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ABSTRACT

While humans excel at continual learning (CL), deep neural networks (DNNs) ex-
hibit catastrophic forgetting. A salient feature of the brain that allows effective
CL is that it utilizes multiple modalities for learning and inference, which is un-
derexplored in DNNs. Therefore, we study the role and interactions of multiple
modalities in mitigating forgetting and introduce a benchmark for multi-modal
continual learning. Our findings demonstrate that leveraging multiple views and
complementary information from multiple modalities enables the model to learn
more accurate and robust representations. This makes the model less vulnerable
to modality-specific regularities and considerably mitigates forgetting. Further-
more, we observe that individual modalities exhibit varying degrees of robustness
to distribution shift. Finally, we propose a method for integrating and aligning the
information from different modalities by utilizing the relational structural similar-
ities between the data points in each modality. Our method sets a strong baseline
that enables both single- and multimodal inference. Our study provides a promis-
ing case for further exploring the role of multiple modalities in enabling CL and
provides a standard benchmark for future research.1

1 INTRODUCTION

Lifelong learning requires the learning agent to continuously adapt to new data while retaining
and consolidating previously learned knowledge. This ability is essential for the deployment of
deep neural networks (DNNs) in numerous real-world applications. However, one critical issue in
enabling continual learning (CL) in DNNs is catastrophic forgetting, whereby the model drastically
forgets previously acquired knowledge when required to learn new tasks in sequence (McCloskey
& Cohen, 1989). Overcoming catastrophic forgetting is essential to enabling lifelong learning in
DNNs and making them suitable for deployment in dynamic and evolving environments.

On the other hand, the human brain excels at CL. A salient feature of the brain that may play a critical
role in enhancing its lifelong learning capabilities is that it processes and integrates information from
multiple modalities. Various studies have shown that sensory modalities are integrated to facilitate
perception and cognition instead of processing them independently (Mroczko-Wasowicz, 2016).
In particular, integrating audio and visual information has been shown to lead to a more accurate
representation of the environment, which improves perceptual learning and memory (McDonald
et al., 2000). Therefore, the multi-modal approach to learning enhances the brain’s ability to acquire
and consolidate new information.

We hypothesize that integrating multi-modal learning into DNNs can similarly enhance their life-
long learning capability. By combining information from different modalities, the models can de-
velop a more comprehensive understanding of the environment as it receives multiple views of the
object, leading to a more accurate and robust representation, which is less sensitive to modality-
specific regularities. In recent years, there have been several studies on how to optimally combine
multiple modalities, such as vision, audio, and text, and multimodal learning has shown promise
in various computer vision applications, including image captioning (Wu et al., 2016) and object

1The code and dataset will be made publicly available upon acceptance.
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Figure 1: Multimodal continual learning (MMCL) benchmark is based on a subset of the VGGSound
dataset (for increased accessibility to the research community), which covers five super categories
with twenty sub-classes each. The three CL scenarios cover various challenges that a learning agent
has to tackle in the real world and provide correspondence with unimodal benchmarks.

recognition (Karpathy et al., 2014). However, the efficacy of multiple modalities in continual learn-
ing and an optimal method for integrating them to mitigate forgetting is understudied, particularly
in challenging scenarios such as class incremental and domain incremental learning.

Our study addresses this research gap by studying the role and interactions of multiple modalities in
mitigating forgetting in challenging and realistic continual learning settings. Our analysis demon-
strates that learning from multiple modalities allows the model to learn more robust and general
representations, which are less prone to forgetting and generalize better across tasks compared to
learning from single modalities. Furthermore, we show that multimodal learning provides a better
trade-off between the stability and plasticity of the model and reduces the bias towards recent tasks.
Notably, we argue that in addition to providing complementary information about the task, different
modalities exhibit different behavior and sensitivity to shifts in representations depending upon the
nature of domain shift, which enhances the stability and transferability of features across the tasks.
Therefore, leveraging complementary information from diverse modalities, each exhibiting vary-
ing levels of robustness to distribution shifts, can enable the model to learn a more comprehensive
and robust representation of the underlying data. The improved representation facilitates improved
generalization and retention of knowledge across tasks, thereby enabling effective CL.

Based on the insights from our analysis, we propose a rehearsal-based multimodal CL method that
utilizes the relational structural similarities between data points in each modality to integrate and
align information from different modalities. Our approach allows the model to learn modality-
specific representations from the visual and audio domains, which are then aligned and consolidated
in such a manner that a similar relational structure of the data points is maintained in the modality-
specific representations as well as the fused representation space. This facilitates the integration
and alignment of the two modalities and the subsequent consolidation of knowledge across tasks.
Furthermore, our method allows for and enables improved inference with both single and multiple
modalities, which significantly improves its applicability in real-world scenarios.

