Under review as a conference paper at ICLR 2025

SCALING SPARSE AUTOENCODER CIRCUITS FOR IN-
CONTEXT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Sparse autoencoders (SAEs) are a popular tool for interpreting large language
model activations, but their utility in addressing open questions in interpretability
remains unclear. In this work, we demonstrate their effectiveness by using SAEs
to deepen our understanding of the mechanism behind in-context learning (ICL).
We identify abstract SAE features that encode the model’s knowledge of which
task to execute and whose latent vectors causally induce the task zero-shot. This
aligns with prior work showing that ICL is mediated by task vectors. We further
demonstrate that these task vectors are well approximated by a sparse sum of SAE
latents, including these task-execution features. To explore the ICL mechanism,
we adapt the sparse feature circuits methodology of Marks et al.|(2024)) to work for
the much larger Gemma-1 2B model, with 30 times as many parameters, and to
the more complex task of ICL. Through circuit finding, we discover task-detecting
features with corresponding SAE latents that activate earlier in the prompt, that
detect when tasks have been performed. They are causally linked with task-
execution features through the attention layer and MLP.

1 INTRODUCTION

Sparse autoencoders (SAEs; [Ng| (2011); Bricken et al.| (2023)); |(Cunningham et al. (2023))) are a
promising method for interpreting large language model (LLM) activations. However, the full
potential of SAESs in interpretability research remains to be explored, since most recent SAE research
either 1) interprets a single SAE’s features rather than the model’s computation as a whole (Bricken
et al.} 2023)), or ii) performs high-level interventions in the model, but does not interpret the effect on
the downstream computation caused by the interventions Templeton et al.|(2024b). In this work, we
address these limitations by interpreting in-context learning (ICL), a widely studied phenomenon
in LLMs. In summary, we show that SAEs enable a) the discovery of novel circuit components
(task-detection features; Section4.2) and b) making existing interpretations of ICL more precise, by
e.g. decomposing task vectors (Todd et al.,|2024; Hendel et al.| [2023) into task-execution features
(Section3).

In-context learning (ICL; Brown et al.|(2020)) is a fundamental capability of large language models
that allows them to adapt to new tasks without fine-tuning. ICL is a significantly more complex and
important task than other behaviors commonly studied in circuit analysis (such as IOI in/Wang et al.
(2022) and [Kissane et al.|(2024)), or subject-verb agreement and Bias-in-Bios in Marks et al.| (2024)).
Recent work by [Todd et al.|(2024) and |[Hendel et al.| (2023)) has introduced the concept of task vectors
to study ICL in a simple setting, which we follow throughout this paperﬂ In short, task vectors
are internal representations of tasks formed by language models during the processing of few-shot
prompts, such as “hot — cold, big — small, fast — slow”. These vectors can be extracted and added
into different LLM forward passes to induce 0-shot task performance, making LLMs predict that
“slow” follows “fast —” without explicit context. Section[2.3|provides a full introduction.

To identify task-execution features, we decomposed task vectors using SAEs. To achieve this, we
needed to go beyond existing methods for solving the classical dictionary problem of decomposing
a vector into a sparse sum of dictionary vectors (Elad, 2010). To do this, we developed a bespoke

ITask vectors (Hendel et al.,[2023)) are also called “function vectors” (Todd et al.,[2024)), but we use “task
vectors” throughout this paper for consistency.

Under review as a conference paper at ICLR 2025

method for LLMs we call the TASK VECTOR CLEANING (TVC) algorithm. By running the TVC
algorithm, we found task-execution features: features that can partially replace task vectors taken
alone and have highly interpretable max-activating token patterns. We validate the causal relevance
of these task features through a series of steering experiments on tasks, spanning several categories
like translation or factual recall. The experiments demonstrate that identified task features encode
crucial information about task execution, are causally implicated in the model’s ICL capabilities, and
can play the same role as task vectors.

We adapted the Sparse Feature Circuits (SFC) methodology of Marks et al.|(2024) to work on the
more complex ICL task and the larger Gemma-1 2B model (Gemma Team), [2024)). This adaptation
allowed us to discover and analyze the subgraph of key SAE latents involved in ICL, providing a more
comprehensive view of the ICL circuit. Using this adaptation, we found task-detection features with
SFC: features that play a crucial role in identifying the specific task being performed earlier in the
prompt. Task-detection features are tightly connected with task-execution features through attention,
as part of the whole ICL circuit.

Our findings not only advance our understanding of ICL mechanisms but also demonstrate the
potential of SAEs as a powerful tool for interpretability research on larger language models. By
unifying the task vectors view with SAEs and uncovering two of the most important causally
implicated feature families behind ICL, we pave the way for future work to control and monitor ICL
further, to improve either the safety or capabilities of models.

Our main contributions are as follows:

1. We demonstrate that SAEs can be effectively used to explain mechanisms behind a complex
set of ICL tasks in a Gemma-1 2B, which has 10-35x more parameters than prior models
typically studied at this depth in comparable, circuits-style mechanistic interpretability
research (Wang et al 2022} [Marks et al] 2024). We show that causal circuit finding
algorithms and SFC specifically straightforwardly scale up to larger models and SAEs with
different architectures (Appendix [B).

2. We identify two core bottlenecks in the ICL circuit — task-detection features and task-
execution features (see Appendix [C} — and study their interactions (Section [3.2).
This provides new insights into how LLMs process and execute ICL tasks. Specifically, we
discover task-detection features that identify the task being performed earlier in the prompt,
which are then moved by attention heads to trigger task-execution features (Figure).

3. We present a novel transformer-specific sparse linear decomposition algorithm (Section3.1)
that decomposes task vectors (Hendel et al} 2023) into a small set of mostly task-relevant
features, enabling more precise analysis of ICL mechanisms.

Tall
-
short Antonym pair detected]

- - - = Antonym comes next]

Antonym pair detected]

Y Y
-’ - - — - - - - =)O——)[Antonym comes next right

Figure 1: A diagram of the in-context learning circuit, showing task detection features (yellow)
causing task execution features (blue) which cause the model to output the antonym (left — right). A
more concrete circuit, along with texts these features activate on, can be seen in Figureﬂ

Under review as a conference paper at ICLR 2025

2 BACKGROUND

2.1 SPARSE AUTOENCODERS (SAES)

Sparse autoencoders (SAEs) are neural networks designed to learn efficient representations of data
by enforcing sparsity in the hidden layer activations 2010). In the context of language model
interpretability, SAEs are used to decompose the high-dimensional activations of language models
into more interpretable features (Cunningham et al.l 2023}, [Bricken et al., [2023)). The basic idea
behind SAEs is to train a neural network to reconstruct its input while constraining the hidden layer
to have sparse activations. This process typically involves an encoder that maps the input to a sparse
hidden representation, a decoder that reconstructs the input from this sparse representation, and loss
task that balances reconstruction accuracy with sparsityﬂ The encoding step is as follows, with f
denoting the pre-activation features and W, and b, the encoder weights and biases respectively:

f(x) = 0(WeneX + benc) €))]

For JumpReLU SAEs (Rajamanoharan et al.| [2024D)), the activation function and decoder are (with
H being the Heaviside step function, 6 the threshold parameter and We./bge. the decoder affine
parameters):

f‘(f) = Wiec (f © H(f - 9)) + bdec 2)

In our work, we train SAEs on residual stream activations and attention outputs, and also train
transcoders’| on MLP layers, all of which use the improved Gated SAE architecture (Rajamanoharan

R024a).

2.2 SPARSE FEATURE CIRCUITS

Sparse Feature Circuits (SFCs) are a methodology introduced by Marks et al.| (2024) to identify
and analyze causal subgraphs of sparse autoencoder features that explain specific model behaviors.
This approach combines the interpretability benefits of SAEs with causal analysis to uncover the
mechanisms underlying language model behavior. The SFC methodology involves several key steps:

1. Decomposing model activations into sparse features using SAEs

2. Calculating the Indirect Effect (IE, of each feature on the target behavior
3. Identifying a set of causally relevant features based on IE thresholds

4. Constructing a circuit by analyzing the connections between these features

The IE of a model component is measured by intervening on that component and observing the
change in the model’s output. For a component a and a metric m, the IE is defined using do-calculus

(Pearll, 2009)) as in[Marks et al] (2024)) as:
IE(m;a) = m(z|do(a = a’)) — m(z) 3)

Where m(x|do(a = a’)) represents the value of the metric when we intervene to set the value of
component a to a’, and m(z) is the original value of the metric. In practice, attribution patching
is used to approximate IE, allowing for efficient computation across many components
simultaneously.

SFC is described in detail in (Marks et al] 2024). We describe our modifications in Appendix [E]

*Typically, the L penalty on activations is used (Bricken et al.,[2023) with some modifications (Rajamanoha-
ran et al.| 20244} [Conerly et al|[2024), although there are alternatives: [Rajamanoharan et al.| [2024b; [Farrell,
2024; Riggs & Brinkman, [2024

“*Transcoders are a modification of SAEs that take MLP input and convert it into MLP output instead of
trying to reconstruct the residual stream.

Under review as a conference paper at ICLR 2025

2.3 TASK VECTORS

Continuing from the high-level description in Section|l} task vectors were independently discovered
by Hendel et al.| (2023)) and |Todd et al.|(2024). The key idea behind task vectors is that they capture
the essence of a task demonstrated in a few-shot prompt, allowing the model to apply this learned
task to new inputs without explicit fine-tuning. Task vectors have several important properties:

1. They can be extracted from the model’s hidden states given ICL prompts as inputs.

2. When added to the model’s activations in a zero-shot setting, they can induce task perfor-
mance without explicit context.

3. They appear to encode abstract task information, independent of specific input-output
examples.

To illustrate the concept, consider the following simple prompt for an antonym task in the Example|T]
where boxes represent distinct tokens:

. -shot ICL SAE 10-20 features
BOS Follow the pattern : \n g oares | s

hot - coid on layer L

hot — cold \n

. Traini Cl d
big — small \n weights weights

2-4 features
interpretable

fast — slow 0-shotIcL

prompts

tall ->

Example 1: All token types in an example Loss opimize
input: prompt, input, arrow , output,

el (, fargettokens) for calculating Figure 2: Overview of the task vector cleaning algo-
the loss on included) rithm (see Figure TV stands for task vector).

In this case, the task vector would encode the abstract notion of “finding the antonym” rather than
specific word pairs. Task vectors are typically collected by averaging the residual stream of “—”
tokens at a specific layer across multiple ICL prompts for a given task. This averaged representation
can then be used to study the model’s internal task representations and to manipulate its behavior in
zero-shot settings. We perform our analysis on the datasets derived from|Todd et al.[(2024). Details
can be found in Appendix [A]

3 DISCOVERING TASK-EXECUTION FEATURES

3.1 DECOMPOSING TASK VECTORS

To gain a deeper understanding of task vectors, we attempted to decompose them using sparse
autoencoders (SAEs). However, several of our initial naive approaches faced significant challenges.
Firstly, direct SAE reconstruction, i.e. passing the task vector as input to the SAE, produced noisy
results with more than 10 nonzero SAE features on average on layers of interesﬂ most of which were
irrelevant to the task. Moreover, this reconstruction noticeably reduced the vector’s performance.
These issues arose partly because task vectors are out-of-distribution inputs for SAEs, as they
aggregate information from different residual streams rather than representing a single one.

We then explored inference-time optimization (ITO) (Smith} 2024) as an alternative. However, this
method also failed to reconstruct task vectors using a low number of SAE features while maintaining
high performance.

Given these observations, we developed a novel method called task vector cleaning. It produces
optimized SAE decomposition weights § € R%s4# for a task vector vy,. At a high level, the method:

1. Initializes 6 with weights from SAE decomposition of vy,,.

*Layers where steering with task vectors decreased loss significantly (Figure . We found 3-5 interpretable
features. Our cleaning algorithm can usually reduce the number to 2-4. The usual residual SAE L0 is around 44.
as highlighted in the Figure [3b]

Under review as a conference paper at ICLR 2025

%]

o i 10

£ 0“\ Reconstruction type

S = Cleaning

1) (=)

_8 SAE reconstruction ’Z}

o 02 op

£ ~ ITO (20) g

TZ / Original Task vector %

) -0.4

o0 ITO (5)

2

< 0

5 10 15 Cleaned TV vV
Layer Vector type

(a) The effect on the model’s loss by steering with dif- (b) Average LO for cleaned task vec-
ferent kinds of reconstructed task vectors, at each layer. tors vs. original task vectors at layer
‘We see that cleaning performs similarly to the original 12 (which corresponds to the elbow in
task vector until layer 14. Figure@.

