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ABSTRACT

Sparse autoencoders (SAEs) are a popular tool for interpreting large language
model activations, but their utility in addressing open questions in interpretability
remains unclear. In this work, we demonstrate their effectiveness by using SAEs
to deepen our understanding of the mechanism behind in-context learning (ICL).
We identify abstract SAE features that encode the model’s knowledge of which
task to execute and whose latent vectors causally induce the task zero-shot. This
aligns with prior work showing that ICL is mediated by task vectors. We further
demonstrate that these task vectors are well approximated by a sparse sum of SAE
latents, including these task-execution features. To explore the ICL mechanism,
we adapt the sparse feature circuits methodology of Marks et al.|(2024)) to work for
the much larger Gemma-1 2B model, with 30 times as many parameters, and to
the more complex task of ICL. Through circuit finding, we discover task-detecting
features with corresponding SAE latents that activate earlier in the prompt, that
detect when tasks have been performed. They are causally linked with task-
executing features through attention layer and MLP.

1 INTRODUCTION

Sparse autoencoders (SAEs; [Ng| (2011); Bricken et al.| (2023)); |(Cunningham et al. (2023))) are a
promising method for interpreting large language model (LLM) activations. However, the full
potential of SAESs in interpretability research remains to be explored, since most recent SAE research
either 1) interprets a single SAE’s features rather than the model’s computation as a whole (Bricken
et al., [2023), or ii) does high-level interventions in the model, but does not interpret the downstream
computation impacted by the interventions [Templeton et al.[(2024b). In this work, we address these
limitations by interpreting in-context learning (ICL), a widely-studied phenomenon in LLMs. In brief,
we show that SAEs enable a) the discovery of novel circuit components (task-detection features;
Section4.2)) and b) making existing interpretations of ICL more precise, by e.g. decomposing task
vectors (Todd et al., 2024} [Hendel et al., 2023) into task-execution features (Section .

In-context learning (ICL; Brown et al.|(2020)) is a fundamental capability of large language models
that allows them to adapt to new tasks without fine-tuning. ICL is a significantly more complex
and important task than other behaviors commonly studied in circuit analysis (such as IOI in|Wang
et al.| (2022)) and [Kissane et al.|(2024)), or subject-verb agreement and Bias-in-Bios in|Marks et al.
(2024))). Recent work by Todd et al.|(2024) and Hendel et al.| (2023)) has introduced the concept of
task vectors, to study ICL in a simple setting, which we follow throughout this paper[] In short, task
vectors are internal representations of tasks formed by language models during the processing of
few-shot prompts, such as “hot — cold, big — small, fast — slow”. These vectors can be extracted
and added into different LLM forward passes to induce task performance 0-shot, i.e. make LLMs
predict that “slow” follows “fast —” without explicit context. Section [2.3]provides a full introduction.

To identify task-execution features, we decomposed task vectors using SAEs. To achieve this, we
needed to go beyond existing methods for solving the classical dictionary problem of decomposing
a vector into a sparse sum of dictionary vectors (Elad, [2010). To do this, we developed a bespoke
method for LLMs we call the TASK VECTOR CLEANING (TVC) algorithm. By running the TVC

ITask vectors (Hendel et al.,[2023)) are also called “function vectors” (Todd et al.,[2024)), but we use “task
vectors” throughout this paper for consistency.
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algorithm, we found task-execution features: features that can partially replace task vectors by
themselves alone and have highly interpretable max activating token patterns. We validate the
causal relevance of these task features through a series of steering experiments on tasks, spanning
several categories like translation or factual recall. The experiments demonstrate that identified task
features encode crucial information about task execution, are causally implicated in the model’s ICL
capabilities and can play the same role as task vectors.

To find task-detection features, we adapted the Sparse Feature Circuits (SFC) methodology of Marks
et al.[(2024) to work on the more complex ICL task and the larger Gemma-1 2B model (Gemma;
Team\| [2024)). This adaptation allowed us to discover and analyze the subgraph of key SAE latents
involved in ICL, providing a more comprehensive view of the ICL circuit. We found task-detection
features with SFC: features that play a crucial role in identifying the specific task being performed
earlier in the prompt. Task-detection features are tightly connected with task-execution features
through attention, as part of the whole ICL circuit.

Our findings not only advance our understanding of ICL mechanisms but also demonstrate the
potential of SAEs as a powerful tool for interpretability research on larger language models. By
unifying the task vectors view with SAEs and uncovering two of the most important causally
implicated feature families behind ICL, we pave the way for future work to control and monitor ICL
further, to improve either safety or capabilities of models.

Our main contributions are as follows:

1. We demonstrate that SAEs can be effectively used to explain the mechanisms behind the
complex ICL task (ICL) in a larger model (Gemma-1 2B), which has 20x more parameters
than prior models typically studied at this depth in mechanistic interpretability research
(Wang et al.,2022; Marks et al., [2024)).

