
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

STUDYING THE INTERPLAY BETWEEN THE ACTOR
AND CRITIC REPRESENTATIONS IN REINFORCEMENT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Extracting relevant information from a stream of high-dimensional observations
is a central challenge for deep reinforcement learning agents. Actor-critic algo-
rithms add further complexity to this challenge, as it is often unclear whether the
same information will be relevant to both the actor and the critic. To this end, we
here explore the principles that underlie effective representations for an actor and
for a critic. We focus our study on understanding whether an actor and a critic will
benefit from a decoupled, rather than shared, representation. Our primary finding
is that when decoupled, the representations for the actor and critic systematically
specialise in extracting different types of information from the environment—the
actor’s representation tends to focus on action-relevant information, while the
critic’s representation specialises in encoding value and dynamics information.
Finally, we demonstrate how these insights help select representation learning ob-
jectives that play into the actor and critic’s respective knowledge specialisations,
and improve performance in terms of agent returns.

1 INTRODUCTION

Figure 1: Mod-
els with shared
(top) and decou-
pled representa-
tions (bottom).

In recent years, auxiliary representation learning objectives have become in-
creasingly prominent in deep reinforcement learning (RL) agents (Yarats et al.,
2021; Dunion et al., 2024). These objectives facilitate extracting relevant fea-
tures from high dimensional observations, and can help improve the sample ef-
ficiency and generalisation capabilities of both value-based (Anand et al., 2019;
Schwarzer et al., 2021) and actor-critic methods (Yarats et al., 2019; Zhang et al.,
2021; McInroe et al., 2023). However, knowing whether a particular representa-
tion learning objective will work and understanding why it works is often difficult
due to the interplay between the different components of modern RL algorithms.

Online actor-critic algorithms like PPO (Schulman et al., 2017) jointly optimise
policy improvement and value estimation objectives. When parametrised by
deep neural networks, the actor (in charge of improving the policy) and the critic
(in charge of estimating the value of the current policy) often share the same
learned representation ϕ, which maps observations to latent features z. While
a coupled representation (Figure 1, top) reduces memory footprint and training
costs, Cobbe et al. (2021) and Raileanu & Fergus (2021) report that fully de-
coupling the actor and critic (Figure 1, bottom) improves sample efficiency, and
minimises overfitting to the environment instances, or levels, available during
training.

In this study, we investigate three questions:

1. Why do decoupled representations achieve better performance?

2. Will the actor and critic benefit from specialised representation learning objectives?

3. What interplay remains between the actor and critic, once they are decoupled?

1
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Table 1: Once decoupled, the actor and critic representations ϕA and ϕC specialise in capturing
different information from the environment. Reported values correspond to a PPO agent trained in
Procgen (Cobbe et al., 2020). See §2 and §3 for formal definitions of the quantities quoted.

If ... is high, it is possible to ...
% change from using a
shared representation

ϕA ϕC

I(Z;L) overfit to training levels, i.e., use z to identify levels. -20% +35%
I(Z;V ) use z to predict state values. +37% +41%

I((Z,Z ′);A)
use z and z′ obtained from consecutive timesteps t, t′
to identify the action taken at timestep t. +23% -48%

I(Z;Z ′)
differentiate between latent pairs obtained from
consecutive and non-consecutive timesteps. -96% +324%

Our main findings are summarised below.
• Decoupled actor and critic representations extract different information about the environ-

ment. This information specialisation, described and quantified in Table 1, systematically
occurs in the on-policy algorithms and benchmarks covered by our study, and is consistent
with the actor’s and critic’s respective optimal representations.

• The actor benefits from representation learning when it prioritises extracting level-
invariant information (i.e. features relevant to all levels) over level-specific information.
This prioritisation matters more than picking a particular auxiliary objective.

• Through its role as a baseline in the actor’s objective, a decoupled critic will tend to bias
policy updates to facilitate the optimisation of its own learning objective. The critic, there-
fore, plays an important role in exploration and data collection during training. Thus, we
find that care must be taken when selecting a representation learning objective for the
critic: certain objectives improve the critic’s value predictions but may prevent conver-
gence to the optimal policy because the objective induces significant bias.

2 BACKGROUND

Zero-shot transfer in RL. We consider the problem of zero-shot transfer in RL in the episodic
setting. Following the framework established by Kirk et al. (2023), we model the environment as a
Contextual-MDP (CMDP)M = (S,A,O, T ,Ω, R,C, P (c),P0, γ) with state, action and observa-
tion spaces S, A and O and discount factor γ. In a CMDP, the reward R : S × C × A → R, and
observation functions Ω : S× C→ O as well as the transition T : S× C× A→P(S), and initial
state P0 : C→P(S) kernels can change with the context c ∈ C, with c ∼ P (c) at the start of each
episode. The CMDP is therefore conceptually equivalent to an MDP with state space X : S × C.
Each context c maps one-to-one to a particular environment instance, or level, and thus represents
the component of the state x that cannot change during the episode. During training, we assume
access to a limited set of training levels L, and we measure transfer by evaluating the RL agent on
an held-out set Ltest (both obtained by sampling from P (c)). The agent’s policy π : O → P(A)
maps observations to action distributions and induce a value function V π : X → R mapping states
to expected future returns V π(x) = Eπ[

∑T
t γtrt], where {rt}0:T are possible sequences of rewards

obtainable when following policy π from x and until the episode terminates. We define the optimal
policy for zero-shot transfer π∗ as the policy maximising Ec∼P (c),x0∼P0(c)[V

π(x0)].

Actor-critic architectures. On-policy actor-critic models consist of a policy network πθA
and a

value network V̂θC
, with actor parameters θA and critic parameters θC (we use ·A/·C when referring

to the actor/critic in this work). When learning from high dimensional observations, such as pixels,
a representation ϕ : O → Z maps observations to latent features z ∈ Z. When coupled, the policy
and value networks share a representation and split into actor and critic heads f and v̂. That is, we
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have πθA
= fω ◦ϕη and V̂θC

= v̂ξ ◦ϕη , with θA = (ω,η) and θC = (ξ,η). When decoupled, two
representation functions ϕA, ϕC with parameters (ηA,ηC) are learned.

PPO and PPG. In this work, we investigate the representation properties of PPO (Schulman et al.,
2017) and Phasic Policy Gradient (PPG) (Cobbe et al., 2021), two actor-critic algorithms that have
been reported to benefit from improved sample efficiency and transfer upon decoupling (Raileanu &
Fergus, 2021; Cobbe et al., 2021). In PPO, the actor maximises

Jπ(θA) = EB

[
min(

πθA
(at|ot)

πθAold
(at|ot)

Ât, clip(
πθA

(at|ot)
πθAold

(at|ot)
, 1− ϵ, 1 + ϵ)Ât) + βHH(πθA

(at|ot))
]
,

(1)
where θAold are the actor weights before starting a round of policy updates, B is a batch of trajecto-
ries collected with πθAold

, Ât is an estimator for the advantage function at timestep t, H(·) denotes
the entropy and ϵ and βH are hyperparameters controlling clipping and the entropy bonus. The critic
minimises

ℓV (θC) =
1

|B|
∑
ot∈B

(V̂θC
(ot)− V̂t)

2, (2)

where V̂t are value targets. Both Â and V̂ are computed using GAE (Schulman et al., 2016). PPG
performs an auxiliary phase after conducting PPO updates over Nπ policy phases. To prevent over-
fitting, the auxiliary phase fine-tunes the critic and distills value information into the representation
from much larger trajectory batches Baux =

⋃
i∈1,...,Nπ

Bi, using the loss ℓjoint = ℓV + ℓaux, with

ℓaux(θA) =
1

|Baux|
∑

(at,ot)∈Baux

(V̂ aux
θA

(ot)− V̂t)
2 + βcDKL(πθAold

(at|ot)∥πθA
(at|ot)), (3)

where βc controls the distortion of the policy. When decoupled, V̂ aux = vaux ◦ ϕA distills value
information into representation parameters ηA through an additional head vaux. When coupled,
vaux = v̂, and a stop-gradient operation on ℓV ensures η is updated by the critic during the auxiliary
phase only.

Mutual information. We study the information embedded in features z outputted by ϕ. To do so,
we propose metrics based on the mutual information I(X;Y ), measuring the information shared
between sets of random variables X and Y , defined as

I(X;Y ) = H(X) +H(Y )−H(X,Y ) =
∑
X

∑
Y

p(x, y) log
p(x, y)

p(x)p(y)
, (4)

where integrals replace sums for continuous quantities. I(X;Y ) is symmetric, and quantifies how
much information about Y is obtained by observing X , and vice versa. Similarly, the conditional
mutual information I(X;Y |Z) measures the information shared between X and Y that does not
depend on Z. Finally, our results build upon the data-processing inequality, which states that when
X , Y and Z form the Markov chain X → Y → Z we have I(X;Z) ≤ I(X;Y ). Simply put, all
information that “flows” from X to Z must first flow through Y .