Finally, we introduce a benchmark for class- and domain-incremental learning based on the VG-
GSound dataset (Chen et al., 2020), which provides a standardized evaluation platform for the
community to compare and develop methods for multimodal incremental learning. Our bench-
mark focuses on challenging scenarios where data is received incrementally over time, simulating
real-world scenarios where models need to adapt to new classes or domains without forgetting pre-
viously learned information and are exposed to additional challenges including class imbalance,
learning over multiple recurrences of objects across tasks, and non-uniform distributions of classes
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over tasks. We empirically demonstrate the effectiveness of our approach on this benchmark and
provide a strong baseline for future work. Overall, our study presents a compelling case for further
exploring multimodal continual learning and provides a platform for the development and bench-
marking of more robust and efficient multimodal lifelong learning methods.

1.1 RELATED WORK

The various approaches to addressing catastrophic forgetting in continual learning (CL) can be cate-
gorized into three main groups. Regularization-based methods (Kirkpatrick et al., 2017; Ritter et al.,
2018; Zenke et al., 2017; Li & Hoiem, 2017) involve applying regularization techniques to penalize
changes in the parameter or functional space of the model. Dynamic architecture methods (Yoon
et al., 2018; Rusu et al., 2016) expand the network to allocate separate parameters for each task.
Rehearsal-based methods (Riemer et al., 2018; Arani et al., 2022; Buzzega et al., 2020) mitigate
forgetting by maintaining an episodic memory buffer and rehearsing samples from previous tasks.
Among these, rehearsal-based methods have proven to be effective in challenging CL scenarios.
However, CL has been predominantly studied in an unimodal setting in the visual domain, and the
effect and role of multiple modalities in mitigating forgetting in CL is understudied.

On the other hand, there has been substantial attention and progress in learning from multiple modal-
ities (Bayoudh et al., 2021). Various research directions have been explored, depending on specific
applications. Some studies have focused on exploring the unsupervised correspondence between
multimodal data to learn meaningful representations for downstream tasks (Alwassel et al., 2020;
Hu et al., 2019a;b). Furthermore, extensive research is dedicated to leveraging information from
multiple modalities to enhance model performance in specific tasks such as action recognition (Gao
et al., 2020; Kazakos et al., 2019), audio-visual speech recognition (Hu et al., 2016; Potamianos
et al., 2004), visual question answering (Wu et al., 2017; Ilievski & Feng, 2017) and object recog-
nition (Peng et al., 2022). However, these studies focus on generalization in the i.i.d. setting, and
progress has not been sufficiently transferred to the CL setting. A recent study Srinivasan et al.
(2022) provides a benchmark for multimodal CL; however, they focus on vision and language tasks
where each task differs significantly from the other, and their setting does not adhere to the key
desiderata outlined in Farquhar & Gal (2018). Furthermore, it lacks correspondence with the chal-
lenging and established unimodal CL scenarios (van de Ven & Tolias, 2019), which is essential
to assess the benefits of multimodal learning compared to unimodal learning and leveraging the
progress in the unimodal CL literature. Our study aims to fill this gap.

2 MULTIMODAL CONTINUAL LEARNING BENCHMARK

In order to fully explore the potential and benefits of the increasing amount of multimodal data in
real-world applications in enhancing the lifelong learning capability of DNNs, it is imperative to
extend the traditional unimodal CL benchmarks to encompass multimodal scenarios. Therefore, we
introduce a standardized Multimodal Continual Learning (MMCL) benchmark (Figure 1), which
aims to simulate challenging and realistic real-world CL scenarios while maintaining correspon-
dence with unimodal CL benchmarks and scenarios (van de Ven & Tolias, 2019).

MMCL benchmark is built upon the VGGSound dataset (Chen et al., 2020), which provides a diverse
collection of corresponding audio and visual cues associated with challenging real-world objects and
actions and allows for the exploration of multimodal learning scenarios. To ensure accessibility to
a wider research community, we select a more uniform subset from the VGGSound dataset, with a
total number of samples similar to CIFAR datsets (Krizhevsky et al., 2009) (∼50000 samples uni-
formly distributed across 100 classes), thus mitigating the requirement for extensive computational
resources and memory. We present three distinct CL scenarios within the MMCL benchmark.