2. We identify two core bottlenecks in the ICL circuit — task-detection features and task-
execution features — and study their interactions. This provides new insights into how
LLMs process and execute ICL tasks. Specifically, we discover task-detection features that
identify the task being performed earlier in the prompt, which are then moved by attention
heads to trigger task-specific features.

3. We present a novel task vector cleaning method that decomposes task vectors into a small
set of mostly task-relevant features, enabling more precise analysis of ICL mechanisms, and
important linear directions in LLMs in general.
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Figure 1: A diagram of the in-context learning circuit, showing task detection features (yellow)
causing task execution features (blue) which cause the model to output the antonym (left — right).

2 BACKGROUND

2.1 SPARSE AUTOENCODERS (SAES)

Sparse autoencoders (SAEs) are neural networks designed to learn efficient representations of data
by enforcing sparsity in the hidden layer activations (Elad, [2010). In the context of language model
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interpretability, SAEs are used to decompose the high-dimensional activations of language models
into more interpretable features (Cunningham et al., 2023} Bricken et al., |2023). The basic idea
behind SAEs is to train a neural network to reconstruct its input while constraining the hidden layer
to have sparse activations. This process typically involves:

1. An encoder that maps the input to a sparse hidden representation.

The SAE encoder typically has a linear encoder, a pre-activation bias and a post-encoder
nonlinearity:

f(x) = 0(WencX + benc) (1)

In the JumpReLU SAE formulation (Rajamanoharan et al., |2024b)), which we useﬂ the
activation function is JumpReLU:

JumpReLU,(z) := zH(z — 6) 2
where 6 is a learnable parameter for each SAE latent and H is the Heaviside step function.

2. A decoder that reconstructs the input from this sparse representation.

The decoder is a simple affine projection in most formulations. The rows of the decoder are
typically constrained to have unit norm with constrained optimization (Marks et al., 2024)
or a custom loss penalty (Conerly et al., 2024)).

f‘(f) = Vvdecf + bdec (3)

3. A loss task that balances reconstruction accuracy with sparsity.

Typically, the L; penalty on activations is used (Bricken et al.||2023)) with some modifica-
tions (Rajamanoharan et al., [2024a}; |Conerly et al.| 2024), although there are alternatives:
Rajamanoharan et al.| [2024b; [Farrelll, 2024; Riggs & Brinkman, 2024,

In our work, we train SAEs on residual stream activations and attention outputs, and also train
transcodersE] on MLP layers, all of which use the improved Gated SAE architecture (Rajamanoharan
et al., [2024a).

2.2  SPARSE FEATURE CIRCUITS

Sparse Feature Circuits (SFCs) are a methodology introduced by [Marks et al.| (2024) to identify
and analyze causal subgraphs of sparse autoencoder features that explain specific model behaviors.
This approach combines the interpretability benefits of SAEs with causal analysis to uncover the
mechanisms underlying language model behavior. The SFC methodology involves several key steps:

1. Decomposing model activations into sparse features using SAEs

2. Calculating the Indirect Effect (IE) of each feature on the target behavior
3. Identifying a set of causally relevant features based on IE thresholds

4. Constructing a circuit by analyzing the connections between these features

The IE of a model component is measured by intervening on that component and observing the
change in the model’s output. For a component a and a metric m, the IE is calculated as:

IE(m;a) = m(z|do(a = a’)) — m(z) “4)

Where m(z|do(a = a’)) represents the value of the metric when we intervene to set the value of
component a to a’, and m(z) is the original value of the metric. In practice, attribution patching is
used to approximate IE, allowing for efficient computation across many components simultaneously
(Marks et al., [2024). We describe our modifications in Appendix @}

>We technically use Gated SAEs (Rajamanoharan et al., 2024a) and convert them to JumpReLU SAEs
(Rajamanoharan et al.| 2024b) using the procedure outline in the Gated SAEs paper (see Appendix .

“*Transcoders are a modification of SAEs that take MLP input and convert it into MLP output instead of
trying to reconstruct the residual stream.
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2.3 TASK VECTORS

Continuing from the high-level description in Section|l} task vectors were independently discovered
by Hendel et al.| (2023)) and |Todd et al.|(2024). The key idea behind task vectors is that they capture
the essence of a task demonstrated in a few-shot prompt, allowing the model to apply this learned
task to new inputs without explicit fine-tuning. Task vectors have several important properties:

1. They can be extracted from the model’s hidden states after processing ICL prompts.

2. When added to the model’s activations in a zero-shot setting, they can induce task perfor-
mance without explicit context.

