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ABSTRACT

Sparse autoencoders (SAEs) are a popular tool for interpreting large language
model activations, but their utility in addressing open questions in interpretability
remains unclear. In this work, we demonstrate their effectiveness by using SAEs
to deepen our understanding of the mechanism behind in-context learning (ICL).
We identify abstract SAE features that encode the model’s knowledge of which
task to execute and whose latent vectors causally induce the task zero-shot. This
aligns with prior work showing that ICL is mediated by task vectors. We further
demonstrate that these task vectors are well approximated by a sparse sum of SAE
latents, including these task-execution features. To explore the ICL mechanism,
we adapt the sparse feature circuits methodology of Marks et al. (2024) to work for
the much larger Gemma-1 2B model, with 30 times as many parameters, and to
the more complex task of ICL. Through circuit finding, we discover task-detecting
features with corresponding SAE latents that activate earlier in the prompt, that
detect when tasks have been performed. They are causally linked with task-
execution features through the attention layer and MLP.

1 INTRODUCTION

Sparse autoencoders (SAEs; Ng (2011); Bricken et al. (2023); Cunningham et al. (2023)) are a
promising method for interpreting large language model (LLM) activations. However, the full
potential of SAEs in interpretability research remains to be explored, since most recent SAE research
either i) interprets a single SAE’s features rather than the model’s computation as a whole (Bricken
et al., 2023), or ii) performs high-level interventions in the model, but does not interpret the effect on
the downstream computation caused by the interventions Templeton et al. (2024b). In this work, we
address these limitations by interpreting in-context learning (ICL), a widely studied phenomenon
in LLMs. In summary, we show that SAEs enable a) the discovery of novel circuit components
(task-detection features; Section 4.2) and b) making existing interpretations of ICL more precise, by
e.g. decomposing task vectors (Todd et al., 2024; Hendel et al., 2023) into task-execution features
(Section 3).

In-context learning (ICL; Brown et al. (2020)) is a fundamental capability of large language models
that allows them to adapt to new tasks without fine-tuning. ICL is a significantly more complex and
important task than other behaviors commonly studied in circuit analysis (such as IOI in Wang et al.
(2022) and Kissane et al. (2024), or subject-verb agreement and Bias-in-Bios in Marks et al. (2024)).
Recent work by Todd et al. (2024) and Hendel et al. (2023) has introduced the concept of task vectors
to study ICL in a simple setting, which we follow throughout this paper.1 In short, task vectors
are internal representations of tasks formed by language models during the processing of few-shot
prompts, such as “hot → cold, big → small, fast → slow”. These vectors can be extracted and added
into different LLM forward passes to induce 0-shot task performance, making LLMs predict that
“slow” follows “fast →” without explicit context. Section 2.3 provides a full introduction.

To identify task-execution features, we decomposed task vectors using SAEs. To achieve this, we
needed to go beyond existing methods for solving the classical dictionary problem of decomposing
a vector into a sparse sum of dictionary vectors (Elad, 2010). To do this, we developed a bespoke

1Task vectors (Hendel et al., 2023) are also called “function vectors” (Todd et al., 2024), but we use “task
vectors” throughout this paper for consistency.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

method for LLMs we call the TASK VECTOR CLEANING (TVC) algorithm. By running the TVC
algorithm, we found task-execution features: features that can partially replace task vectors taken
alone and have highly interpretable max-activating token patterns. We validate the causal relevance
of these task features through a series of steering experiments on tasks, spanning several categories
like translation or factual recall. The experiments demonstrate that identified task features encode
crucial information about task execution, are causally implicated in the model’s ICL capabilities, and
can play the same role as task vectors.

We adapted the Sparse Feature Circuits (SFC) methodology of Marks et al. (2024) to work on the
more complex ICL task and the larger Gemma-1 2B model (Gemma Team, 2024). This adaptation
allowed us to discover and analyze the subgraph of key SAE latents involved in ICL, providing a more
comprehensive view of the ICL circuit. Using this adaptation, we found task-detection features with
SFC: features that play a crucial role in identifying the specific task being performed earlier in the
prompt. Task-detection features are tightly connected with task-execution features through attention,
as part of the whole ICL circuit.

Our findings not only advance our understanding of ICL mechanisms but also demonstrate the
potential of SAEs as a powerful tool for interpretability research on larger language models. By
unifying the task vectors view with SAEs and uncovering two of the most important causally
implicated feature families behind ICL, we pave the way for future work to control and monitor ICL
further, to improve either the safety or capabilities of models.

Our main contributions are as follows:

1. We demonstrate that SAEs can be effectively used to explain mechanisms behind a complex
set of ICL tasks in a Gemma-1 2B, which has 10-35x more parameters than prior models
typically studied at this depth in comparable, circuits-style mechanistic interpretability
research (Wang et al., 2022; Marks et al., 2024). We show that causal circuit finding
algorithms and SFC specifically straightforwardly scale up to larger models and SAEs with
different architectures (Appendix B).

2. We identify two core bottlenecks in the ICL circuit – task-detection features and task-
execution features (see Appendix C, F, G) – and study their interactions (Section 3.2).
This provides new insights into how LLMs process and execute ICL tasks. Specifically, we
discover task-detection features that identify the task being performed earlier in the prompt,
which are then moved by attention heads to trigger task-execution features (Figure 8).

3. We present a novel transformer-specific sparse linear decomposition algorithm (Section 3.1)
that decomposes task vectors (Hendel et al., 2023) into a small set of mostly task-relevant
features, enabling more precise analysis of ICL mechanisms.

Figure 1: A diagram of the in-context learning circuit, showing task detection features (yellow)
causing task execution features (blue) which cause the model to output the antonym (left → right). A
more concrete circuit, along with texts these features activate on, can be seen in Figure 9.
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2 BACKGROUND

2.1 SPARSE AUTOENCODERS (SAES)

Sparse autoencoders (SAEs) are neural networks designed to learn efficient representations of data
by enforcing sparsity in the hidden layer activations (Elad, 2010). In the context of language model
interpretability, SAEs are used to decompose the high-dimensional activations of language models
into more interpretable features (Cunningham et al., 2023; Bricken et al., 2023). The basic idea
behind SAEs is to train a neural network to reconstruct its input while constraining the hidden layer
to have sparse activations. This process typically involves an encoder that maps the input to a sparse
hidden representation, a decoder that reconstructs the input from this sparse representation, and loss
task that balances reconstruction accuracy with sparsity 2. The encoding step is as follows, with f
denoting the pre-activation features and Wenc and benc the encoder weights and biases respectively:

f(x) = σ(Wencx + benc) (1)

For JumpReLU SAEs (Rajamanoharan et al., 2024b), the activation function and decoder are (with
H being the Heaviside step function, θ the threshold parameter and Wdec/bdec the decoder affine
parameters):

x̂(f) = Wdec(f ⊙H(f − θ)) + bdec (2)

In our work, we train SAEs on residual stream activations and attention outputs, and also train
transcoders3 on MLP layers, all of which use the improved Gated SAE architecture (Rajamanoharan
et al., 2024a).

