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Abstract

Machine learning-assisted biological sequence design is a topic of intense interest
due to its potential impact on healthcare and biotechnology. In recent years many
new approaches have been proposed for sequence design through learning from
data alone (rather than mechanistic or structural approaches). These black-box
approaches roughly fall into two camps: (i) optimization against a learned ora-
cle (ii) sampling designs from a generative model. While both approaches have
demonstrated promise, real-world evidence of their effectiveness is limited, whether
used alone or in combination. Here we develop a robust generative model named
VAEProp and use it to optimize Adeno-associated virus (AAV) capsids, a funda-
mental gene therapy vector. We show that our method outperforms algorithmic
baselines on this design task in the real world. Critically, we demonstrate that our
approach is capable of generating vector designs with field-leading therapeutics
potential through in-vitro and non-human primate validation experiments.

1 Introduction

Machine learning presents high potential in improving the safety and efficacy of gene therapy through
the engineering of delivery vectors with improved properties. In recent years ML-guided sequence
design has shown promise in designing proteins such as antibodies, enzymes, and Adeno-associated
virus (AAV) capsids (Bryant et al., 2021; Ogden et al., 2019; Biswas et al., 2021; Madani et al., 2023).
These methods draw from two philosophical paradigms (though increasingly a combination, as herein).

Figure 1: An experimental ML-in-the-loop plat-
form. We validate sequence design methods
through a rapid in-vitro prototyping of methods
in cell culture, before final design occurs in-vivo.

Search-based methods use a learned sequence-
to-function oracle to guide search directly in
(discrete) sequence space. These methods bene-
fit from explicitly maximizing the desired prop-
erty but are susceptible to adversarial optimiza-
tion. This can happen due to model misspecifi-
cation or epistemic uncertainty affecting oracles,
which poses risk when the validation step is
expensive (Brookes et al., 2019b). Generative
methods sidestep optimization by sampling se-
quences directly from a model. These methods
may generate realistic proteins with an above-
baseline functionality but are limited in their
ability to optimize sequences with higher qual-
ity than those in the training set (Sinai et al.,
2021; Riesselman et al., 2018). With notable
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exceptions (Madani et al., 2023; Bryant et al., 2021), there has been limited validation of both types
of methods in the real world, with most previous work using in silico proxies for evaluation. Here we
introduce VAEProp, which achieves the benefit of both design paradigms by performing constrained
search in the latent space of a supervised VAE. VAEProp controls the explore-exploit trade-off with
an explicit parameter, enabling human designers to control their risk. We show that VAEProp outper-
forms both a generative and a search-based baseline at designing AAV capsid sequences for higher
infectivity in vitro and that the risk parameter effectively trades off higher tail performance for lower
average performance. We also show that our method can design sequences on a valuable in vivo task,
highly relevant to clinical applications, by crossing the blood-brain barrier and efficiently transducing
cells (expressing their genetic payload) in the primate brain.

Our approach demonstrates the power of a coupled experimental and in silico platform and illustrates
our improved ability to engineer AAV capsids in NHPs and eventual translation to human medicines.

2 Methods

Offline Model Based Optimization. The objective in a data-driven design problem is to identify an
optimal input x∗ of some ground-truth function, f(x), that encodes a scalar property of the input.
This can be expressed as

x∗ = argmax
x∈X

f(x)

, where X is a bounded set that we refer to as the “input space" of the problem. The input space may
be a discrete or continuous space, and f(x) is typically assumed to be a black box from which we can
only make zeroth-order evaluations. We assume the availability of a static dataset, D = {(xi, yi)}Ni=1,
consisting of elements of the input space paired with corresponding noise-corrupted evaluations of
the ground truth function.

