Under review as a conference paper at ICLR 2025

SCALING SPARSE AUTOENCODER CIRCUITS FOR IN-
CONTEXT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Sparse autoencoders (SAEs) are a popular tool for interpreting large language
model activations, but their utility in addressing open questions in interpretability
remains unclear. In this work, we demonstrate their effectiveness by using SAEs
to deepen our understanding of the mechanism behind in-context learning (ICL).
We identify abstract SAE features that encode the model’s knowledge of which
task to execute and whose latent vectors causally induce the task zero-shot. This
aligns with prior work showing that ICL is mediated by task vectors. We further
demonstrate that these task vectors are well approximated by a sparse sum of SAE
latents, including these task-execution features. To explore the ICL mechanism,
we adapt the sparse feature circuits methodology of Marks et al.|(2024)) to work for
the much larger Gemma-1 2B model, with 30 times as many parameters, and to
the more complex task of ICL. Through circuit finding, we discover task-detecting
features with corresponding SAE latents that activate earlier in the prompt, that
detect when tasks have been performed. They are causally linked with task-
executing features through attention layer and MLP.

1 INTRODUCTION

Sparse autoencoders (SAEs; [Ng| (2011); Bricken et al.| (2023)); |(Cunningham et al. (2023))) are a
promising method for interpreting large language model (LLM) activations. However, the full
potential of SAESs in interpretability research remains to be explored, since most recent SAE research
either 1) interprets a single SAE’s features rather than the model’s computation as a whole (Bricken
et al., [2023), or ii) does high-level interventions in the model, but does not interpret the downstream
computation impacted by the interventions [Templeton et al.[(2024b). In this work, we address these
limitations by interpreting in-context learning (ICL), a widely-studied phenomenon in LLMs. In brief,
we show that SAEs enable a) the discovery of novel circuit components (task-detection features;
Section4.2)) and b) making existing interpretations of ICL more precise, by e.g. decomposing task
vectors (Todd et al., 2024} [Hendel et al., 2023) into task-execution features (Section .

In-context learning (ICL; Brown et al.|(2020)) is a fundamental capability of large language models
that allows them to adapt to new tasks without fine-tuning. ICL is a significantly more complex
and important task than other behaviors commonly studied in circuit analysis (such as IOI in|Wang
et al.| (2022)) and [Kissane et al.|(2024)), or subject-verb agreement and Bias-in-Bios in|Marks et al.
(2024))). Recent work by Todd et al.|(2024) and Hendel et al.| (2023)) has introduced the concept of
task vectors, to study ICL in a simple setting, which we follow throughout this paper[] In short, task
vectors are internal representations of tasks formed by language models during the processing of
few-shot prompts, such as “hot — cold, big — small, fast — slow”. These vectors can be extracted
and added into different LLM forward passes to induce task performance 0-shot, i.e. make LLMs
predict that “slow” follows “fast —” without explicit context. Section [2.3]provides a full introduction.

To identify task-execution features, we decomposed task vectors using SAEs. To achieve this, we
needed to go beyond existing methods for solving the classical dictionary problem of decomposing
a vector into a sparse sum of dictionary vectors (Elad, [2010). To do this, we developed a bespoke
method for LLMs we call the TASK VECTOR CLEANING (TVC) algorithm. By running the TVC

ITask vectors (Hendel et al.,[2023)) are also called “function vectors” (Todd et al.,[2024)), but we use “task
vectors” throughout this paper for consistency.

Under review as a conference paper at ICLR 2025

algorithm, we found task-execution features: features that can partially replace task vectors by
themselves alone and have highly interpretable max activating token patterns. We validate the
causal relevance of these task features through a series of steering experiments on tasks, spanning
several categories like translation or factual recall. The experiments demonstrate that identified task
features encode crucial information about task execution, are causally implicated in the model’s ICL
capabilities and can play the same role as task vectors.

To find task-detection features, we adapted the Sparse Feature Circuits (SFC) methodology of Marks
et al.[(2024) to work on the more complex ICL task and the larger Gemma-1 2B model (Gemma;
Team\| [2024)). This adaptation allowed us to discover and analyze the subgraph of key SAE latents
involved in ICL, providing a more comprehensive view of the ICL circuit. We found task-detection
features with SFC: features that play a crucial role in identifying the specific task being performed
earlier in the prompt. Task-detection features are tightly connected with task-execution features
through attention, as part of the whole ICL circuit.

Our findings not only advance our understanding of ICL mechanisms but also demonstrate the
potential of SAEs as a powerful tool for interpretability research on larger language models. By
unifying the task vectors view with SAEs and uncovering two of the most important causally
implicated feature families behind ICL, we pave the way for future work to control and monitor ICL
further, to improve either safety or capabilities of models.

Our main contributions are as follows:

1. We demonstrate that SAEs can be effectively used to explain the mechanisms behind the
complex ICL task (ICL) in a larger model (Gemma-1 2B), which has 20x more parameters
than prior models typically studied at this depth in mechanistic interpretability research
(Wang et al.,2022; Marks et al., [2024)).

2. We identify two core bottlenecks in the ICL circuit — task-detection features and task-
execution features — and study their interactions. This provides new insights into how
LLMs process and execute ICL tasks. Specifically, we discover task-detection features that
identify the task being performed earlier in the prompt, which are then moved by attention
heads to trigger task-specific features.

3. We present a novel task vector cleaning method that decomposes task vectors into a small
set of mostly task-relevant features, enabling more precise analysis of ICL mechanisms, and
important linear directions in LLMs in general.

Tall
—
short Antonym pair detected]

- - - = Antonym comes next]

Antonym pair detected]

Y Y
- - — - — — - - =)O—)[Antonym comes next right

Figure 1: A diagram of the in-context learning circuit, showing task detection features (yellow)
causing task execution features (blue) which cause the model to output the antonym (left — right).

2 BACKGROUND

2.1 SPARSE AUTOENCODERS (SAES)

Sparse autoencoders (SAEs) are neural networks designed to learn efficient representations of data
by enforcing sparsity in the hidden layer activations (Elad, [2010). In the context of language model

Under review as a conference paper at ICLR 2025

interpretability, SAEs are used to decompose the high-dimensional activations of language models
into more interpretable features (Cunningham et al., 2023} Bricken et al., |2023). The basic idea
behind SAEs is to train a neural network to reconstruct its input while constraining the hidden layer
to have sparse activations. This process typically involves:

1. An encoder that maps the input to a sparse hidden representation.

The SAE encoder typically has a linear encoder, a pre-activation bias and a post-encoder
nonlinearity:

f(x) = 0(WencX + benc) (1)

In the JumpReLU SAE formulation (Rajamanoharan et al., |2024b)), which we useﬂ the
activation function is JumpReLU:

JumpReLU,(z) := zH(z — 6) 2
where 6 is a learnable parameter for each SAE latent and H is the Heaviside step function.