2.2 SPARSE FEATURE CIRCUITS

Sparse Feature Circuits (SFCs) are a methodology introduced by Marks et al. (2024) to identify
and analyze causal subgraphs of sparse autoencoder features that explain specific model behaviors.
This approach combines the interpretability benefits of SAEs with causal analysis to uncover the
mechanisms underlying language model behavior. The SFC methodology involves several key steps:

1. Decomposing model activations into sparse features using SAEs

2. Calculating the Indirect Effect (IE, Pearl (2001) of each feature on the target behavior

3. Identifying a set of causally relevant features based on IE thresholds

4. Constructing a circuit by analyzing the connections between these features

The IE of a model component is measured by intervening on that component and observing the
change in the model’s output. For a component a and a metric m, the IE is defined using do-calculus
(Pearl, 2009) as in Marks et al. (2024) as:

IE(m; a) = m(x|do(a = a′))−m(x) (3)

Where m(x|do(a = a′)) represents the value of the metric when we intervene to set the value of
component a to a′, and m(x) is the original value of the metric. In practice, attribution patching (Syed
et al., 2023) is used to approximate IE, allowing for efficient computation across many components
simultaneously.

SFC is described in detail in (Marks et al., 2024). We describe our modifications in Appendix E.

2Typically, the L1 penalty on activations is used (Bricken et al., 2023) with some modifications (Rajamanoha-
ran et al., 2024a; Conerly et al., 2024), although there are alternatives: Rajamanoharan et al., 2024b; Farrell,
2024; Riggs & Brinkman, 2024.

3Transcoders are a modification of SAEs that take MLP input and convert it into MLP output instead of
trying to reconstruct the residual stream.
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2.3 TASK VECTORS

Continuing from the high-level description in Section 1, task vectors were independently discovered
by Hendel et al. (2023) and Todd et al. (2024). The key idea behind task vectors is that they capture
the essence of a task demonstrated in a few-shot prompt, allowing the model to apply this learned
task to new inputs without explicit fine-tuning. Task vectors have several important properties:

1. They can be extracted from the model’s hidden states given ICL prompts as inputs.
2. When added to the model’s activations in a zero-shot setting, they can induce task perfor-

mance without explicit context.
3. They appear to encode abstract task information, independent of specific input-output

examples.

To illustrate the concept, consider the following simple prompt for an antonym task in the Example 1,
where boxes represent distinct tokens:

BOS Follow the pattern : \n

hot → cold \n

big → small \n

fast → slow

Example 1: All token types in an example
input: prompt , input , arrow , output ,

newline ( target tokens for calculating
the loss on included)

n-shot ICL
prompts Task vectors SAE

features

Training
weights

Cleaned
weights

Reconstruct
TV

L1 normTask loss

Loss
Optimize

0-shot ICL
prompts

...hot -> cold...

...tall -> 

on layer L

10-20 features
noisy

2-4 features
interpretable

Figure 2: Overview of the task vector cleaning algo-
rithm (see Figure 10; TV stands for task vector).

In this case, the task vector would encode the abstract notion of “finding the antonym” rather than
specific word pairs. Task vectors are typically collected by averaging the residual stream of “→”
tokens at a specific layer across multiple ICL prompts for a given task. This averaged representation
can then be used to study the model’s internal task representations and to manipulate its behavior in
zero-shot settings. We perform our analysis on the datasets derived from Todd et al. (2024). Details
can be found in Appendix A.

3 DISCOVERING TASK-EXECUTION FEATURES

3.1 DECOMPOSING TASK VECTORS

To gain a deeper understanding of task vectors, we attempted to decompose them using sparse
autoencoders (SAEs). However, several of our initial naive approaches faced significant challenges.
Firstly, direct SAE reconstruction, i.e. passing the task vector as input to the SAE, produced noisy
results with more than 10 nonzero SAE features on average on layers of interest4, most of which were
irrelevant to the task. Moreover, this reconstruction noticeably reduced the vector’s performance.
These issues arose partly because task vectors are out-of-distribution inputs for SAEs, as they
aggregate information from different residual streams rather than representing a single one.

We then explored inference-time optimization (ITO) (Smith, 2024) as an alternative. However, this
method also failed to reconstruct task vectors using a low number of SAE features while maintaining
high performance.

Given these observations, we developed a novel method called task vector cleaning. It produces
optimized SAE decomposition weights θ ∈ RdSAE for a task vector vtv . At a high level, the method:

1. Initializes θ with weights from SAE decomposition of vtv .
4Layers where steering with task vectors decreased loss significantly (Figure 3a). We found 3-5 interpretable

features. Our cleaning algorithm can usually reduce the number to 2-4. The usual residual SAE L0 is around 44.
as highlighted in the Figure 3b
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(a) The effect on the model’s loss by steering with dif-
ferent kinds of reconstructed task vectors, at each layer.
We see that cleaning performs similarly to the original
task vector until layer 14.
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(b) Average L0 for cleaned task vec-
tors vs. original task vectors at layer
12 (which corresponds to the elbow in
Figure 3a).

2. Reconstructs a new task vector vθ from θ; steers the model with vθ on a batch of zero-shot
prompts and computes negative log-likelihood loss LNLL(θ) on them.

3. Optimizes θ to minimize L = LNLL(θ)+ l∥θ∥1, where l is the L1 regularization coefficient.

This approach allows us to maintain or even improve the performance of task vectors while reducing
the amount of active SAE features to less than 4 on average (Figure 3b) for Gemma 1 2B. The
algorithm overview can be found in Figure 10. Further details are in Appendix D.

We compare it with the four baselines: original task vectors, naive SAE reconstruction, ITO with
target L0 norm set to 5, and ITO with target L0 set to 20. To compare them, we steer the zero-shot
prompt using the reconstructed task vector and calculate relative log-likelihood loss improvement.
We then average it across all tasks. Layer-wise comparison results can be found in Figure 3a. We
have also conducted sweeps for L1 regularization coefficient l across several models and SAEs,
including multiple widths and target sparsities for Gemma 2 2B and 9B. Their results are included in
Appendix D.1 and show that the method can consistently reduce the amount of active SAE features
by 50-80% while preserving the performance of task vectors. They also suggest that the method
benefits from SAEs with higher target L0.

Using this method, we broke down task vectors into a small set of features. Many of these features
were easy to interpret and clearly related to the task at hand. We found a particularly interesting
group of features, which we called “task-execution features” (or ”executor features”). These features
have two key characteristics:

1. They activate when the model encounters examples of the relevant task in normal text.
2. In these encounters they activate on the token just before the task is completed.

For instance, imagine an antonym task feature processing the phrase “ hot and cold .” It would
activate on the token “ and ,” suggesting that the model expects an antonym to follow. This tells us
that the model recognizes it’s dealing with an antonym pair before seeing the complete pair. See
Figure 4 for examples of such features. Appendix I contains more examples of such features with their
max activating examples on SAE training data, which show that the features often have task-related
max activating patterns.

To analyze the activation patterns of executor features, we split all ICL prompt tokens into several
types (highlighted in Example 1 and discussed later in Section 4.1.1). For each executor feature, we
calculate its token type activation masses: the sum of all its activations on tokens of a particular type
across a batch of ICL prompts. Table 1 shows the percentages of total mass split among different
token types for executor features. We can see that executors activate largely on arrow tokens.
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(a) Antonyms executor feature
11618.

(b) Translation to English execu-
tor feature 5579.

(c) Prediction of city/country fea-
ture 850.

