating dataset examples tend to align with their hypothesized role in the ICL circuit. Interestingly,
we observed that translation-to-English tasks all share a generic English-to-foreign task execution
feature, thus requiring an additional language encoding feature for complete task encoding. This
shared feature suggests a common mechanism for translation tasks, with language-specific information
encoded separately. Max activating examples of the most interpretable features are present in
Appendix I.

Token Type Mass (%)
arrow 89.80
output 6.46
input 3.2
newline 0.54
prompt 0.00

Table 1: Activation masses for
executor features across dif-
ferent token types, averaged
across all tasks. We can no-
tice they activate largely on
arrow tokens.

5579
16490
2930
26594
11618
29144
1878
850
15356
7491
6594
8633
15554
1830
13458
11172
11173
26987
27268
14612
32320
12943
9662

es_en
it_en
fr_en

plural_singular
antonyms
algo_first

algo_second
location_country

location_continent
present_simple_past_simple

person_profession
present_simple_past_perfect

algo_last
present_simple_gerund

singular_plural
football_player_position

person_language
location_language
location_religion

country_capital
en_it
en_fr
en_es

0

0.2

0.4

0.6

0.8

1
Effect strength

Feature

Ta
sk

Figure 5: Heatmap showing the effect of steering
with individual task-execution features for each
task. Most features boost exactly one task, with a
few exceptions for similar tasks like translating
to English. Full and unfiltered versions of the
heatmap are available in Appendix F.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 APPLYING SFC TO ICL

After identifying task-execution features through our task vector analysis, we sought to expand our
understanding of the in-context learning (ICL) circuit. To this end, we apply the Sparse Feature
Circuits (SFC) methodology (Marks et al., 2024) to the Gemma-1 2B model. However, due to the
increased complexity of ICL tasks and the larger model size, the original SFC approach did not
work out of the box. We had to implement several key modifications to address the challenges we
encountered.

4.1 OUR MODIFICATIONS

4.1.1 TOKEN POSITION CATEGORIZATION AND FEATURE AGGREGATION

We modified the SFC approach to better handle the structured nature of ICL prompts. Instead of
treating each SAE feature as a separate node, we categorized token positions into the following
groups:

• Prompt: The initial instruction tokens (e.g., “Follow the pattern:”)
• Input: The last token before each arrow in an example pair
• Arrow: The arrow token itself (“→”)
• Output: The last token before each newline in an example pair
• Newline: The newline token
• Extra: Any tokens not covered by the above categories (e.g., in multi-token inputs or outputs)

Each pair of an SAE feature and a token type was assigned its own graph node. The effects of the
feature were aggregated across all tokens of the corresponding type. This categorization allowed us
to evaluate how features affect all tokens within the same category, separating features based on their
role in the ICL circuit. It also enabled us to selectively disable parts of the circuit for one task while
testing another, verifying the task specificity of the identified circuits.

4.1.2 LOSS FUNCTION MODIFICATION

An ICL prompt can be viewed as an (x, y) pair, where x represents the entire prompt except for
the last pair’s output, and y represents this output. The original SFC paper suggested using the
log probabilities of y conditioned on x for such datasets. However, this approach often resulted in
task-relevant features having high negative IEs on other example pairs in the prompt. This was likely
due to the circuit’s effect on those pairs being lost to either diminishing gradients in backpropagation
or because copying circuits were much more relevant to predicting the last pair. By considering all
pairs except the first one, we amplified the effect of the task-solving circuit relative to the numerous
cloning circuits that activate due to the repetitive nature of ICL prompts.

4.1.3 SFC EVALUATION

To evaluate the quality of our SFC modification, we conducted a series of ablation experiments
across the same dataset of ICL tasks. Our primary metric for evaluation was faithfulness, which
measures how much of the original task performance is maintained after ablating specific features.
We calculated faithfulness using the following formula:

F (M) =
M −Ma

Mn −Ma
(4)

Where M is the current metric (loss), Ma is the fully ablated model metric, and Mn is the non-ablated
model metric.

We evaluated the impact of ablating features for one task on the performance of all other tasks.
Specifically, we ablated the nodes with highest Indirect Effects (IEs) first, continuing until we reached
a faithfulness of 0.5 for the target task. Faithfulness of 0.5 corresponds to half of the original
performance, i.e. a significantly destructive ablation for the target task. This approach allowed us to
assess both the specificity of the circuits discovered and their impact on related tasks. Our analysis

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

location_continent
location_religion
location_language
location_country
country_capital
person_language
singular_plural
present_sim

ple_past_sim
ple

antonym
s

plural_singular
present_sim

ple_past_perfect
present_sim

ple_gerund
en_it
it_en
en_fr
en_es
fr_en
es_en
algo_last
algo_first
algo_second

location_continent
location_religion

location_language
location_country

country_capital
person_language

singular_plural
present_simple_past_simple

antonyms
plural_singular

present_simple_past_perfect
present_simple_gerund

en_it
it_en
en_fr
en_es
fr_en
es_en

algo_last
algo_first

algo_second

−1

−0.5

0

0.5

Faithfullness

Tested task

A
bl

at
ed

 ta
sk

Figure 6: We study how useful the most important nodes on task A are for performance on task B.
Specifically, we ablate the most important features for task A (the ablated task on the y-axis) so that
faithfulness reduces by 0.5, and measure how much faithful reduces on another task B (the tested task
on the x-axis).

revealed that it is possible to significantly reduce faithfulness by disabling just a few hundred nodes.
Furthermore, we found that we could reduce the number of active nodes to less than a thousand while
keeping the performance almost intact. Extra details and faithfulness/completeness charts can be
found in Appendix E.

Figure 6 presents a heatmap showing the change in faithfulness for various tasks when ablating the
highest IE nodes for a single task. Several key observations can be made from this visualization:

• Task Specificity: Ablating most tasks does not significantly impact the performance of
others, indicating that the discovered circuits are largely task-specific. This suggests that
there are no common high-IE ICL-specific nodes across tasks.

• Related Task Effects: Tasks are grouped into categories, and we observe that ablation of
related tasks has a higher effect on all tasks within the same group. This is visible as squares
along the diagonal, particularly noticeable in the translation group.

• Performance Improvement: For some tasks, we observe that faithfulness rises well above
1.0 after ablation of other tasks. We hypothesize that this occurs because we reduce the
confusion of the model by removing irrelevant execution paths.

It is worth noting that we excluded the person profession and football player position tasks from
Figure 6 due to the very small difference between their fully ablated and non-ablated losses. This
resulted in highly unstable faithfulness calculations for these tasks. We attribute this small difference
partially to our modified loss function, as we found that calculating the loss only from the last pair
results in a higher loss difference.

4.2 TASK-DETECTION FEATURES

Our modified SFC analysis revealed a second crucial component of the ICL mechanism: task-
detection features. These features activate on instances of a complete task in the training data,
specifically on the token that completes the task, contrary to executors that activate right before
them. Both task-detection and task-execution features showed high Indirect Effects (IEs) in the
extracted sparse feature circuits, with task-detection features connected to task execution features
through attention output and transcoder nodes. We applied our task vector cleaning algorithm to
extract task-detection features, identifying layer 11 as optimal for steering, preceding the layer 12
task-execution features. The details can be found in Appendix G. As with executor features, we
present the steering heatmap in Figure 7 and the activation mass percentages in Table 2. We again see
the task and token-type specificity of these features.

To evaluate the causal connection between task-detection features and task-execution features, we
selected the most relevant detection and execution pairs based on steering effects and confirmed that

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Token Type Mass (%)
output 96.76
input 3.22
newline 0.01
arrow 0.0
prompt 0.0

Table 2: Activation masses for
task-detection features across
different token types, averaged
across all tasks. We can notice
that they activate almost exclu-
sively on output tokens.

8446
19628
29228
11459
26436
19916
21327
31123
13529
11050
1322
1132
32115
3466
7928
10884
99 25337
10685
25334
27001
15764

present_simple_gerund
present_simple_past_perfect

plural_singular
algo_last

location_country
location_continent
person_profession

football_player_position
present_simple_past_simple

es_en
fr_en
it_en

country_capital
antonyms

singular_plural
person_language

algo_second
algo_first

location_religion
en_fr
en_it

location_language
en_es

0

0.2

0.4

0.6

0.8

1
Effect strength

Feature

Ta
sk

Figure 7: Heatmap showing the effect of steering
with the task-detection feature most relevant to
each task, on every task. We see that task detec-
tion features are typically specific to the task, with
exceptions for similar tasks.

their max activating patterns aligned with their hypothesized circuit roles. We then ablated detection
directions while fixing attention patterns and measured the decrease in execution activations. Figure
8 presents the results.

location_continent
football_player_position
location_religion
location_language
person_profession
location_country
country_capital
person_language
singular_plural
present_sim

ple_past_sim
ple

antonym
s

plural_singular
present_sim

ple_past_perfect
present_sim

ple_gerund
en_it
it_en
en_fr
en_es
fr_en
es_en
algo_last
algo_first
algo_second

location_continent
football_player_position

location_religion
location_language
person_profession

location_country
country_capital

person_language
singular_plural

present_simple_past_simple
antonyms

plural_singular
present_simple_past_perfect

present_simple_gerund
en_it
it_en
en_fr
en_es
fr_en
es_en

algo_last
algo_first

algo_second

0

0.5

1
Effect strength

Executor

D
et

ec
to

r

Figure 8: Heatmap showing the causal effect of the top task-detection features of each task, on the
activation of the top task-execution features for every task. Averaged across all initial non-zero
activations in all tasks.