Seq-VGGSound: This scenario simulates the Class-Incremental Learning (Class-IL) setting, where
a subset of 100 classes is uniformly divided into a disjoint set of N tasks. As new classes are
introduced in each subsequent task, the learning agent must differentiate not only among classes
within the current task but also between classes encountered in earlier tasks. Class-IL evaluates
the method’s ability to accumulate and consolidate knowledge and transfer acquired knowledge to
efficiently learn generalized representations and decision boundaries for all encountered classes.
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Figure 2: Taskwise performance of models trained with experience replay (1000 buffer size) on
multimodal vs. unimodal (audio and visual) data on Seq-VGGSound. As we train on new tasks, T
(y-axis), we monitor the performance on earlier trained tasks (x-axis). Multimodal training not only
learns the new task better but also retains more performance of earlier tasks.

Dom-VGGSound: This scenario simulates the Domain-Incremental Learning (Domain-IL) setting,
where the input distribution changes while the output distribution remains the same. To achieve
this, we consider the supercategory of classes as the target label, and in each subsequent task, we
introduce a new set of sub-classes. We consider five supercategories (Home, Sports, Music, People,
and Vehicles). Domain-IL assesses the agent’s capability to learn generalized features that are robust
to changes in input distribution and to transfer knowledge across different domain shifts.

GCIL-VGGSound: This scenario simulates the Generalized Class Incremental Learning set-
ting (GCIL), which captures additional challenges encountered in real-world scenarios where task
boundaries are blurry. The learning agent must learn from a continuous stream of data, where classes
can reappear and have varying data distributions. In addition to preventing catastrophic forgetting,
the CL method must address sample efficiency, imbalanced classes, and efficient knowledge trans-
fer. GCIL-VGGSound introduces assimilated challenges to evaluate the robustness and adaptability
of the learning method. For further details on the MMCL benchmark and the settings mentioned
above, please refer to Appendix.

3 A CASE FOR MOVING BEYOND UNIMODAL CONTINUAL LEARNING

To assess the efficacy of using multiple modalities in CL, we conducted a comprehensive analy-
sis on the Seq-VGGSound scenario, which simulates the challenging Class-IL setting. We aim to
investigate the effect of integrating multiple modalities in mitigating forgetting in challenging and
realistic CL setting and the different characteristics instilled in the model. To this end, we employ
the experience replay (ER) method (with a 1000 buffer size) and compare its performance when
learning from unimodal data (Audio and Visual) versus multimodal data. By examining the perfor-
mance of the models, we aim to understand how multimodal learning influences the model’s ability
to retain previously learned knowledge while learning new tasks. Our analysis demonstrates notable
advantages of learning from multiple modalities over single-modal learning approaches.

3.1 IMPROVED CONTINUAL LEARNING PERFORMANCE

The key challenge in CL is mitigating forgetting of earlier tasks as the model learns new tasks.
A closer look at the task-wise performances of the models in Figure 2 shows that learning with
multimodal data significantly improves both the performance of the model on the current task and
performance retention of earlier tasks compared to learning from single modalities. This is further
demonstrated in the mean accuracy of the models in Figure 3(a). Interestingly, we observe that
different modalities exhibited varying levels of generalization capabilities and susceptibility to for-
getting. Notably, the audio domain provides significantly better performance and lower levels of
forgetting compared to the visual domain. We argue that different modalities might exhibit different
behavior and sensitivity in terms of shifts in representations depending upon the nature of domain
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Figure 3: Comparison of experience replay with 1000 buffer size on multimodal data vs. unimodal
(audio and visual) data on Seq-VGGSound. (a) provides the mean accuracy of the models on all
the tasks (T) seen as training progresses. (b) provides the plasticity stability trade-off of the models
while (c) compares the task recency bias. Learning with multimodal data mitigates forgetting, pro-
vides a better stability-plasticity trade-off, and reduces the bias toward recent tasks.

shift. For instance, moving from daylight scenarios to nighttime would incur a greater shift in the
visual domain compared to audio, whereas moving from an indoor to an outdoor setting may incur
a higher shift in the audio domain. Therefore, leveraging the complementary information from dif-
ferent modalities, which shows different degrees of robustness to distribution shifts, can enable the
models to capture a more comprehensive and robust representation of the underlying data, leading
to improved generalization and retention of knowledge across tasks.

3.2 STABILITY PLASTICITY TRADE-OFF

To further investigate the efficacy of multimodal learning in addressing the stability-plasticity
dilemma that is central to CL, we follow the analysis in (Sarfraz et al., 2022) to quantify the trade-off
between stability and plasticity of models trained with different modalities. Given the task perfor-
mance matrix T (Figure 2), stability (S) is defined as the average performance of all previous t− 1
tasks after the learning task t, while plasticity (P ) is quantified by the average performance of the
tasks when they are initially learned, computed as mean(Diag(T )). Finally, the trade-off is given by
(2× S × P )/(S + P ).