Figure 4: A subset of max activating examples for executor features from Appendix I.

3.2 STEERING EXPERIMENTS

To validate the causal relevance of our decomposed task features, we conducted a series of steering
experiments. To observe the features’ impact on task performance across different contexts and
model layers.

The experiments were performed on the dataset of diverse tasks taken from Todd et al. (2024). We
first extracted relevant task features using our cleaning algorithm. Then steered the zero-shot prompt
using them and calculated relative loss improvement, normalizing and clipping it after that. Further
details and additional experiments that include other models can be found in Appendix F.

Figure 5 shows a heatmap of steering results for each pair of tasks and task-relevant features. Higher
values indicate greater improvement in the loss after steering. It can be seen that most tasks have
a single feature with a high effect on them, and this feature generally does not significantly affect
unrelated tasks. Another notable detail is that features from related tasks (like the translation group)
at least partially affect all tasks within the group.

We have manually examined the features with the highest effect and found that their maximum
activating dataset examples tend to align with their hypothesized role in the ICL circuit. Interestingly,
we observed that translation-to-English tasks all share a generic English-to-foreign task execution
feature, thus requiring an additional language encoding feature for complete task encoding. This
shared feature suggests a common mechanism for translation tasks, with language-specific information
encoded separately. Max activating examples of the most interpretable features are present in
Appendix I.

Token Type Mass (%)
arrow 89.80
output 6.46
input 3.2
newline 0.54
prompt 0.00

Table 1: Activation masses for
executor features across dif-
ferent token types, averaged
across all tasks. We can no-
tice they activate largely on
arrow tokens.

5579
16490
2930
26594
11618
29144
1878
850
15356
7491
6594
8633
15554
1830
13458
11172
11173
26987
27268
14612
32320
12943
9662
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algo_second
location_country

location_continent
present_simple_past_simple
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singular_plural
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person_language
location_language
location_religion

country_capital
en_it
en_fr
en_es
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Figure 5: Heatmap showing the effect of steering
with individual task-execution features for each
task. Most features boost exactly one task, with a
few exceptions for similar tasks like translating
to English. Full and unfiltered versions of the
heatmap are available in Appendix F.
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4 APPLYING SFC TO ICL

After identifying task-execution features through our task vector analysis, we sought to expand our
understanding of the in-context learning (ICL) circuit. To this end, we apply the Sparse Feature
Circuits (SFC) methodology (Marks et al., 2024) to the Gemma-1 2B model. However, due to the
increased complexity of ICL tasks and the larger model size, the original SFC approach did not
work out of the box. We had to implement several key modifications to address the challenges we
encountered.

4.1 OUR MODIFICATIONS

4.1.1 TOKEN POSITION CATEGORIZATION AND FEATURE AGGREGATION

We modified the SFC approach to better handle the structured nature of ICL prompts. Instead of
treating each SAE feature as a separate node, we categorized token positions into the following
groups:

• Prompt: The initial instruction tokens (e.g., “Follow the pattern:”)
• Input: The last token before each arrow in an example pair
• Arrow: The arrow token itself (“→”)
• Output: The last token before each newline in an example pair
• Newline: The newline token
• Extra: Any tokens not covered by the above categories (e.g., in multi-token inputs or outputs)

Each pair of an SAE feature and a token type was assigned its own graph node. The effects of the
feature were aggregated across all tokens of the corresponding type. This categorization allowed us
to evaluate how features affect all tokens within the same category, separating features based on their
role in the ICL circuit. It also enabled us to selectively disable parts of the circuit for one task while
testing another, verifying the task specificity of the identified circuits.

4.1.2 LOSS FUNCTION MODIFICATION

An ICL prompt can be viewed as an (x, y) pair, where x represents the entire prompt except for
the last pair’s output, and y represents this output. The original SFC paper suggested using the
log probabilities of y conditioned on x for such datasets. However, this approach often resulted in
task-relevant features having high negative IEs on other example pairs in the prompt. This was likely
due to the circuit’s effect on those pairs being lost to either diminishing gradients in backpropagation
or because copying circuits were much more relevant to predicting the last pair. By considering all
pairs except the first one, we amplified the effect of the task-solving circuit relative to the numerous
cloning circuits that activate due to the repetitive nature of ICL prompts.

4.1.3 SFC EVALUATION

To evaluate the quality of our SFC modification, we conducted a series of ablation experiments
across the same dataset of ICL tasks. Our primary metric for evaluation was faithfulness, which
measures how much of the original task performance is maintained after ablating specific features.
We calculated faithfulness using the following formula:

F (M) =
M −Ma

Mn −Ma
(4)

Where M is the current metric (loss), Ma is the fully ablated model metric, and Mn is the non-ablated
model metric.

We evaluated the impact of ablating features for one task on the performance of all other tasks.
Specifically, we ablated the nodes with highest Indirect Effects (IEs) first, continuing until we reached
a faithfulness of 0.5 for the target task. Faithfulness of 0.5 corresponds to half of the original
performance, i.e. a significantly destructive ablation for the target task. This approach allowed us to
assess both the specificity of the circuits discovered and their impact on related tasks. Our analysis

7
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Figure 6: We study how useful the most important nodes on task A are for performance on task B.
Specifically, we ablate the most important features for task A (the ablated task on the y-axis) so that
faithfulness reduces by 0.5, and measure how much faithful reduces on another task B (the tested task
on the x-axis).

revealed that it is possible to significantly reduce faithfulness by disabling just a few hundred nodes.
Furthermore, we found that we could reduce the number of active nodes to less than a thousand while
keeping the performance almost intact. Extra details and faithfulness/completeness charts can be
found in Appendix E.

Figure 6 presents a heatmap showing the change in faithfulness for various tasks when ablating the
highest IE nodes for a single task. Several key observations can be made from this visualization:

• Task Specificity: Ablating most tasks does not significantly impact the performance of
others, indicating that the discovered circuits are largely task-specific. This suggests that
there are no common high-IE ICL-specific nodes across tasks.

• Related Task Effects: Tasks are grouped into categories, and we observe that ablation of
related tasks has a higher effect on all tasks within the same group. This is visible as squares
along the diagonal, particularly noticeable in the translation group.

• Performance Improvement: For some tasks, we observe that faithfulness rises well above
1.0 after ablation of other tasks. We hypothesize that this occurs because we reduce the
confusion of the model by removing irrelevant execution paths.

It is worth noting that we excluded the person profession and football player position tasks from
Figure 6 due to the very small difference between their fully ablated and non-ablated losses. This
resulted in highly unstable faithfulness calculations for these tasks. We attribute this small difference
partially to our modified loss function, as we found that calculating the loss only from the last pair
results in a higher loss difference.

4.2 TASK-DETECTION FEATURES

Our modified SFC analysis revealed a second crucial component of the ICL mechanism: task-
detection features. These features activate on instances of a complete task in the training data,
specifically on the token that completes the task, contrary to executors that activate right before
them. Both task-detection and task-execution features showed high Indirect Effects (IEs) in the
extracted sparse feature circuits, with task-detection features connected to task execution features
through attention output and transcoder nodes. We applied our task vector cleaning algorithm to
extract task-detection features, identifying layer 11 as optimal for steering, preceding the layer 12
task-execution features. The details can be found in Appendix G. As with executor features, we
present the steering heatmap in Figure 7 and the activation mass percentages in Table 2. We again see
the task and token-type specificity of these features.