We measure mutual information using the k-nearest neighbors entropy estimator proposed by
Kraskov et al. (2004) and extended to pairings of continuous and discrete variables by Ross (2014).
We briefly introduce notation for random variables used in following sections. L ∼ P (c) denotes
the set of training levels drawn from the CMDP context distribution. A, R, O, O′, X and X ′ are sets
constructed from n transitions (at, rt, ot, ot+1, xt, xt+1) uniformly sampled from a batch of trajec-
tories collected in L using policy π. Z and Z ′ are latents features, with z = ϕ(o), z′ = ϕ(o′). We
construct V using the rewards obtained from t until episode termination, with vt =

∑T
t̄=t γ

t̄−trt̄.

3 CATEGORISING AND QUANTIFYING THE INFORMATION EXTRACTED BY
LEARNED REPRESENTATIONS

To conduct our analysis of the respective functions of the actor and critic representations, we analyse
the information being extracted from observations at agent convergence. We propose four mutual
information metrics to measure information extracted about the identity of the current training level,

3
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the value function and the inverse and forward transition dynamics of the environment. This cate-
gorisation will not completely capture what information gets extracted by representations. However,
we discover it still highlights a specialisation for the actor’s and critic’s representations. Moreover,
our proposed categorisation is strengthened by different theoretical arguments, which are discussed
next.

Overfitting. Our first metric, I(Z;L), quantifies overfitting of the actor and critic representations to
the set of training levels, as it measures how easy it is to infer the identity of the current level from Z.
We follow the same reasoning as Garcin et al. (2024) to derive an upper bound for the generalisation
error that is proportional to I(ZA;L).1

Theorem 3.1. The difference in returns achieved in train levels and under the full distribution, or
generalisation error, has an upper bound that depends on I(ZA;L), with

Ec∼U(L),x0∼P0(c)[V
π(x0)]− Ec∼P (c),x0∼P0(c)[V

π(x0)] ≤

√
2D2

|L|
× I(ZA;L), (5)

where c ∼ U(L) indicates c is sampled uniformly over levels in L, D is a constant such that
|V π(x)| ≤ D/2,∀x, π and ZA is the output space of the actor’s learned representation.

Value information. The second metric quantifies I(Z;V ), the mutual information between Z and
the state values in L when following π. A high I(ZC ;V ) should help optimise ℓV (Equation (2)).
However, we wish to understand whether increasing I(ZA;V ) is always desirable: Cobbe et al.
(2021) report that value distillation into the actor’s representation improves sample efficiency over
L, whereas Raileanu & Fergus (2021) and Garcin et al. (2024) report that a coupled PPO agent
achieves stronger generalisation over Ltest when ℓV remains high during training.

Dynamics in the latent space. The remaining two metrics investigate the transition dynamics
Tz : Z × A → P(Z) within the latent state space Z spanned by the representation. We will
see in later sections that the reduced MDP (Z,A, Tz, Rz, γ) spanned by the actor or critic’s rep-
resentation tend to have distinct Tz , which often markedly differ from the transition dynamics T
in the original environment. I(Z;Z ′) measures whether it is possible to differentiate latent-paris
(ϕ(o), ϕ(o′)) obtained from consecutive observations from latents-pairs from non-consecutive ob-
servations. I((Z,Z ′);A) quantifies how easy it is to predict the action given the pair (ϕ(o), ϕ(o′)).
In Theorem 3.2, we establish that Tz maintains the Markov property of the original MDP when both
of these metrics attain their theoretical maximum.2

Theorem 3.2. if T : X× A→P(X) satisfies the Markov property, and we have I((X,X ′);A) =
I((Z,Z ′);A) and I(X;X ′) = I(Z;Z ′) for any X,X ′, A, Z, Z ′ collected using policy π, then Tz :
Z × A → P(Z) satisfies the Markov property when following π. Tz always satisfies the Markov
property if the above conditions hold for any π.

Given that ϕ only induces Tz for the current π in the on-policy setting, we make the distinction
between Tz being Markov when following π and the more general notion of Tz being Markov when
following any policy. Crucially, Theorem 3.2 generalises the equivalence relations obtained by Allen
et al. (2021) to continuous metrics.3 As such, I((Z,Z ′);A) and I(Z;Z ′) quantify how close any ϕ
comes to have Tz satisfy the Markov property. They remain useful in settings in which it isn’t
practical (or even possible) for Tz to satisfy the Markov property (e.g. when observations are high
dimensional, and/or under partial observability).

4 INFORMATION SPECIALISATION IN ACTOR AND CRITIC REPRESENTATIONS

Raileanu & Fergus (2021); Cobbe et al. (2021) have attributed the performance improvements ob-
tained from decoupled architectures to the disappearance of gradient interference between the actor

1Proofs for the theoretical results presented in this work are provided in Appendix A.
2The Markov property is satisfied for a MDP (Z,A, Tz, Rz, γ) if and only if T (k)

z (zt+1|{at−i, zt−i}ki=0) =

Tz(zt+1|at, zt) and R
(k)
z (zt+1|{at−i, zt−i}ki=0) = Rz(zt+1|at, zt), ∀a ∈ A, z ∈ Z, k ≥ 1.

3Allen et al. (2021) consider Block-MDPs (Du et al., 2019), which are MDPs in which observations are
guaranteed to maintain the Markov property.
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Figure 2: (Top) the initial observations and state spaces of three levels from the assembly line
environment in §4.1. (Bottom) the reduced MDPs spanned by ϕ∗

A and ϕ∗
C .

and critic, and to the critic tolerating a higher degree of sample reuse than the actor before overfit-
ting. We propose a different interpretation: given their different learning objectives, the actor’s and
critic’s optimal representations (defined below) prioritise different types of information from the
environment. While not incompatible with prior interpretations, our claim is stronger. We posit that
an optimal (or near-optimal) representation for both the actor and critic will generally be impossible
under a shared architecture.

Definition 4.1. Given the model m = fω ◦ ϕ and associated loss ℓm(ω, ϕ), an optimal representa-
tion ϕ∗ : O→ Z∗ satisfies the conditions:

1. Optimality conservation. minω ℓm(ω, ϕ∗) = minω,ϕ ℓm(ω, ϕ)

2. Maximal compression. ϕ∗ ∈ argminΦ̃ |Z∗|, with Φ̃ the set of all ϕ satisfying condition 1.

4.1 WARMUP: AN ASSEMBLY LINE INSPECTION PROBLEM

Here we present a motivating example to highlight the respective specialisations and mutual incom-
patibility of ϕ∗

A and ϕ∗
C . Starting from this example, we derive several conditions for specialisation

that apply irrespective of the setting.

In our example, the agent inspects parts for defects on an assembly line. The agent is trained on
a set L of levels drawn from P (c). A level is characterised by a particular combination of part
specifications, number and ordering, each part having a probability PF of being defective. We
depict three possible levels in Figure 2. At each timestep, the agent observes the part specifications
for the current level, which parts are on the assembly line and which part is up for inspection. The
agent picks action a ∈ A = {a0 = accept, a1 = reject} and moves to the next part. It receives a
reward R = r+ when correctly accepting/rejecting a good/defective part and R = r9 when it makes
a mistake, with r+ > r9. The episode terminates early when the agent accepts a defective part,
otherwise it terminates after Nc timesteps, where Nc is the number of parts in level c ∈ L.

4.1.1 THE ACTOR’S OPTIMAL REPRESENTATION

The combinatorial explosion of possible specifications and part assortments means ϕ∗
A should ide-

ally map observations to a reduced MDP spanning a much smaller state space that in the original
environment. However, ϕ∗

A should still provide the information necessary to select the optimal ac-
tion at each timestep of each level, including those not in the training set.

Dynamics of the reduced MDP. Under our definition, the mapping

ϕ∗
A(o) =

{
z∗A0, if a∗ = a0
z∗A1, if a∗ = a1.

(6)

5
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spans the reduced MDP in Figure 2 (bottom left), which describes the perceived environment dy-
namics when only observing the latent states in Z∗

A. By construction, I((Z∗
A, Z

∗
A
′);A) is guaranteed

to be maximised when following the optimal policy. On the other-hand, encoding information about
forward dynamics is not necessary for optimality: even if transitions are deterministic and I(X;X ′)
is maximised under π∗ in the original environment, in this reduced MDP we have I(Z∗

A;Z
∗
A
′) = 0.