2. A decoder that reconstructs the input from this sparse representation.

The decoder is a simple affine projection in most formulations. The rows of the decoder are
typically constrained to have unit norm with constrained optimization (Marks et al., 2024)
or a custom loss penalty (Conerly et al., 2024)).

f‘(f) = Vvdecf + bdec (3)

3. A loss task that balances reconstruction accuracy with sparsity.

Typically, the L; penalty on activations is used (Bricken et al.||2023)) with some modifica-
tions (Rajamanoharan et al., [2024a}; |Conerly et al.| 2024), although there are alternatives:
Rajamanoharan et al.| [2024b; [Farrelll, 2024; Riggs & Brinkman, 2024,

In our work, we train SAEs on residual stream activations and attention outputs, and also train
transcodersE] on MLP layers, all of which use the improved Gated SAE architecture (Rajamanoharan
et al., [2024a).

2.2 SPARSE FEATURE CIRCUITS

Sparse Feature Circuits (SFCs) are a methodology introduced by [Marks et al.| (2024) to identify
and analyze causal subgraphs of sparse autoencoder features that explain specific model behaviors.
This approach combines the interpretability benefits of SAEs with causal analysis to uncover the
mechanisms underlying language model behavior. The SFC methodology involves several key steps:

1. Decomposing model activations into sparse features using SAEs

2. Calculating the Indirect Effect (IE) of each feature on the target behavior
3. Identifying a set of causally relevant features based on IE thresholds

4. Constructing a circuit by analyzing the connections between these features

The IE of a model component is measured by intervening on that component and observing the
change in the model’s output. For a component a and a metric m, the IE is calculated as:

IE(m;a) = m(z|do(a = a’)) — m(z) “4)

Where m(z|do(a = a’)) represents the value of the metric when we intervene to set the value of
component a to a’, and m(z) is the original value of the metric. In practice, attribution patching is
used to approximate IE, allowing for efficient computation across many components simultaneously
(Marks et al., [2024). We describe our modifications in Appendix @}

>We technically use Gated SAEs (Rajamanoharan et al., 2024a) and convert them to JumpReLU SAEs
(Rajamanoharan et al.| 2024b) using the procedure outline in the Gated SAEs paper (see Appendix .

“*Transcoders are a modification of SAEs that take MLP input and convert it into MLP output instead of
trying to reconstruct the residual stream.

Under review as a conference paper at ICLR 2025

2.3 TASK VECTORS

Continuing from the high-level description in Section|l} task vectors were independently discovered
by Hendel et al.| (2023)) and |Todd et al.|(2024). The key idea behind task vectors is that they capture
the essence of a task demonstrated in a few-shot prompt, allowing the model to apply this learned
task to new inputs without explicit fine-tuning. Task vectors have several important properties:

1. They can be extracted from the model’s hidden states after processing ICL prompts.

2. When added to the model’s activations in a zero-shot setting, they can induce task perfor-
mance without explicit context.

3. They appear to encode abstract task information, independent of specific input-output
examples.

To illustrate the concept, consider the following simple prompt for an antonym task, where boxes
represent distinct tokens:

BOS ‘Follow‘ thel pattern | : ‘ \n ‘

|
‘hot|—>|cold|\n‘
|

big|—>| small‘\n‘

In this case, the task vector would encode the abstract notion of “find the antonym” rather than
specific word pairs. Task vectors are typically collected by averaging the residual stream of “—”
tokens at a specific layer across multiple ICL prompts for a given task. This averaged representation
can then be used to study the model’s internal task representations and to manipulate its behavior in
zero-shot settings. We perform our analysis on the datasets derived from the Todd et al.| (2024)) paper.
Details could be found in Appendix [A]

3 DISCOVERING TASK-EXECUTION FEATURES

3.1 DECOMPOSING TASK VECTORS

To gain a deeper understanding of task vectors, we attempted to decompose them using sparse
autoencoders (SAEs). However, several of our initial naive approaches faced significant challenges.
Firstly, direct SAE reconstruction, i.e. passing the task vector as input to the SAE, produced noisy
results with approximately 10-20 non-zero SAE features on layers of interesﬂ, most of which were
irrelevant to the task. Moreover, this reconstruction noticeably reduced the vector’s performance.
These issues partly arose because task vectors are out-of-distribution inputs for SAEs, as they
aggregate information from different residual streams rather than representing a single one.

We then explored inference-time optimization (ITO) (Smith} 2024) as an alternative. However, this
method also failed to reconstruct task vectors using a low number of SAE features while maintaining
high performance.

Given these observations, we developed a novel method called task vector cleaning. Our approach
involves extracting task vectors from few-shot prompts for various tasks, reconstructing these vectors
using trained SAEs, fine-tuning the SAE reconstruction weights to minimize negative log-likelihood
loss on zero-shot prompts for the same task, and applying L1 regularization during fine-tuning to
promote sparsity. This approach allows us to maintain the task vector performance while reducing
the amoung of active SAE features to 2-4. The algorithm details can be found in Appendix[C|

We compare it with the four baselines: original task vectors, naive SAE reconstruction, ITO with
target LO norm set to 5 and ITO with target LO set to 20. To compare them, we steer the zero-shot
prompt using the reconstructed task vector and calculate relative log-likelihood loss change. We then
average it across all tasks. Layer-wise comparison results can be found on Figure

*We found 3-5 interpretable features. Our cleaning algorithm can usually trim down the number to 2-4. The
usual residual SAE L0 is around 44

Under review as a conference paper at ICLR 2025

0 Reconstruction type
% Cleaning
N\

()
%3 01 = = SAE reconstruction
CHE —— ITO (20)
é) —0.2 Original Task vector
g N ITO (5)
T _
@ 0.3 /
(9]
on
S -04
>
<

-0.5

5 10 15
Layer

Figure 2: The effect on the model’s loss by steering with different kinds of reconstructed task vectors,
at each layer. We see that cleaning performs similarly to the original task vector until layer 14.

Using this method, we broke down task vectors into a small set of features. Many of these features
were easy to interpret and clearly related to the task at hand. We found a particularly interesting
group of features, which we called “task features.” These task features have two key characteristics:

1. They activate when the model encounters examples of the relevant task in normal text.
2. In these encounters they activate on the token just before the task is completed.

For instance, imagine an antonym task feature processing the phrase “hot and cold.” It would activate
on the token “and,” suggesting that the model expects an antonym to follow. This tells us that the
model recognizes it’s dealing with an antonym pair before seeing the complete pair.

3.2 STEERING EXPERIMENTS

To validate the causal relevance of our decomposed task features, we conducted a series of steering
experiments. These experiments involved both positive and negative steering, allowing us to observe
the features’ impact on task performance across different contexts and model layers.

The experiments were performed on the dataset of diverse tasks taken from|Todd et al.|(2024). We
first extracted relevant task features using our cleaning algorithm. Then steered the zero-shot prompt
using them and calculated relative loss improvement, normalizing and clipping it after that. Further
details can be found in Appendix [F]

Figure 3] shows a heatmap of steering results for each pair of task and task-relevant feature. Higher
values indicate greater improvement in the loss after steering. It can be seen that most tasks have
a single feature with a high effect on them, and this feature generally does not significantly affect
unrelated tasks. Another notable detail is that features from related tasks (like the translation group)
at least partially affect all tasks within the group.