To evaluate the causal connection between task-detection features and task-execution features, we
selected the most relevant detection and execution pairs based on steering effects and confirmed that

8
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Token Type Mass (%)
output 96.76
input 3.22
newline 0.01
arrow 0.0
prompt 0.0

Table 2: Activation masses for
task-detection features across
different token types, averaged
across all tasks. We can notice
that they activate almost exclu-
sively on output tokens.
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Figure 7: Heatmap showing the effect of steering
with the task-detection feature most relevant to
each task, on every task. We see that task detec-
tion features are typically specific to the task, with
exceptions for similar tasks.

their max activating patterns aligned with their hypothesized circuit roles. We then ablated detection
directions while fixing attention patterns and measured the decrease in execution activations. Figure
8 presents the results.
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Figure 8: Heatmap showing the causal effect of the top task-detection features of each task, on the
activation of the top task-execution features for every task. Averaged across all initial non-zero
activations in all tasks.

The results of our causal connection analysis reveal several key insights. First, we observe strong
causal connections between most task-detection and their corresponding task-execution features,
supporting our hypothesis about their roles in the ICL circuit. Second, we note significant interconnec-
tivity among translation tasks, suggesting shared circuitry for this group of related tasks. Interestingly,
two tasks (person profession and present simple gerund) showed unexpectedly weak connections
between their detection and execution features, warranting further investigation.

5 RELATED WORK

Mechanistic Interpretability Olah et al. (2020) defines a framing for mechanistic interpretability
in terms of features and circuits. It claims that neural network latent spaces have directions in
them called features that correspond to meaningful variables. These features interact through model
components sparsely to form circuits: interpretable computation subgraphs relevant to particular
tasks. These circuits can be found through manual inspection in vision models (Cammarata et al.,
2020). In language models, they can be found through manual patching (Wang et al., 2022; Hanna
et al., 2023; Lieberum et al., 2023; Chan et al., 2022) or automated circuit discovery (Conmy et al.
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(2023); Syed et al. (2023); Bhaskar et al. (2024), though see Miller et al. (2024)). Marks et al. (2024)
extends this research area to use Sparse Autoencoders, as discussed below.

In-Context Learning (ICL) ICL was first introduced in Brown et al. (2020) and refers to models
learning to perform tasks from prompt information at test time. There is a large area of research
studying its applications (Dong et al., 2024), high-level mechanisms (Min et al., 2022) and limitations
(Peng et al., 2023). Elhage et al. (2021) and Olsson et al. (2022) find induction heads partly
responsible for in-context learning. However, since these attention heads do more than just induction
(Goldowsky-Dill et al., 2023), and are not sufficient for complex task-following, induction heads
alone cannot explain ICL. Anil et al. (2024, Appendix G) proposes a mechanistic hypothesis for
an aspect of simple in-context task behavior. Hendel et al. (2023) and Todd et al. (2024) find that
simple in-context learning tasks create strong directions in the residual stream adding which makes
it possible for a network to perform tasks zero-shot, but does not explain how task vectors form
nor what interpretable components the task vectors are composed of. A more detailed discussion
can be found in Appendix H. Of particular interest is Wang et al., which investigates a simple ICL
classification task and finds similar results with different terminology (information flow instead of
circuits, ”label words” instead of task-detection features).

Sparse Autoencoders A major roadblock to mechanistic interpretability research is superposition
(Elhage et al., 2022b), where the interpretable units of neural network do not tend to align with the
basis directions (e.g. neurons). Sparse autoencoders (Ng, 2011; Bricken et al., 2023) are one method
of addressing this roadblock, and multiple works since proposed improvements to SAE training
(Rajamanoharan et al., 2024b; Bussmann et al., 2024; Braun et al., 2024; Gao et al., 2024; Templeton
et al., 2024b), and we use several more in our work (Rajamanoharan et al., 2024a; Adam Jermyn,
2024; Conerly et al., 2024). Cunningham et al. (2023), building on Bills et al. (2023), apply Conmy
et al. (2023) to find circuits in small language models. Marks et al. (2024) adapt Syed et al. (2023) in
the SAE basis to find circuits and address a practical bias reduction problem. Kissane et al. (2024)
apply a slightly different automated SAE algorithm (similar to ours in that it operates on single
prompts) to IOI (Wang et al., 2022), using SAEs on the attention layer outputs and residual stream.
Dunefsky et al. (2024) introduce transcoders (which are also briefly discussed in Templeton et al.
(2024a) and Li et al. (2023)) to simplify analysis of circuits involving MLPs. We build on their work
and train transcoders as part of our suite of Gemma-1 SAEs.

6 CONCLUSION

Limitations Our work focused on the simple task vector setting to study ICL (Section 2.3), which
does not capture all ways that ICL is used in practice (generally involving far more tokens and
open-ended tasks). We also only interpreted Gemma-1 2B. Therefore, other LLM architectures or
model sizes could lead to different results (though this is not likely, since task vectors exist across
models (Todd et al., 2024)). Finally, the complexity of the task studied meant our interpretations have
some approximation error: attention heads matter for the detection-execution connection, but the
succeeding MLP is necessary to capture the full effect (Section 4.2). This means that our explanation
needs to include moving parts aside from task-detection attention output features. It is possible to
model the effects of the MLP through transcoder features, but we leave that for future work.

Future Work Future work could extend SFC methods to work on more than a band of layers in
the middle of the model (Section 2.2). Since many features correspond to individual input tokens
and output predictions (due to the three stages of inference in LLMs; Elhage et al. (2022a); Lad
et al. (2024)), this will require further adaptation of the SFC methodology. Moreover, our multiple
contributions will hopefully spur further work that finds new tasks to interpret or explain in greater
depth than prior work, as discussed in our concluding paragraph below.

To summarize our work: we use SAEs to explain in-context learning in greater detail than any
prior mechanistic interpretability work. This provides strong evidence that Sparse Autoencoders are
valuable circuit analysis tools, and the innovations developed: TVC (Section 3.1), SFC improvements
(Section 2.2) and an SAE training codebase in JAX with open SAE weights (Section 7) are likely to
help enable lots of other SAE research to tackle more ambitious tasks and larger models.
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7 REPRODUCIBILITY STATEMENT

We are committed to fostering reproducibility and advancing research in the field of mechanistic
interpretability. To support this goal, we plan to release the following resources upon successful
acceptance of this paper:

1. Two JAX libraries optimized for TPU:

• A library for Sparse Autoencoder (SAE) training
• A library for SAE inference and model analysis, built upon Penzai with our custom

Llama and Gemma ports

2. A full suite of SAEs for Gemma 2B, along with a dataset of their max activating examples

3. Two custom dashboards used in our analysis:

• A dashboard for browsing max activating examples
• An interactive dashboard for exploring extracted Sparse Feature Circuits (SFC)

These resources will enable researchers to replicate our experiments, extend our work, and conduct
their own investigations using our tools and methodologies. The release of our custom dashboards
will provide additional transparency and facilitate a deeper exploration of our results. Due to the
complexity of our infrastructure, we only share anonymized versions of our analysis, cleaning, and
SFC scripts, which still require our JAX libraries to run. We hope that reviewers will find this, along
with the detailed methodologies described in the paper, sufficient evidence of reproducibility.
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A MODEL AND DATASET DETAILS

For our experiments, we utilized the Gemma 1 2B model, a member of the Gemma family of open
models based on Google’s Gemini models (Gemma Team, 2024). The model’s architecture is largely
the same as that of Llama (Dubey et al., 2024) except for tied input and output embeddings and a
different activation function for MLP layers, so we could reuse our infrastructure for loading Llama
models. We train residual and attention output SAEs as well as transcoders for layers 1-18 of the
model on FineWeb (Penedo et al., 2024).