Stability reflects the model’s ability to avoid forgetting and maintain performance on previous tasks,
while plasticity captures the model’s capacity to learn new tasks. Achieving effective CL requires
finding an optimal balance between stability and plasticity. Figure 3(b) shows that multimodal
learning considerably improves both the plasticity and stability of the model compared to unimodal
training and thus a much better trade-off.

3.3 TASK RECENCY BIAS

The sequential learning process in CL introduces a bias in the model towards the most recent task,
significantly affecting its performance on earlier tasks (Wu et al., 2019). To investigate the poten-
tial of multimodal learning in mitigating the recency bias, we assess the probability of predicting
each task at the end of training. To measure the probability, we utilize the softmax output of each
sample in the test set and calculate the average probabilities of the classes associated with each
task. Figure 3(c) shows that multimodal learning considerably reduces the bias towards the recent
task compared to learning from unimodal data. This provides valuable insight into the effective-
ness of multimodal learning in addressing performance degradation in earlier tasks and highlights
its potential to mitigate the bias inherent in sequential task learning in CL.

Overall, our analysis provides a compelling case for leveraging multiple modalities to mitigate for-
getting in CL. The observations of improved CL performance, better stability plasticity trade-off, and
reduced recency bias combined with the insights on complementary information and the differential
impact of task transitions across modalities underscore the importance of multimodal integration
and alignment for effective CL in DNNs.
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Figure 4: Semantic-Aware Multimodal (SAMM) approach leverages the relational structural in-
formation between data points in each modality to integrate and align information from different
modalities. Modality-specific representations are learned in the visual and audio encoders, which
are then aligned and consolidated to maintain a similar relational structure across the modality-
specific representations and the fused representation space. This integration and alignment process
enables the consolidation of knowledge across tasks.

4 STRUCTURE-AWARE MULTIMODAL CONTINUAL LEARNING

Building upon the insights from our analysis, we present a novel rehearsal-based semantic aware
multimodal continual learning method, called SAMM, which leverages the relational structure be-
tween data points in individual modalities to facilitate the consolidation of individual representations
into the combined multimodal representation space. Our approach aims to integrate and align infor-
mation from different modalities while maintaining a similar relational structure across the modality-
specific and fused representation spaces. The goal is to allow the model to learn modality-specific
representations from the visual and audio domains while utilizing the inherent structural similarities
between data points to align the representations of respective modalities. In the consolidation step,
the fused representation space is formed by combining the aligned modality-specific representations.
This consolidated representation captures the complementary information from both modalities, re-
sulting in a more comprehensive and robust representation of the underlying data. This enhances
knowledge transfer and retention, enabling the model to leverage the combined knowledge learned
across tasks. One notable advantage of our method is its versatility and applicability to both single
and multiple modalities. By improving the performance of individual modalities and facilitating
their integration, our approach can effectively harness the benefits of multimodal learning while ac-
commodating scenarios where only one modality is available or applicable. This flexibility enhances
the utility of our method in real-world scenarios where multimodal data may not always be available
or one source is noisy or corrupt.

4.1 COMPONENTS

Our approach involves training a unified multimodal architecture on a continuous video (paired
audio and visual data) stream, D containing a sequence of T tasks (D1, D2, ..., DT ). The model
comprises an audio encoder f(.; θa) and a visual encoder f(.; θv) followed by a fusion encoder
which fuses the audio and visual representations to form the multimodal representations f(.; θav).
Finally, the architecture consists of classification heads for the single modalities (g(.;ϕa) for audio
and g(.;ϕv) for visual) and multimodal representations (g(.;ϕav)). For brevity, we represent the
audio and visual features as fa = f(xa; θa) and fv = f(xv; θv) respectively, and the subsequent
multimodal features as fav = f(fa, fv; θav). The superscripts t and b indicate features corresponding
to task and buffer samples, respectively.
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4.1.1 MULTIMODAL AND UNIMODAL TASK LOSS

In addition to the supervised loss on the multimodal classifier, we also train the individual modality
classification heads. The benefits are two-fold: first, it allows the model to make unimodal infer-
ences, which substantially enhances its applicability in scenarios where either only a single modality
is available, or the signal from one modality is corrupted; second, it encourages the task-specific
modality to learn richer features and increases the alignment between the feature space of individual
modalities, which facilitates the subsequent consolidation in the common multimodal representation
space. The supervision loss on the task samples (xta, x

t
v, y

t) ∼ Dt is given by:

Lt
s = LCE(g(f

t
av;ϕav), y

t) + λ(LCE(g(f
t
a;ϕa), y

t) + LCE(g(f
t
v;ϕv), y

t)) (1)

where λ (set to 0.01 for all experiments) is the regularization weight that controls the relative weigh-
tage between unimodal and multimodal performance. LCE refers to cross-entropy loss.