3. They appear to encode abstract task information, independent of specific input-output
examples.

To illustrate the concept, consider the following simple prompt for an antonym task, where boxes
represent distinct tokens:

BOS ‘Follow‘ thel pattern | : ‘ \n ‘

|
‘hot|—>|cold|\n‘
|

big|—>| small‘\n‘

In this case, the task vector would encode the abstract notion of “find the antonym” rather than
specific word pairs. Task vectors are typically collected by averaging the residual stream of “—”
tokens at a specific layer across multiple ICL prompts for a given task. This averaged representation
can then be used to study the model’s internal task representations and to manipulate its behavior in
zero-shot settings. We perform our analysis on the datasets derived from the Todd et al.| (2024)) paper.
Details could be found in Appendix [A]

3 DISCOVERING TASK-EXECUTION FEATURES

3.1 DECOMPOSING TASK VECTORS

To gain a deeper understanding of task vectors, we attempted to decompose them using sparse
autoencoders (SAEs). However, several of our initial naive approaches faced significant challenges.
Firstly, direct SAE reconstruction, i.e. passing the task vector as input to the SAE, produced noisy
results with approximately 10-20 non-zero SAE features on layers of interesﬂ, most of which were
irrelevant to the task. Moreover, this reconstruction noticeably reduced the vector’s performance.
These issues partly arose because task vectors are out-of-distribution inputs for SAEs, as they
aggregate information from different residual streams rather than representing a single one.

We then explored inference-time optimization (ITO) (Smith} 2024) as an alternative. However, this
method also failed to reconstruct task vectors using a low number of SAE features while maintaining
high performance.

Given these observations, we developed a novel method called task vector cleaning. Our approach
involves extracting task vectors from few-shot prompts for various tasks, reconstructing these vectors
using trained SAEs, fine-tuning the SAE reconstruction weights to minimize negative log-likelihood
loss on zero-shot prompts for the same task, and applying L1 regularization during fine-tuning to
promote sparsity. This approach allows us to maintain the task vector performance while reducing
the amoung of active SAE features to 2-4. The algorithm details can be found in Appendix[C|

We compare it with the four baselines: original task vectors, naive SAE reconstruction, ITO with
target LO norm set to 5 and ITO with target LO set to 20. To compare them, we steer the zero-shot
prompt using the reconstructed task vector and calculate relative log-likelihood loss change. We then
average it across all tasks. Layer-wise comparison results can be found on Figure

*We found 3-5 interpretable features. Our cleaning algorithm can usually trim down the number to 2-4. The
usual residual SAE L0 is around 44
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Figure 2: The effect on the model’s loss by steering with different kinds of reconstructed task vectors,
at each layer. We see that cleaning performs similarly to the original task vector until layer 14.

Using this method, we broke down task vectors into a small set of features. Many of these features
were easy to interpret and clearly related to the task at hand. We found a particularly interesting
group of features, which we called “task features.” These task features have two key characteristics:

1. They activate when the model encounters examples of the relevant task in normal text.
2. In these encounters they activate on the token just before the task is completed.

For instance, imagine an antonym task feature processing the phrase “hot and cold.” It would activate
on the token “and,” suggesting that the model expects an antonym to follow. This tells us that the
model recognizes it’s dealing with an antonym pair before seeing the complete pair.

3.2 STEERING EXPERIMENTS

To validate the causal relevance of our decomposed task features, we conducted a series of steering
experiments. These experiments involved both positive and negative steering, allowing us to observe
the features’ impact on task performance across different contexts and model layers.

The experiments were performed on the dataset of diverse tasks taken from|Todd et al.|(2024). We
first extracted relevant task features using our cleaning algorithm. Then steered the zero-shot prompt
using them and calculated relative loss improvement, normalizing and clipping it after that. Further
details can be found in Appendix [F]

Figure 3] shows a heatmap of steering results for each pair of task and task-relevant feature. Higher
values indicate greater improvement in the loss after steering. It can be seen that most tasks have
a single feature with a high effect on them, and this feature generally does not significantly affect
unrelated tasks. Another notable detail is that features from related tasks (like the translation group)
at least partially affect all tasks within the group.

We have manually examined the features with the highest effect and found that their maximum
activating dataset examples align with their hypothesized role in the ICL circuit. Interestingly, we
observed that translation-to-English tasks all share a generic English-to-foreign task execution feature,
thus requiring an additional language encoding feature for complete task encoding. This shared
feature suggests a common mechanism for translation tasks, with language-specific information
encoded separately.
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Figure 3: Heatmap showing the effect of steering with individual task-execution features for each
task. We see that most features boost exactly one task, with a few exceptions for similar tasks like
translating to English

4 APPLYING SFC 1O ICL

After identifying task-executing features through our task vector analysis, we sought to further expand
our understanding of the in-context learning (ICL) circuit. To this end, we decided to apply the Sparse
Feature Circuits (SFC) methodology (Marks et al.,2024) to the Gemma-1 2B model. However, due
to the increased complexity of ICL tasks and the larger model size, the original SFC approach did not
work out of the box. We had to implement several key modifications to address the challenges we
encountered.