Latent Space Optimization. Because X is typically high-dimensional and discrete, we train a joint
VAE-regression model similar to Gómez-Bombarelli et al. (2018) to map discrete data points x to
low-dimensional continuous points z, where the loss is a combination of the evidence lower bound
(ELBO), for the observed data x and the mean-squared error (MSE) between the true output y and
the predicted output from the regression model fθ(z). The loss function for this model is given by:

L(x, y) = ELBO(x) + MSE(y, fθ(z))

, where the ELBO for the observed data x is:

ELBO(x) = Ez∼qϕ(z|x) [log pθ(x|z)]− DKL (qϕ(z|x)∥p(z))

The term inside the expectation represents the log likelihood of observing x given the latent variable
z. The second term is the Kullback-Leibler divergence between the approximate posterior qϕ(z|x)
and the prior p(z). MSE is the mean squared error between the true label y and the predicted output
from the regression model, fθ(z):

MSE(y, f(z)) = Ez∼qϕ(z|x)
[
(yi − f(z))2)

]
The MSE term can be approximated with Monte Carlo sampling, but for simplicity, we use the
posterior mean zµ. The training objective is to minimize L with respect to the model parameters
by adjusting both the parameters of the regression model and the variational approximation to the
posterior.

After model training, the model can be used for optimization by computing gradients of f(z) with
respect to z holding the regression model parameters constant∇z|θf(z). The key challenge is that
this search procedure is likely to find points with high-error (Brookes et al., 2019a), which are regimes
of the latent space that do not have data support. Below, we describe a simple, scalable approach to
constraining latent space optimization to regimes with training data support.

Approximating the Aggregate Posterior. We constrain search to regions with training data support
by using the aggregate posterior, which has been shown to be a more robust quantity for estimating
the density over latent data points (Tomczak & Welling, 2018; Hoffman & Johnson, 2016). The
aggregate posterior is an expectation of the approximate posterior, marginalized over the data:

q(z) = Ep(x) [q(z|x)]
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When there is a mismatch between the prior and the aggregate posterior, the performance of the
VAE can suffer (Tomczak & Welling, 2018; Hoffman & Johnson, 2016). This mismatch can lead to
situations where the decoder might not have encountered samples from certain regions of the prior
distribution, especially those where the aggregate posterior allocates minimal probability density.
Effectively, the support of the optimal decoder, with respect to the latent vector, tends to be confined
within the support of the marginal posterior. This phenomenon is characterized as the "posterior
holes" problem in Rezende & Viola (2018).

While previous work addressed this issue by minimizing the gap between the prior and the posterior
(thereby lowering the gap between the prior and the aggregate posterior) through more powerful
data-driven priors (Tomczak & Welling, 2018), we do not attempt to fix this mismatch but instead use
the aggregate posterior directly to constrain search to regions with training data support given a fixed
VAE.

While ideally we would estimate q(z) exactly, this is computationally expensive as it requires a sum
over all training points:

qλ(z) =
1

N

N∑
i=1

qϕ(z|xi)

Therefore, we approximate the aggregate posterior q(z) by embedding our data points using the
encoder e, which gives you the posterior means {zµ,i}Ni=1 for the training data, and then we fit a
density model to this batch of data points. Because zµ is low-dimensional and continuous, we use
a Gaussian Mixture Model (GMM) to approximate q(z) as

∑K
k=1 πkN (z|µk,Σk) where πk is the

mixing coefficient for the kth component. In the next section we describe how the aggregate posterior
can be used as a tool for constraining search.

Constraining Search. To avoid latent space optimization from veering off into regions with high
prediction error, we use the aggregate posterior to constrain search to reliable regions. Previous work
has used spherical boundary constraint (Gómez-Bombarelli et al., 2018) and decoder uncertainty
(Notin et al., 2021) to constrain this search. Our approach benefits from simplicity (Scikit-learn’s
(Pedregosa et al., 2011) GMM tool) and can be estimated quickly as it does not require any additional
forward passes through the VAE decoder.

Similar to Notin et al. (2021), we pre-specify an uncertainty threshold T as a stopping criterion for
optimization. We use the 90th, 95th, and 99th percentile negative log-likelihood scores of the training
data for low, medium, and high-risk optimization buckets.