2. Reconstructs a new task vector vy from 6; steers the model with vy on a batch of zero-shot
prompts and computes negative log-likelihood loss £ 1,1, (6) on them.

3. Optimizes 6 to minimize £ = L1 (0) +1]|0]

1> Where [is the L regularization coefficient.

This approach allows us to maintain or even improve the performance of task vectors while reducing
the amount of active SAE features to less than 4 on average (Figure Bb) for Gemma 1 2B. The
algorithm overview can be found in Figure[[0} Further details are in Appendix [D]

We compare it with the four baselines: original task vectors, naive SAE reconstruction, ITO with
target LO norm set to 5, and ITO with target LO set to 20. To compare them, we steer the zero-shot
prompt using the reconstructed task vector and calculate relative log-likelihood loss improvement.
We then average it across all tasks. Layer-wise comparison results can be found in Figure [3a] We
have also conducted sweeps for L regularization coefficient [across several models and SAEs,
including multiple widths and target sparsities for Gemma 2 2B and 9B. Their results are included in
Appendix [D-T]and show that the method can consistently reduce the amount of active SAE features
by 50-80% while preserving the performance of task vectors. They also suggest that the method
benefits from SAEs with higher target LO.

Using this method, we broke down task vectors into a small set of features. Many of these features
were easy to interpret and clearly related to the task at hand. We found a particularly interesting
group of features, which we called “task-execution features” (or “executor features”). These features
have two key characteristics:

1. They activate when the model encounters examples of the relevant task in normal text.
2. In these encounters they activate on the token just before the task is completed.

For instance, imagine an antonym task feature processing the phrase “ hot and cold .” It would

activate on the token *“ and ,” suggesting that the model expects an antonym to follow. This tells us
that the model recognizes it’s dealing with an antonym pair before seeing the complete pair. See
Figure] for examples of such features. Appendix [[[contains more examples of such features with their
max activating examples on SAE training data, which show that the features often have task-related
max activating patterns.

To analyze the activation patterns of executor features, we split all ICL prompt tokens into several
types (highlighted in Examplem and discussed later in Section m) For each executor feature, we
calculate its token type activation masses: the sum of all its activations on tokens of a particular type
across a batch of ICL prompts. Table[T]shows the percentages of total mass split among different
token types for executor features. We can see that executors activate largely on arrow tokens.

Under review as a conference paper at ICLR 2025

importiand domestic, Ul ecial joie de vivrel{joy of life folks[ffom Canada (British
stween freshjand traditional, » Banderitasllittle paper bani| immigrant{from Bangladesh

both localland remote event [1dad dorada"lthe golden city Li Na of China. Az

th tropical and temperate we jihad)lof struggle, in Je yearslin Boston,

(a) Antonyms executor feature (b) Translation to English execu-(c) Prediction of city/country fea-
11618. tor feature 5579. ture 850.

Figure 4: A subset of max activating examples for executor features from Appendix

3.2 STEERING EXPERIMENTS

To validate the causal relevance of our decomposed task features, we conducted a series of steering
experiments. To observe the features’ impact on task performance across different contexts and
model layers.

The experiments were performed on the dataset of diverse tasks taken from |Todd et al.|(2024). We
first extracted relevant task features using our cleaning algorithm. Then steered the zero-shot prompt
using them and calculated relative loss improvement, normalizing and clipping it after that. Further
details and additional experiments that include other models can be found in Appendix [F}

Figure 5] shows a heatmap of steering results for each pair of tasks and task-relevant features. Higher
values indicate greater improvement in the loss after steering. It can be seen that most tasks have
a single feature with a high effect on them, and this feature generally does not significantly affect
unrelated tasks. Another notable detail is that features from related tasks (like the translation group)
at least partially affect all tasks within the group.

We have manually examined the features with the highest effect and found that their maximum
activating dataset examples tend to align with their hypothesized role in the ICL circuit. Interestingly,
we observed that translation-to-English tasks all share a generic English-to-foreign task execution
feature, thus requiring an additional language encoding feature for complete task encoding. This
shared feature suggests a common mechanism for translation tasks, with language-specific information
encoded separately. Max activating examples of the most interpretable features are present in
Appendix

Effect strength
1

Token Type | Mass (%)

arrow 89.80

output 6.46

input 3.2

newline 0.54

prompt 0.00
Table 1: Activation masses for Figure 5: Heatmap showing the effect of steering
executor features across dif- with individual task-execution features for each
ferent token types, averaged task. Most features boost exactly one task, with a
across all tasks. We can no- few exceptions for similar tasks like translating
tice they activate largely on to English. Full and unfiltered versions of the
arrow tokens. heatmap are available in AppendixB

Under review as a conference paper at ICLR 2025

4 APPLYING SFC 1O ICL

After identifying task-execution features through our task vector analysis, we sought to expand our
understanding of the in-context learning (ICL) circuit. To this end, we apply the Sparse Feature
Circuits (SFC) methodology (Marks et al}[2024) to the Gemma-1 2B model. However, due to the
increased complexity of ICL tasks and the larger model size, the original SFC approach did not
work out of the box. We had to implement several key modifications to address the challenges we
encountered.

4.1 OUR MODIFICATIONS
4.1.1 TOKEN POSITION CATEGORIZATION AND FEATURE AGGREGATION

We modified the SFC approach to better handle the structured nature of ICL prompts. Instead of
treating each SAE feature as a separate node, we categorized token positions into the following
groups:

* Prompt: The initial instruction tokens (e.g., “Follow the pattern:”)
e Input: The last token before each arrow in an example pair

e Arrow: The arrow token itself (“—")

e Qutput: The last token before each newline in an example pair

* Newline: The newline token

» Extra: Any tokens not covered by the above categories (e.g., in multi-token inputs or outputs)

Each pair of an SAE feature and a token type was assigned its own graph node. The effects of the
feature were aggregated across all tokens of the corresponding type. This categorization allowed us
to evaluate how features affect all tokens within the same category, separating features based on their
role in the ICL circuit. It also enabled us to selectively disable parts of the circuit for one task while
testing another, verifying the task specificity of the identified circuits.

4.1.2 LoSS FUNCTION MODIFICATION

An ICL prompt can be viewed as an (z,y) pair, where x represents the entire prompt except for
the last pair’s output, and y represents this output. The original SFC paper suggested using the
log probabilities of y conditioned on x for such datasets. However, this approach often resulted in
task-relevant features having high negative IEs on other example pairs in the prompt. This was likely
due to the circuit’s effect on those pairs being lost to either diminishing gradients in backpropagation
or because copying circuits were much more relevant to predicting the last pair. By considering all
pairs except the first one, we amplified the effect of the task-solving circuit relative to the numerous
cloning circuits that activate due to the repetitive nature of ICL prompts.

4.1.3 SFC EVALUATION

To evaluate the quality of our SFC modification, we conducted a series of ablation experiments
across the same dataset of ICL tasks. Our primary metric for evaluation was faithfulness, which
measures how much of the original task performance is maintained after ablating specific features.
We calculated faithfulness using the following formula:

M- M,
T M, — M,

Where M is the current metric (loss), M, is the fully ablated model metric, and M,, is the non-ablated
model metric.

F(M))

We evaluated the impact of ablating features for one task on the performance of all other tasks.
Specifically, we ablated the nodes with highest Indirect Effects (IEs) first, continuing until we reached
a faithfulness of 0.5 for the target task. Faithfulness of 0.5 corresponds to half of the original
performance, i.e. a significantly destructive ablation for the target task. This approach allowed us to
assess both the specificity of the circuits discovered and their impact on related tasks. Our analysis

Under review as a conference paper at ICLR 2025

Faithfullness

."5
0
0,
.7‘

Ablated task

Tested task

Figure 6: We study how useful the most important nodes on task A are for performance on task B.
Specifically, we ablate the most important features for task A (the ablated task on the y-axis) so that
faithfulness reduces by 0.5, and measure how much faithful reduces on another task B (the tested task
on the x-axis).

revealed that it is possible to significantly reduce faithfulness by disabling just a few hundred nodes.
Furthermore, we found that we could reduce the number of active nodes to less than a thousand while
keeping the performance almost intact. Extra details and faithfulness/completeness charts can be
found in Appendix [E]

Figure [f] presents a heatmap showing the change in faithfulness for various tasks when ablating the
highest IE nodes for a single task. Several key observations can be made from this visualization:

» Task Specificity: Ablating most tasks does not significantly impact the performance of
others, indicating that the discovered circuits are largely task-specific. This suggests that
there are no common high-IE ICL-specific nodes across tasks.

* Related Task Effects: Tasks are grouped into categories, and we observe that ablation of
related tasks has a higher effect on all tasks within the same group. This is visible as squares
along the diagonal, particularly noticeable in the translation group.

* Performance Improvement: For some tasks, we observe that faithfulness rises well above
1.0 after ablation of other tasks. We hypothesize that this occurs because we reduce the
confusion of the model by removing irrelevant execution paths.

It is worth noting that we excluded the person_profession and football_player_position tasks from
Figure[6|due to the very small difference between their fully ablated and non-ablated losses. This
resulted in highly unstable faithfulness calculations for these tasks. We attribute this small difference
partially to our modified loss function, as we found that calculating the loss only from the last pair
results in a higher loss difference.

4.2 TASK-DETECTION FEATURES

Our modified SFC analysis revealed a second crucial component of the ICL mechanism: task-
detection features. These features activate on instances of a complete task in the training data,
specifically on the token that completes the task, contrary to executors that activate right before
them. Both task-detection and task-execution features showed high Indirect Effects (IEs) in the
extracted sparse feature circuits, with task-detection features connected to task execution features
through attention output and transcoder nodes. We applied our task vector cleaning algorithm to
extract task-detection features, identifying layer 11 as optimal for steering, preceding the layer 12
task-execution features. The details can be found in Appendix [G} As with executor features, we
present the steering heatmap in Figure[7]and the activation mass percentages in Table 2} We again see
the task and token-type specificity of these features.

To evaluate the causal connection between task-detection features and task-execution features, we
selected the most relevant detection and execution pairs based on steering effects and confirmed that

Under review as a conference paper at ICLR 2025

Effect strength
1

Token Type | Mass (%)
output 96.76
input 322

newline 0.01
arrow 0.0
prompt 0.0

Task

Feature

Table 2: Activation masses for

task-detection features across Figure 7: Heatmap showing the effect of steering
different token types, averaged with the task-detection feature most relevant to
across all tasks. We can notice each task, on every task. We see that task detec-
that they activate almost exclu- tion features are typically specific to the task, with
sively on output tokens. exceptions for similar tasks.

their max activating patterns aligned with their hypothesized circuit roles. We then ablated detection
directions while fixing attention patterns and measured the decrease in execution activations. Figure
[presents the results.

Effect strength
1

Detector

Executor

Figure 8: Heatmap showing the causal effect of the top task-detection features of each task, on the
activation of the top task-execution features for every task. Averaged across all initial non-zero
activations in all tasks.

The results of our causal connection analysis reveal several key insights. First, we observe strong
causal connections between most task-detection and their corresponding task-execution features,
supporting our hypothesis about their roles in the ICL circuit. Second, we note significant interconnec-
tivity among translation tasks, suggesting shared circuitry for this group of related tasks. Interestingly,
two tasks (person_profession and present_simple_gerund) showed unexpectedly weak connections
between their detection and execution features, warranting further investigation.

5 RELATED WORK

Mechanistic Interpretability |Olah et al.|(2020) defines a framing for mechanistic interpretability
in terms of features and circuits. It claims that neural network latent spaces have directions in
them called features that correspond to meaningful variables. These features interact through model
components sparsely to form circuits: interpretable computation subgraphs relevant to particular
tasks. These circuits can be found through manual inspection in vision models (Cammarata et al.,
2020). In language models, they can be found through manual patching (Wang et al.,|2022; Hanna
et al.,|2023; [Lieberum et al., 2023} |Chan et al., [2022) or automated circuit discovery (Conmy et al.