4.1 OUR MODIFICATIONS
4.1.1 TOKEN POSITION CATEGORIZATION AND FEATURE AGGREGATION

We modified the SFC approach to better handle the structured nature of ICL prompts. Instead of
treating each SAE feature as a separate node, we categorized token positions into the following
groups:

* Prompt: The initial instruction tokens (e.g., “Follow the pattern:”)

* Input: The last token before each arrow in an example pair

¢ Arrow: The arrow token itself (“—")

* Output: The last token before each newline in an example pair

* Newline: The newline token

» Extra: Any tokens not covered by the above categories (e.g., in multi-token inputs or outputs)

This categorization allowed us to evaluate how features affect all tokens within the same category,
separating features based on their role in the ICL circuit. It also enabled us to selectively disable parts
of the circuit for one task while testing another, verifying the task-specificity of the found circuits.

4.1.2 Loss FUNCTION MODIFICATION

We modified the loss function to sum the loss across all pairs in the prompt, rather than calculating
it only for the final pair. The original SFC paper suggested using log probabilities on a dataset of
(z,y) pairs, where in the case of ICL, 2 would be the whole prompt, and y would be the output in
the last pair. However, this approach often resulted in task-relevant features having high negative
IEs on other example pairs in the prompt. This was likely due to the effect of the circuit on those
pairs being lost to either diminishing gradients in backpropagation or copying circuits being much
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Figure 4: Heatmap showing, for each task, the change in faithfulness for every task when ablating the
nodes with the highest IE for the original task.

more relevant to the prediction of the last pair. By considering all pairs, we amplified the effect of the
task-solving circuit relative to the numerous cloning circuits that activate due to the repetitive nature
of ICL prompts.

We also had to concentrate our analysis on two windows of layers: 11-17 and 9-11. Any extra layers
in these windows resulted in important features often having highly negative IEs.

4.1.3 SFC EVALUATION

To evaluate the quality of our SFC modification, we conducted a series of ablation experiments
across the same dataset of ICL tasks. Our primary metric for evaluation was faithfulness, which
measures how much of the original task performance is maintained after ablating specific features.
We calculated faithfulness using the following formula:

M- M,
T M, — M,

Where M is the current metric (loss), M, is the fully ablated model metric, and M., is the non-ablated
model metric.

F(M) 5)

We evaluated the impact of ablating features for one task on the performance of all other tasks.
Specifically, we ablated the highest Indirect Effect (IE) nodes first, continuing until we reached a
faithfulness of 0.5 for the target task. This approach allowed us to assess both the specificity of
the discovered circuits and their impact on related tasks. Our analysis revealed that it is possible to
significantly reduce faithfulness by disabling just several hundred nodes. Furthermore, we found that
we could reduce the number of active nodes to less than a thousand while keeping the performance
almost intact. Extra details and faithfulness/completeness charts can be found in Appendix [D]

Figure [d] presents a heatmap showing the change in faithfulness for various tasks when ablating the
highest IE nodes for a single task. Several key observations can be made from this visualization:

» Task Specificity: Ablating most tasks does not significantly impact the performance of
others, indicating that the discovered circuits are largely task-specific. This suggests that
there are no common high-IE ICL-specific nodes across tasks.

* Related Task Effects: Tasks are grouped into categories, and we observe that ablation of
related tasks has a higher effect on all tasks within the same group. This is visible as squares
along the diagonal, particularly noticeable in the translation group.

¢ Performance Improvement: For some tasks, we observe that faithfulness rises well above
1.0 after ablation of other tasks. We hypothesize that this occurs because we reduce the
confusion of the model by removing irrelevant execution paths.
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It’s worth noting that we excluded the person_profession and football_player_position tasks from
Figure [] due to the very small difference between their fully-ablated and non-ablated losses. This
resulted in highly unstable faithfulness calculations for these tasks. We attribute this small difference
partially to our modified loss function, as we found that calculating the loss only from the last pair
results in a higher loss difference.

4.2 TASK-DETECTION FEATURES

Our modified SFC analysis revealed a second crucial component of the ICL mechanism: task-
detection features. These features activate on instances of a complete task in the training data,
specifically on the token that completes the task. Both task-detection and task-executing features
showed high Indirect Effects (IEs) in the extracted sparse feature circuits, with task detection features
connected to task execution features through attention output and transcoder nodes. We applied our
task vector cleaning algorithm to extract task-detection features, identifying layer 11 as optimal for
steering, preceding the layer 12 task-executing features. Details can be found in Appendix [G] We
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Figure 5: Heatmap showing the effect of steering with the task-detection feature most relevant to
each task, on every task. We see that task detection features are typically specific to the task, with
exceptions for similar tasks.

observed similar patterns as with task-executing features:

* Task specificity: Features strongly affect their corresponding tasks with minimal impact on
unrelated tasks.