Overfitting to training levels. I(Z∗
A;L) should be small for ϕ∗

A to be invariant to individual levels
and allow zero-shot transfer, and this is made evident in our example. However, we can picture an
overfit ϕA with high I(ZA;L), that encodes spurious correlations, to first identify, and then solve
certain levels. For example: “if the rightmost object is a triangle, then I must be in level 1, and, in
level 1, only the triangle has a defect”.

It is therefore desirable to minimise I(Z∗
A;L). However, we note that even ϕ∗

A does not perfectly
achieve this, as it satisfies sufficient conditions for which I(Z∗

A;L) must be positive. We provide
these conditions in Lemma 4.1.
Lemma 4.1. I(Z;L) > 0 if ∃zk, cj ∈ Z × L such that µ(zk|cj) ̸= µ(zk) and I(O;L) > 0,
I(O;L) > 0 being the mutual information between L and observations O, with ϕ(o) = z ∈ Z.

In our example, I(O;L) > 0, since each observation depicts quantities unique to each level. We can
confirm the first condition by inspecting the stationary distributions in a particular level c and over
all levels,

µ(z) =

{
P̄F , if z = z∗A0

PF , if z = z∗A1

µ(z|c) =
{
P̄F
c , if z = z∗A0

PF
c , if z = z∗A1,

(7)

where P̄F = 1 − PF and PF
c is the defect probability when in level c. While Ec[P

F
c ] = PF ,

individual levels will not all have the same distribution of defective parts. For example, being in z∗A1
makes it more likely to be in the second out of the three levels depicted in Figure 2, since it is where
µ(z∗A1) is the highest.

A representation ϕA with a high I(ZA;Z
′
A) may also indirectly encode information relevant to spe-

cific levels. We show in Lemma 4.2 that I(Z;L) increases when I(Z;Z ′) increases, whenever the
information gained does not apply to all levels in L.
Lemma 4.2. I(Z;L) monotonically increases with I(Z;Z ′)− I(Z;Z ′|L).

For example, ϕA encoding that “An object that comes after two spheres always has a defect” applies
to the three levels in Figure 2, but not to all possible levels, and I(Z;L) increases because I(Z;Z ′) >
I(Z;Z ′|L). Conversely, ϕA encoding that “the arrow above an object moves to the right each
timestep” would not increase I(Z;L), because, as this information applies to all levels, we have
I(Z;Z ′) = I(Z;Z ′|L).
The key implications of these lemmas and the above examples are that 1) When I(ZA;L) is high,
it is possible for ϕA to be optimal over L, but not over unseen levels, 2) ϕ∗

A being optimal does
not always guarantee I(Z∗

A;L) = 0 and zero-generalisation error 3) High I(ZA;Z
′
A) may cause

overfitting, due to its relationship with I(ZA;L).

Value distillation may induce overfitting. We now investigate the information ϕ∗
A encodes about

the value function. Lemma 4.3 establishes a sufficient condition for I(Z;V ) to be positive. We then
use this condition in Corollary 4.4 to show that Z∗

A being invariant to rewards by construction isn’t
sufficient for ϕ∗

A to not extract any information about the value function.

Lemma 4.3. I(Z;V ) > 0 if ∃zk, vm ∈ Z × V such that 1
L

∑
c∈L p(zk, vm|c) ̸= p(zk)p(vm).

Corollary 4.4. I(Z;V ) can be positive when Z|L and V |L are conditionally independent. If
I(Z;V ) > 0 and Z|L and V |L are conditionally independent, then I(Z;L) > 0.

Figure 2 showcases an example of this. States values can be higher in levels 2 and 3 than in level 1
because they have more timesteps. Those levels have a higher chance of being in z∗A1 because PF

c
is higher. Then, both the state values and optimal action distributions share a confounder in the level
identities, and lead to I(Z∗

A;V ) being positive. This could challenge the notion that value distillation
is an effective way to improve the actor’s representation, as 1) value information is not necessary for
ϕ∗
A to be optimal and 2) to minimise the value distillation loss, the agent may increase I(Z;V ) by

using I(Z;L) as a proxy, i.e. by overfitting to L.

6
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2.0 2.5 3.0 3.5

DCPG

PPG

PPO

I(Z;L)
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I(Z;V)
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I((Z,Z');A)

I(O;L)
DCPG

PPG

PPO

I(O;V) I(O;O') I((O,O');A)

Figure 3: Mean and 95% confidence interval of I(Z; ·)/I(O; ·) (top/bottom) in Procgen. Top row
shows shared (gray), actor (blue), and critic (orange) representations. Bottom row shows shared
(gray) and decoupled (pink). X-axes are shared across top and bottom. For all algorithms, decou-
pling induces specialisation consistent with §4.

4.2 THE CRITIC’S OPTIMAL REPRESENTATION

The reduced MDP spanned by ϕ∗
C is depicted in Figure 2 (bottom right). In order to ensure per-

fect value prediction, ϕ∗
C maps each possible optimal state value to a different element in Z∗

C , and
it maximises I(Z∗

C ;V ) by construction. I(Z∗
C ;Z

∗
C
′) is also high due to the recurrence V π(x) =

Ea∼π[R(x, a) + γEx′∼Pπ(x′|x)[V
π(x′)]]. Lemma 4.2 tells us that V π is a quantity inherently more

level specific than the optimal action for one timestep, because V π encodes information pertaining
to all future timesteps. Therefore, we should expect that, in general, I(Z∗

C ;L) > I(Z∗
A;L). Corol-

lary 4.5 tells us that I((Z∗
C , Z

∗
C
′);A) is similar to I(Z∗

A;V ) in the sense that, while Z∗
C should be

invariant to actions, we may still observe positive I((Z∗
C , Z

∗
C
′);A) due to confounding induced when

I(Z∗
C ;L) > 0.

Corollary 4.5. I((Z;Z ′);A) can still be positive when (Z,Z ′)|L and A|L are conditionally inde-
pendent. If I((Z;Z ′);A) > 0 and (Z,Z ′)|L, A|L are conditionally independent, then {I(Z;L) > 0
and I(A;L) > 0} and/or {I(Z ′;L) > 0 and I(A;L) > 0}.

ϕ∗
C is not compatible with π∗. Paradoxically, while ϕ∗

C would necessitate trajectories collected
using the optimal policy in order to be learnt, it is not possible to have an optimal policy that only
depends on z∗C . We trace this issue back to ϕ∗

C not satisfying the first condition of Theorem 3.2 under
π∗. The information contained in z∗C is not sufficient for picking the optimal action in any given
timestep, and therefore the best response is to always pick a1 in order to prevent early termination.

4.3 CONFIRMING SPECIALISATION IN THE PROCGEN BENCHMARK

We conclude this section by studying the representations learned by PPO (Schulman et al., 2017),
PPG (Cobbe et al., 2021) and DCPG (Moon et al., 2022), a close variant of PPG that employs
delayed value targets to train the critic and for value distillation. We evaluate all algorithms with
and without decoupling their representation. We conduct our experiments in Procgen (Cobbe et al.,
2020), a benchmark of 16 games designed to measure generalisation in RL. We report our main ob-
servations in below, with extended results and details on our methodology included in Appendix C.2.

Specialisation is consistent with ϕ∗
A and ϕ∗

C . As no algorithm achieves optimal scores in all games,
we now consider the suboptimal representations ϕA and ϕC realistically obtainable by the end of
training. In Figure 3, we observe clear specialization upon decoupling consistent with the properties
we expect for ϕ∗

A and ϕ∗
C . ϕC has high I(Z;V ), I(Z;Z ′) and I(Z;L), while ϕA specializes in

I((Z,Z ′);A) .

Decoupling is more parameter efficient. Since decoupled representations fit twice as many param-
eters, it is fair to wonder whether the performance improvements are caused by an increased model
capacity. To test this, we measure performance as we scale model size in a shared and a decoupled
architecture in Figure 4. Surprisingly, the decoupled agent outperforms a shared model with four
times its original parameter count. This makes the decoupled architecture at least twice as parameter
efficient as a shared architecture.
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Figure 4: Parameter scaling ex-
periments between coupled (blue)
and decoupled (orange) PPO in
Procgen.

On Markov representations. Theorem 3.2 tells us
that a representation is Markov when I((Z,Z ′);A)
and I(Z;Z ′) are both maximised. Yet, some-
times upon decoupling, I((ZA, Z

′
A);A) increases

and I(ZA;Z
′
A) decreases, while I((ZC , Z

′
C);A)

decreases and I(ZC ;Z
′
C) increases. This sug-

gests that neither the actor nor the critic particu-
larly benefit from a Markov representation. It is
consistent with the fact that neither ϕ∗

A nor ϕ∗
C

need to be Markov to be optimal. In fact, we
find no clear correlation between I((Z,Z ′);A) +
I(Z;Z ′) (Figure 7) and agent performance (Fig-
ure 13).