Under review as a conference paper at ICLR 2025

(2023)); Syed et al| (2023)); Bhaskar et al.| (2024)), though see Miller et al (2024)). Marks et al.| (2024)

extends this research area to use Sparse Autoencoders, as discussed below.

In-Context Learning (ICL) ICL was first introduced in Brown et al.| (2020) and refers to models
learning to perform tasks from prompt information at test time. There is a large area of research

studying its applications (Dong et al.,[2024), high-level mechanisms (Min et al., 2022)) and limitations
(Peng et all 2023). [Elhage et al|(2021) and [Olsson et al.| (2022) find induction heads partly

responsible for in-context learning. However, since these attention heads do more than just induction
(Goldowsky-Dill et al., [2023)), and are not sufficient for complex task-following, induction heads

alone cannot explain ICL. (2024, Appendix G) proposes a mechanistic hypothesis for
an aspect of simple in-context task behavior. [Hendel et al.|(2023)) and [Todd et al| (2024) find that

simple in-context learning tasks create strong directions in the residual stream adding which makes
it possible for a network to perform tasks zero-shot, but does not explain how task vectors form
nor what interpretable components the task vectors are composed of. A more detailed discussion
can be found in Appendix [H} Of particular interest is which investigates a simple ICL
classification task and finds similar results with different terminology (information flow instead of
circuits, “label words” instead of task-detection features).

Sparse Autoencoders A major roadblock to mechanistic interpretability research is superposition
(Elhage et al.l [2022b), where the interpretable units of neural network do not tend to align with the
basis directions (e.g. neurons). Sparse autoencoders 2011} Bricken et al, 2023) are one method
of addressing this roadblock, and multiple works since proposed improvements to SAE training

(Rajamanoharan et al.| 2024b}; [Bussmann et al.| 2024} Braun et al.l 2024; |Gao et al.| 2024}

et al., 2024b), and we use several more in our work (Rajamanoharan et al., 2024a; |Adam Jermyn|
2024 (Conerly et al.|[2024). (Cunningham et al.|(2023)), building on Bills et al.|(2023)), apply |Conmy

et al.[(2023) to find circuits in small language models. Marks et al.|(2024) adapt Syed et al|(2023) in
the SAE basis to find circuits and address a practical bias reduction problem. [Kissane et al.|(2024)
apply a slightly different automated SAE algorithm (similar to ours in that it operates on single
prompts) to IOI (Wang et al},2022), using SAEs on the attention layer outputs and residual stream.
[Dunefsky et al.|(2024)) introduce transcoders (which are also briefly discussed in
(20244) and [Li et al| (2023))) to simplify analysis of circuits involving MLPs. We build on their work
and train transcoders as part of our suite of Gemma-1 SAEs.

6 CONCLUSION

Limitations Our work focused on the simple task vector setting to study ICL (Section 2.3)), which
does not capture all ways that ICL is used in practice (generally involving far more tokens and
open-ended tasks). We also only interpreted Gemma-1 2B. Therefore, other LLM architectures or
model sizes could lead to different results (though this is not likely, since task vectors exist across
models (Todd et al.| [2024)). Finally, the complexity of the task studied meant our interpretations have
some approximation error: attention heads matter for the detection-execution connection, but the
succeeding MLP is necessary to capture the full effect (Section[f.2). This means that our explanation
needs to include moving parts aside from task-detection attention output features. It is possible to
model the effects of the MLP through transcoder features, but we leave that for future work.

Future Work Future work could extend SFC methods to work on more than a band of layers in
the middle of the model (Section[2.2). Since many features correspond to individual input tokens
and output predictions (due to the three stages of inference in LLMs; [Elhage et al| (20224);
(2024)), this will require further adaptation of the SFC methodology. Moreover, our multiple
contributions will hopefully spur further work that finds new tasks to interpret or explain in greater
depth than prior work, as discussed in our concluding paragraph below.

To summarize our work: we use SAEs to explain in-context learning in greater detail than any
prior mechanistic interpretability work. This provides strong evidence that Sparse Autoencoders are
valuable circuit analysis tools, and the innovations developed: TVC (Section[3.1)), SFC improvements
(Section[2.2)) and an SAE training codebase in JAX with open SAE weights (Section[7) are likely to
help enable lots of other SAE research to tackle more ambitious tasks and larger models.

10

Under review as a conference paper at ICLR 2025

7 REPRODUCIBILITY STATEMENT

We are committed to fostering reproducibility and advancing research in the field of mechanistic
interpretability. To support this goal, we plan to release the following resources upon successful
acceptance of this paper:

1. Two JAX libraries optimized for TPU:

* A library for Sparse Autoencoder (SAE) training

* A library for SAE inference and model analysis, built upon Penzai with our custom
Llama and Gemma ports

2. A full suite of SAEs for Gemma 2B, along with a dataset of their max activating examples
3. Two custom dashboards used in our analysis:

* A dashboard for browsing max activating examples
* An interactive dashboard for exploring extracted Sparse Feature Circuits (SFC)

These resources will enable researchers to replicate our experiments, extend our work, and conduct
their own investigations using our tools and methodologies. The release of our custom dashboards
will provide additional transparency and facilitate a deeper exploration of our results. Due to the
complexity of our infrastructure, we only share anonymized versions of our analysis, cleaning, and
SFC scripts, which still require our JAX libraries to run. We hope that reviewers will find this, along
with the detailed methodologies described in the paper, sufficient evidence of reproducibility.

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko,
Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav Chaudhary, Dong Chen, Dongdong
Chen, Weizhu Chen, Yen-Chun Chen, Yi-Ling Chen, Hao Cheng, Parul Chopra, Xiyang Dai,
Matthew Dixon, Ronen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao, Min Gao, Amit Garg,
Allie Del Giorno, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao, Russell J.
Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan Javaheripi, Xin Jin,
Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi, Dongwoo Kim, Young Jin Kim, Lev
Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars Liden, Xihui
Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu, Weishung Liu, Xiaodong Liu, Chong Luo,
Piyush Madan, Ali Mahmoudzadeh, David Majercak, Matt Mazzola, Caio César Teodoro Mendes,
Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker,
Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang Ren, Gustavo de Rosa,
Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim, Michael
Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Yelong Shen, Swadheen Shukla, Xia Song,
Masahiro Tanaka, Andrea Tupini, Praneetha Vaddamanu, Chunyu Wang, Guanhua Wang, Lijuan
Wang, Shuohang Wang, Xin Wang, Yu Wang, Rachel Ward, Wen Wen, Philipp Witte, Haiping
Wu, Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Jilong Xue, Sonali
Yadav, Fan Yang, Jianwei Yang, Yifan Yang, Ziyi Yang, Donghan Yu, Lu Yuan, Chenruidong
Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and
Xiren Zhou. Phi-3 technical report: A highly capable language model locally on your phone, 2024.
URL https://arxiv.org/abs/2404.142109.

Adly Templeton Adam Jermyn. Ghost grads: An improvement on resampling, 2024.
URL https://transformer—circuits.pub/2024/jan—-update/index.html#

dict-learning-resampling.

Cem Anil, Esin Durmus, Mrinank Sharma, Joe Benton, Sandipan Kundu, Joshua Batson, Nina
Rimsky, Meg Tong, Jesse Mu, Daniel Ford, et al. Many-shot jailbreaking. 2024.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection.

11

https://arxiv.org/abs/2404.14219
https://transformer-circuits.pub/2024/jan-update/index.html#dict-learning-resampling
https://transformer-circuits.pub/2024/jan-update/index.html#dict-learning-resampling

Under review as a conference paper at ICLR 2025

Hritik Bansal, Karthik Gopalakrishnan, Saket Dingliwal, Sravan Bodapati, Katrin Kirchhoff, and Dan
Roth. Rethinking the role of scale for in-context learning: An interpretability-based case study at
66 billion scale. URL http://arxiv.org/abs/2212.09095.

Adithya Bhaskar, Alexander Wettig, Dan Friedman, and Danqi Chen. Finding transformer circuits
with edge pruning, 2024. URL https://arxiv.org/abs/2406.16778.

Steven Bills, Nick Cammarata, Dan Mossing, et al. Language models can explain neu-
rons in language models. https://openaipublic.blob.core.windows.net/
neuron—explainer/paper/index.html} 2023.

Joseph Bloom. Open source sparse autoencoders for all residual stream layers of gpt2-small,
2024. URL https://www.alignmentforum.org/posts/f9EgfLSurAigRJySD/
open—-source-sparse—autoencoders-for-all-residual-stream.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/jax-ml/jax.

Dan Braun, Jordan Taylor, Nicholas Goldowsky-Dill, and Lee Sharkey. Identifying functionally
important features with end-to-end sparse dictionary learning, 2024. URL https://arxiv,
org/abs/2405.12241.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary
learning. Transformer Circuits Thread, 2023. https://transformer—-circuits.pub/
2023 /monosemantic-features/index.htmll

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-
shot learners. In Advances in Neural Information Processing Systems, volume 33, pp.
1877-1901, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0dobfcb4967418bfb8acl42f6d4a-Abstract.htmll

Bart Bussmann, Patrick Leask, and Neel Nanda. Batchtopk: A simple improvement for topk-saes,
2024. URL https://www.alignmentforum.org/posts/Nkx6yWZNbAsfvic98/
batchtopk—-a-simple-improvement-for-topk-saes.

Nick Cammarata, Shan Carter, Gabriel Goh, Chris Olah, et al. Thread: Circuits. Distill, 2020. doi:
10.23915/distill.00024. https://distill.pub/2020/circuitsl

Lawrence Chan, Adria Garriga-Alonso, Nix Goldowsky-Dill, Ryan Greenblatt, Jenny
Nitishinskaya, Ansh Radhakrishnan, Buck Shlegeris, and Nate Thomas. Causal
scrubbing: A method for rigorously testing interpretability hypotheses, 2022.
URL https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/
causal-scrubbing-a-method-for-rigorously-testing.

Siyu Chen, Heejune Sheen, Tianhao Wang, and Zhuoran Yang. Unveiling induction heads: Provable
training dynamics and feature learning in transformers. URL http://arxiv.org/abs/
2409.10559.

Tom Conerly, Adly Templeton, Trenton Bricken, Jonathan Marcus, and Tom Henighan. Up-
date on how we train saes, 2024. URL https://transformer—-circuits.pub/2024/
april-update/index.html#training-saes.

12

http://arxiv.org/abs/2212.09095
https://arxiv.org/abs/2406.16778
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/open-source-sparse-autoencoders-for-all-residual-stream
https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/open-source-sparse-autoencoders-for-all-residual-stream
http://github.com/jax-ml/jax
https://arxiv.org/abs/2405.12241
https://arxiv.org/abs/2405.12241
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://www.alignmentforum.org/posts/Nkx6yWZNbAsfvic98/batchtopk-a-simple-improvement-for-topk-saes
https://www.alignmentforum.org/posts/Nkx6yWZNbAsfvic98/batchtopk-a-simple-improvement-for-topk-saes
https://distill.pub/2020/circuits
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
http://arxiv.org/abs/2409.10559
http://arxiv.org/abs/2409.10559
https://transformer-circuits.pub/2024/april-update/index.html#training-saes
https://transformer-circuits.pub/2024/april-update/index.html#training-saes

Under review as a conference paper at ICLR 2025

Arthur Conmy, Augustine N. Mavor-Parker, Aengus Lynch, et al. Towards automated circuit discovery
for mechanistic interpretability. In Proceedings of NeurIPS, 2023.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, et al. Sparse autoencoders find highly interpretable
features in language models, 2023. URL https://arxiv.org/abs/2309.08600.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can GPT
learn in-context? language models implicitly perform gradient descent as meta-optimizers. URL
http://arxiv.org/abs/2212.10559.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Tianyu Liu, Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui. A survey on in-context
learning, 2024. URL https://arxiv.org/abs/2301.00234,

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, et al. The llama 3 herd of
models, 2024. URL https://arxiv.org/abs/2407.21783.

Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable 1lm feature
circuits, 2024. URL https://arxiv.org/abs/2406.11944.

Michael Elad. Sparse and Redundant Representations: From Theory to Applications in Signal
and Image Processing. Springer, New York, 2010. ISBN 978-1-4419-7010-7. doi: 10.1007/
978-1-4419-7011-4.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse,
Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. A
mathematical framework for transformer circuits. Transformer Circuits Thread, 2021. URL
https://transformer—circuits.pub/2021/framework/index.html.