4.1.2 EXPERIENCE REPLAY

A common and effective approach in CL to mitigate catastrophic forgetting is the replay of samples
from previous tasks stored in a small episodic memory buffer M. To maintain the buffer, we employ
reservoir sampling (Vitter, 1985), which attempts to match the distribution of the data stream by
ensuring that each sample in the data stream has an equal probability of being represented in the
buffer and randomly replaces existing memory samples. At any given time, the distribution of the
samples in the buffer approximates the distribution of all the samples encountered so far. At each
training step, we sample a random batch (xba, x

b
v, y

b) ∼ M from the buffer and apply the supervised
classification loss:

Lb
s = LCE(g(f

b
av;ϕav), y

b) + λ(LCE(g(f
b
a;ϕa), y

b) + LCE(g(f
b
v ;ϕv), y

b)) (2)

4.1.3 CONSISTENCY REGULARIZATION

While the replay of samples from previous tasks can help alleviate catastrophic forgetting, it strug-
gles to accurately approximate the joint distribution of all tasks encountered thus far, particularly
when using smaller buffer sizes. To address this limitation, additional information from the model’s
earlier state is necessary to maintain the parameters closer to their optimal minima for previous
tasks. Similar to earlier works (Buzzega et al., 2020; Arani et al., 2022), we employ consistency
regularization on the model’s logit response, which encodes valuable semantic information about
the representations and decision boundaries, thereby facilitating knowledge retention.

In addition to storing and replaying samples from previous tasks, our approach involves saving the
unimodal and multimodal output logits (za, zv , zav) of the model. The inclusion of unimodal and
multimodal outputs in the consistency regularization process further strengthens the retention of
semantic relations. Furthermore, to encourage consistency across the modalities and improve the
quality of supervision, we employ dynamic consistency whereby for each sample, we select refer-
ence logits zr from the modality that provides the highest softmax score for the ground truth class.
By encouraging the model to maintain consistent responses across modalities, we facilitate the inte-
gration and alignment of information from different modalities, enhancing the overall performance
of the model in multimodal CL scenarios. The consistency regularization loss is given by:

Lb
cr = LMSE(g(f

b
av;ϕav), z

b
r) + λ(LMSE(g(f

b
a;ϕa), z

b
r) + LMSE(g(f

b
v ;ϕv), z

b
r)) (3)

where LMSE refers to the mean squared error loss.

4.1.4 SEMANTIC-AWARE FEATURE ALIGNMENT

One of the key challenges in multimodal learning is the alignment of feature representations across
different modalities. This alignment is crucial for the effective consolidation of knowledge in a
shared multimodal representation space. We address this challenge by leveraging the relational
structure between data points in each modality to integrate and align information from different
modalities. Our method allows the model to learn modality-specific representations from both the
visual and the audio domains. These modality-specific representations are then aligned and con-
solidated in a way that preserves a similar relational structure among the data points within each
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Table 1: Comparison of different methods on individual and multiple modalities on different CL
scenarios based on VGGSound dataset. We report mean and 1 s.t.d of three seeds

Buffer Method Seq-VGGSound Dom-VGGSound

Audio Visual Multimodal Audio Visual Multimodal

JOINT 53.47±1.62 34.52±0.28 58.21±0.24 57.48±0.80 42.87±2.04 61.66±1.40

SGD 7.60±0.33 6.37±0.33 8.24±0.09 26.89±0.17 24.80±0.12 27.38±0.35

500 ER 13.92±1.07 9.07±0.39 21.44±1.76 31.31±0.80 27.36±1.60 31.85±1.09

SAMM 23.61±1.06 8.90±0.35 26.34±0.42 36.27±0.29 24.98±0.41 35.74±0.59

1000 ER 18.06±0.44 11.23±0.57 28.09±0.77 35.31±0.65 27.73±0.99 36.00±1.08

SAMM 28.59±0.77 10.08±0.34 34.51±2.37 38.63±0.43 26.53±0.12 39.49±0.36

2000 ER 23.41±0.50 14.19±0.32 34.02±0.40 38.23±0.72 29.28±0.63 39.30±1.55

SAMM 32.20±0.28 11.60±0.43 37.76±2.94 42.53±0.47 28.12±0.31 43.72±0.34

modality. This encourages the learned multimodal representations to capture the essential relation-
ships and similarities between modalities and promotes a holistic understanding of the underlying
data, improving the ability of the model to learn and transfer knowledge across tasks.