5 REPRESENTATION LEARNING FOR THE ACTOR

In this section, we study how different representation learning objectives affect ϕA in PPO, PPG
and DCPG. We consider advantage (Raileanu & Fergus, 2021) and dynamics (Moon et al., 2022)
prediction, data augmentation (Raileanu et al., 2021) and MICo (Castro et al., 2021), an objective
explicitly shaping the latent space to embed differences in state values. We study these objectives in
Procgen (Figure 5), and in four continuous control environments with video distractors, similar to
those from Stone et al. (2021), which we re-implement in Brax (Freeman et al., 2021) (Figure 11).

Representation learning impacts information specialisation. As expected, applying auxiliary
tasks alters what information is extracted by the representation. With few exceptions, dynamics
prediction plays into the information specialisation of ϕA by consistently increasing I((Z,Z ′);A)
and reducing I(Z;Z ′), I(Z;V ), and I(Z;L). On the other-hand, MICo has the opposite effect on
the aforementioned quantities (sans I(Z;V ) in Procgen and PPO in Brax for I((Z,Z ′);A)). The
effects of the last two objectives are not as clear-cut. Data augmentation produces little change in
each quantity, while advantage prediction tends to reduce the measured mutual information, but is
inconsistent in the quantities it affects. Performance-wise, data augmentation improves train and test
scores for all algorithms; dynamics prediction tends to improve performance for PPG and DCPG;
MICo tends to decrease performance, and advantage prediction makes no noticeable impact. We hy-
pothesise that an effective representation learning objective for ϕA does not change its specialisation
(data augmentation) or plays into it (dynamics prediction), and does not work against it (MICo).

On the importance of the batch size and data diversity. We now turn our attention to an appar-
ent contradiction in the relationship between value distillation and performance. Decoupling PPO,
and thus completely forgoing value distillation, leads to improved train and test scores (Figure 13).
However, PPG and DCPG conduct four times as many value distillation updates as coupled PPO
during training, and achieve an even more significant performance improvement. Crucially, con-
ducting value distillation every Nπ policy phases ensures the batch size Baux is Nπ times as large
as the batch size used in PPO (32 times in our experiments), which increases data diversity. We
hypothesise that this diversity is key for successful representation learning: it leads to more infor-
mation being embedded in ϕA and promotes learning invariances to seemingly unrelated quantities,
improving generalisation. To test this hypothesis, we train PPG under different Baux while keeping
Nπ and the total number of distillation updates the same. We report scores, I(ZA;V ), and I(ZA;L)
in Figure 12. The agent’s scores are proportional to Baux, consistent with a similar experiment con-
ducted by Wang et al. (2023). By the chain rule of mutual information, we can decompose I(ZA;V ):

I(ZA;V ) = I(ZA;V |L) + I(ZA;L)− I(ZA;L|V ), (8)

where I(ZA;V ) is the level-invariant information ZA encodes about V , and I(Z;L) − I(Z;L|V )
is the level-specific information encoded about V . We see that I(ZA;V ) keeps increasing with the
batch size, while I(ZA;L) plateaus. Put together, these results point to level-invariant information
being prioritised when training on larger and more diverse batches of data, and this prioritisation
being important for improving performance.
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6 THE CRITIC’S OBJECTIVE(S) WILL INFLUENCE DATA COLLECTION

We now consider how the same set of representation learning objectives affect the critic’s represen-
tation and present our results in Figures 8 and 11. The effect of a given objective on the information
extracted by ϕC is consistent with how they would have affected ϕA in the previous section. How-
ever, we report two surprising findings: 1) Without conducting any value distillation, decoupled
PPO has a 37% higher I(ZA;V ) than shared PPO (Table 1), and 2) the information specialisation of
ϕC incurred by applying an objective on the critic is often observed in ϕA, albeit to a lesser extent.
Given that the two representations are decoupled, how can an objective applied to ϕC affect ϕA?

As we maintain different optimisers for the actor and critic, their only remaining interaction in
decoupled PPO is through Jπ (Equation (1)): Ât being computed from the critic’s value estimates.
Therefore, at least one of the following hypothesis must hold:

1. Data collection bias. Through Jπ updates, the critic biases π to collect trajectories containing
information relevant to its own learning objective. This information could then leak through ϕA

because more of this information is contained in its input. In this scenario, it is not necessary for
ϕA to become more proficient at extracting critic-relevant information.

2. Implicit knowledge transfer. The advantage targets in Jπ induce information transfer between
ϕC and ϕA when applying the gradients ∇θA

Jπ . Here, ϕA becomes proficient at extracting the
same information ϕC extracts.

The first hypothesis broadly holds in our experiments: in most cases, applying MICo to the critic
increases I(O;V ) and I(O;O′), and applying dynamics prediction increases I((O,O′);A)4. Fur-
thermore, I(O;V ) increases when PPO is decoupled (Figure 3). Without the critic’s influence, there
would be no direct incentive for the actor to collect data that contains value information, since no
value distillation is taking place. It hints at interesting ramifications: the critic may have a much
larger impact on exploration than previously imagined, and it may play fundamentally different
roles between the offline and online RL settings. We leave the exploration of these ramifications to
future work.

To test the second hypothesis, we measure the compression efficiency, applicable whenever I(O; ·) >
0, and defined as

C(Z; ·) = min

(
I(Z; ·)
I(O; ·)

, 1

)
. (9)

For example, C(ZA;V ) measures the fraction of available information in I(O;V ) that is extracted
by ϕA.5 In Tables 2 and 3, we report that C(ZA;V ) does not signficantly change between PPO[sh]
and decoupled PPO, or when MICo is applied to the critic in decoupled PPO. This result appears
to disprove the second hypothesis, at least in PPO. We cannot confirm whether implicit knowledge
transfer occurs PPG and DCPG, as explicit knowdledge transfer from the critic into the actor already
occurs through value distillation.

Finally, we highlight that this data collection bias generally leads to worse performance (Figure 13),
even with a representation learning objective aligned with the critic’s specialisation. Interestingly,
employing different representation learning objectives for the actor and the critic results in surprising
interactions. In Procgen, using advantage distillaton on the actor does not affect performance, and
using MICo on the critic degrades it. However, combining the two brings I(O;V ) (Figure 10)
back down to normal levels, and sharply increases PPO’s performance on both the train and test
sets (Figure 13), suggesting that objectives aligned with ϕA can reduce the bias in data collection
induced by the critic.

4In contrast, I(O;L) does not vary significantly, given that the policy does not control which level is played
in an episode.

5By the data processing inequality we must have I(O; ·) ≥ I(Z; ·), and C(Z; ·) cannot be larger than 1. We
enforce this upper bound as our estimator sometimes underestimates I(O; ·) for high dimensional observations.
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Figure 5: Mean and 95% confidence intervals of I(Z; ·)/I(O; ·) (top/bottom) for actor (blue) and
critic (orange) representations in Procgen. Information measured from agent observations shown
in pink. X-axes are shared across top and bottom. Auxiliary tasks shown are MICo, dynamics
prediction (D), and data augmentation (Dr) applied to the actor (A).

7 RELATED WORK

Representation learning in RL. Representation learning objectives have been used in RL for a
variety of reasons such as sample efficiency (Jaderberg et al., 2017; Gelada et al., 2019; Laskin et al.,
2020a; Lee et al., 2020; Laskin et al., 2020b), planning (Sekar et al., 2021; McInroe et al., 2024),
disentanglement (Dunion et al., 2023), and generalisation (Higgins et al., 2017; Li et al., 2021).
Some works focus on designing metrics motivated by theoretical properties such as bisimulation
metrics, pseudometrics, decompositions of MDP components, or successor features (Ferns et al.,
2004; Mahadevan & Maggioni, 2007; Dayan, 1993; Castro, 2020; Agarwal et al., 2021; Castro
et al., 2021; 2023).

Analysing representations in RL. Despite the large body of research into representation learn-
ing objectives in RL, relatively little work has gone into understanding the learned representations
themselves (Wang et al., 2024). Several works use linear probing to determine how well learned
representations relate to environment or agent properties (Racah & Pal, 2019; Guo et al., 2019;
Anand et al., 2019; Zhang et al., 2024). Other works analyse the learned representation functions
via saliency maps which help visualise where an agent is “paying attention” (Rosynski et al., 2020;
Atrey et al., 2020; Dunion et al., 2024).