Nelson Elhage, Tristan Hume, Catherine Olsson, Neel Nanda, Tom Henighan, Scott Johnston, Sheer
EIShowk, Nicholas Joseph, Nova DasSarma, Ben Mann, Danny Hernandez, Amanda Askell,
Kamal Ndousse, Jones, , Dawn Drain, Anna Chen, Yuntao Bai, Deep Ganguli, Liane Lovitt, Zac
Hatfield-Dodds, Jackson Kernion, Tom Conerly, Shauna Kravec, Stanislav Fort, Saurav Kadavath,
Josh Jacobson, Eli Tran-Johnson, Jared Kaplan, Jack Clark, Tom Brown, Sam McCandlish, Dario
Amodei, and Christopher Olah. Softmax linear units. Transformer Circuits Thread, 2022a.
https://transformer-circuits.pub/2022/solu/index.html.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy Models of Superposition.
arXiv preprint arXiv:2209.10652, 2022b.

Eoin Farrell. Experiments with an alternative method to promote sparsity in sparse autoen-
coders, 2024. URL https://www.lesswrong.com/posts/cYA3ePxy8J0Q8ajo8B/
experiments—-with—-an—-alternative-method-to-promote-sparsity.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders, 2024. URL https:
//arxiv.org/abs/2406.04093.

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes.

Gemma Team. Gemma: Open models based on gemini research and technology, 2024. URL
https://arxiv.org/abs/2403.08295.

Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato, and Aryaman Arora. Localizing model
behavior with path patching, 2023. URL https://arxiv.org/abs/2304.05969.

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
Steiner, Dustin Li, Esin Durmus, Ethan Perez, Evan Hubinger, Kamilé Lukosiiité, Karina Nguyen,
Nicholas Joseph, Sam McCandlish, Jared Kaplan, and Samuel R. Bowman. Studying large
language model generalization with influence functions, 2023. URL https://arxiv.org/
abs/2308.03296.

13

https://arxiv.org/abs/2309.08600
http://arxiv.org/abs/2212.10559
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2406.11944
https://transformer-circuits.pub/2021/framework/index.html
https://www.lesswrong.com/posts/cYA3ePxy8JQ8ajo8B/experiments-with-an-alternative-method-to-promote-sparsity
https://www.lesswrong.com/posts/cYA3ePxy8JQ8ajo8B/experiments-with-an-alternative-method-to-promote-sparsity
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2304.05969
https://arxiv.org/abs/2308.03296
https://arxiv.org/abs/2308.03296

Under review as a conference paper at ICLR 2025

Xiaochuang Han, Daniel Simig, Todor Mihaylov, Yulia Tsvetkov, Asli Celikyilmaz, and Tianlu Wang.
Understanding in-context learning via supportive pretraining data. URL http://arxiv.org/
abs/2306.15091.

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does gpt-2 compute greater-than?:
Interpreting mathematical abilities in a pre-trained language model, 2023. URL https://
arxiv.org/abs/2305.00586.

Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors, 2023. URL
https://arxiv.org/abs/2310.15916.

Daniel D. Johnson. Penzai + treescope: A toolkit for interpreting, visualizing, and editing models as
data, 2024. URL https://arxiv.org/abs/2408.00211.

Patrick Kidger and Cristian Garcia. Equinox: neural networks in jax via callable pytrees and filtered
transformations, 2021. URL https://arxiv.org/abs/2111.00254.

Connor Kissane, Robert Krzyzanowski, Arthur Conmy, and Neel
Nanda. Attention output saes improve circuit analysis, 2024. URL
https://www.alignmentforum.org/posts/EGvtgBictifzxzg6v/
attention-output-saes—-improve-circuit—-analysis.

Vedang Lad, Wes Gurnee, and Max Tegmark. The remarkable robustness of 1lms: Stages of inference?,
2024. URL https://arxiv.org/abs/2406.19384.

Max Li, Sam Marks, and Aaron Mueller. dictionary_learning repository, 2023. URL https:
//github.com/saprmarks/dictionary_learning?tab=readme—-ov-file#
extra-functionalitysupported-by-this-repol Accessed on September 30, 2024.

Tom Lieberum, Matthew Rahtz, Janos Kramdr, et al. Does circuit analysis interpretability scale?
evidence from multiple choice capabilities in chinchilla, 2023. URL https://arxiv.org/
abs/2307.09458.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, Janos Kramdr, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
autoencoders everywhere all at once on gemma 2, 2024. URL https://arxiv.org/abs/
2408.05147.

Johnny Lin. Neuronpedia: Interactive reference and tooling for analyzing neural networks, 2023.
URL https://www.neuronpedia.org. Software available from neuronpedia.org.

Arvind Mahankali, Tatsunori B. Hashimoto, and Tengyu Ma. One step of gradient descent is
provably the optimal in-context learner with one layer of linear self-attention. URL http:
//arxiv.org/abs/2307.03576.

Samuel Marks, Can Rager, Eric J. Michaud, et al. Sparse feature circuits: Discovering and editing in-
terpretable causal graphs in language models. Computing Research Repository, arXiv:2403.19647,
2024. URL https://arxiv.org/abs/2403.19647.

Joseph Miller, Bilal Chughtai, and William Saunders. Transformer circuit faithfulness metrics are not
robust, 2024. URL https://arxiv.org/abs/2407.08734.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? arXiv
preprint arXiv:2202.12837,2022. URL https://arxiv.org/abs/2202.12837.

Andrew Ng. Sparse autoencoder. CS294A Lecture Notes, 2011. Unpublished lecture notes.
Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.

Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001. https:
//distill.pub/2020/circuits/zoom-1inl

14

http://arxiv.org/abs/2306.15091
http://arxiv.org/abs/2306.15091
https://arxiv.org/abs/2305.00586
https://arxiv.org/abs/2305.00586
https://arxiv.org/abs/2310.15916
https://arxiv.org/abs/2408.00211
https://arxiv.org/abs/2111.00254
https://www.alignmentforum.org/posts/EGvtgB7ctifzxZg6v/attention-output-saes-improve-circuit-analysis
https://www.alignmentforum.org/posts/EGvtgB7ctifzxZg6v/attention-output-saes-improve-circuit-analysis
https://arxiv.org/abs/2406.19384
https://github.com/saprmarks/dictionary_learning?tab=readme-ov-file#extra-functionalitysupported-by-this-repo
https://github.com/saprmarks/dictionary_learning?tab=readme-ov-file#extra-functionalitysupported-by-this-repo
https://github.com/saprmarks/dictionary_learning?tab=readme-ov-file#extra-functionalitysupported-by-this-repo
https://arxiv.org/abs/2307.09458
https://arxiv.org/abs/2307.09458
https://arxiv.org/abs/2408.05147
https://arxiv.org/abs/2408.05147
https://www.neuronpedia.org
http://arxiv.org/abs/2307.03576
http://arxiv.org/abs/2307.03576
https://arxiv.org/abs/2403.19647
https://arxiv.org/abs/2407.08734
https://arxiv.org/abs/2202.12837
https://distill.pub/2020/circuits/zoom-in
https://distill.pub/2020/circuits/zoom-in

Under review as a conference paper at ICLR 2025

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads, 2022. URL https://arxiv.org/
abs/2209.11895.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, Joao Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent.
URL http://arxiv.org/abs/2212.07677.

Jane Pan, Tianyu Gao, Howard Chen, and Danqi Chen. What in-context learning “learns” in-context:
Disentangling task recognition and task learning. In Anna Rogers, Jordan Boyd-Graber, and
Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics: ACL 2023, pp.
8298-8319. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.527.
URLhttps://aclanthology.org/2023.findings—acl.527.

Judea Pearl. Direct and indirect effects. In Proceedings of the Seventeenth Conference on Uncertainty
in Artificial Intelligence, UAI’01, pp. 411-420, San Francisco, CA, USA, 2001. Morgan Kaufmann
Publishers Inc. ISBN 1558608001.

Judea Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, USA, 2nd
edition, 2009. ISBN 052189560X.

Guilherme Penedo, Hynek Kydlicek, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
finest text data at scale, 2024. URL https://arxiv.org/abs/2406.17557.

Hao Peng, Xiaozhi Wang, Jianhui Chen, Weikai Li, Yunjia Qi, Zimu Wang, Zhili Wu, Kaisheng Zeng,
Bin Xu, Lei Hou, and Juanzi Li. When does in-context learning fall short and why? a study on
specification-heavy tasks, 2023. URL https://arxiv.org/abs/2311.08993,

Senthooran Rajamanoharan. Improving ghost grads, 2024. URL
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/
progress—update-1-from-the-gdm-mech-interp-team-full-update#
Improving_ghost_grads.

Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, Jdnos
Kramar, Rohin Shah, and Neel Nanda. Improving dictionary learning with gated sparse autoen-
coders, 2024a. URL https://arxiv.org/abs/2404.16014.

Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, Janos
Kramadr, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse
autoencoders, 2024b. URL https://arxiv.org/abs/2407.14435,

Allan Raventds, Mansheej Paul, Feng Chen, and Surya Ganguli. Pretraining task diversity and the
emergence of non-bayesian in-context learning for regression. URL http://arxiv.org/
abs/2306.15063.

Logan Riggs and Jannik Brinkman. Improving sae’s by sqrt()-ing 11 removing lowest activating
features, 2024. URL https://www.lesswrong.com/posts/YiGs8gqJ8aNBgwt2YN/
improving-sae-s—-by-sgrt-ing-ll-and-removing-lowest!.

Lingfeng Shen, Aayush Mishra, and Daniel Khashabi. Do pretrained transformers learn in-context
by gradient descent? URL http://arxiv.org/abs/2310.08540.

Chenglei Si, Dan Friedman, Nitish Joshi, Shi Feng, Dangi Chen, and He He. Measuring inductive
biases of in-context learning with underspecified demonstrations. In Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
11289-11310. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.632.
URL https://aclanthology.org/2023.acl-1long. 632,

15

https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2209.11895
http://arxiv.org/abs/2212.07677
https://aclanthology.org/2023.findings-acl.527
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2311.08993
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/progress-update-1-from-the-gdm-mech-interp-team-full-update#Improving_ghost_grads
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/progress-update-1-from-the-gdm-mech-interp-team-full-update#Improving_ghost_grads
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/progress-update-1-from-the-gdm-mech-interp-team-full-update#Improving_ghost_grads
https://arxiv.org/abs/2404.16014
https://arxiv.org/abs/2407.14435
http://arxiv.org/abs/2306.15063
http://arxiv.org/abs/2306.15063
https://www.lesswrong.com/posts/YiGs8qJ8aNBgwt2YN/improving-sae-s-by-sqrt-ing-l1-and-removing-lowest
https://www.lesswrong.com/posts/YiGs8qJ8aNBgwt2YN/improving-sae-s-by-sqrt-ing-l1-and-removing-lowest
http://arxiv.org/abs/2310.08540
https://aclanthology.org/2023.acl-long.632

Under review as a conference paper at ICLR 2025

Lewis Smith. Replacing sae encoders with inference-time optimisation, 2024.
URL https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrqg/
full-post-progress-update-1-from-the-gdm-mech-interp—-teams
Replacing_SAE_Encoders_with_Inference_Time_Optimisation.

Aaquib Syed, Can Rager, and Arthur Conmy. Attribution patching outperforms automated circuit
discovery, 2023. URL https://arxiv.org/abs/2310.10348,

Adly Templeton, Joshua Batson, Adam Jermyn, and Chris Olah. Predicting future activations,
January 2024a. URL https://transformer—-circuits.pub/2024/jan-update/
index.html#predict-futurel Accessed on September 30, 2024.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,
Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L
Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers,
Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan.
Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet. Trans-
former Circuits Thread, 2024b. URL https://transformer—-circuits.pub/2024/
scaling-monosemanticity/index.html.

Eric Todd, Millicent L. Li, Arnab Sen Sharma, et al. Function vectors in large language models. In
Proceedings of the 2024 International Conference on Learning Representations, 2024.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: A circuit for indirect object identification in GPT-2 small, 2022. URL
https://arxiv.org/abs/2211.00593.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou, Fandong Meng, Jie Zhou, and Xu Sun.
Label words are anchors: An information flow perspective for understanding in-context learn-
ing. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language Processing, pp. 9840-9855. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.609. URL https:
//aclanthology.org/2023.emnlp-main. 6009.