To this end, we employ the distance-wise relation knowledge distillation loss from Park et al. (2019)
separately on the task samples and the buffer samples:

Lb,t
FA =

∑
(xi,xj)∈χ2

b,t

LH(ψD(f ia, f
j
a), ψD(f iv, f

j
v )), ψD(f i, f j) =

1

µ
||f i − f j ||2 (4)

where LH is Huber loss (Huber, 1992), µ represents the mean distance between all pairs within the
given batch of χ2

b,t, whether it is from the buffer or task samples. Essentially, the loss encourages a
similar pair-wise relationship structure in the different modalities by penalizing distance differences
between their individual output representation spaces.

Finally, we combine individual losses to train the multimodal architecture.

L = Lt
s + Lb

s + β · Lb
cr + (Lt

FA + Lb
FA) (5)

where β controls the strength of consistency regularization loss.

4.1.5 DYNAMIC MULTIMODAL INFERENCE

While utilizing multiple modalities improves generalization, for each sample, ideally the model
should be able to weigh each modality based on how informative it is. This allows us to deal with
scenarios where one modality is corrupted, noisy, or occluded. To this end, we use a weighted
ensemble of the classifiers based on the softmax confidence score:

zo = max(σ(za)) · za +max(σ(zv)) · zv +max(σ(zav)) · zav (6)

For such a weighting scheme to work well, the model should be well-calibrated so that the confi-
dence score is a good proxy of the modality’s performance. At the end of each task, we calibrate the
classifiers using temperature scaling (Guo et al., 2017) on the buffer samples. This provides us with
a simple and effective approach for leveraging different modalities based on their quality of signal.

5 EMPIRICAL EVALUATION

We compare our semantic-aware multimodal learning approach with the baseline Experience Replay
(ER) (Riemer et al., 2018) method under uniform experimental conditions (Section A.2) on a wide
range of multimodal CL scenarios that cover various challenges that a lifelong learning agent has
to tackle in the real world. Note that the baseline ER method requires separate training on each
individual modality and can make inferences on either multimodal data or on individual modalities.
In contrast, our proposed approach utilizes a unified architecture that is able to make inferences

8
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Table 2: Performance comparison on individual and multiple modalities on GCIL-VGGSound.

Buffer Method Uniform Longtail

Audio Video MultiModal Audio Video MultiModal

– JOINT 44.02± 1.51 26.23±0.63 49.32±0.43 43.23±1.38 25.19±0.76 47.17±0.31

SGD 20.34±0.51 11.47±0.79 24.73±0.40 19.00±0.43 10.43±0.67 22.03±0.67

500 ER 24.57±0.44 13.80±0.53 29.76±0.82 24.30±0.33 12.81±0.11 28.58±0.73

SAMM 27.41±0.41 11.90±1.65 34.34±0.78 27.25±0.65 12.06±0.22 34.16±0.81

1000 ER 27.32±0.38 15.53±0.30 34.27±0.77 27.25±0.93 14.24±0.25 31.60±0.94

SAMM 29.99±0.41 13.18±0.64 38.04±1.51 28.52±0.40 12.64±0.12 36.15±0.30

2000 ER 31.30±0.28 17.25±0.09 37.77±0.80 29.75±0.46 17.31±0.21 35.66±0.53

SAMM 31.96±0.76 14.35±0.58 42.08±1.89 30.13±0.68 13.09±0.57 40.33±0.38

under a multimodal setting, as well as individual modalities, enabling more efficient training and
inference while enhancing the applicability of the method.

Table 1 shows that SAMM improves the performance of the model in the majority of the scenarios.
The improvement under Seq-VGGSound shows that SAMM effectively mitigates forgetting and can
learn well-aligned general representations that are able to transfer knowledge across tasks. In partic-
ular, the considerable gains over multimodal ER show that our proposed structure-aware multimodal
learning approach is able to better leverage the complementary information in different modalities
to learn a more robust representation. Interestingly, we observe an order of magnitude gains in au-
dio even compared to a model trained specifically on it. We argue that multimodal learning leads
to richer feature representations that are more generalizable, and aligning the two modalities not
only facilitates the consolidation in the multimodal representation space but also allows efficient
knowledge transfer between modalities. Note that visual generally performs much worse compared
to audio as for many classes (e.g. clapping) audio cues are more informative and visual cues (e.g.
performers on stage) can be misleading. We observe similar gains in the Domain-VGGSound set-
ting, where the model is required to learn robust generalizable features, which are robust to input
distribution. Dom-VGGSound exposes the model to sharp input distribution shift as the subclasses
change at the task transition, and hence the competitive performance of our approach in this setting
suggests that it is able to learn generalizable features that are more robust to distribution shifts.