8 CONCLUSION

In this work, we conducted an in-depth analysis of the representations learned by actor and critic
networks in on-policy deep reinforcement learning. Our key findings revealed that when decoupled,
actor and critic representations specialise in extracting different types of information from the en-
vironment. We found that employing representation learning objectives that support the actor and
critic specialisations can result in significant performance gains. Finally, we discovered that the
critic influences policy updates to collect data that is informative for its own learning objective. This
finding highlighted the critic’s significant role in shaping exploration.

Our work opens up new avenues for research into the interplay between actor and critic represen-
tations in reinforcement learning. Future work could explore the implications of our findings for
exploration strategies, and whether we observe similar specialisation and interplay outside of the
online and on-policy setting.
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REPRODUCIBILITY STATEMENT

Reproducibility can be challenging without access to the data generated during experiments. To
assist with this, we will make all of our experimental data, including model checkpoints, logged
data and the code for reproducing the figures in this paper openly available upon its publication.

REFERENCES

Rishabh Agarwal, Marlos C. Machado, Pablo Samuel Castro, and Marc G. Bellemare. Contrastive
behavioral similarity embeddings for generalization in reinforcement learning. In ICLR, 2021.

Cameron Allen, Neev Parikh, Omer Gottesman, and George Konidaris. Learning markov state ab-
stractions for deep reinforcement learning. Advances in Neural Information Processing Systems,
34:8229–8241, 2021.

Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, and R Devon
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alisation in deep reinforcement learning. Journal of Artificial Intelligence Research, 76:201–264,
2023.
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Trevor McInroe, Lukas Schäfer, and Stefano V. Albrecht. Multi-horizon representations with hier-
archical forward models for reinforcement learning. TMLR, 2023.

Trevor McInroe, Adam Jelley, Stefano V. Albrecht, and Amos Storkey. Planning to go out-of-
distribution in offline-to-online reinforcement learning. In RLC, 2024.

Seungyong Moon, JunYeong Lee, and Hyun Oh Song. Rethinking value function learning for gen-
eralization in reinforcement learning. Advances in Neural Information Processing Systems, 35:
34846–34858, 2022.

Evan Racah and Christopher Pal. Supervise thyself: Examining self-supervised representations in
interactive environments. arXiv preprint: arXiv:1906.11951, 2019.

Roberta Raileanu and Rob Fergus. Decoupling value and policy for generalization in reinforce-
ment learning. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th Interna-
tional Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, vol-
ume 139 of Proceedings of Machine Learning Research, pp. 8787–8798. PMLR, 2021. URL
http://proceedings.mlr.press/v139/raileanu21a.html.

Roberta Raileanu, Max Goldstein, Denis Yarats, Ilya Kostrikov, and Rob Fergus. Auto-
matic data augmentation for generalization in reinforcement learning. In Marc’Aurelio Ran-
zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.
5402–5415, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
2b38c2df6a49b97f706ec9148ce48d86-Abstract.html.

Brian C Ross. Mutual information between discrete and continuous data sets. PloS one, 9(2):
e87357, 2014.

Matthias Rosynski, Frank Kirchner, and Matias Valdenegro-Toro. Are gradient-based saliency maps
useful in deep reinforcement learning? arXiv preprint: arXiv:2012.01281, 2020.

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In Yoshua Bengio and
Yann LeCun (eds.), 4th International Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL http:
//arxiv.org/abs/1506.02438.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv, 2017.

Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bach-
man. Data-efficient reinforcement learning with self-predictive representations. In ICLR, 2021.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models. In ICML, 2021.

Austin Stone, Oscar Ramirez, Kurt Konolige, and Rico Jonschkowski. The distracting con-
trol suite – a challenging benchmark for reinforcement learning from pixels. arXiv preprint
arXiv:2101.02722, 2021.

Han Wang, Erfan Miahi, Martha White, Marlos C Machado, Zaheer Abbas, Raksha Kumaraswamy,
Vincent Liu, and Adam White. Investigating the properties of neural network representations in
reinforcement learning. Artificial Intelligence, 330:104100, 2024.

13

http://proceedings.mlr.press/v139/raileanu21a.html
https://proceedings.neurips.cc/paper/2021/hash/2b38c2df6a49b97f706ec9148ce48d86-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/2b38c2df6a49b97f706ec9148ce48d86-Abstract.html
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1506.02438


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Kaixin Wang, Daquan Zhou, Jiashi Feng, and Shie Manno. Ppg reloaded: An empirical study on
what matters in phasic policy gradient. In ICML, 2023.

Jiayi Weng, Min Lin, Shengyi Huang, Bo Liu, Denys Makoviichuk, Viktor Makoviychuk,
Zichen Liu, Yufan Song, Ting Luo, Yukun Jiang, Zhongwen Xu, and Shuicheng Yan. En-
vPool: A highly parallel reinforcement learning environment execution engine. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems, volume 35, pp. 22409–22421. Curran Associates, Inc., 2022.
URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
8caaf08e49ddbad6694fae067442ee21-Paper-Datasets_and_Benchmarks.
pdf.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Im-
proving sample efficiency in model-free reinforcement learning from images. arXiv preprint:
arXiv:1910.01741, 2019.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. In International Conference on Learning Representa-
tions, 2021. URL https://openreview.net/forum?id=GY6-6sTvGaf.

Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning invari-
ant representations for reinforcement learning without reconstruction. In ICLR, 2021.

Wancong Zhang, Anthony GX-Chen, Vlad Sobal, Yann LeCun, , and Nicolas Carion. Light-weight
probing of unsupervised representations for reinforcement learning. In RLC, 2024.

A THEORETICAL RESULTS

Theorem 3.1. The difference in returns achieved in train levels and under the full distribution, or
generalisation error, has an upper bound that depends on I(ZA;L), with

Ec∼U(L),x0∼P0(c)[V
π(x0)]− Ec∼P (c),x0∼P0(c)[V

π(x0)] ≤

√
2D2

|L|
× I(ZA;L), (5)

where c ∼ U(L) indicates c is sampled uniformly over levels in L, D is a constant such that
|V π(x)| ≤ D/2,∀x, π and ZA is the output space of the actor’s learned representation.

Proof. This result directly follows from a result obtained by Bertrán et al. (2020) and reproduced
below.

Theorem A.1. For any CMDP such that |V π(x)| ≤ D/2,∀x, π, with D being a constant, then for
any set of training levels L, and policy π

Ec∼U(L),x0∼P0(c)[V
π(x0)]− Ec∼P (c),x0∼P0(c)[V

π(x0)] ≤

√
2D2

|L|
× I(π;L), (10)

Then, as π = f ◦ ϕA, by the data processing inequality we always have I(π;L) ≤ I(ZA;L), and
therefore,

Ec∼U(L),x0∼P0(c)[V
π(x0)]− Ec∼P (c),x0∼P0(c)[V

π(x0)] ≤

√
2D2

|L|
× I(π;L)

≤

√
2D2

|L|
× I(ZA;L)

.

Garcin et al. (2024) follow the same reasoning and obtain an equivalent result, without restating the
bound.
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Theorem 3.2. if T : X× A→P(X) satisfies the Markov property, and we have I((X,X ′);A) =
I((Z,Z ′);A) and I(X;X ′) = I(Z;Z ′) for any X,X ′, A, Z, Z ′ collected using policy π, then Tz :
Z × A → P(Z) satisfies the Markov property when following π. Tz always satisfies the Markov
property if the above conditions hold for any π.

Proof. This proof has two part. We first demonstrate that the Inverse Model condition of Theo-
rem A.2 from Allen et al. (2021) (reproduced below) is satisfied if and only if I((Z,Z ′);A) =
I((X,X ′);A). We then show that if I(Z;Z ′) = I(X;X ′) then the Density Ratio condition is also
satisfied.

Theorem A.2. ϕ is a Markov representation if the following conditions hold for every timestep t
and any policy π:

1. Inverse Model. The inverse dynamic model, defined as I(a|s′, s) := T (s′|a,s)π(a|s)
Pπ(s′|s) , where

Pπ(s′|s) =
∑

ā∈A T (s′|ā, s)π(a|s), should be equal in the original and reduced MDPs.
That is we have Pπ(a|z′, z) = Pπ(a|s, s′),∀a ∈ A, s, s′ ∈ S.

2. Density Ratio. The original and abstract next-state density ratios are equal when con-
ditioned on the same abstract state: Pπ(z′|z)

Pπ(z′) = Pπ(s′|z)
Pπ(s′) ,∀x′ ∈ S, where Pπ(s′|z) =∑

s̄∈S P
π(s′|s̄)µ(s̄|z) and µ(s|z) =

1ϕ(s)=zP
π(s)∑

s̄∈S P
π(s|s̄) . Pπ(s′|z) is the probability of transi-

tioning to state s′ and µ(s|z) is the probability of currently being in state s when in latent
state z.