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, and William Yang Wang. Large language
models are latent variable models: Explaining and finding good demonstrations for in-context
learning, 2024. URL https://arxiv.org/abs/2301.11916,

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. URL http://arxiv.org/abs/2111.02080.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. Magpie: Alignment data synthesis from scratch by prompting aligned 1lms with
nothing, 2024. URL https://arxiv.org/abs/2406.08464l

Steve Yadlowsky, Lyric Doshi, and Nilesh Tripuraneni. Pretraining data mixtures enable narrow model
selection capabilities in transformer models. URL http://arxiv.org/abs/2311.00871.

A MODEL AND DATASET DETAILS

For our experiments, we utilized the Gemma 1 2B model, a member of the Gemma family of open
models based on Google’s Gemini models (Gemma Team, |2024)). The model’s architecture is largely
the same as that of Llama (Dubey et al.| 2024) except for tied input and output embeddings and a
different activation function for MLP layers, so we could reuse our infrastructure for loading Llama
models. We train residual and attention output SAEs as well as transcoders for layers 1-18 of the
model on FineWeb (Penedo et al., [2024]).

Our dataset for circuit finding is primarily derived from the function vectors paper (Todd et al., 2024)),
which provides a diverse set of tasks for evaluating the existence and properties of function vectors in
language models. We supplemented this dataset with three additional algorithmic tasks to broaden
the scope of our analysis:

16

https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team#Replacing_SAE_Encoders_with_Inference_Time_Optimisation
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team#Replacing_SAE_Encoders_with_Inference_Time_Optimisation
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team#Replacing_SAE_Encoders_with_Inference_Time_Optimisation
https://arxiv.org/abs/2310.10348
https://transformer-circuits.pub/2024/jan-update/index.html#predict-future
https://transformer-circuits.pub/2024/jan-update/index.html#predict-future
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://arxiv.org/abs/2211.00593
https://aclanthology.org/2023.emnlp-main.609
https://aclanthology.org/2023.emnlp-main.609
https://arxiv.org/abs/2301.11916
http://arxiv.org/abs/2111.02080
https://arxiv.org/abs/2406.08464
http://arxiv.org/abs/2311.00871

Under review as a conference paper at ICLR 2025

* Extract the first element from an array of length 4

» Extract the second element from an array of length 4

 Extract the last element from an array of length 4

The complete list of tasks used in our experiments with task descriptions is as follows:

Task ID

Description

location_continent

Name the continent where the given landmark is located.

football _player_position

Identify the position of a given football player.

location_religion

Name the predominant religion in a given location.

location_language

State the primary language spoken in a given location.

person_profession

Identify the profession of a given person.

location_country

Name the country where a given location is situated.

country_capital

Provide the capital city of a given country.

person_language

Identify the primary language spoken by a given person.

singular_plural

Convert a singular noun to its plural form.

present_simple_past_simple

Change a verb from present simple to past simple tense.

antonyms

Provide the antonym of a given word.

plural_singular

Convert a plural noun to its singular form.

present_simple_past_perfect

Change a verb from present simple to past perfect tense.

present_simple_gerund

Convert a verb from present simple to gerund form.

en_it

Translate a word from English to Italian.

it_en Translate a word from Italian to English.

en_fr Translate a word from English to French.

en_es Translate a word from English to Spanish.

fr_en Translate a word from French to English.

es_en Translate a word from Spanish to English.
algo_last Extract the last element from an array of length 4.
algo_first Extract the first element from an array of length 4.

algo_second

Extract the second element from an array of length 4.

This diverse set of tasks covers a wide range of linguistic and cognitive abilities, including geographic
knowledge, language translation, grammatical transformations, and simple algorithmic operations.
By using this comprehensive task set, we aimed to thoroughly investigate the in-context learning
capabilities of the Gemma 1 2B model across various domains.

B SAE TRAINING

Our Gemma 1 2B SAEs are trained with a learning rate of le-3 and Adam betas of 0.0 and 0.99
for 150M (£100) tokens of FineWeb (Penedo et al., |2024). The methodology is overall similar to
(Bloom| [2024). We initialize encoder weights orthogonally and set decoder weights to their transpose.
We initialize decoder biases to 0. We use |Rajamanoharan| (2024)’s ghost gradients variant (ghost
gradients applied to dead features only, loss multiplied by the proportion of death features) with the
additional modification of using softplus instead of exp for numerical stability. A feature is considered
dead when its density (according to a 1000-batch buffer) is below 5e-6 or when it has not fired in
2000 steps. We use Anthropic’s input normalization and sparsity loss for Gemma 1 2B (Conerly et al.,
2024)). We found it to improve Gated SAE training stability. We modified it to work with transcoders
by keeping track of input and output norms separately and predicting normed outputs.

We convert our Gated SAEs into JumpReLU SAEs after training, implementing algorithms like TVC
and SFC in a unified manner for all SAEs in this format (including simple SAEs). The conversion
procedure involves setting thresholds to replicate the effect of the gating branch. For further details,
see |Rajamanoharan et al.|(2024b)).

We use 4 v4 TPU chips running Jax (Bradbury et al.| [2018]) (Equinox (Kidger & Garcial 2021)) to
train our SAEs. We found that training with Huggingface’s Flax LM implementations was very
slow. We reimplemented LLaMA (Dubey et al.|[2024) and Gemma (Gemma Team| [2024) in Penzai
(Johnson, [2024)) with a custom layer-scan transformation and quantized inference kernels as well
as support for loading from GGUF compressed model files. We process an average of around 4400

17

Under review as a conference paper at ICLR 2025

tokens per second, which makes training SAEs and not caching LM activations the main bottleneck.
For this and other reasons, we don’t do SAE sparsity coefficient sweeps to increase TPU utilization.

For caching, we use a distributed ring buffer which contains separate pointers on each device to allow
for processing masked data. The (in-place) buffer update is in a separate JIT context. Batches are
sampled randomly from the buffer for each training step.

We train our SAEs in bfloat16 precision. We found that keeping weights and scales in bfloat16
and biases in float32 performed best in terms of the number of dead features and led to a Pareto
improvement over float32 SAEs.

For training Phi 3 (Abdin et al| [2024)) SAEs, we use data generated by the model unconditionally,
similarly to (Xu et al| [2024)P] The resulting dataset we train the model on contains many math
problems and is formatted as a natural-seeming interaction between the user and the model.

Each SAE training run takes us about 3 hours. We trained 3 models (a residual SAE, an attention
output SAE, and a transcoder) for each of the 18 layers of the model. This is about 1 week of v4-8
TPU time.

Our SAEs and training code will be made public after paper acceptance.

C EXAMPLE CIRCUITS

r:11:output:11050
IE: 0.0187
...Target: $0.10Long Term Target: $0.45
...Soluble Fiber and 3 grams of Irkoluble Fiber.

A\ 4

a:11:arrow:4080
IE: 0.092

t:11:arrow:27609 t:11:arrow:27609
IE: 0.0137 IE: 0.0638
...I think quantity and quality go hand in hand... ...Winds N at 5 to 10 mph. Chance of rain...
\ 4
r:12:arrow:11618
IE: 0.083

...alternating between lower and upper registers...

...between northernand southern Italian cooking...

Figure 9: An example of a circuit found using our SFC variant. We focused on a subcircuit with high
indirect effects. Maximum activating examples from the SAE training distribution are included.

An example output of our circuit cleaning algorithm can be found in Figure[)] We can see the flow of
information through a single high-IE attention feature from a task-detection feature (activating on
output tokens) to transcoder and residual execution features (activating on arrow tokens). The feature
activates on antonyms on the detection feature #11050: one can assume the first sequence began as
“Short Term Target”, making the second half an antonym.

We will release a web interface for viewing maximum activating examples and task feature circuits.

18

LS O S

Under review as a conference paper at ICLR 2025

n-shot ICL SAE 10-20 features
Task vectors .
prompts features noisy

...hot -> cold... on layer L

Cleaned
weights

Reconstruct Training

weights

2-4 features

A 4 interpretable
O-shot ICL Task loss L1 norm
prompts

Gall >

Optimize
Loss

Figure 10: An overview of our Task Vector Cleaning algorithm. TV stands for Task Vector.

D TASK VECTOR CLEANING ALGORITHM

The task vector cleaning algorithm is a novel approach we developed to isolate task-relevant features
from task vectors. Figure[I0]provides an overview of this algorithm.

Our process begins with collecting residuals for task vectors using a batch of 16 and 16-shot prompts.
We then calculate the SAE features for these task vectors. We explored two methods: (1) calculating
feature activation and then averaging across tokens, and (2) averaging across tokens first and then
calculating the task vector. They had similar performances.

The cleaning process is performed on a training batch of 24 pairs, with evaluation conducted on an
additional 24 pairs. All prompts are zero-shot. An example prompt is as follows:

BOS Follow the pattern : \n

tall — short \n

old — young \n

hot — cold

Example 2: The steered token is highlighted in red. Loss is calculated on the yellow token.

The algorithm is initialized with the SAE reconstruction as a starting point. It then iteratively steers
the model on the reconstruction layer and calculates the loss on the training pairs. To promote sparsity,
we add the L; norm of weights with coefficient [to the loss function. The algorithm implements
early stopping when the Ly norm remains unchanged for n iterations.

def tvc_algorithm(task_vector, model, sae):
initial_weights = sae.encode (task_vector)
def tvc_loss(weights, tokens):
task_vector = sae.decode (weights)
mask = tokens == self.separator

>Phi-3 is trained primarily with instruction following data, making it an aligned chat model.

19

Under review as a conference paper at ICLR 2025

model.residual_stream[layer, mask] += task_vector
loss only on the "output" tokens,
ignoring input and prompt tokens
loss = logprobs (model.logits, tokens, .2)
return loss + 11_coeff » 11 norm(welghts)
welights = initial_weights.copy ()
optimizer = adam(weights, 1lr=0.15)
last_10, without_change = 0, 0 # early stopping
for _ in range (1000):
grad = jax.grad(tvc_loss) (weights, tokens)
weights = optimizer.step (grad)
if 10_norm(weights) != last_10:
last_10, without_change = 10_norm(weights), O
elif without_change >= 50:
break
return weights

Algorithm 1: Pseudocode for Task Vector Cleaning.

The hyperparameters [, n, and learning rate « can be fixed for a single model. We experimented with
larger batch sizes but found that they did not significantly improve the quality of extracted features
while substantially slowing down the algorithm due to gradient accumulation.

The algorithm takes varying amounts of time to complete for different tasks and models. For Gemma
1, it stops at 100-200 iterations, which is close to 40 seconds at 5 iterations per second.

It’s worth noting that we successfully applied this method to the recently released Gemma 2 2B and
9B models using the Gemma Scope SAE suite (Lieberum et al.} [2024). It was also successful with the
Phi-3 3B model (Abdin et al.| [2024) and with our SAEs, which were trained similarly to the Gemma
1 2B SAEs.

D.1 L; SWEEPS

To provide more details about the method’s effectiveness across various models and SAE widths, we
conducted L, coefficient sweeps with our Phi-3 and Gemma 1 2B SAEs, as well as Gemma Scope
Gemma 2 SAEs. We chose two SAE widths for Gemma 2 2B and 9B: 16k and 65k. For Gemma 2
2B we also sweeped across several different target SAE 10 norms. We studied only the optimal task
vector layer for each model: 12 for Gemma 1, 16 for Gemma 2, 18 for Phi-3, and 20 for Gemma 2
9B. We used a learning rate of 0.15 with the Gemma 1 2B, Phi-3, and Gemma 2 2B 65k models, 0.3
with Gemma 2 2B 16k, and 0.05 with 200 early stopping steps for Gemma 2 9B.

Figures [T} [T2] [[3] compare TVC and ITO against original task vectors. The X-axis displays the
fraction of active task vector SAE features used. The Y-axis displays the TV loss delta, calculated
as (L7v — Lasethod)/Lzero» Where Ly is the loss from steering with the task vector, Lsetnod
is the loss after it has been cleaned using the corresponding method, and Lz, is the uninformed
(no-steering) model loss. This metric shows improvement over the task vector relative to the loss of
the uninformed model. Points were collected from all tasks using 5 different L; coefficient values.

We observe that our method often improves task vector loss and can reduce the number of active
features to one-third of those in the original task vector while maintaining relatively intact performance.
In contrast, ITO rarely improves the task vector loss and is almost always outperformed by TVC.