The results of our causal connection analysis reveal several key insights. First, we observe strong
causal connections between most task-detection and their corresponding task-execution features,
supporting our hypothesis about their roles in the ICL circuit. Second, we note significant interconnec-
tivity among translation tasks, suggesting shared circuitry for this group of related tasks. Interestingly,
two tasks (person profession and present simple gerund) showed unexpectedly weak connections
between their detection and execution features, warranting further investigation.

5 RELATED WORK

Mechanistic Interpretability Olah et al. (2020) defines a framing for mechanistic interpretability
in terms of features and circuits. It claims that neural network latent spaces have directions in
them called features that correspond to meaningful variables. These features interact through model
components sparsely to form circuits: interpretable computation subgraphs relevant to particular
tasks. These circuits can be found through manual inspection in vision models (Cammarata et al.,
2020). In language models, they can be found through manual patching (Wang et al., 2022; Hanna
et al., 2023; Lieberum et al., 2023; Chan et al., 2022) or automated circuit discovery (Conmy et al.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(2023); Syed et al. (2023); Bhaskar et al. (2024), though see Miller et al. (2024)). Marks et al. (2024)
extends this research area to use Sparse Autoencoders, as discussed below.

In-Context Learning (ICL) ICL was first introduced in Brown et al. (2020) and refers to models
learning to perform tasks from prompt information at test time. There is a large area of research
studying its applications (Dong et al., 2024), high-level mechanisms (Min et al., 2022) and limitations
(Peng et al., 2023). Elhage et al. (2021) and Olsson et al. (2022) find induction heads partly
responsible for in-context learning. However, since these attention heads do more than just induction
(Goldowsky-Dill et al., 2023), and are not sufficient for complex task-following, induction heads
alone cannot explain ICL. Anil et al. (2024, Appendix G) proposes a mechanistic hypothesis for
an aspect of simple in-context task behavior. Hendel et al. (2023) and Todd et al. (2024) find that
simple in-context learning tasks create strong directions in the residual stream adding which makes
it possible for a network to perform tasks zero-shot, but does not explain how task vectors form
nor what interpretable components the task vectors are composed of. A more detailed discussion
can be found in Appendix H. Of particular interest is Wang et al., which investigates a simple ICL
classification task and finds similar results with different terminology (information flow instead of
circuits, ”label words” instead of task-detection features).

Sparse Autoencoders A major roadblock to mechanistic interpretability research is superposition
(Elhage et al., 2022b), where the interpretable units of neural network do not tend to align with the
basis directions (e.g. neurons). Sparse autoencoders (Ng, 2011; Bricken et al., 2023) are one method
of addressing this roadblock, and multiple works since proposed improvements to SAE training
(Rajamanoharan et al., 2024b; Bussmann et al., 2024; Braun et al., 2024; Gao et al., 2024; Templeton
et al., 2024b), and we use several more in our work (Rajamanoharan et al., 2024a; Adam Jermyn,
2024; Conerly et al., 2024). Cunningham et al. (2023), building on Bills et al. (2023), apply Conmy
et al. (2023) to find circuits in small language models. Marks et al. (2024) adapt Syed et al. (2023) in
the SAE basis to find circuits and address a practical bias reduction problem. Kissane et al. (2024)
apply a slightly different automated SAE algorithm (similar to ours in that it operates on single
prompts) to IOI (Wang et al., 2022), using SAEs on the attention layer outputs and residual stream.
Dunefsky et al. (2024) introduce transcoders (which are also briefly discussed in Templeton et al.
(2024a) and Li et al. (2023)) to simplify analysis of circuits involving MLPs. We build on their work
and train transcoders as part of our suite of Gemma-1 SAEs.

6 CONCLUSION

Limitations Our work focused on the simple task vector setting to study ICL (Section 2.3), which
does not capture all ways that ICL is used in practice (generally involving far more tokens and
open-ended tasks). We also only interpreted Gemma-1 2B. Therefore, other LLM architectures or
model sizes could lead to different results (though this is not likely, since task vectors exist across
models (Todd et al., 2024)). Finally, the complexity of the task studied meant our interpretations have
some approximation error: attention heads matter for the detection-execution connection, but the
succeeding MLP is necessary to capture the full effect (Section 4.2). This means that our explanation
needs to include moving parts aside from task-detection attention output features. It is possible to
model the effects of the MLP through transcoder features, but we leave that for future work.

Future Work Future work could extend SFC methods to work on more than a band of layers in
the middle of the model (Section 2.2). Since many features correspond to individual input tokens
and output predictions (due to the three stages of inference in LLMs; Elhage et al. (2022a); Lad
et al. (2024)), this will require further adaptation of the SFC methodology. Moreover, our multiple
contributions will hopefully spur further work that finds new tasks to interpret or explain in greater
depth than prior work, as discussed in our concluding paragraph below.

To summarize our work: we use SAEs to explain in-context learning in greater detail than any
prior mechanistic interpretability work. This provides strong evidence that Sparse Autoencoders are
valuable circuit analysis tools, and the innovations developed: TVC (Section 3.1), SFC improvements
(Section 2.2) and an SAE training codebase in JAX with open SAE weights (Section 7) are likely to
help enable lots of other SAE research to tackle more ambitious tasks and larger models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

7 REPRODUCIBILITY STATEMENT

We are committed to fostering reproducibility and advancing research in the field of mechanistic
interpretability. To support this goal, we plan to release the following resources upon successful
acceptance of this paper:

1. Two JAX libraries optimized for TPU:

• A library for Sparse Autoencoder (SAE) training
• A library for SAE inference and model analysis, built upon Penzai with our custom

Llama and Gemma ports

2. A full suite of SAEs for Gemma 2B, along with a dataset of their max activating examples

3. Two custom dashboards used in our analysis:

• A dashboard for browsing max activating examples
• An interactive dashboard for exploring extracted Sparse Feature Circuits (SFC)

These resources will enable researchers to replicate our experiments, extend our work, and conduct
their own investigations using our tools and methodologies. The release of our custom dashboards
will provide additional transparency and facilitate a deeper exploration of our results. Due to the
complexity of our infrastructure, we only share anonymized versions of our analysis, cleaning, and
SFC scripts, which still require our JAX libraries to run. We hope that reviewers will find this, along
with the detailed methodologies described in the paper, sufficient evidence of reproducibility.

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko,
Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav Chaudhary, Dong Chen, Dongdong
Chen, Weizhu Chen, Yen-Chun Chen, Yi-Ling Chen, Hao Cheng, Parul Chopra, Xiyang Dai,
Matthew Dixon, Ronen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao, Min Gao, Amit Garg,
Allie Del Giorno, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao, Russell J.
Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan Javaheripi, Xin Jin,
Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi, Dongwoo Kim, Young Jin Kim, Lev
Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars Liden, Xihui
Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu, Weishung Liu, Xiaodong Liu, Chong Luo,
Piyush Madan, Ali Mahmoudzadeh, David Majercak, Matt Mazzola, Caio César Teodoro Mendes,
Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker,
Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang Ren, Gustavo de Rosa,
Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim, Michael
Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Yelong Shen, Swadheen Shukla, Xia Song,
Masahiro Tanaka, Andrea Tupini, Praneetha Vaddamanu, Chunyu Wang, Guanhua Wang, Lijuan
Wang, Shuohang Wang, Xin Wang, Yu Wang, Rachel Ward, Wen Wen, Philipp Witte, Haiping
Wu, Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Jilong Xue, Sonali
Yadav, Fan Yang, Jianwei Yang, Yifan Yang, Ziyi Yang, Donghan Yu, Lu Yuan, Chenruidong
Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and
Xiren Zhou. Phi-3 technical report: A highly capable language model locally on your phone, 2024.
URL https://arxiv.org/abs/2404.14219.

Adly Templeton Adam Jermyn. Ghost grads: An improvement on resampling, 2024.
URL https://transformer-circuits.pub/2024/jan-update/index.html#
dict-learning-resampling.

Cem Anil, Esin Durmus, Mrinank Sharma, Joe Benton, Sandipan Kundu, Joshua Batson, Nina
Rimsky, Meg Tong, Jesse Mu, Daniel Ford, et al. Many-shot jailbreaking. 2024.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection.

11

https://arxiv.org/abs/2404.14219
https://transformer-circuits.pub/2024/jan-update/index.html#dict-learning-resampling
https://transformer-circuits.pub/2024/jan-update/index.html#dict-learning-resampling

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hritik Bansal, Karthik Gopalakrishnan, Saket Dingliwal, Sravan Bodapati, Katrin Kirchhoff, and Dan
Roth. Rethinking the role of scale for in-context learning: An interpretability-based case study at
66 billion scale. URL http://arxiv.org/abs/2212.09095.

Adithya Bhaskar, Alexander Wettig, Dan Friedman, and Danqi Chen. Finding transformer circuits
with edge pruning, 2024. URL https://arxiv.org/abs/2406.16778.

Steven Bills, Nick Cammarata, Dan Mossing, et al. Language models can explain neu-
rons in language models. https://openaipublic.blob.core.windows.net/
neuron-explainer/paper/index.html, 2023.

Joseph Bloom. Open source sparse autoencoders for all residual stream layers of gpt2-small,
2024. URL https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/
open-source-sparse-autoencoders-for-all-residual-stream.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/jax-ml/jax.

Dan Braun, Jordan Taylor, Nicholas Goldowsky-Dill, and Lee Sharkey. Identifying functionally
important features with end-to-end sparse dictionary learning, 2024. URL https://arxiv.
org/abs/2405.12241.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary
learning. Transformer Circuits Thread, 2023. https://transformer-circuits.pub/
2023/monosemantic-features/index.html.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-
shot learners. In Advances in Neural Information Processing Systems, volume 33, pp.
1877–1901, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Bart Bussmann, Patrick Leask, and Neel Nanda. Batchtopk: A simple improvement for topk-saes,
2024. URL https://www.alignmentforum.org/posts/Nkx6yWZNbAsfvic98/
batchtopk-a-simple-improvement-for-topk-saes.