Our dataset for circuit finding is primarily derived from the function vectors paper (Todd et al., 2024),
which provides a diverse set of tasks for evaluating the existence and properties of function vectors in
language models. We supplemented this dataset with three additional algorithmic tasks to broaden
the scope of our analysis:

16

https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team#Replacing_SAE_Encoders_with_Inference_Time_Optimisation
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team#Replacing_SAE_Encoders_with_Inference_Time_Optimisation
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team#Replacing_SAE_Encoders_with_Inference_Time_Optimisation
https://arxiv.org/abs/2310.10348
https://transformer-circuits.pub/2024/jan-update/index.html#predict-future
https://transformer-circuits.pub/2024/jan-update/index.html#predict-future
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://arxiv.org/abs/2211.00593
https://aclanthology.org/2023.emnlp-main.609
https://aclanthology.org/2023.emnlp-main.609
https://arxiv.org/abs/2301.11916
http://arxiv.org/abs/2111.02080
https://arxiv.org/abs/2406.08464
http://arxiv.org/abs/2311.00871


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

• Extract the first element from an array of length 4
• Extract the second element from an array of length 4
• Extract the last element from an array of length 4

The complete list of tasks used in our experiments with task descriptions is as follows:

Task ID Description
location continent Name the continent where the given landmark is located.
football player position Identify the position of a given football player.
location religion Name the predominant religion in a given location.
location language State the primary language spoken in a given location.
person profession Identify the profession of a given person.
location country Name the country where a given location is situated.
country capital Provide the capital city of a given country.
person language Identify the primary language spoken by a given person.
singular plural Convert a singular noun to its plural form.
present simple past simple Change a verb from present simple to past simple tense.
antonyms Provide the antonym of a given word.
plural singular Convert a plural noun to its singular form.
present simple past perfect Change a verb from present simple to past perfect tense.
present simple gerund Convert a verb from present simple to gerund form.
en it Translate a word from English to Italian.
it en Translate a word from Italian to English.
en fr Translate a word from English to French.
en es Translate a word from English to Spanish.
fr en Translate a word from French to English.
es en Translate a word from Spanish to English.
algo last Extract the last element from an array of length 4.
algo first Extract the first element from an array of length 4.
algo second Extract the second element from an array of length 4.

This diverse set of tasks covers a wide range of linguistic and cognitive abilities, including geographic
knowledge, language translation, grammatical transformations, and simple algorithmic operations.
By using this comprehensive task set, we aimed to thoroughly investigate the in-context learning
capabilities of the Gemma 1 2B model across various domains.

B SAE TRAINING

Our Gemma 1 2B SAEs are trained with a learning rate of 1e-3 and Adam betas of 0.0 and 0.99
for 150M (±100) tokens of FineWeb (Penedo et al., 2024). The methodology is overall similar to
(Bloom, 2024). We initialize encoder weights orthogonally and set decoder weights to their transpose.
We initialize decoder biases to 0. We use Rajamanoharan (2024)’s ghost gradients variant (ghost
gradients applied to dead features only, loss multiplied by the proportion of death features) with the
additional modification of using softplus instead of exp for numerical stability. A feature is considered
dead when its density (according to a 1000-batch buffer) is below 5e-6 or when it has not fired in
2000 steps. We use Anthropic’s input normalization and sparsity loss for Gemma 1 2B (Conerly et al.,
2024). We found it to improve Gated SAE training stability. We modified it to work with transcoders
by keeping track of input and output norms separately and predicting normed outputs.

We convert our Gated SAEs into JumpReLU SAEs after training, implementing algorithms like TVC
and SFC in a unified manner for all SAEs in this format (including simple SAEs). The conversion
procedure involves setting thresholds to replicate the effect of the gating branch. For further details,
see Rajamanoharan et al. (2024b).

We use 4 v4 TPU chips running Jax (Bradbury et al., 2018) (Equinox (Kidger & Garcia, 2021)) to
train our SAEs. We found that training with Huggingface’s Flax LM implementations was very
slow. We reimplemented LLaMA (Dubey et al., 2024) and Gemma (Gemma Team, 2024) in Penzai
(Johnson, 2024) with a custom layer-scan transformation and quantized inference kernels as well
as support for loading from GGUF compressed model files. We process an average of around 4400
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tokens per second, which makes training SAEs and not caching LM activations the main bottleneck.
For this and other reasons, we don’t do SAE sparsity coefficient sweeps to increase TPU utilization.

For caching, we use a distributed ring buffer which contains separate pointers on each device to allow
for processing masked data. The (in-place) buffer update is in a separate JIT context. Batches are
sampled randomly from the buffer for each training step.

We train our SAEs in bfloat16 precision. We found that keeping weights and scales in bfloat16
and biases in float32 performed best in terms of the number of dead features and led to a Pareto
improvement over float32 SAEs.

For training Phi 3 (Abdin et al., 2024) SAEs, we use data generated by the model unconditionally,
similarly to (Xu et al., 2024)5. The resulting dataset we train the model on contains many math
problems and is formatted as a natural-seeming interaction between the user and the model.

Each SAE training run takes us about 3 hours. We trained 3 models (a residual SAE, an attention
output SAE, and a transcoder) for each of the 18 layers of the model. This is about 1 week of v4-8
TPU time.

Our SAEs and training code will be made public after paper acceptance.

C EXAMPLE CIRCUITS

Figure 9: An example of a circuit found using our SFC variant. We focused on a subcircuit with high
indirect effects. Maximum activating examples from the SAE training distribution are included.

An example output of our circuit cleaning algorithm can be found in Figure 9. We can see the flow of
information through a single high-IE attention feature from a task-detection feature (activating on
output tokens) to transcoder and residual execution features (activating on arrow tokens). The feature
activates on antonyms on the detection feature #11050: one can assume the first sequence began as
“Short Term Target”, making the second half an antonym.

We will release a web interface for viewing maximum activating examples and task feature circuits.
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Figure 10: An overview of our Task Vector Cleaning algorithm. TV stands for Task Vector.

D TASK VECTOR CLEANING ALGORITHM

The task vector cleaning algorithm is a novel approach we developed to isolate task-relevant features
from task vectors. Figure 10 provides an overview of this algorithm.

Our process begins with collecting residuals for task vectors using a batch of 16 and 16-shot prompts.
We then calculate the SAE features for these task vectors. We explored two methods: (1) calculating
feature activation and then averaging across tokens, and (2) averaging across tokens first and then
calculating the task vector. They had similar performances.