Figures[T4] [[3] and [T6] show task-mean loss decrease (relative to no steering loss) and remaining TV
features fraction plotted against L; sweep coefficients. We see that L; coefficients between 0.001
and 0.025 result in relatively intact performance, while significantly reducing the amount of active
SAE features. From Figure [I5] we can notice that the method performs better with higher target 10
SAEs, being able to affect the loss with just a fraction of active SAE features.

20

Under review as a conference paper at ICLR 2025

Gemma 1
o® Method
s ° ® ITO
0.2 0% o* °° e TVC
L]
o o
go o8
- 0 ° ' : ¢ o
= ° %% e ° ¢
© O e oo . o
g B o o3]
> 02 oo o3° o « |
= e © °
© ¢ °° ° 2
L X J ° L]
-0.4
06 e
0 0.5 1 1.5 2

TV LO fraction

Figure 11: Performance of ITO and TVC across different tasks and optimization parameters compared
to task vectors for Gemma 1 2B. The Y-axis shows relative improvement over task vector loss, while
the X-axis shows the fraction of active TV features used. Metric calculation details are available in

Phi-3
° Method
0.4 s e ITO
© $ S G0 e TVC
02 TR S
. °
.. é .:‘“ e ©
S = % » ° ,
% e .‘o -. ° 0 ® o
]
Py 0 0 Q%> Y VO o & e® o 000 °
g B "."'o 0' RAC -. ‘e * *° °
> ’..:'.'\’o o o° © °
= o g o® o .
02 %e SRS
‘e o =
o0
L]
-0.4
L]
0 0.5 1 1.5

TV LO fraction

Figure 12: Performance of ITO and TVC across different tasks and optimization parameters compared
to task vectors for Phi-3. The Y-axis shows relative improvement over task vector loss, while the
X-axis shows the fraction of active TV features used. Metric calculation details are available in@

21

Under review as a conference paper at ICLR 2025

Gemma 2 65k Gemma 2 16k

Method . Method
05 ° e 1O 05 ° ° 1m0
° TvC * TVC

H o . e s
§ . s, ‘.
>
z
o8l -0s
0 0 ' . 2 0 0 | . p
TV LO fraction TV LO fraction
Gemma 2 2B 16k (2310) Gemma 2 2B 16k (335 10)
Method 06 . . Method
* ITO . oo . ® ITO
02 e TV 04 . o TvC
o
] 0 . 02
o . . .
z . . .
2 . T . H 0 e 0% o
£ 02 U 0~ 4 —1 i > ?
> o . .
z . . s 02
! o8 o o . N
o . .
LT | o’ 04
I H
. | 5 06
0 05 | 15 2 0 02 04 06 08
TV LO fraction TV LO fraction
Gemma 2 2B 65k (21 10)
o o Method Method
o mo . mo
o e o v
0 . .
. . . °
CI = | -t .
2 [l . e %
> 3 . .
B 04 .
06 .
.
0 05 1 15 > 06 08 ! 12 14
TV LO fraction TV LO fraction
Gemma 2 9B 65k
06
0 Method Method
o o o 1o
04 — . e o e
.. .
02
3
2 0 . . 0
2 . . s H . o 20
g R Y LI P L c
= 0.2 . . o d) L & o
. 3 LN .
. B s 9 <o
04
06
0 05 1 15) | 15 p

TV LO fraction TV L fraction

Figure 13: Performance of ITO and TVC across different tasks and optimization parameters compared
to task vectors for Gemma 2 Gemma Scope SAEs. The Y-axis shows the relative improvement over
the loss from steering with a task vector, while the X-axis shows the fraction of active TV features
used. Metric calculation details are available in Appendix [D.T]

E DETAILS OF OUR SFC IMPLEMENTATION

E.1 IMPLEMENTATION DETAILS

Our implementation of circuit finding attribution patching is specialized for Jax and Penzai.

We first perform a forward-backward pass on the set of prompts, collecting residuals and gradients
from the metric to residuals. We collect gradients with jax . grad by introducing "dummy” zero-
valued inputs to the metric computation function that are added to the residuals of each layer. Note
that we do not use SAEs during this stage.

We then perform an SAE encoding step and find the nodes (residual, attention output, and transcoder
SAE features and error nodes) with the highest indirect effects using manually computed gradients

22

Under review as a conference paper at ICLR 2025

Gemma 1

0.8

0.6

0.4

Mean relative loss decrease

le-05 0.0001 0.001 0.01 0.025 0.05 0.1

L1 Coefficient

= 0.6

=

g

=

o 04

—

>

[_1

§ 02

=

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1
L1 Coefficient

Gemma 2 2B 65k (128 10)

0.8

0.6

0.4

0.2

Mean relative loss decrease
o

le-05 0.0001 0.001 0.01 0.025 0.05 0.1

L1 Coefficient
0.6

0.4

0.2

“

Mean TV L0 Fraction

-

Mean TV LO Fraction

0

le-05 0.0001 0.001 0.01 0.025 0.05 0.1

L1 Coefficient

Mean relative loss decrease

Mean TV L0 Fraction

3

Mean relative loss decrease

Phi-3
0.6

0.4

——

;

0.2

le-05 0.0001 0.001 0.01 0.025 0.05 0.1

L1 Coefficient
0.6

0.4

0.2

0
le-05 0.0001 0.001 0.01 0.025 0.05 0.1
L1 Coefficient

Gemma 2 2B 16k (78 10)

0.8
0.6
0.4

0.2

/

le-05 0.0001 0.001 0.01 0.025 0.05 0.1

L1 Coefficient

0.4

0.2

le-05 0.0001 0.001 0.01 0.025 0.05 0.1

L1 Coefficient

Figure 14: L; coefficient sweeps across different models and SAEs. All metrics are averaged across
all tasks. Error bars show the standard deviation of the average for each case. Metric calculation

details are available in

23

Under review as a conference paper at ICLR 2025

Gemma 2 2B 16k (23 10)

0.6
0.4

0.2

Mean relative loss decrease
o

le-05 0.0001 0.001 0.01 0.025 0.05 0.1

L1 Coefficient

0.6

0.4

0.2

Mean TV LO Fraction
o

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

L1 Coefficient
Gemma 2 2B 65k (21 10)

0.6
0.4

0.2

Mean relative loss decrease
o

le-05 0.0001 0.001 0.01 0.025 0.05 0.1

L1 Coefficient

0.4

0.2

Mean TV LO Fraction
o

le-05 0.0001 0.001 0.01 0.025 0.05 0.1

L1 Coefficient

Mean relative loss decrease

Mean TV L0 Fraction

’

Mean relative loss decrease

Mean TV L0 Fraction

Gemma 2 2B 16k (335 10)

0.5

/

le-05 0.0001 0.001 0.01 0.025 0.05 0.1

L1 Coefficient

0.4

0.2

le-05 0.0001 0.001 0.01 0.025 0.05 0.1
L1 Coefficient

Gemma 2 2B 65k (244 10)

0.5

/

le-05 0.0001 0.001 0.01 0.025 0.05 0.1

L1 Coefficient

0.4

0.2

4

0
le-05 0.0001 0.001 0.01 0.025 0.05 0.1

L1 Coefficient

Figure 15: L; coefficient sweeps across different target SAE sparsities and widths for Gemma 2 2B.
All metrics are averaged across all tasks. Error bars show the standard deviation of the average for
each case. Metric calculation details are available in Appendix@

24

O ® N U R W N =

Under review as a conference paper at ICLR 2025

Gemma 2 9B 65k Gemma 2 9B 16k
[<9)
g
0.4 @
g 04
0.2 a
: 2 02
(<)
=
0 £ o
&
-0.2 g -02
=

Mean relative loss decrease

Mean TV L0 Fraction

le-05 0.0001 0.001 0.01 0.025 0.05 0.1 1le-05 0.0001 0.001 0.01 0.025 0.05 0.1

L1 Coefficient L1 Coefficient
=
i)
0.6 5
E 0.4
0.4 o
a
>
00 £ 02
=1
fae]
U
0 =

0

le-05 0.0001 0.001 0.01 0.025 0.05 0.1 le-05 0.0001 0.001 0.01 0.025 0.05 0.1

L1 Coefficient L1 Coefficient

Figure 16: L; coefficient sweeps across two SAE widths for Gemma 2 9B. All metrics are averaged
across all tasks. Error bars show the standard deviation of the average for each case. Metric calculation
details are available in[D.T}

from the metric. After that, we find the features with the top K indirect effects for each layer and
position mask and treat them as candidates for circuit edge targets. We compute gradients with
respect to the metric to the values of those nodes, propagate them to “source features” up to one layer
above, and multiply by the values of the source features. This way, we can compute indirect effects
for circuit edges and prune the initially fully connected circuit. However, like Marks et al.| (2024)), we
do not perform full ablation of circuit edges.

We include a simplified implementation of node-only SFC in Algorithm 2]

resids_pre: L x N x D - the pre-residual stream at layer L
resids _mid: L x N x D — the middle of the residual stream
(between attention and MLP) at layer L

grads_pre: L x N x D - gradients from the metric to resids_pre
grads_mid: L x N x D - gradients from the metric to resids_mid
all of the above are computed with a forward and backward
pass without SAEs

saes_resid: L - residual stream SAEs

saes_attn: L - attention output SAEs

transcoders_attn: L - transcoders predicting resids_pre[l+1]

from resids mid[1]

def indirect_effect_for_residual_node (layer):

sae_encoding = saes_resid[layer] .encode (
resids_pre[layer])

grad_to_sae_latents = jax.vip(
saes_resid[layer] .decode,
sae_encoding

) (grads_pre[l])

return (grad_to_sae_latents % sae_encoding) .sum(-1)

def indirect_effect_for_attention_node (layer):

sae_encoding = saes_attn[layer].encode (

25

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Under review as a conference paper at ICLR 2025

resids_mid[layer] - resids_prel[layer])
grad_to_sae_latents = jax.vjp(

saes_attn[layer] .decode,

sae_encoding
) (grads_mid[1])
return (grad_to_sae_latents % sae_encoding) .sum(-1)

def indirect_effect_for_transcoder_node (layer) :

sae_encoding = transcoders[layer] .encode (
resids_mid[layer])

grad_to_sae_latents = jax.vjp(
transcoders|[layer] .decode,
sae_encoding

) (grads_pre[l+1])

return (grad_to_sae_latents % sae_encoding) .sum(-1)

Algorithm 2: Pseudocode for Sparse Feature Circuits indirect effect calculation.

E.2 FAITHFULNESS CHARTS

Figure [T7) shows the average effect of node trimming on faithfulness in all tasks. We follow the
methodology of Marks et al.[(2024)) thresholding removing nodes with low IE first. We can see that
the circuits keep at least 0.8 faithfulness on average with just 1000 nodes (on layers 11-17).

0.8
0.6

0.4

Faithfullness

0.2

0 1000 2000 3000 4000

Number of nodes

Figure 17: Average faithfulness across tasks depending on the number of nodes left in the circuit.

Figure[I8|shows the averaged inverse node trimming effect on faithfulness across all tasks. Marks
et al.| (2024) calls this metric completeness and calculates it as the faithfulness of the model just
with the circuit ablated. We calculate it by thresholding the nodes starting with those that have the
highest IE. We can see that the ablation of even just several hundred nodes has a drastic impact on
faithfulness. These results were also computed with the window of layers being 11-17).

F STEERING WITH TASK-EXECUTION FEATURES

To evaluate the causal relevance of our identified ICL features, we conducted a series of steering
experiments. Our methodology employed zero-shot prompts for task-execution features, measuring
effects across a batch of 32 random pairs.

We set the target layer as 12 using Figure [3aand extracted all task-relevant features on it using our
cleaning algorithm. To determine the optimal steering scale, we conducted preliminary experiments
using manually identified task-execution features across all tasks. Through this process, we estab-
lished an optimal steering scale of 15, which we then applied consistently across all subsequent
experiments.

26

Under review as a conference paper at ICLR 2025

0.8

0.6

Faithfullness

0.4

0.2
0 1000 2000 3000 4000

Number of nodes

Figure 18: Average faithfulness across tasks depending on the amount of important nodes ablated
from the circuit .

For each pair of tasks and features, we steered with the feature and measured the relative loss
improvement compared to the model’s task performance on a prompt without steering. This relative
improvement metric allowed us to quantify the impact of each feature on task performance.