Nick Cammarata, Shan Carter, Gabriel Goh, Chris Olah, et al. Thread: Circuits. Distill, 2020. doi:
10.23915/distill.00024. https://distill.pub/2020/circuits.

Lawrence Chan, Adria Garriga-Alonso, Nix Goldowsky-Dill, Ryan Greenblatt, Jenny
Nitishinskaya, Ansh Radhakrishnan, Buck Shlegeris, and Nate Thomas. Causal
scrubbing: A method for rigorously testing interpretability hypotheses, 2022.
URL https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/
causal-scrubbing-a-method-for-rigorously-testing.

Siyu Chen, Heejune Sheen, Tianhao Wang, and Zhuoran Yang. Unveiling induction heads: Provable
training dynamics and feature learning in transformers. URL http://arxiv.org/abs/
2409.10559.

Tom Conerly, Adly Templeton, Trenton Bricken, Jonathan Marcus, and Tom Henighan. Up-
date on how we train saes, 2024. URL https://transformer-circuits.pub/2024/
april-update/index.html#training-saes.

12

http://arxiv.org/abs/2212.09095
https://arxiv.org/abs/2406.16778
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/open-source-sparse-autoencoders-for-all-residual-stream
https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/open-source-sparse-autoencoders-for-all-residual-stream
http://github.com/jax-ml/jax
https://arxiv.org/abs/2405.12241
https://arxiv.org/abs/2405.12241
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://www.alignmentforum.org/posts/Nkx6yWZNbAsfvic98/batchtopk-a-simple-improvement-for-topk-saes
https://www.alignmentforum.org/posts/Nkx6yWZNbAsfvic98/batchtopk-a-simple-improvement-for-topk-saes
https://distill.pub/2020/circuits
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
http://arxiv.org/abs/2409.10559
http://arxiv.org/abs/2409.10559
https://transformer-circuits.pub/2024/april-update/index.html#training-saes
https://transformer-circuits.pub/2024/april-update/index.html#training-saes

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Arthur Conmy, Augustine N. Mavor-Parker, Aengus Lynch, et al. Towards automated circuit discovery
for mechanistic interpretability. In Proceedings of NeurIPS, 2023.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, et al. Sparse autoencoders find highly interpretable
features in language models, 2023. URL https://arxiv.org/abs/2309.08600.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can GPT
learn in-context? language models implicitly perform gradient descent as meta-optimizers. URL
http://arxiv.org/abs/2212.10559.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Tianyu Liu, Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui. A survey on in-context
learning, 2024. URL https://arxiv.org/abs/2301.00234.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, et al. The llama 3 herd of
models, 2024. URL https://arxiv.org/abs/2407.21783.

Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable llm feature
circuits, 2024. URL https://arxiv.org/abs/2406.11944.

Michael Elad. Sparse and Redundant Representations: From Theory to Applications in Signal
and Image Processing. Springer, New York, 2010. ISBN 978-1-4419-7010-7. doi: 10.1007/
978-1-4419-7011-4.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse,
Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. A
mathematical framework for transformer circuits. Transformer Circuits Thread, 2021. URL
https://transformer-circuits.pub/2021/framework/index.html.

Nelson Elhage, Tristan Hume, Catherine Olsson, Neel Nanda, Tom Henighan, Scott Johnston, Sheer
ElShowk, Nicholas Joseph, Nova DasSarma, Ben Mann, Danny Hernandez, Amanda Askell,
Kamal Ndousse, Jones, , Dawn Drain, Anna Chen, Yuntao Bai, Deep Ganguli, Liane Lovitt, Zac
Hatfield-Dodds, Jackson Kernion, Tom Conerly, Shauna Kravec, Stanislav Fort, Saurav Kadavath,
Josh Jacobson, Eli Tran-Johnson, Jared Kaplan, Jack Clark, Tom Brown, Sam McCandlish, Dario
Amodei, and Christopher Olah. Softmax linear units. Transformer Circuits Thread, 2022a.
https://transformer-circuits.pub/2022/solu/index.html.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy Models of Superposition.
arXiv preprint arXiv:2209.10652, 2022b.

Eoin Farrell. Experiments with an alternative method to promote sparsity in sparse autoen-
coders, 2024. URL https://www.lesswrong.com/posts/cYA3ePxy8JQ8ajo8B/
experiments-with-an-alternative-method-to-promote-sparsity.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders, 2024. URL https:
//arxiv.org/abs/2406.04093.

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes.

Gemma Team. Gemma: Open models based on gemini research and technology, 2024. URL
https://arxiv.org/abs/2403.08295.

Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato, and Aryaman Arora. Localizing model
behavior with path patching, 2023. URL https://arxiv.org/abs/2304.05969.

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
Steiner, Dustin Li, Esin Durmus, Ethan Perez, Evan Hubinger, Kamilė Lukošiūtė, Karina Nguyen,
Nicholas Joseph, Sam McCandlish, Jared Kaplan, and Samuel R. Bowman. Studying large
language model generalization with influence functions, 2023. URL https://arxiv.org/
abs/2308.03296.

13

https://arxiv.org/abs/2309.08600
http://arxiv.org/abs/2212.10559
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2406.11944
https://transformer-circuits.pub/2021/framework/index.html
https://www.lesswrong.com/posts/cYA3ePxy8JQ8ajo8B/experiments-with-an-alternative-method-to-promote-sparsity
https://www.lesswrong.com/posts/cYA3ePxy8JQ8ajo8B/experiments-with-an-alternative-method-to-promote-sparsity
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2304.05969
https://arxiv.org/abs/2308.03296
https://arxiv.org/abs/2308.03296

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Xiaochuang Han, Daniel Simig, Todor Mihaylov, Yulia Tsvetkov, Asli Celikyilmaz, and Tianlu Wang.
Understanding in-context learning via supportive pretraining data. URL http://arxiv.org/
abs/2306.15091.

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does gpt-2 compute greater-than?:
Interpreting mathematical abilities in a pre-trained language model, 2023. URL https://
arxiv.org/abs/2305.00586.

Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors, 2023. URL
https://arxiv.org/abs/2310.15916.

Daniel D. Johnson. Penzai + treescope: A toolkit for interpreting, visualizing, and editing models as
data, 2024. URL https://arxiv.org/abs/2408.00211.

Patrick Kidger and Cristian Garcia. Equinox: neural networks in jax via callable pytrees and filtered
transformations, 2021. URL https://arxiv.org/abs/2111.00254.

Connor Kissane, Robert Krzyzanowski, Arthur Conmy, and Neel
Nanda. Attention output saes improve circuit analysis, 2024. URL
https://www.alignmentforum.org/posts/EGvtgB7ctifzxZg6v/
attention-output-saes-improve-circuit-analysis.

Vedang Lad, Wes Gurnee, and Max Tegmark. The remarkable robustness of llms: Stages of inference?,
2024. URL https://arxiv.org/abs/2406.19384.

Max Li, Sam Marks, and Aaron Mueller. dictionary learning repository, 2023. URL https:
//github.com/saprmarks/dictionary_learning?tab=readme-ov-file#
extra-functionalitysupported-by-this-repo. Accessed on September 30, 2024.

Tom Lieberum, Matthew Rahtz, János Kramár, et al. Does circuit analysis interpretability scale?
evidence from multiple choice capabilities in chinchilla, 2023. URL https://arxiv.org/
abs/2307.09458.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
autoencoders everywhere all at once on gemma 2, 2024. URL https://arxiv.org/abs/
2408.05147.

Johnny Lin. Neuronpedia: Interactive reference and tooling for analyzing neural networks, 2023.
URL https://www.neuronpedia.org. Software available from neuronpedia.org.

Arvind Mahankali, Tatsunori B. Hashimoto, and Tengyu Ma. One step of gradient descent is
provably the optimal in-context learner with one layer of linear self-attention. URL http:
//arxiv.org/abs/2307.03576.

Samuel Marks, Can Rager, Eric J. Michaud, et al. Sparse feature circuits: Discovering and editing in-
terpretable causal graphs in language models. Computing Research Repository, arXiv:2403.19647,
2024. URL https://arxiv.org/abs/2403.19647.

Joseph Miller, Bilal Chughtai, and William Saunders. Transformer circuit faithfulness metrics are not
robust, 2024. URL https://arxiv.org/abs/2407.08734.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? arXiv
preprint arXiv:2202.12837, 2022. URL https://arxiv.org/abs/2202.12837.

Andrew Ng. Sparse autoencoder. CS294A Lecture Notes, 2011. Unpublished lecture notes.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001. https:
//distill.pub/2020/circuits/zoom-in.