We have manually examined the features with the highest effect and found that their maximum
activating dataset examples align with their hypothesized role in the ICL circuit. Interestingly, we
observed that translation-to-English tasks all share a generic English-to-foreign task execution feature,
thus requiring an additional language encoding feature for complete task encoding. This shared
feature suggests a common mechanism for translation tasks, with language-specific information
encoded separately.

Under review as a conference paper at ICLR 2025

football_player_position |
country_capital .

plural_singular [|
algo_first

fr_en
location_religion

singular_plural 0.8

present_simple_gerund
es_en
it_en

location_language
person_language'
algo_last

location_country | W |
location_continent 0.4
person_profession

algo_second
antonyms
en_it

Effect strength
1

0.6

Task

en_fr
en_es
present_simple_past_simple|
present_simple_past_perfect|

=3

9S€ST
L869C
8T9TT
8481
L6vL
09261
L96L
£€€98
CLITL
6459
¥SSST
L1vTE
145554
8L16
06¥9T
9SL9
0€6T
ELITT
0646
91091
¥659C
6299

Feature

Figure 3: Heatmap showing the effect of steering with individual task-execution features for each
task. We see that most features boost exactly one task, with a few exceptions for similar tasks like
translating to English

4 APPLYING SFC 1O ICL

After identifying task-executing features through our task vector analysis, we sought to further expand
our understanding of the in-context learning (ICL) circuit. To this end, we decided to apply the Sparse
Feature Circuits (SFC) methodology (Marks et al.,2024) to the Gemma-1 2B model. However, due
to the increased complexity of ICL tasks and the larger model size, the original SFC approach did not
work out of the box. We had to implement several key modifications to address the challenges we
encountered.

4.1 OUR MODIFICATIONS
4.1.1 TOKEN POSITION CATEGORIZATION AND FEATURE AGGREGATION

We modified the SFC approach to better handle the structured nature of ICL prompts. Instead of
treating each SAE feature as a separate node, we categorized token positions into the following
groups:

* Prompt: The initial instruction tokens (e.g., “Follow the pattern:”)

* Input: The last token before each arrow in an example pair

¢ Arrow: The arrow token itself (“—")

* Output: The last token before each newline in an example pair

* Newline: The newline token

» Extra: Any tokens not covered by the above categories (e.g., in multi-token inputs or outputs)

This categorization allowed us to evaluate how features affect all tokens within the same category,
separating features based on their role in the ICL circuit. It also enabled us to selectively disable parts
of the circuit for one task while testing another, verifying the task-specificity of the found circuits.

4.1.2 Loss FUNCTION MODIFICATION

We modified the loss function to sum the loss across all pairs in the prompt, rather than calculating
it only for the final pair. The original SFC paper suggested using log probabilities on a dataset of
(z,y) pairs, where in the case of ICL, 2 would be the whole prompt, and y would be the output in
the last pair. However, this approach often resulted in task-relevant features having high negative
IEs on other example pairs in the prompt. This was likely due to the effect of the circuit on those
pairs being lost to either diminishing gradients in backpropagation or copying circuits being much

Under review as a conference paper at ICLR 2025

algo_second |
algo_first 1 Faithfullness
algo_last
es_en ||
fr_en 05
en_es
en_fr

it_en

3 . 0
= present_simple_gerund
T present_simple_past_perfect
= plural_singular ||
= antonyms | |
present_simple_past_simple 05
siny ur .. ||
person_la
country_capita
location_country 4
location_language []
location_religion
location_continent| - .

Tested task

Figure 4: Heatmap showing, for each task, the change in faithfulness for every task when ablating the
nodes with the highest IE for the original task.

more relevant to the prediction of the last pair. By considering all pairs, we amplified the effect of the
task-solving circuit relative to the numerous cloning circuits that activate due to the repetitive nature
of ICL prompts.

We also had to concentrate our analysis on two windows of layers: 11-17 and 9-11. Any extra layers
in these windows resulted in important features often having highly negative IEs.

4.1.3 SFC EVALUATION

To evaluate the quality of our SFC modification, we conducted a series of ablation experiments
across the same dataset of ICL tasks. Our primary metric for evaluation was faithfulness, which
measures how much of the original task performance is maintained after ablating specific features.
We calculated faithfulness using the following formula:

M- M,
T M, — M,

Where M is the current metric (loss), M, is the fully ablated model metric, and M., is the non-ablated
model metric.

F(M) 5)

We evaluated the impact of ablating features for one task on the performance of all other tasks.
Specifically, we ablated the highest Indirect Effect (IE) nodes first, continuing until we reached a
faithfulness of 0.5 for the target task. This approach allowed us to assess both the specificity of
the discovered circuits and their impact on related tasks. Our analysis revealed that it is possible to
significantly reduce faithfulness by disabling just several hundred nodes. Furthermore, we found that
we could reduce the number of active nodes to less than a thousand while keeping the performance
almost intact. Extra details and faithfulness/completeness charts can be found in Appendix [D]

Figure [d] presents a heatmap showing the change in faithfulness for various tasks when ablating the
highest IE nodes for a single task. Several key observations can be made from this visualization:

» Task Specificity: Ablating most tasks does not significantly impact the performance of
others, indicating that the discovered circuits are largely task-specific. This suggests that
there are no common high-IE ICL-specific nodes across tasks.

* Related Task Effects: Tasks are grouped into categories, and we observe that ablation of
related tasks has a higher effect on all tasks within the same group. This is visible as squares
along the diagonal, particularly noticeable in the translation group.

¢ Performance Improvement: For some tasks, we observe that faithfulness rises well above
1.0 after ablation of other tasks. We hypothesize that this occurs because we reduce the
confusion of the model by removing irrelevant execution paths.

Under review as a conference paper at ICLR 2025

It’s worth noting that we excluded the person_profession and football_player_position tasks from
Figure [] due to the very small difference between their fully-ablated and non-ablated losses. This
resulted in highly unstable faithfulness calculations for these tasks. We attribute this small difference
partially to our modified loss function, as we found that calculating the loss only from the last pair
results in a higher loss difference.

4.2 TASK-DETECTION FEATURES

Our modified SFC analysis revealed a second crucial component of the ICL mechanism: task-
detection features. These features activate on instances of a complete task in the training data,
specifically on the token that completes the task. Both task-detection and task-executing features
showed high Indirect Effects (IEs) in the extracted sparse feature circuits, with task detection features
connected to task execution features through attention output and transcoder nodes. We applied our
task vector cleaning algorithm to extract task-detection features, identifying layer 11 as optimal for
steering, preceding the layer 12 task-executing features. Details can be found in Appendix [G] We

en_es

|oca(i0|\7]anguagi Effect strength
en_i

en_fr !

location_religion

algo_first

algo_second

person_language

singular_plural

antonyms.

country_capital

it_en

fr_en

es_en

present_simple_past_simple

football_player_position

person_profession

location_continent

location_country

Task

algo_last

plural_singular
present_simple_past_perfect
present_simple_gerund|

Figure 5: Heatmap showing the effect of steering with the task-detection feature most relevant to
each task, on every task. We see that task detection features are typically specific to the task, with
exceptions for similar tasks.

observed similar patterns as with task-executing features:

* Task specificity: Features strongly affect their corresponding tasks with minimal impact on
unrelated tasks.