* Related task effects: Features from related tasks show some cross-task influence.

To evaluate the causal connection between task-detection features and task-execution features, we
selected the most relevant detection and execution pairs based on steering effects and confirmed that
their max activating patterns aligned with their hypothesized circuit roles. We then ablated detection
directions while fixing attention patterns and measured the decrease in execution activations. Figure
[6] presents the results.

The results of our causal connection analysis reveal several key insights. First, we observe strong
causal connections between most task-detection and their corresponding task-executing features,
supporting our hypothesis about their roles in the ICL circuit. Second, we note significant interconnec-
tivity among translation tasks, suggesting shared circuitry for this group of related tasks. Interestingly,
two tasks (person_profession and present_simple_gerund) showed unexpectedly weak connections
between their detection and execution features, warranting further investigation.

These findings provide compelling evidence for the causal relationship between task-detection and
task-executing features in the ICL circuit. They also highlight the interconnected nature of related
tasks, particularly within the translation group.
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Figure 6: Heatmap showing the causal effect of the top task-detection features of each task, on the
activation of the top task-executing features for every task. Averaged across all initial non-zero
activations in all tasks.

5 RELATED WORK

Mechanistic Interpretability defines a framing for mechanistic interpretability
in terms of features and circuits. It claims that neural network latent spaces have directions in
them called features that correspond to meaningful variables. These features interact through model
components sparsely to form circuits: interpretable computation subgraphs relevant to particular
tasks. These circuits can be found through manual inspection in vision models (Cammarata et al.
2020). In language models, they can be found through manual patching (Wang et al., 2022} |[Hanna)
etal Lieberum et al., Chan et al., or automated circuit discovery (Conmy et al.
(2023); ISyed et al.| (2023)); Bhaskar et al.|(2024), though see Miller et al.| (2024)). [Marks et al.| (2024)

extends this research area to use Sparse Autoencoders, as discussed below.

In-Context Learning (ICL) ICL was first introduced in Brown et al.| (2020) and refers to models
learning to perform tasks from prompt information at test-time. There is a large area of research

studying its applications 2024), high-level mechanisms 2022) and limitations
(Peng et all, 2023)). [Elhage et al. (2021)) and [Olsson et al] (2022) find induction heads partly

responsible for in-context learning. However, since these attention heads do more than just induction
(Goldowsky-DilI et al., [2023)), and are not sufficient for complex task-following, induction heads
alone cannot explain ICL. Appendix G) proposes a mechanistic hypothesis for
an aspect of simple in-context task behavior. |Hendel et al.|(2023)) and [Todd et al.[(2024) find that
simple in-context learning tasks create strong directions in the residual stream adding which makes it
possible for a network to perform tasks zero-shot, but does not explanation how task vectors form nor
what interpretable components the task vectors are composed of.

Sparse Autoencoders A major roadblock to mechanistic interpretability research is superposition
(Elhage et al.} [2022b)), where the interpretable units of neural network do not tend to align with the
basis directions (e.g. neurons). Sparse autoencoders 2011}, [Bricken et al.| 2023) are one method

of addressing this roadblock, and multiple works since proposed improvements to SAE training

(Rajamanoharan et al.,2024b};[Bussmann et al.} 2024} Braun et al.,[2024}; [Gao et al|, 2024}

et al., 2024b), and we use several more in our work (Rajamanoharan et al., [2024a; |Adam Jermyn,
2024 (Conerly et al.|[2024)). (Cunningham et al.|(2023)), building on Bills et al.|(2023)), apply |Conmy

\©
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et al.| (2023)) to find circuits in small language models. Marks et al.[(2024) adapt|Syed et al|(2023) in
the SAE basis to find circuits and address a practical bias reduction problem. [Kissane et al.|(2024)
apply a slightly different automated SAE algorithm (similar to ours in that it operates on single
prompts) to IOI (Wang et al.,[2022), using SAEs on the attention layer outputs and residual stream.
Dunefsky et al.| (2024) introduce transcoders (which are also briefly discussed in [ Templeton et al.
(2024a)) and |L1 et al.| (2023))) to simplify analysis of circuits involving MLPs. We build on their work
and train transcoders as part of our suite of Gemma-1 SAEs.