14

http://arxiv.org/abs/2306.15091
http://arxiv.org/abs/2306.15091
https://arxiv.org/abs/2305.00586
https://arxiv.org/abs/2305.00586
https://arxiv.org/abs/2310.15916
https://arxiv.org/abs/2408.00211
https://arxiv.org/abs/2111.00254
https://www.alignmentforum.org/posts/EGvtgB7ctifzxZg6v/attention-output-saes-improve-circuit-analysis
https://www.alignmentforum.org/posts/EGvtgB7ctifzxZg6v/attention-output-saes-improve-circuit-analysis
https://arxiv.org/abs/2406.19384
https://github.com/saprmarks/dictionary_learning?tab=readme-ov-file#extra-functionalitysupported-by-this-repo
https://github.com/saprmarks/dictionary_learning?tab=readme-ov-file#extra-functionalitysupported-by-this-repo
https://github.com/saprmarks/dictionary_learning?tab=readme-ov-file#extra-functionalitysupported-by-this-repo
https://arxiv.org/abs/2307.09458
https://arxiv.org/abs/2307.09458
https://arxiv.org/abs/2408.05147
https://arxiv.org/abs/2408.05147
https://www.neuronpedia.org
http://arxiv.org/abs/2307.03576
http://arxiv.org/abs/2307.03576
https://arxiv.org/abs/2403.19647
https://arxiv.org/abs/2407.08734
https://arxiv.org/abs/2202.12837
https://distill.pub/2020/circuits/zoom-in
https://distill.pub/2020/circuits/zoom-in

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads, 2022. URL https://arxiv.org/
abs/2209.11895.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent.
URL http://arxiv.org/abs/2212.07677.

Jane Pan, Tianyu Gao, Howard Chen, and Danqi Chen. What in-context learning “learns” in-context:
Disentangling task recognition and task learning. In Anna Rogers, Jordan Boyd-Graber, and
Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics: ACL 2023, pp.
8298–8319. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.527.
URL https://aclanthology.org/2023.findings-acl.527.

Judea Pearl. Direct and indirect effects. In Proceedings of the Seventeenth Conference on Uncertainty
in Artificial Intelligence, UAI’01, pp. 411–420, San Francisco, CA, USA, 2001. Morgan Kaufmann
Publishers Inc. ISBN 1558608001.

Judea Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, USA, 2nd
edition, 2009. ISBN 052189560X.

Guilherme Penedo, Hynek Kydlı́ček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
finest text data at scale, 2024. URL https://arxiv.org/abs/2406.17557.

Hao Peng, Xiaozhi Wang, Jianhui Chen, Weikai Li, Yunjia Qi, Zimu Wang, Zhili Wu, Kaisheng Zeng,
Bin Xu, Lei Hou, and Juanzi Li. When does in-context learning fall short and why? a study on
specification-heavy tasks, 2023. URL https://arxiv.org/abs/2311.08993.

Senthooran Rajamanoharan. Improving ghost grads, 2024. URL
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/
progress-update-1-from-the-gdm-mech-interp-team-full-update#
Improving_ghost_grads.

Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, János
Kramár, Rohin Shah, and Neel Nanda. Improving dictionary learning with gated sparse autoen-
coders, 2024a. URL https://arxiv.org/abs/2404.16014.

Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, János
Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse
autoencoders, 2024b. URL https://arxiv.org/abs/2407.14435.

Allan Raventós, Mansheej Paul, Feng Chen, and Surya Ganguli. Pretraining task diversity and the
emergence of non-bayesian in-context learning for regression. URL http://arxiv.org/
abs/2306.15063.

Logan Riggs and Jannik Brinkman. Improving sae’s by sqrt()-ing l1 removing lowest activating
features, 2024. URL https://www.lesswrong.com/posts/YiGs8qJ8aNBgwt2YN/
improving-sae-s-by-sqrt-ing-l1-and-removing-lowest.

Lingfeng Shen, Aayush Mishra, and Daniel Khashabi. Do pretrained transformers learn in-context
by gradient descent? URL http://arxiv.org/abs/2310.08540.

Chenglei Si, Dan Friedman, Nitish Joshi, Shi Feng, Danqi Chen, and He He. Measuring inductive
biases of in-context learning with underspecified demonstrations. In Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
11289–11310. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.632.
URL https://aclanthology.org/2023.acl-long.632.

15

https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2209.11895
http://arxiv.org/abs/2212.07677
https://aclanthology.org/2023.findings-acl.527
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2311.08993
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/progress-update-1-from-the-gdm-mech-interp-team-full-update#Improving_ghost_grads
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/progress-update-1-from-the-gdm-mech-interp-team-full-update#Improving_ghost_grads
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/progress-update-1-from-the-gdm-mech-interp-team-full-update#Improving_ghost_grads
https://arxiv.org/abs/2404.16014
https://arxiv.org/abs/2407.14435
http://arxiv.org/abs/2306.15063
http://arxiv.org/abs/2306.15063
https://www.lesswrong.com/posts/YiGs8qJ8aNBgwt2YN/improving-sae-s-by-sqrt-ing-l1-and-removing-lowest
https://www.lesswrong.com/posts/YiGs8qJ8aNBgwt2YN/improving-sae-s-by-sqrt-ing-l1-and-removing-lowest
http://arxiv.org/abs/2310.08540
https://aclanthology.org/2023.acl-long.632

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Lewis Smith. Replacing sae encoders with inference-time optimisation, 2024.
URL https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/
full-post-progress-update-1-from-the-gdm-mech-interp-team#
Replacing_SAE_Encoders_with_Inference_Time_Optimisation.

Aaquib Syed, Can Rager, and Arthur Conmy. Attribution patching outperforms automated circuit
discovery, 2023. URL https://arxiv.org/abs/2310.10348.

Adly Templeton, Joshua Batson, Adam Jermyn, and Chris Olah. Predicting future activations,
January 2024a. URL https://transformer-circuits.pub/2024/jan-update/
index.html#predict-future. Accessed on September 30, 2024.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,
Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L
Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers,
Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan.
Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet. Trans-
former Circuits Thread, 2024b. URL https://transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

Eric Todd, Millicent L. Li, Arnab Sen Sharma, et al. Function vectors in large language models. In
Proceedings of the 2024 International Conference on Learning Representations, 2024.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: A circuit for indirect object identification in GPT-2 small, 2022. URL
https://arxiv.org/abs/2211.00593.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou, Fandong Meng, Jie Zhou, and Xu Sun.
Label words are anchors: An information flow perspective for understanding in-context learn-
ing. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language Processing, pp. 9840–9855. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.609. URL https:
//aclanthology.org/2023.emnlp-main.609.

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, and William Yang Wang. Large language
models are latent variable models: Explaining and finding good demonstrations for in-context
learning, 2024. URL https://arxiv.org/abs/2301.11916.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. URL http://arxiv.org/abs/2111.02080.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. Magpie: Alignment data synthesis from scratch by prompting aligned llms with
nothing, 2024. URL https://arxiv.org/abs/2406.08464.

Steve Yadlowsky, Lyric Doshi, and Nilesh Tripuraneni. Pretraining data mixtures enable narrow model
selection capabilities in transformer models. URL http://arxiv.org/abs/2311.00871.

A MODEL AND DATASET DETAILS

For our experiments, we utilized the Gemma 1 2B model, a member of the Gemma family of open
models based on Google’s Gemini models (Gemma Team, 2024). The model’s architecture is largely
the same as that of Llama (Dubey et al., 2024) except for tied input and output embeddings and a
different activation function for MLP layers, so we could reuse our infrastructure for loading Llama
models. We train residual and attention output SAEs as well as transcoders for layers 1-18 of the
model on FineWeb (Penedo et al., 2024).

Our dataset for circuit finding is primarily derived from the function vectors paper (Todd et al., 2024),
which provides a diverse set of tasks for evaluating the existence and properties of function vectors in
language models. We supplemented this dataset with three additional algorithmic tasks to broaden
the scope of our analysis:

16

https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team#Replacing_SAE_Encoders_with_Inference_Time_Optimisation
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team#Replacing_SAE_Encoders_with_Inference_Time_Optimisation
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team#Replacing_SAE_Encoders_with_Inference_Time_Optimisation
https://arxiv.org/abs/2310.10348
https://transformer-circuits.pub/2024/jan-update/index.html#predict-future
https://transformer-circuits.pub/2024/jan-update/index.html#predict-future
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://arxiv.org/abs/2211.00593
https://aclanthology.org/2023.emnlp-main.609
https://aclanthology.org/2023.emnlp-main.609
https://arxiv.org/abs/2301.11916
http://arxiv.org/abs/2111.02080
https://arxiv.org/abs/2406.08464
http://arxiv.org/abs/2311.00871

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

• Extract the first element from an array of length 4
• Extract the second element from an array of length 4
• Extract the last element from an array of length 4

The complete list of tasks used in our experiments with task descriptions is as follows:

Task ID Description
location continent Name the continent where the given landmark is located.
football player position Identify the position of a given football player.
location religion Name the predominant religion in a given location.
location language State the primary language spoken in a given location.
person profession Identify the profession of a given person.
location country Name the country where a given location is situated.
country capital Provide the capital city of a given country.
person language Identify the primary language spoken by a given person.
singular plural Convert a singular noun to its plural form.
present simple past simple Change a verb from present simple to past simple tense.
antonyms Provide the antonym of a given word.
plural singular Convert a plural noun to its singular form.
present simple past perfect Change a verb from present simple to past perfect tense.
present simple gerund Convert a verb from present simple to gerund form.
en it Translate a word from English to Italian.
it en Translate a word from Italian to English.
en fr Translate a word from English to French.
en es Translate a word from English to Spanish.
fr en Translate a word from French to English.
es en Translate a word from Spanish to English.
algo last Extract the last element from an array of length 4.
algo first Extract the first element from an array of length 4.
algo second Extract the second element from an array of length 4.

This diverse set of tasks covers a wide range of linguistic and cognitive abilities, including geographic
knowledge, language translation, grammatical transformations, and simple algorithmic operations.
By using this comprehensive task set, we aimed to thoroughly investigate the in-context learning
capabilities of the Gemma 1 2B model across various domains.