* Related task effects: Features from related tasks show some cross-task influence.

To evaluate the causal connection between task-detection features and task-execution features, we
selected the most relevant detection and execution pairs based on steering effects and confirmed that
their max activating patterns aligned with their hypothesized circuit roles. We then ablated detection
directions while fixing attention patterns and measured the decrease in execution activations. Figure
[6] presents the results.

The results of our causal connection analysis reveal several key insights. First, we observe strong
causal connections between most task-detection and their corresponding task-executing features,
supporting our hypothesis about their roles in the ICL circuit. Second, we note significant interconnec-
tivity among translation tasks, suggesting shared circuitry for this group of related tasks. Interestingly,
two tasks (person_profession and present_simple_gerund) showed unexpectedly weak connections
between their detection and execution features, warranting further investigation.

These findings provide compelling evidence for the causal relationship between task-detection and
task-executing features in the ICL circuit. They also highlight the interconnected nature of related
tasks, particularly within the translation group.

Under review as a conference paper at ICLR 2025

algo_second
a;i;’ﬂ:fll;: Effect strngth
es_en
fr_en
en_es I I
en_fr .
it_en
en_it . . .
.~ present_simple_gerund
8 present_simple_past_perfect [] B
1] plural_singular
A antonyms [| 0.5

present_simple_past_simple
singular_plural
person_language
country_capital
location_country
person_profession

location_language
location_religion
football_player_position
location_continent

[|
-y

.J._:-

UOnEdO0[
d~uoszad

I ud

us 1

1y us

EEIE]

us

LICREE]

1se[o8[e
1s11) 08
puodas of[e

" uonedof

[endes”Anunod

agenguey uosrad
swAuojue

TemnBursreanyd

103312d Ised “apduns Juasad

renyd zengurs

ardurs sed ajdurns juasaxd

ggg
528
===
o B9
=8
ng =
o5
=& =
SRR
2C S

5
=1
- o
L.
g

punia§~apduns Juasaid

Executor

Figure 6: Heatmap showing the causal effect of the top task-detection features of each task, on the
activation of the top task-executing features for every task. Averaged across all initial non-zero
activations in all tasks.

5 RELATED WORK

Mechanistic Interpretability defines a framing for mechanistic interpretability
in terms of features and circuits. It claims that neural network latent spaces have directions in
them called features that correspond to meaningful variables. These features interact through model
components sparsely to form circuits: interpretable computation subgraphs relevant to particular
tasks. These circuits can be found through manual inspection in vision models (Cammarata et al.
2020). In language models, they can be found through manual patching (Wang et al., 2022} |[Hanna)
etal Lieberum et al., Chan et al., or automated circuit discovery (Conmy et al.
(2023); ISyed et al.| (2023)); Bhaskar et al.|(2024), though see Miller et al.| (2024)). [Marks et al.| (2024)

extends this research area to use Sparse Autoencoders, as discussed below.

In-Context Learning (ICL) ICL was first introduced in Brown et al.| (2020) and refers to models
learning to perform tasks from prompt information at test-time. There is a large area of research

studying its applications 2024), high-level mechanisms 2022) and limitations
(Peng et all, 2023)). [Elhage et al. (2021)) and [Olsson et al] (2022) find induction heads partly

responsible for in-context learning. However, since these attention heads do more than just induction
(Goldowsky-DilI et al., [2023)), and are not sufficient for complex task-following, induction heads
alone cannot explain ICL. Appendix G) proposes a mechanistic hypothesis for
an aspect of simple in-context task behavior. |Hendel et al.|(2023)) and [Todd et al.[(2024) find that
simple in-context learning tasks create strong directions in the residual stream adding which makes it
possible for a network to perform tasks zero-shot, but does not explanation how task vectors form nor
what interpretable components the task vectors are composed of.

Sparse Autoencoders A major roadblock to mechanistic interpretability research is superposition
(Elhage et al.} [2022b)), where the interpretable units of neural network do not tend to align with the
basis directions (e.g. neurons). Sparse autoencoders 2011}, [Bricken et al.| 2023) are one method

of addressing this roadblock, and multiple works since proposed improvements to SAE training

(Rajamanoharan et al.,2024b};[Bussmann et al.} 2024} Braun et al.,[2024}; [Gao et al|, 2024}

et al., 2024b), and we use several more in our work (Rajamanoharan et al., [2024a; |Adam Jermyn,
2024 (Conerly et al.|[2024)). (Cunningham et al.|(2023)), building on Bills et al.|(2023)), apply |Conmy

\©

Under review as a conference paper at ICLR 2025

et al.| (2023)) to find circuits in small language models. Marks et al.[(2024) adapt|Syed et al|(2023) in
the SAE basis to find circuits and address a practical bias reduction problem. [Kissane et al.|(2024)
apply a slightly different automated SAE algorithm (similar to ours in that it operates on single
prompts) to IOI (Wang et al.,[2022), using SAEs on the attention layer outputs and residual stream.
Dunefsky et al.| (2024) introduce transcoders (which are also briefly discussed in [Templeton et al.
(2024a)) and |L1 et al.| (2023))) to simplify analysis of circuits involving MLPs. We build on their work
and train transcoders as part of our suite of Gemma-1 SAEs.

6 CONCLUSION

Limitations Our work focused on the simple task vector setting to study ICL (Section [2.3)), which
does not capture all ways that ICL is used in practice (generally involving far more tokens and
open-ended tasks). We also only interpreted Gemma-1 2B, and therefore other LLM architectures
or model sizes could lead to different results (though this is unlikely, since task vectors exist across
models (Todd et al.,2024)). Finally, the complexity of the task studied meant our interpretations have
some approximation error: attention heads matter for the detection-execution connection, but so does
the succeeding MLP (Section[4.2).

Future Work Future work could extend SFC methods to work on more than a band of layers in
the middle of the model (Section [2.2)). Since there are many features corresponding to individual
input tokens and output predictions (due to the three stages of inference in LLMs; [Elhage et al.
(2022a); |Lad et al.|(2024)), this will require further adaptation of the SFC methodology. Moreover,
our multiple contributions will hopefully spur lots of further work that finds new tasks to interpret or
explanations in greater depth than prior work, as discussed in our concluding paragraph below.

To summarise our work: we use SAEs to explain in context learning in greater detail than any
prior mechanistic interpretability work. This provides strong evidence that Sparse Autoencoders are
valuable circuit analysis tools, and the innovations developed: TVC (Section[3.1)), SFC improvements
(Section[2.2)) and an SAE training codebase in JAX with open SAE weights (Section[7) are likely to
help enable lots of other SAE research to tackle more ambitious tasks and larger models.