6 CONCLUSION

Limitations Our work focused on the simple task vector setting to study ICL (Section [2.3)), which
does not capture all ways that ICL is used in practice (generally involving far more tokens and
open-ended tasks). We also only interpreted Gemma-1 2B, and therefore other LLM architectures
or model sizes could lead to different results (though this is unlikely, since task vectors exist across
models (Todd et al.,2024)). Finally, the complexity of the task studied meant our interpretations have
some approximation error: attention heads matter for the detection-execution connection, but so does
the succeeding MLP (Section[4.2).

Future Work Future work could extend SFC methods to work on more than a band of layers in
the middle of the model (Section [2.2)). Since there are many features corresponding to individual
input tokens and output predictions (due to the three stages of inference in LLMs; [Elhage et al.
(2022a); |Lad et al.|(2024)), this will require further adaptation of the SFC methodology. Moreover,
our multiple contributions will hopefully spur lots of further work that finds new tasks to interpret or
explanations in greater depth than prior work, as discussed in our concluding paragraph below.

To summarise our work: we use SAEs to explain in context learning in greater detail than any
prior mechanistic interpretability work. This provides strong evidence that Sparse Autoencoders are
valuable circuit analysis tools, and the innovations developed: TVC (Section[3.1)), SFC improvements
(Section[2.2)) and an SAE training codebase in JAX with open SAE weights (Section[7) are likely to
help enable lots of other SAE research to tackle more ambitious tasks and larger models.

7 REPRODUCIBILITY STATEMENT

We are committed to fostering reproducibility and advancing research in the field of mechanistic
interpretability. To support this goal, we plan to release the following resources upon successful
acceptance of this paper:

1. Two JAX libraries optimized for TPU:

* A library for Sparse Autoencoder (SAE) training
* A library for SAE inference and model analysis, built upon the penzai library with our
custom Llama and Gemma ports
2. A full suite of SAEs for Gemma 2B, along with a dataset of their max activating examples

3. Two custom dashboards used in our analysis:

* A dashboard for browsing max activating examples

* An interactive dashboard for exploring extracted Sparse Feature Circuits (SFC)

These resources will enable researchers to replicate our experiments, extend our work, and conduct
their own investigations using our tools and methodologies. The release of our custom dashboards will
provide additional transparency and facilitate deeper exploration of our results. Due to the complexity
of our infrastructure, we are only sharing anonymized versions of our analysis, cleaning, and SFC
scripts, which still require our JAX libraries to run. We hope that reviewers will find this, along with
the detailed methodologies described in the paper, to be sufficient evidence of reproducibility.
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A MODEL AND DATASET DETAILS

For our experiments, we utilized the Gemma 1 2B model, a member of the Gemma family of open
models based on Google’s Gemini models (Gemma Team, |2024)). The model’s architecture is largely
the same as that of Llama (Dubey et al.| |2024)) with the exception of tied input and output embeddings
and a different activation function for MLP layers, so we could reuse our infrastructure for loading
Llama models. We train residual and attention output SAEs as well as transcoders for layers 1-18 of
the model on FineWeb (Penedo et al., [2024)).

Our dataset for circuit finding is primarily derived from the function vectors paper (Todd et al., 2024)),
which provides a diverse set of tasks for evaluating the existence and properties of function vectors in
language models. We supplemented this dataset with three additional algorithmic tasks to broaden
the scope of our analysis:

* Extract the first element from an array of length 4

» Extract the second element from an array of length 4

* Extract the last element from an array of length 4

The complete list of tasks used in our experiments is as follows: Here’s the list with task descriptions:
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Task ID

Description

location_continent

Name the continent where the given landmark is located.

football_player_position

Identify the position of a given football player.

location_religion

Name the predominant religion in a given location.

location_language

State the primary language spoken in a given location.

person_profession

Identify the profession of a given person.

location_country

Name the country where a given location is situated.

country_capital

Provide the capital city of a given country.

person_language

Identify the primary language spoken by a given person.

singular_plural

Convert a singular noun to its plural form.

present_simple_past_simple

Change a verb from present simple to past simple tense.

antonyms

Provide the antonym of a given word.

plural_singular

Convert a plural noun to its singular form.

present_simple_past_perfect

Change a verb from present simple to past perfect tense.

present_simple_gerund

Convert a verb from present simple to gerund form.

en_it

Translate a word from English to Italian.

it_en Translate a word from Italian to English.

en_fr Translate a word from English to French.

en_es Translate a word from English to Spanish.

fr_en Translate a word from French to English.

es_en Translate a word from Spanish to English.
algo_last Extract the last element from an array of length 4.
algo_first Extract the first element from an array of length 4.

algo_second

Extract the second element from an array of length 4.

This diverse set of tasks covers a wide range of linguistic and cognitive abilities, including geographic
knowledge, language translation, grammatical transformations, and simple algorithmic operations.
By using this comprehensive task set, we aimed to thoroughly investigate the in-context learning
capabilities of the Gemma 1 2B model across various domains.