B SAE TRAINING

Our Gemma 1 2B SAEs are trained with a learning rate of 1e-3 and Adam betas of 0.0 and 0.99
for 150M (±100) tokens of FineWeb (Penedo et al., 2024). The methodology is overall similar to
(Bloom, 2024). We initialize encoder weights orthogonally and set decoder weights to their transpose.
We initialize decoder biases to 0. We use Rajamanoharan (2024)’s ghost gradients variant (ghost
gradients applied to dead features only, loss multiplied by the proportion of death features) with the
additional modification of using softplus instead of exp for numerical stability. A feature is considered
dead when its density (according to a 1000-batch buffer) is below 5e-6 or when it has not fired in
2000 steps. We use Anthropic’s input normalization and sparsity loss for Gemma 1 2B (Conerly et al.,
2024). We found it to improve Gated SAE training stability. We modified it to work with transcoders
by keeping track of input and output norms separately and predicting normed outputs.

We convert our Gated SAEs into JumpReLU SAEs after training, implementing algorithms like TVC
and SFC in a unified manner for all SAEs in this format (including simple SAEs). The conversion
procedure involves setting thresholds to replicate the effect of the gating branch. For further details,
see Rajamanoharan et al. (2024b).

We use 4 v4 TPU chips running Jax (Bradbury et al., 2018) (Equinox (Kidger & Garcia, 2021)) to
train our SAEs. We found that training with Huggingface’s Flax LM implementations was very
slow. We reimplemented LLaMA (Dubey et al., 2024) and Gemma (Gemma Team, 2024) in Penzai
(Johnson, 2024) with a custom layer-scan transformation and quantized inference kernels as well
as support for loading from GGUF compressed model files. We process an average of around 4400

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

tokens per second, which makes training SAEs and not caching LM activations the main bottleneck.
For this and other reasons, we don’t do SAE sparsity coefficient sweeps to increase TPU utilization.

For caching, we use a distributed ring buffer which contains separate pointers on each device to allow
for processing masked data. The (in-place) buffer update is in a separate JIT context. Batches are
sampled randomly from the buffer for each training step.

We train our SAEs in bfloat16 precision. We found that keeping weights and scales in bfloat16
and biases in float32 performed best in terms of the number of dead features and led to a Pareto
improvement over float32 SAEs.

For training Phi 3 (Abdin et al., 2024) SAEs, we use data generated by the model unconditionally,
similarly to (Xu et al., 2024)5. The resulting dataset we train the model on contains many math
problems and is formatted as a natural-seeming interaction between the user and the model.

Each SAE training run takes us about 3 hours. We trained 3 models (a residual SAE, an attention
output SAE, and a transcoder) for each of the 18 layers of the model. This is about 1 week of v4-8
TPU time.

Our SAEs and training code will be made public after paper acceptance.

C EXAMPLE CIRCUITS

Figure 9: An example of a circuit found using our SFC variant. We focused on a subcircuit with high
indirect effects. Maximum activating examples from the SAE training distribution are included.

An example output of our circuit cleaning algorithm can be found in Figure 9. We can see the flow of
information through a single high-IE attention feature from a task-detection feature (activating on
output tokens) to transcoder and residual execution features (activating on arrow tokens). The feature
activates on antonyms on the detection feature #11050: one can assume the first sequence began as
“Short Term Target”, making the second half an antonym.

We will release a web interface for viewing maximum activating examples and task feature circuits.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

n-shot ICL
prompts Task vectors SAE

features

Training
weights

Cleaned
weights

Reconstruct
TV

L1 normTask loss

Loss
Optimize

0-shot ICL
prompts

...hot -> cold...

...tall ->

on layer L

10-20 features
noisy

2-4 features
interpretable

Figure 10: An overview of our Task Vector Cleaning algorithm. TV stands for Task Vector.

D TASK VECTOR CLEANING ALGORITHM

The task vector cleaning algorithm is a novel approach we developed to isolate task-relevant features
from task vectors. Figure 10 provides an overview of this algorithm.

Our process begins with collecting residuals for task vectors using a batch of 16 and 16-shot prompts.
We then calculate the SAE features for these task vectors. We explored two methods: (1) calculating
feature activation and then averaging across tokens, and (2) averaging across tokens first and then
calculating the task vector. They had similar performances.

The cleaning process is performed on a training batch of 24 pairs, with evaluation conducted on an
additional 24 pairs. All prompts are zero-shot. An example prompt is as follows:

BOS Follow the pattern : \n

tall → short \n

· · ·

old → young \n

hot → cold

Example 2: The steered token is highlighted in red. Loss is calculated on the yellow token.

The algorithm is initialized with the SAE reconstruction as a starting point. It then iteratively steers
the model on the reconstruction layer and calculates the loss on the training pairs. To promote sparsity,
we add the L1 norm of weights with coefficient l to the loss function. The algorithm implements
early stopping when the L0 norm remains unchanged for n iterations.

1 def tvc_algorithm(task_vector, model, sae):
2 initial_weights = sae.encode(task_vector)
3 def tvc_loss(weights, tokens):
4 task_vector = sae.decode(weights)
5 mask = tokens == self.separator

5Phi-3 is trained primarily with instruction following data, making it an aligned chat model.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

6 model.residual_stream[layer, mask] += task_vector
7 # loss only on the "output" tokens,
8 # ignoring input and prompt tokens
9 loss = logprobs(model.logits, tokens, ...)

10 return loss + l1_coeff * l1_norm(weights)
11 weights = initial_weights.copy()
12 optimizer = adam(weights, lr=0.15)
13 last_l0, without_change = 0, 0 # early stopping
14 for _ in range(1000):
15 grad = jax.grad(tvc_loss)(weights, tokens)
16 weights = optimizer.step(grad)
17 if l0_norm(weights) != last_l0:
18 last_l0, without_change = l0_norm(weights), 0
19 elif without_change >= 50:
20 break
21 return weights

Algorithm 1: Pseudocode for Task Vector Cleaning.

The hyperparameters l, n, and learning rate α can be fixed for a single model. We experimented with
larger batch sizes but found that they did not significantly improve the quality of extracted features
while substantially slowing down the algorithm due to gradient accumulation.

The algorithm takes varying amounts of time to complete for different tasks and models. For Gemma
1, it stops at 100-200 iterations, which is close to 40 seconds at 5 iterations per second.

It’s worth noting that we successfully applied this method to the recently released Gemma 2 2B and
9B models using the Gemma Scope SAE suite (Lieberum et al., 2024). It was also successful with the
Phi-3 3B model (Abdin et al., 2024) and with our SAEs, which were trained similarly to the Gemma
1 2B SAEs.

D.1 L1 SWEEPS

To provide more details about the method’s effectiveness across various models and SAE widths, we
conducted L1 coefficient sweeps with our Phi-3 and Gemma 1 2B SAEs, as well as Gemma Scope
Gemma 2 SAEs. We chose two SAE widths for Gemma 2 2B and 9B: 16k and 65k. For Gemma 2
2B we also sweeped across several different target SAE l0 norms. We studied only the optimal task
vector layer for each model: 12 for Gemma 1, 16 for Gemma 2, 18 for Phi-3, and 20 for Gemma 2
9B. We used a learning rate of 0.15 with the Gemma 1 2B, Phi-3, and Gemma 2 2B 65k models, 0.3
with Gemma 2 2B 16k, and 0.05 with 200 early stopping steps for Gemma 2 9B.

Figures 11, 12, 13 compare TVC and ITO against original task vectors. The X-axis displays the
fraction of active task vector SAE features used. The Y-axis displays the TV loss delta, calculated
as (LTV − LMethod)/LZero, where LTV is the loss from steering with the task vector, LMethod

is the loss after it has been cleaned using the corresponding method, and LZero is the uninformed
(no-steering) model loss. This metric shows improvement over the task vector relative to the loss of
the uninformed model. Points were collected from all tasks using 5 different L1 coefficient values.

We observe that our method often improves task vector loss and can reduce the number of active
features to one-third of those in the original task vector while maintaining relatively intact performance.
In contrast, ITO rarely improves the task vector loss and is almost always outperformed by TVC.

Figures 14, 15 and 16 show task-mean loss decrease (relative to no steering loss) and remaining TV
features fraction plotted against L1 sweep coefficients. We see that L1 coefficients between 0.001
and 0.025 result in relatively intact performance, while significantly reducing the amount of active
SAE features. From Figure 15 we can notice that the method performs better with higher target l0
SAEs, being able to affect the loss with just a fraction of active SAE features.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0 0.5 1 1.5 2
−0.6

−0.4

−0.2

0

0.2

Method
ITO
TVC

Gemma 1

TV L0 fraction

TV
 lo

ss
 d

el
ta

Figure 11: Performance of ITO and TVC across different tasks and optimization parameters compared
to task vectors for Gemma 1 2B. The Y-axis shows relative improvement over task vector loss, while
the X-axis shows the fraction of active TV features used. Metric calculation details are available in
D.1

0 0.5 1 1.5

−0.4

−0.2

0

0.2

0.4
Method

ITO
TVC

Phi-3

TV L0 fraction

TV
 lo

ss
 d

el
ta

Figure 12: Performance of ITO and TVC across different tasks and optimization parameters compared
to task vectors for Phi-3. The Y-axis shows relative improvement over task vector loss, while the
X-axis shows the fraction of active TV features used. Metric calculation details are available in D.1

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0 0.5 1 1.5 2

−0.5

0

0.5

Method
ITO
TVC

Gemma 2 65k

TV L0 fraction

TV
 lo

ss
 d

el
ta

0 0.5 1 1.5 2

−0.5

0

0.5

Method
ITO
TVC

Gemma 2 16k

TV L0 fraction

TV
 lo

ss
 d

el
ta

0 0.5 1 1.5 2

−0.6

−0.4

−0.2

0

0.2

Method
ITO
TVC

Gemma 2 2B 16k (23 l0)