7 REPRODUCIBILITY STATEMENT

We are committed to fostering reproducibility and advancing research in the field of mechanistic
interpretability. To support this goal, we plan to release the following resources upon successful
acceptance of this paper:

1. Two JAX libraries optimized for TPU:

* A library for Sparse Autoencoder (SAE) training
* A library for SAE inference and model analysis, built upon the penzai library with our
custom Llama and Gemma ports
2. A full suite of SAEs for Gemma 2B, along with a dataset of their max activating examples

3. Two custom dashboards used in our analysis:

* A dashboard for browsing max activating examples

* An interactive dashboard for exploring extracted Sparse Feature Circuits (SFC)

These resources will enable researchers to replicate our experiments, extend our work, and conduct
their own investigations using our tools and methodologies. The release of our custom dashboards will
provide additional transparency and facilitate deeper exploration of our results. Due to the complexity
of our infrastructure, we are only sharing anonymized versions of our analysis, cleaning, and SFC
scripts, which still require our JAX libraries to run. We hope that reviewers will find this, along with
the detailed methodologies described in the paper, to be sufficient evidence of reproducibility.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Adly Templeton Adam Jermyn. Ghost grads: An improvement on resampling, 2024.
URL https://transformer—circuits.pub/2024/jan-update/index.html#
dict-learning-resampling.

Cem Anil, Esin Durmus, Mrinank Sharma, Joe Benton, Sandipan Kundu, Joshua Batson, Nina
Rimsky, Meg Tong, Jesse Mu, Daniel Ford, et al. Many-shot jailbreaking. 2024.

Adithya Bhaskar, Alexander Wettig, Dan Friedman, and Danqi Chen. Finding transformer circuits
with edge pruning, 2024. URL https://arxiv.org/abs/2406.16778.

Steven Bills, Nick Cammarata, Dan Mossing, et al. Language models can explain neu-
rons in language models. https://openaipublic.blob.core.windows.net/
neuron—explainer/paper/index.html, 2023.

Joseph Bloom. Open source sparse autoencoders for all residual stream layers of gpt2-small,
2024. URL https://www.alignmentforum.org/posts/f9EgfLSurAigqRJySD/
open—-source-sparse—autoencoders-for—-all-residual-stream.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/jax—-ml/jaxl

Dan Braun, Jordan Taylor, Nicholas Goldowsky-Dill, and Lee Sharkey. Identifying functionally
important features with end-to-end sparse dictionary learning, 2024. URL https://arxiv,
org/abs/2405.12241.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary
learning. Transformer Circuits Thread, 2023. https://transformer-circuits.pub/
2023/monosemantic—features/index.htmll

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-
shot learners. In Advances in Neural Information Processing Systems, volume 33, pp.
1877-1901, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8acld2focda—-Abstract.htmll

Bart Bussmann, Patrick Leask, and Neel Nanda. Batchtopk: A simple improvement for topk-saes,
2024. URL https://www.alignmentforum.org/posts/Nkx6yWZNbAsfvic98/
batchtopk—-a-simple-improvement-for-topk-saes.

Nick Cammarata, Shan Carter, Gabriel Goh, Chris Olah, et al. Thread: Circuits. Distill, 2020. doi:
10.23915/distill.00024. https://distill.pub/2020/circuitsl

Lawrence Chan, Adria Garriga-Alonso, Nix Goldowsky-Dill, Ryan Greenblatt, Jenny
Nitishinskaya, Ansh Radhakrishnan, Buck Shlegeris, and Nate Thomas. Causal
scrubbing: A method for rigorously testing interpretability hypotheses, 2022.
URL https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/
causal-scrubbing-a-method-for-rigorously-testing.

Tom Conerly, Adly Templeton, Trenton Bricken, Jonathan Marcus, and Tom Henighan. Up-
date on how we train saes, 2024. URL https://transformer—-circuits.pub/2024/
april-update/index.html#training-saes.

11

https://transformer-circuits.pub/2024/jan-update/index.html#dict-learning-resampling
https://transformer-circuits.pub/2024/jan-update/index.html#dict-learning-resampling
https://arxiv.org/abs/2406.16778
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/open-source-sparse-autoencoders-for-all-residual-stream
https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD/open-source-sparse-autoencoders-for-all-residual-stream
http://github.com/jax-ml/jax
https://arxiv.org/abs/2405.12241
https://arxiv.org/abs/2405.12241
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://www.alignmentforum.org/posts/Nkx6yWZNbAsfvic98/batchtopk-a-simple-improvement-for-topk-saes
https://www.alignmentforum.org/posts/Nkx6yWZNbAsfvic98/batchtopk-a-simple-improvement-for-topk-saes
https://distill.pub/2020/circuits
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://transformer-circuits.pub/2024/april-update/index.html#training-saes
https://transformer-circuits.pub/2024/april-update/index.html#training-saes

Under review as a conference paper at ICLR 2025

Arthur Conmy, Augustine N. Mavor-Parker, Aengus Lynch, et al. Towards automated circuit discovery
for mechanistic interpretability. In Proceedings of NeurIPS, 2023.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, et al. Sparse autoencoders find highly interpretable
features in language models, 2023. URL https://arxiv.org/abs/2309.08600.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Tianyu Liu, Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui. A survey on in-context
learning, 2024. URL https://arxiv.org/abs/2301.00234,

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, et al. The llama 3 herd of
models, 2024. URL https://arxiv.org/abs/2407.21783.

Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable 1lm feature
circuits, 2024. URL https://arxiv.org/abs/2406.11944.

Michael Elad. Sparse and Redundant Representations: From Theory to Applications in Signal
and Image Processing. Springer, New York, 2010. ISBN 978-1-4419-7010-7. doi: 10.1007/
978-1-4419-7011-4.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse,
Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. A
mathematical framework for transformer circuits. Transformer Circuits Thread, 2021. URL
https://transformer—-circuits.pub/2021/framework/index.htmll

Nelson Elhage, Tristan Hume, Catherine Olsson, Neel Nanda, Tom Henighan, Scott Johnston, Sheer
EIShowk, Nicholas Joseph, Nova DasSarma, Ben Mann, Danny Hernandez, Amanda Askell,
Kamal Ndousse, Jones, , Dawn Drain, Anna Chen, Yuntao Bai, Deep Ganguli, Liane Lovitt, Zac
Hatfield-Dodds, Jackson Kernion, Tom Conerly, Shauna Kravec, Stanislav Fort, Saurav Kadavath,
Josh Jacobson, Eli Tran-Johnson, Jared Kaplan, Jack Clark, Tom Brown, Sam McCandlish, Dario
Amodei, and Christopher Olah. Softmax linear units. Transformer Circuits Thread, 2022a.
https://transformer-circuits.pub/2022/solu/index.html.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy Models of Superposition.
arXiv preprint arXiv:2209.10652, 2022b.

Eoin Farrell. Experiments with an alternative method to promote sparsity in sparse autoen-
coders, 2024. URL https://www.lesswrong.com/posts/cYA3ePxy8J08ajo8B/
experiments—-with—an—-alternative-method-to-promote-sparsity.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders, 2024. URL https
//arxiv.org/abs/2406.04093.