To further evaluate the versatility of our approach, we also consider GCIL, which introduces addi-
tional complexities of real-world scenarios where tasks are nonuniform, and classes can reoccur with
different distributions. Table 2 compares the performance of our method with ER under the uniform
and longtail data distribution settings. Consistent gains with our method show the effectiveness of
our approach in learning across multiple occurrences of the object, improving the sample efficiency,
and enhancing the robustness to imbalanced data. We attribute the performance gains in our method
to the efficient utilization of individual modalities by encouraging them to learn discriminative fea-
tures using the modality-specific classification head and aligning them using the semantic aware
feature alignment loss, which facilitates the consolidation of modalities in a common representation
space. Overall, our results provide strong motivation for further exploration of multimodal learning
in CL and developing methods that efficiently utilize the complementary information in different
modalities and varying robustness to distribution shifts at the task transition to enable efficient CL.

6 CONCLUSION

Our study highlights the potential of multimodal continual learning in mitigating forgetting in
DNNs. By integrating audio and visual modalities, we observed reduced forgetting and enhanced
adaptability. Additionally, our analysis showed a better trade-off between the stability and plasticity
of the model and reduced bias toward recent tasks. We proposed a rehearsal-based multimodal CL
method that aligns and consolidates modality-specific representations, achieving effective knowl-
edge transfer across tasks. Our benchmark based on the VGGSound dataset provides a standardized
evaluation platform, and our method serves as a strong baseline for future research. We encourage
the further exploration of multimodal CL to develop robust models for dynamic environments.
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A APPENDIX

A.1 ABLATION STUDY

In order to gain a deeper understanding of the individual contributions made by each component of
the SAMM, we systematically introduced each component one at a time and evaluated its impact
on the model’s performance across both unimodal and multimodal inference. Table 3 shows that all
the components (Unimodal classifiers (UM) + Consistency Regularization (CR), Feature Alignment
(FA), and Dynamic Inference (DI)) contribute towards the final performance of the method.

Unimodal classifiers coupled with consistency regularization demonstrate a substantial positive im-
pact on the performance of single modalities and also show improvements in multimodal scenarios.
Furthermore, the incorporation of feature alignment leads to enhanced performance in both the audio
and audio-visual domains. The improvement in the multimodal scenario shows that the alignment
of the individual modalities facilitates the consolidation of complementary information in the fused
representation space. However, perhaps due to the nature of the datasets (where the visual domain is
sometimes unrelated to the audio cues e.g. clapping of the audience in the audio domain while visual
shows the performers taking a standing ovation), this alignment and fusion can lead to a decrement in
the visual modality performance. Additionally, dynamic inference is specifically designed to lever-
age maximum knowledge from both unimodalities, and our experiments confirm its effectiveness,
resulting in an approximately 10% improvement in the performance of the multimodal system.

Table 3: Contribution of the different components (UM: Unimodal classifiers, CR: Consistency
Regularization, FA: Feature Alignment, and DI: Dynamic Inference) of SAMM on the performance
of the model on Seq-VGGSound with 1000 buffer size.

UM + CR FA DI Audio Video Multimodal

✗ ✗ ✗ 1.05±0.03 1.25±0.06 28.09±0.77

✓ ✗ ✗ 24.03±1.08 10.32±0.28 29.13±0.89

✓ ✓ ✗ 28.59±0.77 10.08±0.34 31.48±1.07

✓ ✓ ✓ 28.59±0.77 10.08±0.34 34.51±2.37

A.2 EXPERIMENTAL SETUP

For all our multimodal experiments, we follow the setup in (Peng et al., 2022) and employ
ResNet18 (He et al., 2016) architecture as the backbone. The visual encoder takes multiple frames
as input, following Peng et al. (2022); Zhao et al. (2018), while the audio encoder modifies the input
channel of ResNet18 from 3 to 1, as done in Chen et al. (2020). The videos in VGGSound dataset
have a duration of 10 seconds, and we extract frames at a rate of 1 frame per second and uniformly
sample 4 frames from each 10-second video clip as visual inputs in the temporal order. For au-
dio data processing, following Peng et al. (2022), we transform the entire audio into a spectrogram
with dimensions of 257×1,004 using the librosa (McFee et al., 2015) library. We employ a window
length of 512 and an overlap of 353. To optimize our model, we use stochastic gradient descent
(SGD) with a learning rate of 0.1. From the architecture perspective, we adapt the ResNet architec-
ture (following Peng et al. (2022); Zhao et al. (2018)) for the visual encoder and audio encoder. The
first conv layer of both audio and visual encoder uses a kernel size of 7 and stride 2 followed by max
pooling with kernel 3 and stride 2. For the Multimodal fusion, we use FiLM Perez et al. (2018) to
fuse the representations from audio and video encoder which applies affine transformations to the
intermediate representations to learn how to combine them effectively. The fused representations are
passed to the multimodal classifier whereas the individual representations are flattened and passed
to modality-specific representations. This allows the model the flexibility to perform both unimodal
and multimodal predictions. The hyperparameters for our approach are set using a small validation
set. For all our experiments we report the mean and 1 std of three different seeds.