B SAE TRAINING

Our SAEs are trained with a learning rate of le-3 and Adam betas of 0.0 and 0.99 for 150M
(£100) tokens. The methodology is overall similar to (Blooml 2024). We initialize encoder weights
orthogonally and set decoder weights to their transpose. We initialize decoder biases to 0. We
use Rajamanoharan|(2024)’s ghost gradients variant (ghost gradients applied to dead features only,
loss multiplied by proportion of death features) with the additional modification of using softplus
instead of exp for numerical stability. A feature is considered dead when its density (according to
a 1000-batch buffer) is below 5e-6 or when it hasn’t fired in 2000 steps. We use Anthropic’s input
normalization and sparsity loss for Gemma 2B (Conerly et al.,2024). We found it to improve Gated
SAE training stability. We modified it to work with transcoders by keeping track of input and output
norms separately and predicting normed outputs.

We use 8 v4 TPU chips running Jax (Bradbury et al.| [2018)) (Equinox (Kidger & Garcial 2021)) to
train our SAEs. We found that training with Huggingface’s Flax LM implementations was very
slow. We reimplemented LLaMA (Dubey et al., 2024) and Gemma (Gemma Team, |[2024) in Penzai
(Johnson, [2024)) with a custom layer-scan transformation and quantized inference kernels as well
as support for loading from GGUF compressed model files. We process an average of around 4400
tokens per second, and caching LM activations is not the main bottleneck for us. For this and other
reasons, we don’t do SAE sparsity coefficient sweeps so as to increase TPU utilization.

For caching, we use a distributed ring buffer which contains separate pointers on each device to allow
for processing masked data. The (in-place) buffer update is in a separate JIT context. Batches are
sampled randomly from the buffer for each training step.

We train our SAEs in bfloat16 precision. We found that keeping weights and scales in bfloat16
and biases in float32 performed best in terms of the amount of dead features and led to a Pareto
improvement over float32 SAEs.

Our SAEs and training code will be made public after paper acceptance.
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C TASK VECTOR CLEANING ALGORITHM

The task vector cleaning algorithm is a novel approach we developed to isolate task-relevant features
from task vectors. Figure 7| provides an overview of this algorithm.

) )
n-shot ICL Task vectors > SAE 10-20 fgatures
prompts features noisy
| — | —
...hot -> cold... on layer L
Y

Reconstruct| Training | | Cleaned

TV A weights [ “1  weights

2-4 features
interpretable

0-shot ICL
prompts

Task loss

A 4
Optimize
Loss

Figure 7: Overview of the task vector cleaning algorithm.

.tall ->

Our process begins with collecting residuals for task vectors using a batch of 16 and 16-shot prompts.
We then calculate the SAE features for these task vectors. We explored two methods: (1) calculating
feature activation and then averaging across tokens, and (2) averaging across tokens first and then
calculating the task vector. They had similar performance.

The cleaning process is performed on a training batch of 24 pairs, with evaluation conducted on an
additional 24 pairs. All prompts are zero-shot. An example prompt is as follows:

‘ BOS ‘ Follow ‘ the | pattern | : ‘ \n ‘

‘tall|—>| short‘\n‘

‘oldlﬁlyoungl\n‘

The steered token highlighted in red. Loss is calculated on the yellow token.

The algorithm initializes with the SAE reconstruction as a starting point. It then iteratively steers the
model on the reconstruction layer and calculates the loss on the training pairs. To promote sparsity,
we add the LO norm of weights with coefficient [ to the loss function. The algorithm implements
early stopping when the L0 norm remains unchanged for n iterations.

The hyperparameters /, n, and learning rate « can be fixed for a single model. We experimented with
larger batch sizes but found that they did not significantly improve the quality of extracted features
while substantially slowing down the algorithm due to gradient accumulation.

It’s worth noting that we successfully applied this method to the recently released Gemma 2 2B
model using Gemma Scope SAE suite (Lieberum et al.| [2024).

D DETAILS OF OUR SFC IMPLEMENTATION

D.1 IMPLEMENTATION DETAILS

Our implementation of circuit finding attribution patching is specialized for Jax and Penzai.
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We first perform a forward-backward pass on the set of prompts, collecting residuals and gradients
from the metric to residuals. We collect gradients with jax.grad by introducing “dummy” zero-
valued inputs to the metric computation function that are added to residuals to each layer. Note that
we do not use SAEs during the stage.