Gemma Team. Gemma: Open models based on gemini research and technology, 2024. URL
https://arxiv.org/abs/2403.08295.

Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato, and Aryaman Arora. Localizing model
behavior with path patching, 2023. URL |https://arxiv.org/abs/2304.05969.

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does gpt-2 compute greater-than?:
Interpreting mathematical abilities in a pre-trained language model, 2023. URL https://
arxiv.org/abs/2305.00586.

Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors, 2023. URL
https://arxiv.org/abs/2310.15916.

Daniel D. Johnson. Penzai + treescope: A toolkit for interpreting, visualizing, and editing models as
data, 2024. URL https://arxiv.org/abs/2408.00211.

12

https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2406.11944
https://transformer-circuits.pub/2021/framework/index.html
https://www.lesswrong.com/posts/cYA3ePxy8JQ8ajo8B/experiments-with-an-alternative-method-to-promote-sparsity
https://www.lesswrong.com/posts/cYA3ePxy8JQ8ajo8B/experiments-with-an-alternative-method-to-promote-sparsity
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2304.05969
https://arxiv.org/abs/2305.00586
https://arxiv.org/abs/2305.00586
https://arxiv.org/abs/2310.15916
https://arxiv.org/abs/2408.00211

Under review as a conference paper at ICLR 2025

Patrick Kidger and Cristian Garcia. Equinox: neural networks in jax via callable pytrees and filtered
transformations, 2021. URL https://arxiv.org/abs/2111.00254.

Connor Kissane, Robert Krzyzanowsky, Arthur Conmy, and Neel
Nanda. Attention output saes improve circuit analysis, 2024. URL
https://www.alignmentforum.org/posts/EGvtgB7ctifzxzg6v/
attention-output-saes—-improve-circuit—-analysis.

Vedang Lad, Wes Gurnee, and Max Tegmark. The remarkable robustness of 1lms: Stages of inference?,
2024. URL https://arxiv.org/abs/2406.19384.

Max Li, Sam Marks, and Aaron Mueller. dictionary_learning repository, 2023. URL https:
//github.com/saprmarks/dictionary_ learning?tab=readme—ov-file#
extra-functionalitysupported-by—-this—repol Accessed on September 30, 2024.

Tom Lieberum, Matthew Rahtz, Janos Kramar, et al. Does circuit analysis interpretability scale?
evidence from multiple choice capabilities in chinchilla, 2023. URL https://arxiv.org/
abs/2307.09458.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, Janos Kramér, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
autoencoders everywhere all at once on gemma 2, 2024. URL https://arxiv.org/abs/
2408.05147.

Samuel Marks, Can Rager, Eric J. Michaud, et al. Sparse feature circuits: Discovering and editing in-
terpretable causal graphs in language models. Computing Research Repository, arXiv:2403.19647,
2024. URL https://arxiv.org/abs/2403.19647.

Joseph Miller, Bilal Chughtai, and William Saunders. Transformer circuit faithfulness metrics are not
robust, 2024. URL https://arxiv.org/abs/2407.08734l

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? arXiv
preprint arXiv:2202.12837,2022. URL https://arxiv.org/abs/2202.12837,

Andrew Ng. Sparse autoencoder. CS294A Lecture Notes, 2011. Unpublished lecture notes.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001. https
//distill.pub/2020/circuits/zoom-1in.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads, 2022. URL https://arxiv.org/
abs/2209.11895.

Guilherme Penedo, Hynek Kydlicek, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
finest text data at scale, 2024. URL https://arxiv.org/abs/2406.17557.

Hao Peng, Xiaozhi Wang, Jianhui Chen, Weikai Li, Yunjia Qi, Zimu Wang, Zhili Wu, Kaisheng Zeng,
Bin Xu, Lei Hou, and Juanzi Li. When does in-context learning fall short and why? a study on
specification-heavy tasks, 2023. URL https://arxiv.org/abs/2311.08993\

Senthooran Rajamanoharan. Improving ghost grads, 2024. URL
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/
progress—update-1-from-the-gdm-mech-interp-team-full-update#
Improving_ghost_grads.

Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, Janos
Kramar, Rohin Shah, and Neel Nanda. Improving dictionary learning with gated sparse autoen-
coders, 2024a. URL https://arxiv.org/abs/2404.16014.

13

https://arxiv.org/abs/2111.00254
https://www.alignmentforum.org/posts/EGvtgB7ctifzxZg6v/attention-output-saes-improve-circuit-analysis
https://www.alignmentforum.org/posts/EGvtgB7ctifzxZg6v/attention-output-saes-improve-circuit-analysis
https://arxiv.org/abs/2406.19384
https://github.com/saprmarks/dictionary_learning?tab=readme-ov-file#extra-functionalitysupported-by-this-repo
https://github.com/saprmarks/dictionary_learning?tab=readme-ov-file#extra-functionalitysupported-by-this-repo
https://github.com/saprmarks/dictionary_learning?tab=readme-ov-file#extra-functionalitysupported-by-this-repo
https://arxiv.org/abs/2307.09458
https://arxiv.org/abs/2307.09458
https://arxiv.org/abs/2408.05147
https://arxiv.org/abs/2408.05147
https://arxiv.org/abs/2403.19647
https://arxiv.org/abs/2407.08734
https://arxiv.org/abs/2202.12837
https://distill.pub/2020/circuits/zoom-in
https://distill.pub/2020/circuits/zoom-in
https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2311.08993
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/progress-update-1-from-the-gdm-mech-interp-team-full-update#Improving_ghost_grads
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/progress-update-1-from-the-gdm-mech-interp-team-full-update#Improving_ghost_grads
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/progress-update-1-from-the-gdm-mech-interp-team-full-update#Improving_ghost_grads
https://arxiv.org/abs/2404.16014

Under review as a conference paper at ICLR 2025

Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, Janos
Kramadr, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse
autoencoders, 2024b. URL https://arxiv.org/abs/2407.14435.

Logan Riggs and Jannik Brinkman. Improving sae’s by sqrt()-ing 11 removing lowest activating
features, 2024. URL https://www.lesswrong.com/posts/YiGs8gJ8aNBgwt2YN/
improving-sae-s—-by-sgrt-ing-ll-and-removing-lowest!.

Lewis Smith. Replacing sae encoders with inference-time optimisation, 2024.
URL https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/
full-post-progress—-update-1-from-the-gdm-mech-interp-team#
Replacing_SAE_Encoders_with_Inference_Time_Optimisationl

Aaquib Syed, Can Rager, and Arthur Conmy. Attribution patching outperforms automated circuit
discovery, 2023. URL https://arxiv.org/abs/2310.10348.

Adly Templeton, Joshua Batson, Adam Jermyn, and Chris Olah. Predicting future activations,
January 2024a. URL https://transformer-circuits.pub/2024/jan-update/
index.html#predict-future. Accessed on September 30, 2024.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,
Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L
Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers,
Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan.
Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet. Trans-
former Circuits Thread, 2024b. URL https://transformer—-circuits.pub/2024/
scaling-monosemanticity/index.html.