To normalize our results and highlight the most significant effects, we applied several post-processing
steps:
» We clipped the effect to be no more than 1, thus ignoring any instances of loss increase.
* We then normalized the effects for all features within the same task to be in the O to 1 range.
* To remove clutter and highlight important features, we set effects lower than 0.2 to 0.
* Finally, we removed features with low maximum effect across all tasks to reduce the size of

the resulting diagram. The full version of this diagram is present in Figure [T9]

Prompt example with the steered token highlighted in red. Loss is calculated on the yellow token:

BOs Follow the pattern : \n

hot — cold

Example 3: Task-execution steering setup. The steered token is highlighted in red and the loss is
calculated on the yellow token.

We also share the version of Figure [[9) without normalization and value clipping. It is present in
Figure[21] We see that task vectors generally contain just a few task-execution features that can boost
the task themselves. The remaining features have much weaker and less specific effects.

F.1 NEGATIVE STEERING

To further explore the effects of the executor feature, we also conducted negative steering experiments.
The setup involved a batch of 16 ICL prompts, each containing 32 examples for each task. We
collected all features from the cleaned task vectors for every task. Similar to positive steering, we
steered with features on arrow tokens, but this time multiplying the direction by -1. Prompts this time
contained several arrow tokens, and we steered on all of them simultaneously.

An important distinction from positive steering is that performance degradation in negative steering
may occur due to two factors: (1) our causal intervention on the ICL circuit and (2) the steering scale
being too high. To address this, we measured accuracy across all pairs in the batch instead of loss, as
accuracy does not decrease indefinitely. We also observed that features no longer share a common
optimal scale. Consequently, for each task pair, we iterated over several scales between 1 and 30.

27

Under review as a conference paper at ICLR 2025

en_es . o
en_fr Effect strength
en_it L) . . . P 5 1
country_capital . . . oo .
Tocation_religion . . -l e .
location_language
person_language: . . . o 0.8
football_player_position [] o PP
singular_plural . . . 5 E B
present_simple_gerund ® K . .
e sl a-o m - - o8
5
& present simple_past_perfect . e e o . .
person_profession [] [] . Ry
present_simple_past_simple . oo e . .
i 0.4
location_continent
location_country L m | | B -
algo_second . . oo o
algo_first . [- | e o o .
antonyms ® o o o o B oo o 02
plural_singular . . . ol B . e oo
fr_en| . o . . O
= B . . EE W
0
es_en . . N D . o .
MmN NENC oY@ ®RE D o NN EWEONZ SN NNNYNENNSD RN O
A BR800 R EEENENR8NcEe N EIREREd823BES
9288323885308 CC3 b8R8 8282qd-gd89883¢884
B8 2rd TR EE RIS EINERERENSS3E88888 38832258888
R S S LeENIZIENBEYEEERETRE 8°R 8°8
. =

Feature

Figure 19: Full version of the heatmap in Figure showing the effect of steering with individual
task-execution features for each task. The features present in the task vector of the corresponding task
are marked with dots. Green dots show the features that were extracted by cleaning. Red dots are
features present in the original task vector. Not all original features from the task vectors are present.

For each feature, we then selected a scale that reduced accuracy by at least 0.1 for at least one task.
Steering results at this scale were used for this feature across all tasks.

Figure 0] displays the resulting heatmap. While we observe some degree of task specificity — and
even note that some executing features from Figure[T9]have their expected effects — we also find that
negative steering exhibits significantly lower task specificity. Additionally, we observe that non-task-
specific features have a substantial impact in this experiment. This suggests that steering experiments
alone may not suffice for a comprehensive analysis of the ICL mechanism, thus reinforcing the
importance of methods such as our modification of SFC.

fren B
iten o o . Accuracy decrease
esen o B . e . . . B
person_language -
plural_singular . . . e o . .
country_capital . O o . .
present_simple_past_simple . . o . . e s e
algo, first . e . e o1
enes . I . . . H B
en_fr D . . . |8
. en_it . o Wl - | n
K} singular_plural
- location_seligion oy | e - T] YN - I
present_simple_past_perfect o . .
person_profession “ e e 005
football_player_position . |
location_continent . .

present_simple_gerund [- |
location_language

location_country . . ol .
woryms « < - H - 5

algo_last

© Feature is present after cleaning
Feature

Figure 20: Negative steering heatmap. Displays accuracy decrease after optimal scale negative
steering on full ICL prompts. Green circles show which features were present in the cleaned task
vector of the corresponding task. More details in Appendix@

F.2 GEMMA 2 2B POSITIVE STEERING

Additionally, we conducted zero-shot steering experiments with Gemma 2 2B 16k and 65k SAEs.
Contrary to Gemma 1 2B, task executors from Gemma 2 2B did not have a single common optimal
steering scale. Thus, we added an extra step to the experiment: for each feature and task pair, we
performed steering with several scales from 30 to 300, and then selected the scale that had maximal
loss decrease on any of the tasks. We then used this scale for this feature in application to all other

28

Under review as a conference paper at ICLR 2025

tasks. Figure[22a)and Figure 22| contain steering heatmaps for Gemma 2 2B 16k SAEs and Gemma
2 2B 65k SAEs respectively.

We observe a relatively similar level of executor task-specificity compared to Gemma 1. One notable
difference between 16k and 65k SAEs is that 65k cleaned task vectors appear to contain more features
with a strong effect on the task. However, this may be due to the [, regularization coefficient being
too low.

en_es .o . o . . .
en_fr . B o . . oo o Relative loss decrease
en_it . . o . .
country_capital . . He oo . 08
location_religion
location_language . .
person_language . .
football_player_position

singular_plural . . oo o . o oo 06

present_simple_gerund ~ ® ® . o o o o
ago_tasfll [. oEm - . .l

present_simple_past_perfect . o ee o . .
erson_profession . oo ofs
o] y
present_simple_past_simple . o o . . .
. . .

location_continent

Task

location_country o oo

algo_second . . ee o . . o o .
algo_first . [e « W o . 0.2
antonyms e e . o . 8 B 5l . ce o

plural_singular . . ce o . ceee
fr_en|JSIH » B « B . .o
iten ® oo

es_en |8

Feature

Figure 21: Unfiltered version of the heatmap in Figureshowing the effect of steering with individual
task-execution features for each task. The features present in the task vector of the corresponding task
are marked with dots. Green dots show the features that were extracted by cleaning. Red dots are the
features present in the original task vector. Since the chart only contains features from cleaned task
vectors, not all features from the original task vectors are present.

G TASK-DETECTION FEATURES

For our investigation of task-detection features, we employed a methodology similar to that used for
task execution features, with a key modification. We introduced a fake pair to the prompt and focused
our steering on its output. This approach allowed us to simulate the effect of the detection features
the way it happens on real prompts.

Our analysis revealed that layers 10 and 11 were optimal for task detection, with performance notably
declining in subsequent layers. We selected layer 11 for our primary analysis due to its proximity
to layer 12, where we had previously identified the task execution features. This choice potentially
facilitates a more direct examination of the interaction between detection and execution mechanisms.

The steering process for detection features followed the general methodology outlined in Appendix [F
including the use of a batch of 32 random pairs, extraction of task-relevant features, and application
of post-processing steps to normalize and highlight significant effects. The primary distinction lies in
the application of the steering to the prompt.

This approach allowed us to create a comprehensive representation of the causal relationships between
task-detection features and the model’s ability to recognize specific tasks, as visualized in Figure

BOs Follow the pattern : \n
X = Y \n

hot — cold

Example 4: Task-detection steering setup. The steered token is highlighted in red and the loss is
calculated on the yellow token.

29

Under review as a conference paper at ICLR 2025

Relative loss decrease

Task

4 2
o Feature is in task vector | o Feature is present after cleaning
Feature

(a) Gemma 2 2B 16k

Task

02

is present after
Feature

(b) Gemma 2 2B 65k

Figure 22: Unfiltered positive steering heatmap for Gemma 2 2B SAEs showing the effect of steering
with individual task-execution features for each task. Steering scales were optimized for each feature.
The features present in the task vector of the corresponding task are marked with dots. Green dots
show the features that were extracted by cleaning. Red dots are the features present in the original
task vector. Since the chart only contains features from cleaned task vectors, not all features from the
original task vectors are present.

H ICL INTERPRETABILITY LITERATURE REVIEW

This section will cover work on understanding ICL not mentioned in Section[3}

Raventos et al.| provides evidence for two different Bayesian algorithms being learned for linear
regression ICL: one for limited task distributions and one that is similar to ridge regression. It
also intriguingly shows that the two solutions lie in different basins of the loss landscape, a phase
transition necessary to go from one to the other. While interesting, it is not clear if the results apply
to real-world tasks.

The existence of discrete task detection and execution features hinges on the assumption that in-
context learning works by classifying the task to perform and not by learning a task. aims
to disentangle the two with a black-box approach that mixes up outputs to force the model to learn
the task from scratch. look at biases in task recognition in ambiguous examples through
a black-box lens. We find more clear task features for some tasks than others but do not consider
whether this is linked to how common a task is in pretraining data.

proposes that in-context learning happens because language models aim to model a latent
topic variable to predict text with long-range coherence. [Wang et al.| (2024) show following the two
proposed steps rigorously improves results in real-world models. However, they do not endeavor to
explain the behavior of non-finetuned models by looking at internal representations; instead, they aim
to improve ICL performance.

30

Under review as a conference paper at ICLR 2025

use a weight-space method to find examples in training data that promote in-context
learning using a method akin to |Grosse et al.| (2023)), producing results similar to per-token loss
analyses in [Olsson et al] (2022), and, similarly to the studies mentioned above, finds that those
examples involve long-range coherence. Our method is also capable of finding examples in data that
are similar to ICL, and we find crisp examples for many tasks being performed Appendix[f|

offers a deeper look into induction heads, scaling up [OlIsson et al.| (2022)) the way we
scale up|Marks et al.| (2024). Crucially, it finds that MLPs in later layers cannot be removed while

preserving ICL performance, indirectly corroborating our findings from Section[#.2] [Chen et al] come
up with a proof that states that gradient flow converges to a generalized version of the algorithm
suggested by [OIsson et al.| (2022)) when trained on n-gram Markov chain data.

studies the performance of toy models trained on in-context regression various function
classes. find that Transformers trained on regression with multiple function classes
have trouble combining solutions for learning those functions. construct a set of weights
for linear attention Transformers that reproduce updates from gradient descent and find evidence for
the algorithm being represented on real models trained on toy tasks. proves that
this algorithm is optimal for single-layer transformers on noisy linear regression data. |[Shen et al.
questions the applicability of this model to real-world transformers. finds that transformers
can switch between multiple different learning algorithms for ICL. find multiple similarities
between changes made to model predictions from in-context learning and weight finetuning.

While important, we do not consider this direction of interpreting transformers trained on regression
for concrete function classes through primarily white-box techniques. Instead, we aim to focus on
clear discrete tasks which are likely to have individual features.

The results of are perhaps the most similar to our findings. The study finds “anchor tokens”
responsible for aggregating semantic information, analogous to our “output tokens” (Section[2.3) and
task-detection features. They tackle the full circuit responsible for ICL bottom-up and intervene on
models using their understanding, improving accuracy. Like this paper, they do not deeply investigate
later attention and MLP layers. Our study uses SAE features to find strong linear directions on output
and arrow tokens corresponding to task detection and execution respectively, offering a different
perspective. Additionally, we consider over 20 diverse token-to-token tasks, as opposed to the 4 text
classification datasets considered in citewang;abel023.

I MAX ACTIVATING EXAMPLES

This section contains max activating examples for some executor and detector features for Gemma
1 2B, as described in (Bricken et al.} 2023)). They are computed by iterating over the training data
distribution (FineWeb) and sampling activations of SAE features that fall within disjoint buckets for
the activation value of span 0.5. We can observe that the degree of intuitive interpretability depends
on the amount of task-similar contexts in the training data and SAE width.

We also provide max activating examples for Gemma 2 2B executor features from Figures 22b]and
These max activating examples are taken from the Neuronpedia 2023)) and are available in

Figures 26]and 23]

Here we can notice the main difference between executors and detectors: executors mainly activate
before the task completion, while detectors activate on the token that completes the task. We also
found that in Gemma 1 2B detector features for some tasks were split between several token-level
features (like the journalism feature in Figure 24f), and they did not create a single feature before the
task executing features activated. We attribute this to the limited expressivity of the SAEs that we
used.