Algorithm 1 Constrained Latent Space Optimization Using The Aggregate Posterior
1: Input: Log-likelihood threshold T , total gradient updates N , gradient scaling factor α
2: Compute posterior means, zµ,i, for training data {xi}Ni=1 using encoder e
3: Approximate the aggregate posterior, q(z), by fitting a Gaussian Mixture Model (GMM) to
{zµ,i}Ni=1

4: Initialize optimization: encode the initial sequence x to z using encoder e
5: for i = 1 to N do
6: if log q(z) ≤ T then
7: Update z with gradient ascent: z← z+ α∇zf(z)
8: end if
9: end for

3 Results

We consider the problem of designing AAV variants that maximize transduction (i.e. how well the
viruses can deliver genetic material to specific tissues or cell types) – a major bottleneck in translating
gene therapies from research to the clinic. A necessary precursor to successfully delivering genetic
material is the proper folding of the viral capsid and encapsulation of the virus’s genetic material,
processes that we collectively refer to as “packaging". Both packaging and transduction can be
quantitatively measured experimentally using standard sequencing-based techniques (see Appendix
for further detail).
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3.1 Experiment Setup

We designed variants of wild-type AAV9 with mutations in variable loop regions of VP3 using three
design methods, VAEProp, AdaLead (Sinai et al., 2020) (as our regression-based search baseline),
and a VAE (Kingma & Welling, 2013) (the generative model baseline without the added optimization
component). We use an initial training dataset containing AAV sequence variants associated with
packaging and transduction measurements. Further details of the methods can be found in the
Appendix.

A B C D

Figure 2: VAEProp achieves high packaging and high transduction. We apply our design method
to optimize in-vitro transduction in cell culture by designing variants of wild-type (WT) AAV9. We
compare our method to two baselines (each method received a budget of 8K variants) and report
both packaging and transduction measurements. (A) Distribution of edit distances to WT. (B) Bar
plot of proportion of designed variants that package (defined as rate of packaging at least 1/32 of
WT). Boxplot (C) and histogram (D) of in-vitro transduction measurements for best 1000 performing
designed variants.

3.2 In vitro designed AAV capsids

We apply VAEProp to the design of AAV sequences in cell culture (HEK293T cells). Our goal
was to evaluate the efficacy of our method as well as understand the impact of the number of steps
of optimization on design quality. VAEProp outperforms the generative and search-based baseline
at designing capsids that are both good at packaging and achieve high transduction. VAEProp
successfully designs capsids at edit distances to wild-type of up to 16 (Figure 2A), of which almost
half package. In comparison, only around a quarter of variants designed by the genetic algorithm
successfully package. Furthermore, VAEProp’s best-performing capsids transduce cells 16-fold better
than AAV9 and between 2-4 fold better than the competing baselines (Figure 2C-D), with VAEProp’s
median sequence transduction exceeding both the VAE and AdaLead’s upper quartile sequence
transduction (Figure 2D).

As an additional advantage VAEProp’s risk parameter enables precise control of the risk-reward
trade-off. We generated sequences with VAEProp with three different risk settings (low, medium,
high). Risk settings correspond to three values for the log-likelihood threshold T . These values were
estimated by computing the 90th, 95th, and 99th percentile negative log-likelihood scores of the
training data under the q(z). This constrains search to points that are at least as likely as the least
likely sequences in the training data. We compare our results to sampling from a VAE. Relative to the
VAE, VAEProp’s designed sequences’ latent points show a density gradient that shifts away from the
training data’s region of highest density and towards the region of higher transduction as we increase
risk (Figure 3A). As expected, higher risk variants have higher average sequence edit distance and
maximum transduction, but at the cost of lower packaging fraction (Figure 3C) and predictability by
models.

3.3 In vivo designed blood-brain barrier crossing capsid

We apply VAEProp to the design of capsids in a NHP study, the gold standard for evaluating clinical
translatability. Our design goal is to maximize transduction in the central nervous system (CNS). This
task is especially challenging because the blood-brain barrier mediates what molecules can enter the
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Figure 3: VAEProp can balance risk-reward tradeoff. We evaluate how the risk parameter translates
to different design outcomes. Each method received a budget of 2K variants. (A) Kernel Density
Estimate (KDE) plot of in-vitro transduction versus edit distance for VAE and the three risk settings
for VAEProp. (B) Proportion of designed variants (log-scale) with a transduction measurement above
a threshold (x-axis). (C) Regression model accuracy for predicting transduction versus proportion of
designed variants that package colored by risk parameter.

brain in the first place, which in practice results in a sparse-reward problem (i.e., most designs have
no transduction). We apply our method to two tasks: (1) a high-throughput design (N=5K) where
the backbone capsid sequence was our previous best variant of AAV9. The new design was in a
region that did not overlap with the positions previously mutated. (2) A low-shot design (N=5) where
the backbone capsid sequence was the wild-type AAV9 sequence. Remarkably, in both settings, we
manage to design variants that improve over our training set by multiple-folds. The best designs
outperform AAV9 (the current standard in clinic) by more than 100-fold in transducing the primate
brain.