A.3 HYPERPARAMETERS

As the goal of our study was to understand the role and benefits of utilizing multiple modalities in
CL and not to extract the best possible results and establish a state-of-the-art, we did not conduct an
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extensive hyperparameter search for different buffer sizes and settings. For all our experiments, we
set λ to 0.01. For Dom-VGGSound, we use β=0.1 and for Seq-VGGSound and GCIL-VGGSound,
we used β=1. Note that the results can be improved with hyperparameter tuning.

A.4 MMCL BENCHMARK DETAILS

We designed the multimodal Continual Learning (MMCL) benchmark with the following principles:
(1) Adherence to the desiredata’s in Farquhar & Gal (2018); (2) Correspondence with unimodal
benchmarks; (3) Assessment of challenges that a learning agent encounters in the real world; and
(4) Accessibility to the wider research community.

Therefore, we considered the challenging Class-IL, Domain-IL, and Generalized-Class-IL (GCIL)
scenarios, each of which simulates different sets of challenges for a learning agent in our dynamic
and complex environment. To make the benchmark accessible to the wider research community
and to facilitate further development of multimodal CL methods, we kept the overall dataset size
and the number of classes similar to the widely adopted CIFAR-100 dataset. This ensures that the
benchmark does not require excessively intensive computational and memory resources for experi-
mentation.

We selected a subset of 5 supercategories (animals, music, people, sports, and vehicles) from the
VGG-Sound dataset, each containing 20 subclasses (see Figure 5). This resulted in an overall class
count of 100, similar to CIFAR-100. As with CIFAR-100, we aimed to have 500 training samples
and 50 test samples for each class. However, due to the distribution of classes in the original VGG-
Sound dataset and the current unavailability of some YouTube videos, it was not possible to acquire
500 samples for all the classes. Nevertheless, for the vast majority of classes, our benchmark is based
on a uniform set of 500 training samples (see Figure 5). Notably, for the ‘sports’ supercategory, we
have a lower number of samples for the classes.

Figure 5 provides details about the selected subclasses within each of the 5 supercategories and
their respective training sample counts. For Seq-VGGSound, we randomly shuffled the classes and
divided the dataset into 10 disjoint tasks, each containing 10 classes (the order of classes is each
supercategory is provided in Figure 5). In Dom-VGGSound, we assigned the supercategory as the
target label and created 10 tasks, with each task consisting of samples from the next two subclasses
in the order presented in Figure 5. For example, in Task 1, we utilized samples from the ‘owl
hooting’ and ‘cricket chirping’ subclasses for the ‘animals’ supercategory, and in Task 2, we used
‘gibbon howling’ and ‘woodpecker pecking tree,’ and so forth. In the case of GCIL-VGGSound,
we followed settings similar to Mi et al. (2020): 20 tasks, each with a total of 1000 samples, and
a maximum of 50 classes in each task. For reproducibility, we fixed the GCIL seed at 1992, given
the probabilistic nature of GCIL. For further reproducibility and to make the dataset available to the
research community at large, the dataset files and code for the method and benchmark will be made
publicly available upon acceptance.

A.5 ACTIVATION MAPS

To gain a better understanding of the effect of multimodal learning, we look at the GradCam Sel-
varaju et al. (2017) activations of the model. We use the gradients of the first convolution layer of
the visual net with respect to the output logit corresponding to the class label. The activation maps
in Figure 6 show that MultiModal ER allows the model to attend to regions in the image that are
associated with the label and localize the sound. SAMM considerably improves sound localization
and attends to the most pertinent regions in the image. For playing saxophone, SAMM attends more
to the saxophone and the mouth regions. Similarly, for tap dancing, SAMM rightfully attends more
to the legs. This shows that multiple modalities and structure-aware alignment in SAMM enable
the model to learn more holistic representations and focus on the regions associated with the class.
The enhanced localization of sound in SAMM shows that our method effectively aligns the two
modalities and learn a better representation.
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Figure 5: The distribution of training samples count for the subclasses in each supercategory in the
MMCL benchmark. We consider 5 supercategories with 20 subclasses each and aim for a uniform
sample count of 500 training samples and 50 test samples.
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Figure 6: Gradcam activations for Visual ER, Multimodal ER, and SAMM. Multimodal ER attends
more to the regions that are associated with the class labels and localizes the sound regions better.
This is considerably improved with SAMM which shows that it effectively aligns the two modalities.
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