The cleaning process is performed on a training batch of 24 pairs, with evaluation conducted on an
additional 24 pairs. All prompts are zero-shot. An example prompt is as follows:

BOS Follow the pattern : \n

tall → short \n

· · ·

old → young \n

hot → cold

Example 2: The steered token is highlighted in red. Loss is calculated on the yellow token.

The algorithm is initialized with the SAE reconstruction as a starting point. It then iteratively steers
the model on the reconstruction layer and calculates the loss on the training pairs. To promote sparsity,
we add the L1 norm of weights with coefficient l to the loss function. The algorithm implements
early stopping when the L0 norm remains unchanged for n iterations.

1 def tvc_algorithm(task_vector, model, sae):
2 initial_weights = sae.encode(task_vector)
3 def tvc_loss(weights, tokens):
4 task_vector = sae.decode(weights)
5 mask = tokens == self.separator

5Phi-3 is trained primarily with instruction following data, making it an aligned chat model.
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6 model.residual_stream[layer, mask] += task_vector
7 # loss only on the "output" tokens,
8 # ignoring input and prompt tokens
9 loss = logprobs(model.logits, tokens, ...)

10 return loss + l1_coeff * l1_norm(weights)
11 weights = initial_weights.copy()
12 optimizer = adam(weights, lr=0.15)
13 last_l0, without_change = 0, 0 # early stopping
14 for _ in range(1000):
15 grad = jax.grad(tvc_loss)(weights, tokens)
16 weights = optimizer.step(grad)
17 if l0_norm(weights) != last_l0:
18 last_l0, without_change = l0_norm(weights), 0
19 elif without_change >= 50:
20 break
21 return weights

Algorithm 1: Pseudocode for Task Vector Cleaning.

The hyperparameters l, n, and learning rate α can be fixed for a single model. We experimented with
larger batch sizes but found that they did not significantly improve the quality of extracted features
while substantially slowing down the algorithm due to gradient accumulation.

The algorithm takes varying amounts of time to complete for different tasks and models. For Gemma
1, it stops at 100-200 iterations, which is close to 40 seconds at 5 iterations per second.

It’s worth noting that we successfully applied this method to the recently released Gemma 2 2B and
9B models using the Gemma Scope SAE suite (Lieberum et al., 2024). It was also successful with the
Phi-3 3B model (Abdin et al., 2024) and with our SAEs, which were trained similarly to the Gemma
1 2B SAEs.

D.1 L1 SWEEPS

To provide more details about the method’s effectiveness across various models and SAE widths, we
conducted L1 coefficient sweeps with our Phi-3 and Gemma 1 2B SAEs, as well as Gemma Scope
Gemma 2 SAEs. We chose two SAE widths for Gemma 2 2B and 9B: 16k and 65k. For Gemma 2
2B we also sweeped across several different target SAE l0 norms. We studied only the optimal task
vector layer for each model: 12 for Gemma 1, 16 for Gemma 2, 18 for Phi-3, and 20 for Gemma 2
9B. We used a learning rate of 0.15 with the Gemma 1 2B, Phi-3, and Gemma 2 2B 65k models, 0.3
with Gemma 2 2B 16k, and 0.05 with 200 early stopping steps for Gemma 2 9B.

Figures 11, 12, 13 compare TVC and ITO against original task vectors. The X-axis displays the
fraction of active task vector SAE features used. The Y-axis displays the TV loss delta, calculated
as (LTV − LMethod)/LZero, where LTV is the loss from steering with the task vector, LMethod

is the loss after it has been cleaned using the corresponding method, and LZero is the uninformed
(no-steering) model loss. This metric shows improvement over the task vector relative to the loss of
the uninformed model. Points were collected from all tasks using 5 different L1 coefficient values.

We observe that our method often improves task vector loss and can reduce the number of active
features to one-third of those in the original task vector while maintaining relatively intact performance.
In contrast, ITO rarely improves the task vector loss and is almost always outperformed by TVC.

Figures 14, 15 and 16 show task-mean loss decrease (relative to no steering loss) and remaining TV
features fraction plotted against L1 sweep coefficients. We see that L1 coefficients between 0.001
and 0.025 result in relatively intact performance, while significantly reducing the amount of active
SAE features. From Figure 15 we can notice that the method performs better with higher target l0
SAEs, being able to affect the loss with just a fraction of active SAE features.
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Figure 11: Performance of ITO and TVC across different tasks and optimization parameters compared
to task vectors for Gemma 1 2B. The Y-axis shows relative improvement over task vector loss, while
the X-axis shows the fraction of active TV features used. Metric calculation details are available in
D.1
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Figure 12: Performance of ITO and TVC across different tasks and optimization parameters compared
to task vectors for Phi-3. The Y-axis shows relative improvement over task vector loss, while the
X-axis shows the fraction of active TV features used. Metric calculation details are available in D.1
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Figure 13: Performance of ITO and TVC across different tasks and optimization parameters compared
to task vectors for Gemma 2 Gemma Scope SAEs. The Y-axis shows the relative improvement over
the loss from steering with a task vector, while the X-axis shows the fraction of active TV features
used. Metric calculation details are available in Appendix D.1.

E DETAILS OF OUR SFC IMPLEMENTATION

E.1 IMPLEMENTATION DETAILS

Our implementation of circuit finding attribution patching is specialized for Jax and Penzai.

We first perform a forward-backward pass on the set of prompts, collecting residuals and gradients
from the metric to residuals. We collect gradients with jax.grad by introducing ”dummy” zero-
valued inputs to the metric computation function that are added to the residuals of each layer. Note
that we do not use SAEs during this stage.

We then perform an SAE encoding step and find the nodes (residual, attention output, and transcoder
SAE features and error nodes) with the highest indirect effects using manually computed gradients
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Figure 14: L1 coefficient sweeps across different models and SAEs. All metrics are averaged across
all tasks. Error bars show the standard deviation of the average for each case. Metric calculation
details are available in D.1.
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Figure 15: L1 coefficient sweeps across different target SAE sparsities and widths for Gemma 2 2B.
All metrics are averaged across all tasks. Error bars show the standard deviation of the average for
each case. Metric calculation details are available in Appendix D.1.
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Figure 16: L1 coefficient sweeps across two SAE widths for Gemma 2 9B. All metrics are averaged
across all tasks. Error bars show the standard deviation of the average for each case. Metric calculation
details are available in D.1.

from the metric. After that, we find the features with the top K indirect effects for each layer and
position mask and treat them as candidates for circuit edge targets. We compute gradients with
respect to the metric to the values of those nodes, propagate them to ”source features” up to one layer
above, and multiply by the values of the source features. This way, we can compute indirect effects
for circuit edges and prune the initially fully connected circuit. However, like Marks et al. (2024), we
do not perform full ablation of circuit edges.

We include a simplified implementation of node-only SFC in Algorithm 2.