We then perform an SAE encoding step and find the nodes (residual, attention output and transcoder
SAE features and error nodes) with the highest indirect effects using manually computed gradients
from the metric. After that, we find the features with the top K indirect effects for each layer and
position mask and treat them as candidates for circuit edge targets. We compute gradients with
respect to the metric to the values of those nodes, propagate them to ”’source features” up to one layer
above and multiply by the values of the source features. This way, we can compute indirect effects
for circuit edges and prune the initially fully-connected circuit. Like Marks et al.| (2024)), we do not
perform full ablation of circuit edges.

D.2 FAITHFULNESS CHARTS

Figure[§|shows averaged node trimming effect on faithfulness across all tasks. We follow methodology
of [Marks et al.|(2024])) thresholding removing nodes with low IE first. We can see that the circuits
keep at least 0.8 faithfulness on average just with 1000 nodes.
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Figure 8: Average faithfulness across tasks depending on the amount of nodes left in the circuit.

Figure [9]shows averaged inverse node trimming effect on faithfulness across all tasks. [Marks et al.
(2024)) calls this metric completeness and calculates it as faithfulness of the model just with the circuit
ablated. We calculate it by thresholding nodes starting with those that have the highest IE. We can
see that ablation of just even several hundred nodes have drastic impact on faithfulness.
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Figure 9: Average faithfulness across tasks depending on the amount of important nodes ablated from
the circuit .
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E EXAMPLE CIRCUITS

r:11:output:11050
IE: 0.0187
...Target: $0.10Long Term Target: $0.45
...Soluble Fiber and 3 grams of Insoluble Fiber.J

4

a:11:arrow:4080
IE: 0.092

IE: 0.0137 IE: 0.0638
...| think quantity and quality go hand in hand... ...Winds N at 5 to 10 mph. Chance of rain...
\ 4
r:12:arrow:11618
IE: 0.083

...alternating between lower and upper registers...

...between northern and southern Italian cooking...

Figure 10: An example of a circuit found using our SFC variant. We focused on a subcircuit with
high indirect effects. Maximum activating examples from the SAE training distribution are included.

An example output of our circuit cleaning algorithm can be found in Figure[I0] We can see the flow
of information through a single high-IE attention feature from a task-detection feature (activating on
output tokens) to transcoder and residual execution features (activating on arrow tokens). The feature
activates on antonyms on the detection feature #11050: one can assume the first sequence began as
“Short Term Target”, making the second half an antonym.

We will release a web interface for viewing maximum activating examples and task feature circuits.

F STEERING WITH TASK-EXECUTION FEATURES

To evaluate the causal relevance of our identified ICL features, we conducted a series of steering
experiments. Our methodology employed zero-shot prompts for task-execution features, measuring
effects across a batch of 32 random pairs.

We set the target layer as 12 using Figure[2]and extracted all task-relevant features on it using our
cleaning algorithm. To determine the optimal steering scale, we conducted preliminary experiments
using manually identified task-executing features across all tasks. Through this process, we estab-
lished an optimal steering scale of 25, which we then applied consistently across all subsequent
experiments.

For each pair of task and feature, we performed steering and measured the relative loss improvement
compared to the model’s task performance on a prompt without steering. This relative improvement
metric allowed us to quantify the impact of each feature on task performance.

To normalize our results and highlight the most significant effects, we applied several post-processing
steps:
* We clipped the effect to be no more than 1, thus ignoring any instances of loss increase.
* We then normalized the effects for all features within the same task to be in the O to 1 range.
* To remove clutter and highlight important features, we set effects lower than 0.2 to 0.

* Finally, we removed features with low maximum effect across all tasks to reduce the size of
the resulting diagram.
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Prompt example with the steered token highlighted in red. Loss is calculated on the yellow token:

‘ BOS ‘ Follow ‘ the | patternl : ‘ \n ‘

G TASK-DETECTION FEATURES

For our investigation of task-detection features, we employed a methodology similar to that used for
task execution features, with a key modification. We introduced a fake pair to the prompt and focused
our steering on its output. This approach allowed us to simulate the effect of the detection features as
it happens on real prompts.

Our analysis revealed that layers 10 and 11 were optimal for task detection, with performance notably
declining in subsequent layers. We selected layer 11 for our primary analysis due to its proximity
to layer 12, where we had previously identified the task execution features. This choice potentially
facilitates a more direct examination of the interaction between detection and execution mechanisms.

The steering process for detection features followed the general methodology outlined in Appendix [F|
including the use of a batch of 32 random pairs, extraction of task-relevant features, and application
of post-processing steps to normalize and highlight significant effects. The primary distinction lay in
the application of the steering to the prompt.

This approach allowed us to create a comprehensive representation of the causal relationships between
task-detection features and the model’s ability to recognize specific tasks, as visualized in Figure 5]

Prompt example with the steered token highlighted in red. Loss is calculated on the yellow token:

‘ BOS ‘Follow‘ thel pattern | : ‘ \n ‘
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