Eric Todd, Millicent L. Li, Arnab Sen Sharma, et al. Function vectors in large language models. In
Proceedings of the 2024 International Conference on Learning Representations, 2024.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: A circuit for indirect object identification in GPT-2 small, 2022. URL
https://arxiv.org/abs/2211.00593.

A MODEL AND DATASET DETAILS

For our experiments, we utilized the Gemma 1 2B model, a member of the Gemma family of open
models based on Google’s Gemini models (Gemma Team, |2024)). The model’s architecture is largely
the same as that of Llama (Dubey et al.| |2024)) with the exception of tied input and output embeddings
and a different activation function for MLP layers, so we could reuse our infrastructure for loading
Llama models. We train residual and attention output SAEs as well as transcoders for layers 1-18 of
the model on FineWeb (Penedo et al., [2024)).

Our dataset for circuit finding is primarily derived from the function vectors paper (Todd et al., 2024)),
which provides a diverse set of tasks for evaluating the existence and properties of function vectors in
language models. We supplemented this dataset with three additional algorithmic tasks to broaden
the scope of our analysis:

* Extract the first element from an array of length 4

» Extract the second element from an array of length 4

* Extract the last element from an array of length 4

The complete list of tasks used in our experiments is as follows: Here’s the list with task descriptions:

14

https://arxiv.org/abs/2407.14435
https://www.lesswrong.com/posts/YiGs8qJ8aNBgwt2YN/improving-sae-s-by-sqrt-ing-l1-and-removing-lowest
https://www.lesswrong.com/posts/YiGs8qJ8aNBgwt2YN/improving-sae-s-by-sqrt-ing-l1-and-removing-lowest
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team#Replacing_SAE_Encoders_with_Inference_Time_Optimisation
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team#Replacing_SAE_Encoders_with_Inference_Time_Optimisation
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team#Replacing_SAE_Encoders_with_Inference_Time_Optimisation
https://arxiv.org/abs/2310.10348
https://transformer-circuits.pub/2024/jan-update/index.html#predict-future
https://transformer-circuits.pub/2024/jan-update/index.html#predict-future
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://arxiv.org/abs/2211.00593

Under review as a conference paper at ICLR 2025

Task ID

Description

location_continent

Name the continent where the given landmark is located.

football_player_position

Identify the position of a given football player.

location_religion

Name the predominant religion in a given location.

location_language

State the primary language spoken in a given location.

person_profession

Identify the profession of a given person.

location_country

Name the country where a given location is situated.

country_capital

Provide the capital city of a given country.

person_language

Identify the primary language spoken by a given person.

singular_plural

Convert a singular noun to its plural form.

present_simple_past_simple

Change a verb from present simple to past simple tense.

antonyms

Provide the antonym of a given word.

plural_singular

Convert a plural noun to its singular form.

present_simple_past_perfect

Change a verb from present simple to past perfect tense.

present_simple_gerund

Convert a verb from present simple to gerund form.

en_it

Translate a word from English to Italian.

it_en Translate a word from Italian to English.

en_fr Translate a word from English to French.

en_es Translate a word from English to Spanish.

fr_en Translate a word from French to English.

es_en Translate a word from Spanish to English.
algo_last Extract the last element from an array of length 4.
algo_first Extract the first element from an array of length 4.

algo_second

Extract the second element from an array of length 4.

This diverse set of tasks covers a wide range of linguistic and cognitive abilities, including geographic
knowledge, language translation, grammatical transformations, and simple algorithmic operations.
By using this comprehensive task set, we aimed to thoroughly investigate the in-context learning
capabilities of the Gemma 1 2B model across various domains.

B SAE TRAINING

Our SAEs are trained with a learning rate of le-3 and Adam betas of 0.0 and 0.99 for 150M
(£100) tokens. The methodology is overall similar to (Blooml 2024). We initialize encoder weights
orthogonally and set decoder weights to their transpose. We initialize decoder biases to 0. We
use Rajamanoharan|(2024)’s ghost gradients variant (ghost gradients applied to dead features only,
loss multiplied by proportion of death features) with the additional modification of using softplus
instead of exp for numerical stability. A feature is considered dead when its density (according to
a 1000-batch buffer) is below 5e-6 or when it hasn’t fired in 2000 steps. We use Anthropic’s input
normalization and sparsity loss for Gemma 2B (Conerly et al.,2024). We found it to improve Gated
SAE training stability. We modified it to work with transcoders by keeping track of input and output
norms separately and predicting normed outputs.

We use 8 v4 TPU chips running Jax (Bradbury et al.| [2018)) (Equinox (Kidger & Garcial 2021)) to
train our SAEs. We found that training with Huggingface’s Flax LM implementations was very
slow. We reimplemented LLaMA (Dubey et al., 2024) and Gemma (Gemma Team, |[2024) in Penzai
(Johnson, [2024)) with a custom layer-scan transformation and quantized inference kernels as well
as support for loading from GGUF compressed model files. We process an average of around 4400
tokens per second, and caching LM activations is not the main bottleneck for us. For this and other
reasons, we don’t do SAE sparsity coefficient sweeps so as to increase TPU utilization.

For caching, we use a distributed ring buffer which contains separate pointers on each device to allow
for processing masked data. The (in-place) buffer update is in a separate JIT context. Batches are
sampled randomly from the buffer for each training step.

We train our SAEs in bfloat16 precision. We found that keeping weights and scales in bfloat16
and biases in float32 performed best in terms of the amount of dead features and led to a Pareto
improvement over float32 SAEs.

Our SAEs and training code will be made public after paper acceptance.

15

Under review as a conference paper at ICLR 2025

C TASK VECTOR CLEANING ALGORITHM

The task vector cleaning algorithm is a novel approach we developed to isolate task-relevant features
from task vectors. Figure 7| provides an overview of this algorithm.

))
n-shot ICL Task vectors > SAE 10-20 fgatures
prompts features noisy
| — | —
...hot -> cold... on layer L
Y

Reconstruct| Training | | Cleaned

TV A weights [“1 weights

2-4 features
interpretable

0-shot ICL
prompts

Task loss

A 4
Optimize
Loss

Figure 7: Overview of the task vector cleaning algorithm.

.tall ->

Our process begins with collecting residuals for task vectors using a batch of 16 and 16-shot prompts.
We then calculate the SAE features for these task vectors. We explored two methods: (1) calculating
feature activation and then averaging across tokens, and (2) averaging across tokens first and then
calculating the task vector. They had similar performance.

The cleaning process is performed on a training batch of 24 pairs, with evaluation conducted on an
additional 24 pairs. All prompts are zero-shot. An example prompt is as follows:

‘ BOS ‘ Follow ‘ the | pattern | : ‘ \n ‘

‘tall|—>| short‘\n‘

‘oldlﬁlyoungl\n‘

The steered token highlighted in red. Loss is calculated on the yellow token.