TV L0 fraction

TV
 lo

ss
 d

el
ta

0 0.2 0.4 0.6 0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6 Method
ITO
TVC

Gemma 2 2B 16k (335 l0)

TV L0 fraction

TV
 lo

ss
 d

el
ta

0 0.5 1 1.5 2

−0.6

−0.4

−0.2

0

0.2
Method

ITO
TVC

Gemma 2 2B 65k (21 l0)

TV L0 fraction

TV
 lo

ss
 d

el
ta

0 0.2 0.4 0.6 0.8 1 1.2 1.4

−0.6

−0.4

−0.2

0

0.2

0.4

Method
ITO
TVC

Gemma 2 2B 65k (244 l0)

TV L0 fraction

TV
 lo

ss
 d

el
ta

0 0.5 1 1.5 2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Method

ITO
TVC

Gemma 2 9B 65k

TV L0 fraction

TV
 lo

ss
 d

el
ta

0 0.5 1 1.5 2
−0.6

−0.4

−0.2

0

0.2

0.4

Method
ITO
TVC

Gemma 2 9B 16k

TV L0 fraction

TV
 lo

ss
 d

el
ta

Figure 13: Performance of ITO and TVC across different tasks and optimization parameters compared
to task vectors for Gemma 2 Gemma Scope SAEs. The Y-axis shows the relative improvement over
the loss from steering with a task vector, while the X-axis shows the fraction of active TV features
used. Metric calculation details are available in Appendix D.1.

E DETAILS OF OUR SFC IMPLEMENTATION

E.1 IMPLEMENTATION DETAILS

Our implementation of circuit finding attribution patching is specialized for Jax and Penzai.

We first perform a forward-backward pass on the set of prompts, collecting residuals and gradients
from the metric to residuals. We collect gradients with jax.grad by introducing ”dummy” zero-
valued inputs to the metric computation function that are added to the residuals of each layer. Note
that we do not use SAEs during this stage.

We then perform an SAE encoding step and find the nodes (residual, attention output, and transcoder
SAE features and error nodes) with the highest indirect effects using manually computed gradients

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

0.4

0.6

0.8

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

0.2

0.4

0.6

Gemma 1

L1 Coefficient

L1 Coefficient

M
ea

n
re

la
tiv

e
lo

ss
 d

ec
re

as
e

M
ea

n
TV

 L
0

Fr
ac

tio
n

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

0

0.2

0.4

0.6

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1
0

0.2

0.4

0.6

Phi-3

L1 Coefficient

L1 Coefficient

M
ea

n
re

la
tiv

e
lo

ss
 d

ec
re

as
e

M
ea

n
TV

 L
0

Fr
ac

tio
n

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1
0

0.2

0.4

0.6

0.8

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1
0

0.2

0.4

0.6

Gemma 2 2B 65k (128 l0)

L1 Coefficient

L1 Coefficient

M
ea

n
re

la
tiv

e
lo

ss
 d

ec
re

as
e

M
ea

n
TV

 L
0

Fr
ac

tio
n

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

0

0.2

0.4

0.6

0.8

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1
0

0.2

0.4

Gemma 2 2B 16k (78 l0)

L1 Coefficient

L1 Coefficient

M
ea

n
re

la
tiv

e
lo

ss
 d

ec
re

as
e

M
ea

n
TV

 L
0

Fr
ac

tio
n

Figure 14: L1 coefficient sweeps across different models and SAEs. All metrics are averaged across
all tasks. Error bars show the standard deviation of the average for each case. Metric calculation
details are available in D.1.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

0

0.2

0.4

0.6

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

0

0.2

0.4

0.6

Gemma 2 2B 16k (23 l0)

L1 Coefficient

L1 Coefficient

M
ea

n
re

la
tiv

e
lo

ss
 d

ec
re

as
e

M
ea

n
TV

 L
0

Fr
ac

tio
n

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

0

0.5

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1
0

0.2

0.4

Gemma 2 2B 16k (335 l0)

L1 Coefficient

L1 Coefficient

M
ea

n
re

la
tiv

e
lo

ss
 d

ec
re

as
e

M
ea

n
TV

 L
0

Fr
ac

tio
n

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

0

0.2

0.4

0.6

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

0

0.2

0.4

Gemma 2 2B 65k (21 l0)

L1 Coefficient

L1 Coefficient

M
ea

n
re

la
tiv

e
lo

ss
 d

ec
re

as
e

M
ea

n
TV

 L
0

Fr
ac

tio
n

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

0

0.5

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1
0

0.2

0.4

Gemma 2 2B 65k (244 l0)

L1 Coefficient

L1 Coefficient

M
ea

n
re

la
tiv

e
lo

ss
 d

ec
re

as
e

M
ea

n
TV

 L
0

Fr
ac

tio
n

Figure 15: L1 coefficient sweeps across different target SAE sparsities and widths for Gemma 2 2B.
All metrics are averaged across all tasks. Error bars show the standard deviation of the average for
each case. Metric calculation details are available in Appendix D.1.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

−0.2

0

0.2

0.4

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1
0

0.2

0.4

0.6

Gemma 2 9B 65k

L1 Coefficient

L1 Coefficient

M
ea

n
re

la
tiv

e
lo

ss
 d

ec
re

as
e

M
ea

n
TV

 L
0

Fr
ac

tio
n

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

−0.2

0

0.2

0.4

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1
0

0.2

0.4

Gemma 2 9B 16k

L1 Coefficient

L1 Coefficient

M
ea

n
re

la
tiv

e
lo

ss
 d

ec
re

as
e

M
ea

n
TV

 L
0

Fr
ac

tio
n

Figure 16: L1 coefficient sweeps across two SAE widths for Gemma 2 9B. All metrics are averaged
across all tasks. Error bars show the standard deviation of the average for each case. Metric calculation
details are available in D.1.

from the metric. After that, we find the features with the top K indirect effects for each layer and
position mask and treat them as candidates for circuit edge targets. We compute gradients with
respect to the metric to the values of those nodes, propagate them to ”source features” up to one layer
above, and multiply by the values of the source features. This way, we can compute indirect effects
for circuit edges and prune the initially fully connected circuit. However, like Marks et al. (2024), we
do not perform full ablation of circuit edges.

We include a simplified implementation of node-only SFC in Algorithm 2.

1 # resids_pre: L x N x D - the pre-residual stream at layer L
2 # resids_mid: L x N x D - the middle of the residual stream
3 # (between attention and MLP) at layer L
4 # grads_pre: L x N x D - gradients from the metric to resids_pre
5 # grads_mid: L x N x D - gradients from the metric to resids_mid
6 # all of the above are computed with a forward and backward
7 # pass without SAEs
8

9 # saes_resid: L - residual stream SAEs
10 # saes_attn: L - attention output SAEs
11 # transcoders_attn: L - transcoders predicting resids_pre[l+1]
12 # from resids_mid[l]
13

14 def indirect_effect_for_residual_node(layer):
15 sae_encoding = saes_resid[layer].encode(
16 resids_pre[layer])
17 grad_to_sae_latents = jax.vjp(
18 saes_resid[layer].decode,
19 sae_encoding
20)(grads_pre[l])
21 return (grad_to_sae_latents * sae_encoding).sum(-1)
22

23 def indirect_effect_for_attention_node(layer):
24 sae_encoding = saes_attn[layer].encode(

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

25 resids_mid[layer] - resids_pre[layer])
26 grad_to_sae_latents = jax.vjp(
27 saes_attn[layer].decode,
28 sae_encoding
29)(grads_mid[l])
30 return (grad_to_sae_latents * sae_encoding).sum(-1)
31

32 def indirect_effect_for_transcoder_node(layer):
33 sae_encoding = transcoders[layer].encode(
34 resids_mid[layer])
35 grad_to_sae_latents = jax.vjp(
36 transcoders[layer].decode,
37 sae_encoding
38)(grads_pre[l+1])
39 return (grad_to_sae_latents * sae_encoding).sum(-1)

Algorithm 2: Pseudocode for Sparse Feature Circuits indirect effect calculation.

E.2 FAITHFULNESS CHARTS

Figure 17 shows the average effect of node trimming on faithfulness in all tasks. We follow the
methodology of Marks et al. (2024) thresholding removing nodes with low IE first. We can see that
the circuits keep at least 0.8 faithfulness on average with just 1000 nodes (on layers 11-17).

0 1000 2000 3000 4000

0

0.2

0.4

0.6

0.8

1

Number of nodes

Fa
ith

fu
lln

es
s

Figure 17: Average faithfulness across tasks depending on the number of nodes left in the circuit.

Figure 18 shows the averaged inverse node trimming effect on faithfulness across all tasks. Marks
et al. (2024) calls this metric completeness and calculates it as the faithfulness of the model just
with the circuit ablated. We calculate it by thresholding the nodes starting with those that have the
highest IE. We can see that the ablation of even just several hundred nodes has a drastic impact on
faithfulness. These results were also computed with the window of layers being 11-17).

F STEERING WITH TASK-EXECUTION FEATURES

To evaluate the causal relevance of our identified ICL features, we conducted a series of steering
experiments. Our methodology employed zero-shot prompts for task-execution features, measuring
effects across a batch of 32 random pairs.

We set the target layer as 12 using Figure 3a and extracted all task-relevant features on it using our
cleaning algorithm. To determine the optimal steering scale, we conducted preliminary experiments
using manually identified task-execution features across all tasks. Through this process, we estab-
lished an optimal steering scale of 15, which we then applied consistently across all subsequent
experiments.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0 1000 2000 3000 4000

0.2

0.4

0.6

0.8

1

Number of nodes

Fa
ith

fu
lln

es
s

Figure 18: Average faithfulness across tasks depending on the amount of important nodes ablated
from the circuit .