31

Under review as a conference paper at ICLR 2025

st by alternating between lower and upper registe
erences between northern and southern Italian co
| models, both import and domestic, Ulmer's spec
between fresh and traditional, casual and elegant
ces and both local and remote event logging. Tha
jlobally in both tropical and temperate waters. BlL

3 light and darkness, life and death. This assembil

(a) Max activating examples for the antonyms executor

feature 11618.
cultural diversity and that special joie de vivre (joy of life), that Mont
of creating Papel Picado Banderitas: (little paper banners). Popular 1
nicknames: "la ciudad dorada” (the golden city). Salamanca is also 1
from the same root as jihad, er struggle, in the sense that ijti
conurbation “tsukin jigoku,” er commuter hell. Images of rail worker:
, he acted according to our Sunna (tradition), and whoever slaughten
, and, of course, your karma (good and bad). John brings a wealth
The "it-sa Sicherheitsmesse” (security trade show), OWASP conferer
Cerveseria Catalan along with a cafia (draft beer) and a rosé...yes
s Apostle! | slaughtered the Nusuk (before the prayer) but I<bos>Tru
the living entities; sva-artha—interest; vyatikramah—ob

by her given name (Angelella = little angel), but called her Columba

(c) Max activating examples for the translation to En-
glish executor feature 5579.

on came all the way from Oslo Norway for the event. This has

imigrated to New York City frem the Galicia area, in northwest Spain.

nal. There were a few folks from Canada (British Columbia, Ontario and Quebec
an immigrant frem Bangladesh who was granted political asylum by the

»n and world number six Li Na of China. Azarenka, who is

hood in Seattle to my college years in Boston,

owever, batteries from rival manufacturers in the U.S. are exempt from

1e USA and four in England. Of these, only three have

(e) Max activating examples for the prediction of city/-
country feature 850.

Judgment Staff (F = @, Sabaki no Tsue?), also known

Rift The Judgment Staff (& = @, Sabaki no Tsue?), also

more commeonly known as the Four-Tails (FOE, Yonbi), is a

as the Four-Tails (9, Yonbi), is a tailed beast sealed

1 meters dybde er vigtige for et-arige afgr

te vinden (inclusief een directe link naar de publicatie online als dez
elders te vinden (inclusief een directe link naar de publicatie online
een publicatie elders te vinden (inclusief een

oh &k < 2 & — Samurai Gattai Shinken'd?)

o stetme A Fefat

naar de publicatie online als deze beschikbaar is in een

atie online als deze beschikbaar is in een database op het internet).
Goendagiri (Fe-F -1 SicTaeT F 151

did, upstage<bos=Israel (n'Tm 7awer) is a small yet diverse
Agencia Espaiiola de Medicamentos y Productos Sanitarios, A

authority (Agencia Espafiola de Medicamentos y Productos Sanitar

(b) Max activating examples for the English to for-
eign language translation executor feature 26987.

working, connecting with diverse people/and seeking out sustain
croll, and 2) Isolating unifying elements that transcend the indivi
nt like landing on the moon or the discovery of DNA. The focus
by using our search feature or by following the links above. Feel
as Liking and Favoriting photos, but it will expire after

r spends her free time traveling and visiting exotic locations arou
enses tighten, grabbing offensive rebounds and making putback
er than participating in or observing or<bos=| tend to specialise i
inother, rather than participating in er observing or<bos=I tend tc
a passenger car with plastics sheets and inhaling toxic fumes fr

nilies when going a long distance or flying with them when we cz

(d) Max activating examples for the ’next comes
gerund form” executor feature 15554.

scientistb, - Rury Holman, directorc on behalf of the United Kingdom
Stinton, NAR CEO Charlie Young, President/CEQ

. San Fernando Realty Dale Stinton, NAR CEOQ Charlie Young, President/
director ()a, - Philip Clarke, research fellowa, - Andrew Farmer

Hummel, MD, Ezio Bonifacio, PHD, and Anette-G_

lives in Bombay. Farug Hassani Poet and critic; teaches at Dawson Coll

<bos=lila Williams, President Randall Ramsay, Vice President Texas Chz

(f) Max activating examples for the person’s occu-
pation executor feature 13458.

Figure 23: Max activating examples for executor features from Figure

32

Under review as a conference paper at ICLR 2025

Target: $0.10 Long Term Target: $0.45

Soluble Fiber and 3 grams of Inseluble Fiber. Ground Flaxseeds are a gc
5In. x 6 In.; Outer Dimensions: 7 In. x

a service: |Morning Services||Evening Service] Morning Worship at 8
temp: 15°C min temp: 11°C

Upper Zone and 75 Bottles in Lower Zone - Read More... The

page and 30% viewing the right half" *apple’s decision

integration is performed first, followed by the quantitative combination
access to the content item. Returns FALSE if the current<bos=|Oracle®

As we alternate between defensive positions and offensive positions, v

(a) Max activating examples for the antonyms de-
tector feature 11050.

Say You can rate this item by giving it a score of one (poor),

, please let us know about it by sending our help desk an email .
which your order will be shipped. By deing this the few products
<pad=<pad=<pad><bos=Search for music by typing a word or ph
a one month non-recurring subscription by sending a cashier's ¢
s... Learn more about Concordia by following the links below: Ct
this product deliver? Pay it forward by sharing what you loved (z
. Browse: Browse the database by applying one or more filters to
we are celebrating Valentine's Day by sharing some gorgeous al
page needs content. You can help by adding a sentence or a phe

NewsOK. He composed the ad by animating still photos taken b

(c) Max activating examples for the gerund form
detector feature 8446.

the homeland of ties —|Croatia. There we found three local brands that
‘IA (Reuters) - Bulgaria's president on Thursday called for a

s=Welcome to The Dubline: Ireland'’s oldest and newest discovery trail
d><pad><pad><pad><pad><pad><bos>BulgariaSki.com is owned and m:
should know that "Deutschland” means Germany in German. Germany is
urban Budapest sketch... (Hungary) The old building standing on V
s=Message Behind African Heaters For Norway Spoof An online video, u

Aore of a Switzerland: More Personal Ads from the London Review

(e) Max activating examples for the country detec-
tor feature 11459.

other system that substantively uses<bos>Wikipedia sebre fisica de particulas
Directed By Tom Grundy Es|gibt noch keine Kommentare. Sei der erste ..<bos=>
006 - 213 halaman The book was selected as one of

Hour | Webcast - enregistré | Ol et quand What is the Webcast About

[score hidden] 23 Minuten zuvor You just said 'if you exposed

hazard [score hidden] 23 Minuten zuver You just said 'if you

vA-LINKER biedt mogelijkheden om een publicatie elders te vinden (

(b) Max activating examples for the English to foreign
language switch detector feature 7928.

Superficie Lunare (Composizione)” (Lunar surface - composition), execut

hardline group Tawhid wal Jihad (Monotheism and Holy War).

hardline group Tawhid wal Jihad (Monotheism and Holy War). One

hid wal Jihad (Monotheism and Holy War). One civilian was among

line group Tawhid wal Jihad (Monotheism and Holy War). One civilian
that reads “Arbeit Macht Frei” ("Work Brings Freedom”) is a seminal mor
Tavola di San Giuseppe (St. Joseph's Feast). You'll

As part of the Tres Fronteras (Three Borders) area that includes Foz and
(d) Max activating examples for the translation to En-
glish detector feature 31123.

><bos>| have been a technology journalist and consultant for near
{onation will help independent Adventist journalism expand across
1an 50 journalists gathered at Klosters, a Swiss ski
tting punters, journalists, football managers and players. We also
Modelo<bos>The award-winning journalist Robert Fisk gave the in
Pulitzer Prize-winning journalist, formerly with The Washington Po:
»w. If you are a journalist seeking comment on a story or more info
<bos>Peripatetic journalist and translator Porter (Road to Heaven:
n will likely endanger the lives of journalists and aid workers in the
houghtful post about the hazards of journalism following revelation

sbout interviewing and journalism. Just like a marketing person do

(f) Max activating examples for the journalist feature
26436. (The strongest detector for the person_profession
task).

Figure 24: Max activating examples for detector features from the FigureEl

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

anyway, dogsiWITUHE dogs. My name
hook. Boys- boys, I suppose
really hate explicit snuck_ shack

“market field"-. It was

of her team- English, Elena immediately

ExtractmnOptionstcﬂObject.Ext ractionOptionsJsonObject()
Verticeafffjverticest

Vertice3fffjverticest

four ways,- four ways, in

international projects. I_ ProfileriniMethodffiSanplingProfilerini

" xml :-en">(-n a<

particular de\uce—and- for that device.

(a) Max activating examples for the language pre- (b) Max activating examples for the repetition executor

diction executor feature 13804.

10 th S GRRERRN W
|In the densely populatedEAPEEANOT Monrovia,

km north of theBAPREAN Kabul. A crowd

east of the regionaUGapaEal Poznan. <« References

south of e regions GRBSERY sty

ero neighbourhood in thelEREEEURBI DU

the smells that filled]iSNNEORNIGRESABViLLe in Decenber

(c) Max activating examples for the cap-
ital prediction executor feature 16315.

feature 12646. Extracted from the algo_last TV.
st issue of Norsk Entomologisk Tidsskrift[fjnonNGEWegEaNJ0UrA L0 Entonology) appeared in May 1921.

vision and administration of the Direccion Provincial de Vialidad|{iSNEGHEN DEPERIOE TFanispor tation) .«

u[nsektwytt_) 1iswritten in a popular science style and is the society's

ejaUniversal do Reino de I}eus_ Kingdom of God) denied involvement in the scandal.

Theatre in the play Den Sorte Dronnln_ Queen) in 1843. Many artist frequented the
“icts Lithuanian Zalio]i rinktincfiNBIGREENISGUAt), belonging to partisans’ Algimantas military distric
rvals.=Norske [nsekttahelle_) is a series of inexpensive Norwegian-

(d) Max activating examples for the translation feature 493.

Figure 25: Max activating examples for Gemma 2 2B 16k executor features from the Figure

apparent use of cnmpliant- non-compliant form
die soon, todayl tomorrow, or in

various degrees of re'l.uctaﬂt- unlikely. There is
no matter how dlfferent. diverse these may be

: What are reliab'l_e- trusted websites? How

are clearly upsmes- downsides for those companies

bed, standing up- back downl

(a) Max activating examples for the antonyms

executor feature 45288.

) e BRI s tsnan ho pLayes ruchy
1) Ve RIS fGGEBRLLSF ron 3otz

(c) Max activating examples for the per-
son_profession executor feature 46729.

). Judd Rlngerﬁ], George Benson
plays- Hinger_ back

casti1 14 2 EEREF GBREFAY oerencer GFANETE
, it'- tackle. Filling in

(b) Max activating examples for the foot-
ball_player_position executor feature 18981.
Mai-Mai Kata Katanga)("SEEBNBIKATANGA ") .~ Other Mai-Nai groupse«There was a large Mai

an Zalioji rinktine (_), belonging to partisans' Algimantas military distris

jed square called Pasar Medan — 11terauy_" in Malay. It was here that the cit
1ey had a plastic kagami mochi, which/translates t_. Basically a snowman m:

1and Roberto Jefferson. The Ministério Publico Federal ([Ene]FEMERANPIOSECUtON ' S OTTice)

(d) Max activating examples for translation to English executor
feature 62633.

Figure 26: Max activating examples for Gemma 2 2B 65k executor features from the Figure

34

	Introduction
	Background
	Sparse Autoencoders (SAEs)
	Sparse Feature Circuits
	Task Vectors

	Discovering Task-Execution Features
	Decomposing task Vectors
	Steering Experiments

	Applying SFC to ICL
	Our Modifications
	Token Position Categorization and Feature Aggregation
	Loss Function Modification
	SFC Evaluation

	Task-Detection Features

	Related work
	Conclusion
	Reproducibility Statement
	Model and dataset details
	SAE Training
	Example circuits
	Task Vector Cleaning Algorithm
	L1 Sweeps

	Details of our SFC implementation
	Implementation details
	Faithfulness charts

	Steering with task-execution features
	Negative steering
	Gemma 2 2B positive steering

	Task-Detection Features
	ICL interpretability literature review
	Max Activating Examples