We begin with two observations that are useful for our derivation.

Observation A: Given that any z ∈ Z is obtained from the mapping x
Ω→ o

ϕ→ z, and that h = ϕ ◦Ω
is a deterministic (but not necessarily invertible) function, each element x ∈ X maps to a single
element z ∈ Z. It directly follows that ∀a, z1, z2 ∈ A× Z× Z, we have

p(a, z1, z2) =
∑

x1,x2∈X2

p(a, x1, x2)1[z1, z2 = h(x1), h(x2)]

and
p(z1, z2) =

∑
x1,x2∈X2

p(x1, x2)1[z1, z2 = h(x1), h(x2)]

Observation B: Let Pπ(a, x, x′) be the joint distribution of elements in (A,X,X ′) collected under
policy π, we have Pπ(a, x1, x2) > 0 if and only if a, x1, x2 ∈ (A,X,X ′).

Observation C: Similarly to obs. B, we have Pπ(x1, x2) > 0 if and only if x1, x2 ∈ (X,X ′).

1) Proving that the Inverse Model condition is satisfied if and only if I((Z,Z ′);A) = I((X,X ′);A).

The above is equivalent to showing that the Inverse Model condition is satisfied if and only if
H(A|Z,Z ′) = H(A|X,X ′). For H(A|Z,Z ′), we have

H(A|Z,Z ′) = −
∑

A,Z,Z′

Pπ(a, z, z′) logPπ(a|z, z′)

(from obs. A) = −
∑

A×Z×Z

∑
x1,x2∈X2

Pπ(a, x1, x2)1[z, z
′ = h(x1), h(x2)] logP

π(a|z, z′)

(from obs. B) = −
∑

A×X×X
Pπ(a, x, x′)

∑
Z2

1[z, z′ = h(x), h(x′)] logPπ(a|z, z′)

= −
∑

A×X×X
Pπ(a, x, x′) log

∏
Z2

Pπ(a|z, z′)1[z,z
′=h(x),h(x′)]

= −
∑

A×X×X
Pπ(x, x′)Pπ(a|x, x′) log

∏
Z2

Pπ(a|z, z′)1[z,z
′=h(x),h(x′)]

= −EX,X′ [
∑
A

Pπ(a|x, x′) log
∏
Z2

Pπ(a|z, z′)1[z,z
′=h(x),h(x′)]]
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It follows that

H(A|Z,Z ′)−H(A|X,X ′) = EX,X′

[∑
A

Pπ(a|x, x′) log
Pπ(a|x, x′)∏

Z2 Pπ(a|z, z′)1[z,z′=h(x),h(x′)]

]
= EX,X′ [DKL(P∥Q)],

with P = Pπ(a|x, x′) and Q =
∏

z,z′∈Z,Z′ Pπ(a|z, z′)1[z,z′=h(x),h(x′)]. From Gibbs inequality we
always have DKL(p∥q) ≥ 0, therefore I((Z,Z ′);A) = I((X,X ′);A) if and only if DKL(P∥Q) = 0
∀x, x′ ∈ X,X ′, which is the case if and only if P = Q almost µ-everywhere.

From observation A, any x1, x2 ∈ X2 maps to exactly one pair z1, z2 ∈ Z2, and
by construction of X,X ′, Z, Z ′, for any pair x, x′ ∈ X,X ′, we must have Q =∏

z̄,z̄′∈Z2 Pπ(a|z̄, z̄′)1[z̄,z̄′=h(x),h(x′)] = Pπ(a|z, z′), with z, z′ being the corresponding pair in
Z,Z ′.

Therefore I((Z,Z ′);A) = I((X,X ′);A) if and only if Pπ(a|x, x′) = Pπ(a|z, z′)∀x, x′, z, z′ ∈
X,X ′, Z, Z ′, and we recover the Inverse Model condition.

Conversely, if the Inverse Model condition is not satisfied, then ∃x, x′, z, z′, a ∈ X,X ′, Z, Z ′, A for
which P ̸= Q. Then DKL(P∥Q) > 0 at x, x′ and I((Z,Z ′);A) < I((X,X ′);A).

2) Proving that the Density Ratio condition is satisfied if I(Z;Z ′) = I(X;X ′).

We first show that satisfying

Pπ(x′|x)
Pπ(x′)

=
Pπ(z′|z)
Pπ(z′)

∀x, x′, z, z′ ∈ X,X ′, Z, Z ′ (11)

is sufficient for satisfying the Density Ratio condition Pπ(x′|z)
Pπ(x′) = Pπ(z′|z)

Pπ(z′) . We then show that the
condition in Equation (11) holds if and only if I(Z;Z ′) = I(X;X ′).

i) Showing the Density Ratio condition holds when Equation (11) is satisfied. First we notice that,
∀x′, z ∈ X ′, Z, we have

Pπ(x′|z) =
∑
x̄∈X

1[z = h(x̄)]Pπ(x′|x̄) = EX [Pπ(x′|x)].

Then, supposing Equation (11) holds, we must have

Pπ(x′|z) = EX [Pπ(x′|x)] = Pπ(x′)
Pπ(z′|z)
Pπ(z′)

∀x′, z, z′ ∈ X ′, Z, Z ′,

and the Density Ratio condition holds.

ii) Proving Equation (11) holds if and only if I(Z;Z ′) = I(X;X ′).

We have

I(Z;Z ′) =
∑
Z2

Pπ(z, z′) log
Pπ(z′|z)
Pπ(z′)

(from obs. A) =
∑
Z2

∑
x1,x2∈X2

Pπ(x1, x2)1[z, z
′ = h(x1), h(x2)] log

Pπ(z′|z)
Pπ(z′)

(from obs. C) =
∑
X2

Pπ(x, x′)
∑
Z2

1[z, z′ = h(x), h(x′)] log
Pπ(z′|z)
Pπ(z′)

= EX,X′

[
log

∏
Z2

(
Pπ(z′|z)
Pπ(z′)

)1[z,z′=h(x),h(x′)]]
.

Then,
I(X;X ′)− I(Z;Z ′) = EX,X′ [DKL(P

′∥Q′)],

with

P ′ =
Pπ(x′|x)
Pπ(x′)

and Q =
∏
Z2

(
Pπ(z′|z)
Pπ(z′)

)1[z,z′=h(x),h(x′)]
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The remainder of this part follows the same structure as for the first part of the proof.

I(X;X ′) = I(Z;Z ′) if and only if ∀x, x′ ∈ X,X ′, P = Q almost µ-everywhere. Any x1, x2 ∈ X2

maps to exactly one pair z1, z2 ∈ Z2, and by construction of X,X ′, Z, Z ′, for any pair x, x′ ∈
X,X ′, we must have

Q =
∏

z̄,z̄′∈Z2

(
Pπ(z̄′|z̄)
Pπ(z̄′)

)1[z̄,z̄′=h(x),h(x′)]

=
Pπ(z′|z)
Pπ(z′)

,

with z, z′ being the corresponding pair in Z,Z ′.

Therefore I(X;X ′) = I(Z;Z ′) if and only if ∀x, x′, z, z′ ∈ X,X ′, Z, Z ′ we have Pπ(x′|x)
Pπ(x′) =

Pπ(z′|z)
Pπ(z′) . Finally, from i) being true, the Density ratio condition must hold.

Lemma 4.1. I(Z;L) > 0 if ∃zk, cj ∈ Z × L such that µ(zk|cj) ̸= µ(zk) and I(O;L) > 0,
I(O;L) > 0 being the mutual information between L and observations O, with ϕ(o) = z ∈ Z.

Proof. Given π is fixed while the batch O is collected, for a single batch the causal interaction
between L, O and Z is described by the Markov chain X → O → Z, where x = (s, c) ∈ S × L
and isn’t directly observed. By the data processing inequality, I(L;Z) ≤ I(L;O), and as such
I(L;O) > 0 is a necessary condition for I(L;Z) to be positive.

Note that
I(L;Z) = H(L) +H(Z)−H(L,Z) = 0⇔ H(L,Z) = H(L) +H(Z),

that is, if and only if Z and L are independently distributed. Given the causal relationship between
L and Z, µ(z|c) is well defined ∀z, c ∈ Z ×L. If ∃zk, cj ∈ Z ×L such that µ(zk|cj) ̸= µ(zk) then
Z and L cannot be independently distributed, and I(L;Z) > 0.

Lemma 4.2. I(Z;L) monotonically increases with I(Z;Z ′)− I(Z;Z ′|L).