For each pair of tasks and features, we steered with the feature and measured the relative loss
improvement compared to the model’s task performance on a prompt without steering. This relative
improvement metric allowed us to quantify the impact of each feature on task performance.

To normalize our results and highlight the most significant effects, we applied several post-processing
steps:

• We clipped the effect to be no more than 1, thus ignoring any instances of loss increase.

• We then normalized the effects for all features within the same task to be in the 0 to 1 range.

• To remove clutter and highlight important features, we set effects lower than 0.2 to 0.

• Finally, we removed features with low maximum effect across all tasks to reduce the size of
the resulting diagram. The full version of this diagram is present in Figure 19.

Prompt example with the steered token highlighted in red. Loss is calculated on the yellow token:

BOS Follow the pattern : \n

hot → cold

Example 3: Task-execution steering setup. The steered token is highlighted in red and the loss is
calculated on the yellow token.

We also share the version of Figure 19 without normalization and value clipping. It is present in
Figure 21. We see that task vectors generally contain just a few task-execution features that can boost
the task themselves. The remaining features have much weaker and less specific effects.

F.1 NEGATIVE STEERING

To further explore the effects of the executor feature, we also conducted negative steering experiments.
The setup involved a batch of 16 ICL prompts, each containing 32 examples for each task. We
collected all features from the cleaned task vectors for every task. Similar to positive steering, we
steered with features on arrow tokens, but this time multiplying the direction by -1. Prompts this time
contained several arrow tokens, and we steered on all of them simultaneously.

An important distinction from positive steering is that performance degradation in negative steering
may occur due to two factors: (1) our causal intervention on the ICL circuit and (2) the steering scale
being too high. To address this, we measured accuracy across all pairs in the batch instead of loss, as
accuracy does not decrease indefinitely. We also observed that features no longer share a common
optimal scale. Consequently, for each task pair, we iterated over several scales between 1 and 30.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

5579
16490
2930
26594
11618
29144
1878
850
15356
7491
6594
8633
15554
1830
13458
11172
11173
26987
27268
14612
32320
12943
9662
22906
10720
19097
19112
24925
7106
27401
25576
7739
211
18803
2539
20832
7578
5991
6413
6780
23906
9600
17636

es_en
it_en
fr_en

plural_singular
antonyms
algo_first

algo_second
location_country

location_continent
present_simple_past_simple

person_profession
present_simple_past_perfect

algo_last
present_simple_gerund

singular_plural
football_player_position

person_language
location_language
location_religion

country_capital
en_it
en_fr
en_es

0

0.2

0.4

0.6

0.8

1
Effect strength

 ● Feature is in task vector | ● Feature is present after cleaning
Feature

Ta
sk

● ● ● ●
● ● ●

● ● ● ●
● ● ●

● ● ● ● ● ● ● ●
● ● ● ●

● ● ● ● ●
● ● ●

● ● ● ●
● ●

● ● ● ● ●
● ● ●

● ● ● ● ●
● ● ●

● ● ● ● ●
● ● ● ●

● ● ● ●
● ● ●

● ● ● ● ● ● ●
● ●

● ● ●
● ● ●
● ● ●

● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ●

●
● ● ● ●

● ● ● ●
● ● ●

● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ●

● ●
● ● ● ● ● ●

●
● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ●
● ● ● ● ● ●

Figure 19: Full version of the heatmap in Figure 5 showing the effect of steering with individual
task-execution features for each task. The features present in the task vector of the corresponding task
are marked with dots. Green dots show the features that were extracted by cleaning. Red dots are
features present in the original task vector. Not all original features from the task vectors are present.

For each feature, we then selected a scale that reduced accuracy by at least 0.1 for at least one task.
Steering results at this scale were used for this feature across all tasks.

Figure 20 displays the resulting heatmap. While we observe some degree of task specificity — and
even note that some executing features from Figure 19 have their expected effects — we also find that
negative steering exhibits significantly lower task specificity. Additionally, we observe that non-task-
specific features have a substantial impact in this experiment. This suggests that steering experiments
alone may not suffice for a comprehensive analysis of the ICL mechanism, thus reinforcing the
importance of methods such as our modification of SFC.

19112

23682

25576

22136

18803

12943

15554

19097

14612

6780

20832

2539

7491

15356

16490

6413

26594

16996

27401

32643

9600

26987

11173

9662

17636

850

11618

6594

13458

26924

7739

18840

16340

5991

24925

27268

9790

11172

5579

10720

7578

2930

8633

algo_second
algo_last

antonyms
location_country

location_language
present_simple_gerund

location_continent
football_player_position

person_profession
present_simple_past_perfect

location_religion
singular_plural

en_it
en_fr
en_es

algo_first
present_simple_past_simple

country_capital
plural_singular

person_language
es_en
it_en
fr_en

0

0.05

0.1

Accuracy decrease

 ● Feature is present after cleaning
Feature

Ta
sk

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ● ● ●
● ● ● ● ● ●
● ● ● ● ● ●
● ● ● ● ● ●
● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ●
● ● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

Figure 20: Negative steering heatmap. Displays accuracy decrease after optimal scale negative
steering on full ICL prompts. Green circles show which features were present in the cleaned task
vector of the corresponding task. More details in Appendix F.1

F.2 GEMMA 2 2B POSITIVE STEERING

Additionally, we conducted zero-shot steering experiments with Gemma 2 2B 16k and 65k SAEs.
Contrary to Gemma 1 2B, task executors from Gemma 2 2B did not have a single common optimal
steering scale. Thus, we added an extra step to the experiment: for each feature and task pair, we
performed steering with several scales from 30 to 300, and then selected the scale that had maximal
loss decrease on any of the tasks. We then used this scale for this feature in application to all other

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

tasks. Figure 22a and Figure 22b contain steering heatmaps for Gemma 2 2B 16k SAEs and Gemma
2 2B 65k SAEs respectively.

We observe a relatively similar level of executor task-specificity compared to Gemma 1. One notable
difference between 16k and 65k SAEs is that 65k cleaned task vectors appear to contain more features
with a strong effect on the task. However, this may be due to the l1 regularization coefficient being
too low.

5579
16490
2930
26594
11618
29144
1878
850
15356
7491
6594
8633
15554
1830
13458
11172
11173
26987
27268
14612
32320
12943
9662
22906
10720
19097
19112
24925
7106
27401
25576
7739
211
18803
2539
20832
7578
5991
6413
6780
23906
9600
17636

es_en
it_en
fr_en

plural_singular
antonyms
algo_first

algo_second
location_country

location_continent
present_simple_past_simple

person_profession
present_simple_past_perfect

algo_last
present_simple_gerund

singular_plural
football_player_position

person_language
location_language
location_religion

country_capital
en_it
en_fr
en_es

0

0.2

0.4

0.6

0.8

Relative loss decrease

 ● Feature is in task vector | ● Feature is present after cleaning
Feature

Ta
sk

● ● ● ●
● ● ●

● ● ● ●
● ● ●

● ● ● ● ● ● ● ●
● ● ● ●

● ● ● ● ●
● ● ●

● ● ● ●
● ●

● ● ● ● ●
● ● ●

● ● ● ● ●
● ● ●

● ● ● ● ●
● ● ● ●

● ● ● ●
● ● ●

● ● ● ● ● ● ●
● ●

● ● ●
● ● ●
● ● ●

● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ●

●
● ● ● ●

● ● ● ●
● ● ●

● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ●

● ●
● ● ● ● ● ●

●
● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ●
● ● ● ● ● ●

Figure 21: Unfiltered version of the heatmap in Figure 7 showing the effect of steering with individual
task-execution features for each task. The features present in the task vector of the corresponding task
are marked with dots. Green dots show the features that were extracted by cleaning. Red dots are the
features present in the original task vector. Since the chart only contains features from cleaned task
vectors, not all features from the original task vectors are present.

G TASK-DETECTION FEATURES

For our investigation of task-detection features, we employed a methodology similar to that used for
task execution features, with a key modification. We introduced a fake pair to the prompt and focused
our steering on its output. This approach allowed us to simulate the effect of the detection features
the way it happens on real prompts.

Our analysis revealed that layers 10 and 11 were optimal for task detection, with performance notably
declining in subsequent layers. We selected layer 11 for our primary analysis due to its proximity
to layer 12, where we had previously identified the task execution features. This choice potentially
facilitates a more direct examination of the interaction between detection and execution mechanisms.

The steering process for detection features followed the general methodology outlined in Appendix F,
including the use of a batch of 32 random pairs, extraction of task-relevant features, and application
of post-processing steps to normalize and highlight significant effects. The primary distinction lies in
the application of the steering to the prompt.

This approach allowed us to create a comprehensive representation of the causal relationships between
task-detection features and the model’s ability to recognize specific tasks, as visualized in Figure 7.