1 # resids_pre: L x N x D - the pre-residual stream at layer L
2 # resids_mid: L x N x D - the middle of the residual stream
3 # (between attention and MLP) at layer L
4 # grads_pre: L x N x D - gradients from the metric to resids_pre
5 # grads_mid: L x N x D - gradients from the metric to resids_mid
6 # all of the above are computed with a forward and backward
7 # pass without SAEs
8

9 # saes_resid: L - residual stream SAEs
10 # saes_attn: L - attention output SAEs
11 # transcoders_attn: L - transcoders predicting resids_pre[l+1]
12 # from resids_mid[l]
13

14 def indirect_effect_for_residual_node(layer):
15 sae_encoding = saes_resid[layer].encode(
16 resids_pre[layer])
17 grad_to_sae_latents = jax.vjp(
18 saes_resid[layer].decode,
19 sae_encoding
20 )(grads_pre[l])
21 return (grad_to_sae_latents * sae_encoding).sum(-1)
22

23 def indirect_effect_for_attention_node(layer):
24 sae_encoding = saes_attn[layer].encode(

25
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25 resids_mid[layer] - resids_pre[layer])
26 grad_to_sae_latents = jax.vjp(
27 saes_attn[layer].decode,
28 sae_encoding
29 )(grads_mid[l])
30 return (grad_to_sae_latents * sae_encoding).sum(-1)
31

32 def indirect_effect_for_transcoder_node(layer):
33 sae_encoding = transcoders[layer].encode(
34 resids_mid[layer])
35 grad_to_sae_latents = jax.vjp(
36 transcoders[layer].decode,
37 sae_encoding
38 )(grads_pre[l+1])
39 return (grad_to_sae_latents * sae_encoding).sum(-1)

Algorithm 2: Pseudocode for Sparse Feature Circuits indirect effect calculation.

E.2 FAITHFULNESS CHARTS

Figure 17 shows the average effect of node trimming on faithfulness in all tasks. We follow the
methodology of Marks et al. (2024) thresholding removing nodes with low IE first. We can see that
the circuits keep at least 0.8 faithfulness on average with just 1000 nodes (on layers 11-17).
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Figure 17: Average faithfulness across tasks depending on the number of nodes left in the circuit.

Figure 18 shows the averaged inverse node trimming effect on faithfulness across all tasks. Marks
et al. (2024) calls this metric completeness and calculates it as the faithfulness of the model just
with the circuit ablated. We calculate it by thresholding the nodes starting with those that have the
highest IE. We can see that the ablation of even just several hundred nodes has a drastic impact on
faithfulness. These results were also computed with the window of layers being 11-17).

F STEERING WITH TASK-EXECUTION FEATURES

To evaluate the causal relevance of our identified ICL features, we conducted a series of steering
experiments. Our methodology employed zero-shot prompts for task-execution features, measuring
effects across a batch of 32 random pairs.

We set the target layer as 12 using Figure 3a and extracted all task-relevant features on it using our
cleaning algorithm. To determine the optimal steering scale, we conducted preliminary experiments
using manually identified task-execution features across all tasks. Through this process, we estab-
lished an optimal steering scale of 15, which we then applied consistently across all subsequent
experiments.
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Figure 18: Average faithfulness across tasks depending on the amount of important nodes ablated
from the circuit .

For each pair of tasks and features, we steered with the feature and measured the relative loss
improvement compared to the model’s task performance on a prompt without steering. This relative
improvement metric allowed us to quantify the impact of each feature on task performance.

To normalize our results and highlight the most significant effects, we applied several post-processing
steps:

• We clipped the effect to be no more than 1, thus ignoring any instances of loss increase.

• We then normalized the effects for all features within the same task to be in the 0 to 1 range.

• To remove clutter and highlight important features, we set effects lower than 0.2 to 0.

• Finally, we removed features with low maximum effect across all tasks to reduce the size of
the resulting diagram. The full version of this diagram is present in Figure 19.

Prompt example with the steered token highlighted in red. Loss is calculated on the yellow token:

BOS Follow the pattern : \n

hot → cold

Example 3: Task-execution steering setup. The steered token is highlighted in red and the loss is
calculated on the yellow token.

We also share the version of Figure 19 without normalization and value clipping. It is present in
Figure 21. We see that task vectors generally contain just a few task-execution features that can boost
the task themselves. The remaining features have much weaker and less specific effects.

F.1 NEGATIVE STEERING

To further explore the effects of the executor feature, we also conducted negative steering experiments.
The setup involved a batch of 16 ICL prompts, each containing 32 examples for each task. We
collected all features from the cleaned task vectors for every task. Similar to positive steering, we
steered with features on arrow tokens, but this time multiplying the direction by -1. Prompts this time
contained several arrow tokens, and we steered on all of them simultaneously.

An important distinction from positive steering is that performance degradation in negative steering
may occur due to two factors: (1) our causal intervention on the ICL circuit and (2) the steering scale
being too high. To address this, we measured accuracy across all pairs in the batch instead of loss, as
accuracy does not decrease indefinitely. We also observed that features no longer share a common
optimal scale. Consequently, for each task pair, we iterated over several scales between 1 and 30.
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Figure 19: Full version of the heatmap in Figure 5 showing the effect of steering with individual
task-execution features for each task. The features present in the task vector of the corresponding task
are marked with dots. Green dots show the features that were extracted by cleaning. Red dots are
features present in the original task vector. Not all original features from the task vectors are present.

For each feature, we then selected a scale that reduced accuracy by at least 0.1 for at least one task.
Steering results at this scale were used for this feature across all tasks.

Figure 20 displays the resulting heatmap. While we observe some degree of task specificity — and
even note that some executing features from Figure 19 have their expected effects — we also find that
negative steering exhibits significantly lower task specificity. Additionally, we observe that non-task-
specific features have a substantial impact in this experiment. This suggests that steering experiments
alone may not suffice for a comprehensive analysis of the ICL mechanism, thus reinforcing the
importance of methods such as our modification of SFC.
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Figure 20: Negative steering heatmap. Displays accuracy decrease after optimal scale negative
steering on full ICL prompts. Green circles show which features were present in the cleaned task
vector of the corresponding task. More details in Appendix F.1

F.2 GEMMA 2 2B POSITIVE STEERING

Additionally, we conducted zero-shot steering experiments with Gemma 2 2B 16k and 65k SAEs.
Contrary to Gemma 1 2B, task executors from Gemma 2 2B did not have a single common optimal
steering scale. Thus, we added an extra step to the experiment: for each feature and task pair, we
performed steering with several scales from 30 to 300, and then selected the scale that had maximal
loss decrease on any of the tasks. We then used this scale for this feature in application to all other
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tasks. Figure 22a and Figure 22b contain steering heatmaps for Gemma 2 2B 16k SAEs and Gemma
2 2B 65k SAEs respectively.

We observe a relatively similar level of executor task-specificity compared to Gemma 1. One notable
difference between 16k and 65k SAEs is that 65k cleaned task vectors appear to contain more features
with a strong effect on the task. However, this may be due to the l1 regularization coefficient being
too low.
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Figure 21: Unfiltered version of the heatmap in Figure 7 showing the effect of steering with individual
task-execution features for each task. The features present in the task vector of the corresponding task
are marked with dots. Green dots show the features that were extracted by cleaning. Red dots are the
features present in the original task vector. Since the chart only contains features from cleaned task
vectors, not all features from the original task vectors are present.

G TASK-DETECTION FEATURES

For our investigation of task-detection features, we employed a methodology similar to that used for
task execution features, with a key modification. We introduced a fake pair to the prompt and focused
our steering on its output. This approach allowed us to simulate the effect of the detection features
the way it happens on real prompts.