4 Conclusion

We present VAEProp, a method that combines generative modeling and regression-based search.
We show that it can design high performing and diverse sequences in the context of AAV design.
We demonstrate that VAEProp outperforms baseline methods at generating functional and high
performing sequences in vitro while providing the user more control over the risk-reward trade-off.
Notably, we have also validated VAEProp in highly relevant in vivo setting in non-human primates
and shown that it is capable of generating variants the can be appealing for clinical applications.
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A AAV experiment details

Data generation Our data contain AAV variants associated with transduction and packaging mea-
surements. The sequences are variants of the AAV9 wild-type sequence, modified in a 63 amino-acid
region containing the VR-IV and VR-V loop of the VP3 capsid protein.

Sequences were assayed for packaging and transduction leveraging a well-established sequencing-
based method, as outlined in Ogden et al. (2019). Initially, a “library" of plasmid sequences, which
encode the desired protein variants, is constructed. Subsequently, these plasmids are exposed to
specific experimental conditions that allow them to transform into proteins and assemble viral capsids,
thus forming a sample of viruses that contain the relevant genetic material. This sample is then
introduced into cells, enabling the viruses to enter these cells and transfer their genetic material
into the cell nuclei through a process known as transduction. Next, the genetic material that has
successfully entered the cell nuclei is gathered. At each experimental stage, a small genetic material
sample is sequenced using Next-Generation Sequencing methods. This facilitates the estimation
of the prevalence of each sequence variant at different stages: within the plasmid library, the virus
sample, and the successfully transduced genetic material. These measurements are provided as
sequencing counts, i.e., the frequency with which a specific variant appears in the sequencing data.
Denote nplasmid

i , nvirus
i and ntsd

i as the sequencing counts of the ith variant in the plasmid, viral and
transduced samples respectively. The packaging capaability of variant i is quantified as the log rate:

ypkg
i = log

nvirus
i

nplasmid
i

(1)

Similarly, the transduction ability of variant i is quantified as

ytsd
i = log

ntsd
i

nvirus
i

. (2)

Design strategy We run three sequence design methods given a fixed training dataset of (xi, y
pkg
i , ytsd

i )
triplets, where xi is the sequence of variant i. The input space for the design is the space of all amino
acid sequences. Details of the surrogate models and search method used are discussed below.

Surrogate models We trained two surrogate models: f̂pkg(x) to predict packaging from sequence
and f̂tsd(x) to predict transduction. These packaging and transduction surrogate models were trained
using the input-label pairs (xi, y

pkg
i ) and (xi, y

tsd
i ), respectively. Both models had a Convolutional

Neural Network (CNN) architecture with following hyperparameters:

• Number of Convolutional Blocks: 2
• Number of Channels: [32, 32]
• Pooling Scales: [0, 0]
• Number of dense layers: 1
• Dense layer size: 32
• activation type: LeakyReLU

Both models were trained by minimizing an MSE loss using the Adam optimization algorithm
until convergence using early stopping on a random-holdout validation set (10% of samples) with a
patience set to 10 epochs.

Baselines. For our search-based baseline, we used AdaLead (Sinai et al., 2020), a variant of a
genetic algorithm that has been shown to work well for biological sequence design applications,
guided by a CNN oracle trained on the full training dataset as the reward function. We refer readers
to Sinai et al. (2020) for a detailed treatment of the AdaLead algorithm.

For our generative baseline, we used a VAE with an encoder-decoder architecture parameterized with
CNNs. We trained the VAE on a filtered set of variants with a transduction measurement greater
than zero (measurements are on a log2 scale and normalized to wild-type), which biases sampling

7



towards variants with higher transduction. We sample variants using a common 2-step heuristic: (a)
embed training data using the encoder e (b) sample from a multivariate Gaussian distribution fit to the
embedding points. Designed variants are pre-filtered according to predicted packaging measurements
using f̂pkg(x).
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