The algorithm initializes with the SAE reconstruction as a starting point. It then iteratively steers the
model on the reconstruction layer and calculates the loss on the training pairs. To promote sparsity,
we add the LO norm of weights with coefficient [to the loss function. The algorithm implements
early stopping when the L0 norm remains unchanged for n iterations.

The hyperparameters /, n, and learning rate « can be fixed for a single model. We experimented with
larger batch sizes but found that they did not significantly improve the quality of extracted features
while substantially slowing down the algorithm due to gradient accumulation.

It’s worth noting that we successfully applied this method to the recently released Gemma 2 2B
model using Gemma Scope SAE suite (Lieberum et al.| [2024).

D DETAILS OF OUR SFC IMPLEMENTATION

D.1 IMPLEMENTATION DETAILS

Our implementation of circuit finding attribution patching is specialized for Jax and Penzai.

16

Under review as a conference paper at ICLR 2025

We first perform a forward-backward pass on the set of prompts, collecting residuals and gradients
from the metric to residuals. We collect gradients with jax.grad by introducing “dummy” zero-
valued inputs to the metric computation function that are added to residuals to each layer. Note that
we do not use SAEs during the stage.

We then perform an SAE encoding step and find the nodes (residual, attention output and transcoder
SAE features and error nodes) with the highest indirect effects using manually computed gradients
from the metric. After that, we find the features with the top K indirect effects for each layer and
position mask and treat them as candidates for circuit edge targets. We compute gradients with
respect to the metric to the values of those nodes, propagate them to ”’source features” up to one layer
above and multiply by the values of the source features. This way, we can compute indirect effects
for circuit edges and prune the initially fully-connected circuit. Like Marks et al.| (2024)), we do not
perform full ablation of circuit edges.

D.2 FAITHFULNESS CHARTS

Figure[§|shows averaged node trimming effect on faithfulness across all tasks. We follow methodology
of [Marks et al.|(2024])) thresholding removing nodes with low IE first. We can see that the circuits
keep at least 0.8 faithfulness on average just with 1000 nodes.

0.8
0.6

0.4

Faithfullness

0.2

0 1000 2000 3000 4000

Number of nodes

Figure 8: Average faithfulness across tasks depending on the amount of nodes left in the circuit.

Figure [9]shows averaged inverse node trimming effect on faithfulness across all tasks. [Marks et al.
(2024)) calls this metric completeness and calculates it as faithfulness of the model just with the circuit
ablated. We calculate it by thresholding nodes starting with those that have the highest IE. We can
see that ablation of just even several hundred nodes have drastic impact on faithfulness.

0.8

0.6

Faithfullness

0.4

0.2
0 1000 2000 3000 4000

Number of nodes

Figure 9: Average faithfulness across tasks depending on the amount of important nodes ablated from
the circuit .

Under review as a conference paper at ICLR 2025

E EXAMPLE CIRCUITS

r:11:output:11050
IE: 0.0187
...Target: $0.10Long Term Target: $0.45
...Soluble Fiber and 3 grams of Insoluble Fiber.J

4

a:11:arrow:4080
IE: 0.092

IE: 0.0137 IE: 0.0638
...| think quantity and quality go hand in hand... ...Winds N at 5 to 10 mph. Chance of rain...
\ 4
r:12:arrow:11618
IE: 0.083

...alternating between lower and upper registers...

...between northern and southern Italian cooking...

Figure 10: An example of a circuit found using our SFC variant. We focused on a subcircuit with
high indirect effects. Maximum activating examples from the SAE training distribution are included.

An example output of our circuit cleaning algorithm can be found in Figure[I0] We can see the flow
of information through a single high-IE attention feature from a task-detection feature (activating on
output tokens) to transcoder and residual execution features (activating on arrow tokens). The feature
activates on antonyms on the detection feature #11050: one can assume the first sequence began as
“Short Term Target”, making the second half an antonym.

We will release a web interface for viewing maximum activating examples and task feature circuits.

F STEERING WITH TASK-EXECUTION FEATURES

To evaluate the causal relevance of our identified ICL features, we conducted a series of steering
experiments. Our methodology employed zero-shot prompts for task-execution features, measuring
effects across a batch of 32 random pairs.

We set the target layer as 12 using Figure[2]and extracted all task-relevant features on it using our
cleaning algorithm. To determine the optimal steering scale, we conducted preliminary experiments
using manually identified task-executing features across all tasks. Through this process, we estab-
lished an optimal steering scale of 25, which we then applied consistently across all subsequent
experiments.

For each pair of task and feature, we performed steering and measured the relative loss improvement
compared to the model’s task performance on a prompt without steering. This relative improvement
metric allowed us to quantify the impact of each feature on task performance.

To normalize our results and highlight the most significant effects, we applied several post-processing
steps:
* We clipped the effect to be no more than 1, thus ignoring any instances of loss increase.
* We then normalized the effects for all features within the same task to be in the O to 1 range.
* To remove clutter and highlight important features, we set effects lower than 0.2 to 0.

* Finally, we removed features with low maximum effect across all tasks to reduce the size of
the resulting diagram.

18

Under review as a conference paper at ICLR 2025

Prompt example with the steered token highlighted in red. Loss is calculated on the yellow token:

‘ BOS ‘ Follow ‘ the | patternl : ‘ \n ‘

G TASK-DETECTION FEATURES

For our investigation of task-detection features, we employed a methodology similar to that used for
task execution features, with a key modification. We introduced a fake pair to the prompt and focused
our steering on its output. This approach allowed us to simulate the effect of the detection features as
it happens on real prompts.

Our analysis revealed that layers 10 and 11 were optimal for task detection, with performance notably
declining in subsequent layers. We selected layer 11 for our primary analysis due to its proximity
to layer 12, where we had previously identified the task execution features. This choice potentially
facilitates a more direct examination of the interaction between detection and execution mechanisms.

The steering process for detection features followed the general methodology outlined in Appendix [F|
including the use of a batch of 32 random pairs, extraction of task-relevant features, and application
of post-processing steps to normalize and highlight significant effects. The primary distinction lay in
the application of the steering to the prompt.

This approach allowed us to create a comprehensive representation of the causal relationships between
task-detection features and the model’s ability to recognize specific tasks, as visualized in Figure 5]

Prompt example with the steered token highlighted in red. Loss is calculated on the yellow token:

‘ BOS ‘Follow‘ thel pattern | : ‘ \n ‘

19

	Introduction
	Background
	Sparse Autoencoders (SAEs)
	Sparse Feature Circuits
	Task Vectors

	Discovering Task-Execution Features
	Decomposing task Vectors
	Steering Experiments

	Applying SFC to ICL
	Our Modifications
	Token Position Categorization and Feature Aggregation
	Loss Function Modification
	SFC Evaluation

	Task-Detection Features

	Related work
	Conclusion
	Reproducibility Statement
	Model and dataset details
	SAE Training
	Task Vector Cleaning Algorithm
	Details of our SFC implementation
	Implementation details
	Faithfulness charts

	Example circuits
	Steering with task-execution features
	Task-Detection Features