BOS Follow the pattern : \n

X → Y \n

hot → cold

Example 4: Task-detection steering setup. The steered token is highlighted in red and the loss is
calculated on the yellow token.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

14671
12646
15511
13692
10140
7464
13623
16315
10300
12540
15966
5640
13804
4592
493
12777
12966
4285
16176
6574
725
8646
7107
15358
5211
7355
11720
2683
4012
817
14059
4766
10466
3157
12647
16222
6112
8941
12131
12721
12944
4820
3442
5774
16370
5496
2707
13976
6628

en_fr
algo_last

en_it
antonyms
algo_first

location_continent
present_simple_gerund

country_capital
football_player_position

person_profession
location_country

algo_second
en_es

person_language
location_language
location_religion

it_en
fr_en
es_en

present_simple_past_perfect
singular_plural

present_simple_past_simple
plural_singular

0

0.2

0.4

0.6

0.8

Relative loss decrease

 ● Feature is in task vector | ● Feature is present after cleaning
Feature

Ta
sk

● ●
● ● ● ●
● ●
●

● ●
●
● ●

●
● ● ●
● ● ●

● ● ● ● ●
● ● ● ● ●

● ●
● ● ● ● ● ●
● ● ●

●
● ● ● ●

● ● ●
● ● ● ● ●

● ● ● ●
● ● ● ● ● ● ●

● ● ● ●
● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ●
● ● ● ● ● ●
● ● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ● ●
● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ● ●
● ● ● ●

● ● ● ● ●

(a) Gemma 2 2B 16k

62633
34706
36382
58571
43597
59184
59579
13705
46729
21497
17288
3681
43234
18981
4579
34279
61107
33770
43713
57004
19054
37576
1782
7595
47139
21438
2950
2702
10180
46288
62501
14000
7454
5460
31307
45242
58958
29733
11226
28700
65211
710
55907
9407
38942
5503
24372
38998
25490
27393
15110
56016
21586
38724
32682
4520
60430
54547
27146
39700
3304
25795

es_en
fr_en
it_en

en_es
algo_first

location_language
plural_singular

antonyms
location_continent

location_country
person_profession

location_religion
person_language

en_it
en_fr

algo_last
football_player_position

present_simple_gerund
present_simple_past_simple
present_simple_past_perfect

singular_plural
algo_second

country_capital

0

0.2

0.4

0.6

0.8

Relative loss decrease

 ● Feature is in task vector | ● Feature is present after cleaning
Feature

Ta
sk

● ●
● ● ● ● ● ● ● ●

● ● ● ●
● ● ●
● ● ● ● ●
● ● ●

● ● ● ● ●
● ●

● ● ● ●
● ● ● ●

● ●
● ● ●
● ● ● ● ● ●

● ●
● ● ● ●

● ● ● ● ● ● ●
● ● ●

● ●
● ● ● ●

● ● ● ● ● ●
● ●

●
● ● ●

● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ●
● ● ● ●

● ● ● ● ●
● ● ● ● ● ●

● ● ● ●
● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ●
● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

(b) Gemma 2 2B 65k

Figure 22: Unfiltered positive steering heatmap for Gemma 2 2B SAEs showing the effect of steering
with individual task-execution features for each task. Steering scales were optimized for each feature.
The features present in the task vector of the corresponding task are marked with dots. Green dots
show the features that were extracted by cleaning. Red dots are the features present in the original
task vector. Since the chart only contains features from cleaned task vectors, not all features from the
original task vectors are present.

H ICL INTERPRETABILITY LITERATURE REVIEW

This section will cover work on understanding ICL not mentioned in Section 5.

Raventós et al. provides evidence for two different Bayesian algorithms being learned for linear
regression ICL: one for limited task distributions and one that is similar to ridge regression. It
also intriguingly shows that the two solutions lie in different basins of the loss landscape, a phase
transition necessary to go from one to the other. While interesting, it is not clear if the results apply
to real-world tasks.

The existence of discrete task detection and execution features hinges on the assumption that in-
context learning works by classifying the task to perform and not by learning a task. Pan et al. aims
to disentangle the two with a black-box approach that mixes up outputs to force the model to learn
the task from scratch. Si et al. look at biases in task recognition in ambiguous examples through
a black-box lens. We find more clear task features for some tasks than others but do not consider
whether this is linked to how common a task is in pretraining data.

Xie et al. proposes that in-context learning happens because language models aim to model a latent
topic variable to predict text with long-range coherence. Wang et al. (2024) show following the two
proposed steps rigorously improves results in real-world models. However, they do not endeavor to
explain the behavior of non-finetuned models by looking at internal representations; instead, they aim
to improve ICL performance.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Han et al. use a weight-space method to find examples in training data that promote in-context
learning using a method akin to Grosse et al. (2023), producing results similar to per-token loss
analyses in Olsson et al. (2022), and, similarly to the studies mentioned above, finds that those
examples involve long-range coherence. Our method is also capable of finding examples in data that
are similar to ICL, and we find crisp examples for many tasks being performed Appendix I.

Bansal et al. offers a deeper look into induction heads, scaling up Olsson et al. (2022) the way we
scale up Marks et al. (2024). Crucially, it finds that MLPs in later layers cannot be removed while
preserving ICL performance, indirectly corroborating our findings from Section 4.2. Chen et al. come
up with a proof that states that gradient flow converges to a generalized version of the algorithm
suggested by Olsson et al. (2022) when trained on n-gram Markov chain data.

Garg et al. studies the performance of toy models trained on in-context regression various function
classes. Yadlowsky et al. find that Transformers trained on regression with multiple function classes
have trouble combining solutions for learning those functions. Oswald et al. construct a set of weights
for linear attention Transformers that reproduce updates from gradient descent and find evidence for
the algorithm being represented on real models trained on toy tasks. Mahankali et al. proves that
this algorithm is optimal for single-layer transformers on noisy linear regression data. Shen et al.
questions the applicability of this model to real-world transformers. Bai et al. finds that transformers
can switch between multiple different learning algorithms for ICL. Dai et al. find multiple similarities
between changes made to model predictions from in-context learning and weight finetuning.

While important, we do not consider this direction of interpreting transformers trained on regression
for concrete function classes through primarily white-box techniques. Instead, we aim to focus on
clear discrete tasks which are likely to have individual features.

The results of Wang et al. are perhaps the most similar to our findings. The study finds ”anchor tokens”
responsible for aggregating semantic information, analogous to our ”output tokens” (Section 2.3) and
task-detection features. They tackle the full circuit responsible for ICL bottom-up and intervene on
models using their understanding, improving accuracy. Like this paper, they do not deeply investigate
later attention and MLP layers. Our study uses SAE features to find strong linear directions on output
and arrow tokens corresponding to task detection and execution respectively, offering a different
perspective. Additionally, we consider over 20 diverse token-to-token tasks, as opposed to the 4 text
classification datasets considered in citewanglabel2023.

I MAX ACTIVATING EXAMPLES

This section contains max activating examples for some executor and detector features for Gemma
1 2B, as described in (Bricken et al., 2023). They are computed by iterating over the training data
distribution (FineWeb) and sampling activations of SAE features that fall within disjoint buckets for
the activation value of span 0.5. We can observe that the degree of intuitive interpretability depends
on the amount of task-similar contexts in the training data and SAE width.

We also provide max activating examples for Gemma 2 2B executor features from Figures 22b and
22a. These max activating examples are taken from the Neuronpedia (Lin, 2023) and are available in
Figures 26 and 25.

Here we can notice the main difference between executors and detectors: executors mainly activate
before the task completion, while detectors activate on the token that completes the task. We also
found that in Gemma 1 2B detector features for some tasks were split between several token-level
features (like the journalism feature in Figure 24f), and they did not create a single feature before the
task executing features activated. We attribute this to the limited expressivity of the SAEs that we
used.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

(a) Max activating examples for the antonyms executor
feature 11618.

(b) Max activating examples for the English to for-
eign language translation executor feature 26987.

(c) Max activating examples for the translation to En-
glish executor feature 5579.

(d) Max activating examples for the ”next comes
gerund form” executor feature 15554.

(e) Max activating examples for the prediction of city/-
country feature 850.

(f) Max activating examples for the person’s occu-
pation executor feature 13458.

Figure 23: Max activating examples for executor features from Figure 5.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

(a) Max activating examples for the antonyms de-
tector feature 11050.

(b) Max activating examples for the English to foreign
language switch detector feature 7928.

(c) Max activating examples for the gerund form
detector feature 8446.

(d) Max activating examples for the translation to En-
glish detector feature 31123.

(e) Max activating examples for the country detec-
tor feature 11459.

(f) Max activating examples for the journalist feature
26436. (The strongest detector for the person profession
task).

Figure 24: Max activating examples for detector features from the Figure 7

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

(a) Max activating examples for the language pre-
diction executor feature 13804.

(b) Max activating examples for the repetition executor
feature 12646. Extracted from the algo last TV.

(c) Max activating examples for the cap-
ital prediction executor feature 16315. (d) Max activating examples for the translation feature 493.

Figure 25: Max activating examples for Gemma 2 2B 16k executor features from the Figure 22a

(a) Max activating examples for the antonyms
executor feature 45288.

(b) Max activating examples for the foot-
ball player position executor feature 18981.

(c) Max activating examples for the per-
son profession executor feature 46729.

(d) Max activating examples for translation to English executor
feature 62633.

Figure 26: Max activating examples for Gemma 2 2B 65k executor features from the Figure 22b

34

	Introduction
	Background
	Sparse Autoencoders (SAEs)
	Sparse Feature Circuits
	Task Vectors

	Discovering Task-Execution Features
	Decomposing task Vectors
	Steering Experiments

	Applying SFC to ICL
	Our Modifications
	Token Position Categorization and Feature Aggregation
	Loss Function Modification
	SFC Evaluation

	Task-Detection Features

	Related work
	Conclusion
	Reproducibility Statement
	Model and dataset details
	SAE Training
	Example circuits
	Task Vector Cleaning Algorithm
	L1 Sweeps

	Details of our SFC implementation
	Implementation details
	Faithfulness charts

	Steering with task-execution features
	Negative steering
	Gemma 2 2B positive steering

	Task-Detection Features
	ICL interpretability literature review
	Max Activating Examples