Proof. Consider an episode of arbitrary length N collected with policy π. We depict the causal
structure that exists between elements in the top row of Figure 6 (elements may be repeated within
each sequence). It naturally follows that we have the causal structure depicted in the bottom row
when considering all levels in L. By the chain rule of mutual information, we have

I(Z;L) = I(Z; (Z ′, L))− I(Z;Z ′|L) = I(Z;L|Z ′) + I(Z;Z ′)− I(Z;Z ′|L),
and it follows that I(Z;L) increases with I(Z;Z ′)− I(Z;Z ′|L).
Note that I(Z;Z ′|L) quantifies the dependency between Z and Z ′ that exists regardless of their
shared context c. I(Z;Z ′|L) = I(Z;Z ′) implies that (Z,Z ′) and L are independent and latent
transitions are invariant to the training level.

Lemma 4.3. I(Z;V ) > 0 if ∃zk, vm ∈ Z × V such that 1
L

∑
c∈L p(zk, vm|c) ̸= p(zk)p(vm).

Proof. We have I(Z;V ) = 0 if and only if Z and V are independently distributed. If
1
L

∑
c∈L p(zk, vm|c) ̸= p(zk)p(vm) for some zk, vm ∈ Z × V , then p(z, v) = 1

L

∑
c∈L p(z, v|c) ̸=

p(z)p(v) and L and V cannot be independent.

Corollary 4.4. I(Z;V ) can be positive when Z|L and V |L are conditionally independent. If
I(Z;V ) > 0 and Z|L and V |L are conditionally independent, then I(Z;L) > 0.

Proof. Since V depends on the states and CMDP dynamics given a fixed π, and when Z|L and V |L
are conditionally independent, we have the causal structure V ← X → O → Z, with no direct
causal link between Z and V .

However conditional independence does not guarantee independence. If
∑

c∈L p(zk|c)p(vm|c) ̸=∑
c∈L p(zk|c)

∑
c∈L p(vm|c) for some zk, vm ∈ Z × V , then we still would have I(Z;V ) > 0.

Given the causal structure, and by the data processing inequality, I(Z;V ) > 0 directly implies that
I(Z;L) > 0.
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Figure 6: In the top row, left, we depict the causal graph of states, observation and latents obtained
over an episode. On the same row we draw a simplified graph that focuses on the relationship
between c and Z0:N , and utilises the notion that the context remains the same throughout the episode.
In the bottom row we draw the resulting causal relationship between L, Z and Z ′.

Corollary 4.5. I((Z;Z ′);A) can still be positive when (Z,Z ′)|L and A|L are conditionally inde-
pendent. If I((Z;Z ′);A) > 0 and (Z,Z ′)|L, A|L are conditionally independent, then {I(Z;L) > 0
and I(A;L) > 0} and/or {I(Z ′;L) > 0 and I(A;L) > 0}.

Proof. I((Z,Z ′);A) ≥ max(I(Z;A), I(Z ′;A)), therefore showing that either is I(Z;A) or I(Z ′;A)
is positive is sufficient.

The rest of the proof directly follows the proof for Corollary 4.4. We will have I(Z;A) > 0,
I(Z;L) > 0 and I(A;L) > 0 given the causal chain A ← X → O → Z, even under conditional
independence between Z|L and A|L. Similarly, we will have I(Z ′;A) > 0, I(Z ′;L) > 0 and
I(A;L) > 0 given the causal chain A← X ′ → O′ → Z ′.

B ADDITIONAL FIGURES AND TABLES

0.2 0.4 0.6 0.8

DCPG

PPG

PPO

I((Z,Z');A) + I(Z;Z')

Figure 7: I((Z,Z ′);A) + I(Z;Z ′) for shared (gray), actor (blue) and critic (orange) for PPO, PPG,
and DCPG in Procgen.
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Figure 8: Mutual information measurements for the actor (blue) and critic (orange) for auxiliary
losses applied to the critic for PPO, PPG, and DCPG in Procgen. Top/bottom rows are I(Z; ·)/I(O; ·)
with a shared x-axis.
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Figure 9: I(Z; ·) measurements for the actor (blue) and critic (orange) for auxiliary losses for PPO,
PPG, and DCPG in Procgen.

C IMPLEMENTATION DETAILS

C.1 MUTUAL INFORMATION ESTIMATION

We measure mutual information using the estimator proposed by Kraskov et al. (2004) and later
extended to pairings of continuous and discrete variables by Ross (2014). These methods are based
on performing entropy estimation using k-nearest neighbors distances. We use k = 3 and determine
nearest neighbors by measuring the Euclidian (L2) distance between points. We checked measure-
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Figure 10: I(O; ·) measurements for the actor (blue) and critic (orange) for auxiliary losses for PPO,
PPG, and DCPG in Procgen.
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Figure 11: Mutual information measurements for the actor (blue) and critic (orange) for auxiliary
losses for PPO, PPG, and DCPG in Brax.

ments obtained when using different k and under different metric spaces, and we found that our
measurements are broadly invariant to the choice of estimator parameters.

At the end of training we collect a batch of trajectories consisting of 216 timesteps (215 timesteps
in Brax) from L. We construct (A,O,O′, Z, Z ′, V, L) from n = 4096 timesteps yielding

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

32x 16x 8x 1x
Auxiliary batch size relative to PPO batch size

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1
PPO[sh] Normalized Returns

PPG (Test)
PPG (Train)
PPO (Test)
PPO (Train)

32x 16x 8x 1x
Auxiliary batch size relative to PPO batch size

0.5

1.0

1.5

2.0

2.5

I(ZA; L) and I(ZA; V)

I(ZA; L)
I(ZA; V)
PPO I(ZA; L)
PPO I(ZA; V)

Figure 12: Procgen PPG returns (left) normalized by PPO[sh] performance and mutual information
quantities I(ZA;L)/I(ZA;V ) (right) for varying auxiliary batch size levels.
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Figure 13: Returns in Procgen (left) and Brax (right).

(at, ot, ot+1, zt, zt+1, vt, ct). Subsampling is necessary to compute mutual information estimates
in a reasonable time, while ensuring we sample states from most levels in L and at various point of
the trajectories followed by the agent in each level. Timesteps are sampled uniformly and without
replacement from the batch, after having excluded:

1. Odd timesteps, to ensure O and O′ will not overlap (i.e. O contains only even timesteps,
and O′, being sampled at t+ 1, contains only odd timesteps).
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Table 2: Measurements of compression efficiency C(ZA|O;V ) (Equation (9)) with standard error
in Procgen. Statistical significance bolded, determined by Welch’s t-test. Results highlighted in
red when decoupling decreases C(ZA|O;V ), and highlighted in green when decoupling increases
C(ZA|O;V ), otherwise yellow. Coupled architectures are denoted with algorithm name plus “[sh]”.

Algorithm C(ZA|O;V ) C(ZA|O;L)
PPO[sh] 89.3 ± 2 65.2 ± 3
PPO 90.1 ± 4 52.3 ± 3
PPG[sh] 85.9 ± 4 70.0 ± 2
PPG 94.1 ± 2 75.5 ± 2
DCPG[sh] 95.4 ± 2 77.6 ± 2
DCPG 92.3 ± 7 76.4 ± 2

Table 3: Measurements of compression efficiency C(ZA|O; ·) (Equation (9)) of the actor’s repre-
sentation ϕA in Procgen. Results highlighted in red when the auxiliary loss decreases the metric
relative to the base algorithm, and highlighted in green when the auxiliary loss increases the metric
relative to the base algorithm. Auxiliary losses are applied to the actor (A) and critic (C) in the form
of dynamics prediction (D), MICo, and advantage distillation (Adv).