Our analysis revealed that layers 10 and 11 were optimal for task detection, with performance notably
declining in subsequent layers. We selected layer 11 for our primary analysis due to its proximity
to layer 12, where we had previously identified the task execution features. This choice potentially
facilitates a more direct examination of the interaction between detection and execution mechanisms.

The steering process for detection features followed the general methodology outlined in Appendix F,
including the use of a batch of 32 random pairs, extraction of task-relevant features, and application
of post-processing steps to normalize and highlight significant effects. The primary distinction lies in
the application of the steering to the prompt.

This approach allowed us to create a comprehensive representation of the causal relationships between
task-detection features and the model’s ability to recognize specific tasks, as visualized in Figure 7.

BOS Follow the pattern : \n

X → Y \n

hot → cold

Example 4: Task-detection steering setup. The steered token is highlighted in red and the loss is
calculated on the yellow token.
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(b) Gemma 2 2B 65k

Figure 22: Unfiltered positive steering heatmap for Gemma 2 2B SAEs showing the effect of steering
with individual task-execution features for each task. Steering scales were optimized for each feature.
The features present in the task vector of the corresponding task are marked with dots. Green dots
show the features that were extracted by cleaning. Red dots are the features present in the original
task vector. Since the chart only contains features from cleaned task vectors, not all features from the
original task vectors are present.

H ICL INTERPRETABILITY LITERATURE REVIEW

This section will cover work on understanding ICL not mentioned in Section 5.

Raventós et al. provides evidence for two different Bayesian algorithms being learned for linear
regression ICL: one for limited task distributions and one that is similar to ridge regression. It
also intriguingly shows that the two solutions lie in different basins of the loss landscape, a phase
transition necessary to go from one to the other. While interesting, it is not clear if the results apply
to real-world tasks.

The existence of discrete task detection and execution features hinges on the assumption that in-
context learning works by classifying the task to perform and not by learning a task. Pan et al. aims
to disentangle the two with a black-box approach that mixes up outputs to force the model to learn
the task from scratch. Si et al. look at biases in task recognition in ambiguous examples through
a black-box lens. We find more clear task features for some tasks than others but do not consider
whether this is linked to how common a task is in pretraining data.

Xie et al. proposes that in-context learning happens because language models aim to model a latent
topic variable to predict text with long-range coherence. Wang et al. (2024) show following the two
proposed steps rigorously improves results in real-world models. However, they do not endeavor to
explain the behavior of non-finetuned models by looking at internal representations; instead, they aim
to improve ICL performance.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Han et al. use a weight-space method to find examples in training data that promote in-context
learning using a method akin to Grosse et al. (2023), producing results similar to per-token loss
analyses in Olsson et al. (2022), and, similarly to the studies mentioned above, finds that those
examples involve long-range coherence. Our method is also capable of finding examples in data that
are similar to ICL, and we find crisp examples for many tasks being performed Appendix I.

Bansal et al. offers a deeper look into induction heads, scaling up Olsson et al. (2022) the way we
scale up Marks et al. (2024). Crucially, it finds that MLPs in later layers cannot be removed while
preserving ICL performance, indirectly corroborating our findings from Section 4.2. Chen et al. come
up with a proof that states that gradient flow converges to a generalized version of the algorithm
suggested by Olsson et al. (2022) when trained on n-gram Markov chain data.

Garg et al. studies the performance of toy models trained on in-context regression various function
classes. Yadlowsky et al. find that Transformers trained on regression with multiple function classes
have trouble combining solutions for learning those functions. Oswald et al. construct a set of weights
for linear attention Transformers that reproduce updates from gradient descent and find evidence for
the algorithm being represented on real models trained on toy tasks. Mahankali et al. proves that
this algorithm is optimal for single-layer transformers on noisy linear regression data. Shen et al.
questions the applicability of this model to real-world transformers. Bai et al. finds that transformers
can switch between multiple different learning algorithms for ICL. Dai et al. find multiple similarities
between changes made to model predictions from in-context learning and weight finetuning.

While important, we do not consider this direction of interpreting transformers trained on regression
for concrete function classes through primarily white-box techniques. Instead, we aim to focus on
clear discrete tasks which are likely to have individual features.

The results of Wang et al. are perhaps the most similar to our findings. The study finds ”anchor tokens”
responsible for aggregating semantic information, analogous to our ”output tokens” (Section 2.3) and
task-detection features. They tackle the full circuit responsible for ICL bottom-up and intervene on
models using their understanding, improving accuracy. Like this paper, they do not deeply investigate
later attention and MLP layers. Our study uses SAE features to find strong linear directions on output
and arrow tokens corresponding to task detection and execution respectively, offering a different
perspective. Additionally, we consider over 20 diverse token-to-token tasks, as opposed to the 4 text
classification datasets considered in citewanglabel2023.

I MAX ACTIVATING EXAMPLES

This section contains max activating examples for some executor and detector features for Gemma
1 2B, as described in (Bricken et al., 2023). They are computed by iterating over the training data
distribution (FineWeb) and sampling activations of SAE features that fall within disjoint buckets for
the activation value of span 0.5. We can observe that the degree of intuitive interpretability depends
on the amount of task-similar contexts in the training data and SAE width.

We also provide max activating examples for Gemma 2 2B executor features from Figures 22b and
22a. These max activating examples are taken from the Neuronpedia (Lin, 2023) and are available in
Figures 26 and 25.

Here we can notice the main difference between executors and detectors: executors mainly activate
before the task completion, while detectors activate on the token that completes the task. We also
found that in Gemma 1 2B detector features for some tasks were split between several token-level
features (like the journalism feature in Figure 24f), and they did not create a single feature before the
task executing features activated. We attribute this to the limited expressivity of the SAEs that we
used.
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(a) Max activating examples for the antonyms executor
feature 11618.

(b) Max activating examples for the English to for-
eign language translation executor feature 26987.

(c) Max activating examples for the translation to En-
glish executor feature 5579.

(d) Max activating examples for the ”next comes
gerund form” executor feature 15554.

(e) Max activating examples for the prediction of city/-
country feature 850.

(f) Max activating examples for the person’s occu-
pation executor feature 13458.

Figure 23: Max activating examples for executor features from Figure 5.
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(a) Max activating examples for the antonyms de-
tector feature 11050.

(b) Max activating examples for the English to foreign
language switch detector feature 7928.

(c) Max activating examples for the gerund form
detector feature 8446.

(d) Max activating examples for the translation to En-
glish detector feature 31123.

(e) Max activating examples for the country detec-
tor feature 11459.

(f) Max activating examples for the journalist feature
26436. (The strongest detector for the person profession
task).

Figure 24: Max activating examples for detector features from the Figure 7
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(a) Max activating examples for the language pre-
diction executor feature 13804.

(b) Max activating examples for the repetition executor
feature 12646. Extracted from the algo last TV.

(c) Max activating examples for the cap-
ital prediction executor feature 16315. (d) Max activating examples for the translation feature 493.

Figure 25: Max activating examples for Gemma 2 2B 16k executor features from the Figure 22a

(a) Max activating examples for the antonyms
executor feature 45288.

(b) Max activating examples for the foot-
ball player position executor feature 18981.

(c) Max activating examples for the per-
son profession executor feature 46729.

(d) Max activating examples for translation to English executor
feature 62633.

Figure 26: Max activating examples for Gemma 2 2B 65k executor features from the Figure 22b
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