Algorithm C(ZA|O;V ) C(ZA|O;L) C((ZA|O,Z ′
A|O′);A)

PPO 90.1 ± 4 52.3 ± 3 99.9 ± 0
PPO+MICo(C) 93.9 ± 2 60.4 ± 3 99.4 ± 0
PPO+MICo(A) 98.6 ± 1 84.7 ± 2 87.5 ± 5
PPO+D(A) 62.6 ± 12 61.3 ± 2 100.0 ± 0
PPO+D(C) 86.8 ± 7 52.8 ± 3 100.0 ± 0
PPO+D(A)+MICo(C) 76.3 ± 6 63.7 ± 3 99.5 ± 0
PPO+Adv(A) 96.9 ± 2 53.2 ± 3 100.0 ± 0
PPO+Adv(A)+MICo(C) 100.0 ± 0 57.0 ± 2 98.5 ± 1
PPO+Dr(A) 89.1 ± 6 54.3 ± 3 100.0 ± 0
PPO+Dr(C) 98.1 ± 1 50.8 ± 3 99.6 ± 0
PPG 94.1 ± 2 75.5 ± 2 100.0 ± 0
PPG+MICo(C) 98.0 ± 1 76.4 ± 2 100.0 ± 0
PPG+MICo(A) 95.4 ± 2 85.8 ± 2 100.0 ± 0
PPG+D(A) 89.5 ± 4 71.2 ± 2 100.0 ± 0
PPG+D(C) 96.3 ± 2 75.1 ± 2 100.0 ± 0
PPG+D(A)+MICo(C) 85.9 ± 7 71.6 ± 2 100.0 ± 0
PPG+Adv(A) 98.4 ± 1 63.3 ± 2 100.0 ± 0
PPG+Adv(A)+MICo(C) 99.4 ± 1 62.9 ± 2 100.0 ± 0
PPG+Dr(A) 91.3 ± 3 74.9 ± 2 100.0 ± 0
PPG+Dr(C) 93.1 ± 6 75.6 ± 2 100.0 ± 0
DCPG 92.3 ± 7 76.4 ± 2 100.0 ± 0
DCPG+MICo(C) 98.1 ± 1 76.6 ± 2 100.0 ± 0
DCPG+MICo(A) 91.7 ± 3 74.3 ± 2 100.0 ± 0
DCPG+D(A) 80.9 ± 4 69.9 ± 2 100.0 ± 0
DCPG+D(C) 97.8 ± 1 76.3 ± 2 100.0 ± 0
DCPG+D(A)+MICo(C) 83.4 ± 5 69.6 ± 2 100.0 ± 0
DCPG+Dr(A) 97.5 ± 2 76.7 ± 2 100.0 ± 0

2. Timesteps corresponding to episode terminations, to ensure the pair ot, ot + 1 cannot orig-
inate from different levels.
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Table 4: Measurements of compression efficiency C(ZC |O; ·) (Equation (9)) of the actor’s represen-
tation ϕC in Procgen. Results highlighted in red when the auxiliary loss decreases the metric relative
to the base algorithm, highlighted in green when the auxiliary loss increases the metric relative to
the base algorithm, and highlighted in yellow otherwise. Auxiliary losses are applied to the actor
(A) and critic (C) in the form of dynamics prediction (D), MICo, and advantage distillation (Adv).

Algorithm C(ZC |O;V ) C(ZC |O;L) C((ZC |O,Z ′
C |O′;A))

PPO 93.7 ± 3 88.4 ± 2 85.6 ± 4
PPO+MICo(C) 100.0 ± 0 90.3 ± 1 82.7 ± 3
PPO+MICo(A) 97.6 ± 2 92.4 ± 1 64.4 ± 6
PPO+D(A) 99.7 ± 0 90.2 ± 1 87.4 ± 3
PPO+D(C) 87.6 ± 4 77.4 ± 2 99.1 ± 0
PPO+D(A)+MICo(C) 91.0 ± 6 88.1 ± 2 84.4 ± 3
PPO+Adv(A) 96.7 ± 2 89.3 ± 1 87.6 ± 4
PPO+Adv(A)+MICo(C) 100.0 ± 0 89.9 ± 1 87.0 ± 3
PPO+Dr(A) 98.0 ± 1 90.0 ± 1 87.9 ± 3
PPO+Dr(C) 97.5 ± 1 87.0 ± 2 86.3 ± 3
PPG 99.2 ± 1 81.6 ± 2 90.3 ± 3
PPG+MICo(C) 93.0 ± 6 90.9 ± 2 91.8 ± 2
PPG+MICo(A) 100.0 ± 0 80.9 ± 2 84.4 ± 4
PPG+D(A) 100.0 ± 0 79.2 ± 2 91.3 ± 3
PPG+D(C) 89.4 ± 4 77.6 ± 2 100.0 ± 0
PPG+D(A)+MICo(C) 93.3 ± 4 89.1 ± 2 87.1 ± 4
PPG+Adv(A) 100.0 ± 0 80.9 ± 2 89.7 ± 3
PPG+Adv(A)+MICo(C) 99.9 ± 0 92.3 ± 1 93.1 ± 3
PPG+Dr(A) 98.7 ± 1 81.7 ± 2 90.2 ± 3
PPG+Dr(C) 96.4 ± 3 81.8 ± 2 85.8 ± 4
DCPG 99.5 ± 1 81.7 ± 2 92.1 ± 3
DCPG+MICo(C) 98.9 ± 1 88.6 ± 2 93.5 ± 2
DCPG+MICo(A) 99.8 ± 0 81.4 ± 2 87.2 ± 4
DCPG+D(A) 100.0 ± 0 80.7 ± 2 92.6 ± 3
DCPG+D(C) 91.3 ± 3 81.2 ± 1 100.0 ± 0
DCPG+D(A)+MICo(C) 99.6 ± 0 87.4 ± 2 92.7 ± 3
DCPG+Dr(A) 100.0 ± 0 81.3 ± 2 89.4 ± 3
DCPG+Dr(C) 97.0 ± 2 81.2 ± 2 90.7 ± 3

3. Timesteps from episodes that have not terminated, to ensure we can always compute vt.

C.2 PROCGEN

The Procgen Benchmark is a set of 16 diverse PCG environments that echoes the gameplay variety
seen in the ALE benchmark Bellemare et al. (2015). The game levels, determined by a random seed,
can differ in visual design, navigational structure, and the starting locations of entities. All Procgen
environments use a common discrete 15-dimensional action space and generate 64×64×3 RGB ob-
servations. A detailed description of each of the 16 environments is provided by Cobbe et al. (2020).
RL algorithms such as PPO reveal significant differences between test and training performance in
all games, making Procgen a valuable tool for evaluating generalisation performance.

We conduct our experiment on the easy setting of Procgen, which employs 200 training levels and
a budget of 25M training steps, and evaluate the agent’s scores on the training levels and on the full
range of levels, excluding the training levels. We use the version of Procgen provided by EnvPool
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(Weng et al., 2022). Following prior work, (Raileanu et al., 2021; Jiang et al., 2021; Moon et al.,
2022), for each game we normalise train/test scores by the mean train/test score achieved by PPO
in that game.

For PPO, we base our implementation on the CleanRL PPO implementation (Huang et al., 2022),
which reimplements the PPO agent from the original Procgen publication in JAX. We use the same
ResNet policy architecture and PPO hyperparameters (identical for all games) as Cobbe et al. (2020)
and reported in Table 5.

We re-implement PPG and DCPG in JAX, based on the Pytorch implementations provided by Huang
et al. (2022) and Moon et al. (2022). We use the default recommended hyperparameters for each
algorithms, which are reported in Table 6. We note that our PPG implementation ends up outper-
forming the original implementation by about 10% on the test set, while our DCPG implementation
underperforms test scores reported by Moon et al. (2022) by about 10%. We attribute this discrep-
ancy to minor differences between the JAX and Pytorch libraries, and decided to not investigate
further.

We conduct our experiments on A100 and RTX8000 Nvidia GPUs and 6 CPU cores. One seed for
one game completes in 2 to 12 hours, depending on the GPU, algorithm, and whether the architecture
is coupled or decoupled (for example, PPG decoupled can be expected to run 4x to 6x slower than
PPO coupled).

C.3 BRAX

For our experiments in Brax, we implement a custom “video distractors” set of tasks, similar to
those from (Stone et al., 2021). In this setup, a video plays in an overlay on the pixels the agent
views. There is a disjoint set of videos between the training and testing environments. The random
seed determines the environment’s initial physics and the video overlay at the beginning of training.
The pixels themselves are full-RGB 64 × 64 × 3 arrays, but we use framestacking to bring each
agent input to 64× 64× 9 pixels.

Similar to the algorithms used in the Procgen experiments, we implement our algorithms in JAX
and base them on ClearnRL.

We conduct our experiments on RTX A4500 Nvidia GPUs and 6 CPU cores. One seed completes
in 7.5-48 hours, depending on the environment and its physics backend as well as the algorithm.
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Table 5: Hyperparameters used for PPO in Procgen and Brax experiments. All runs employing a
specific (or combination of) representation learning objective use the same hyperparameters.

Parameter Procgen Brax

PPO
γ 0.999 0.999
λGAE 0.95 0.95
rollout length 256 128
minibatches per epoch 8 8
minibatch size 2048 512
Jπ clip range 0.2 0.2
number of environments 64 32
Adam learning rate 5e-4 5e-4
Adam ϵ 1e-5 1e-8
max gradient norm 0.5 0.5
value clipping no no
return normalisation yes no
value loss coefficient 0.5 0.5
entropy coefficient 0.01 0.01

PPO (coupled)
PPO epochs (actor and critic) 3 -

PPO (decoupled)
Actor epochs 1 1
Critic epochs 9 1

MICo objective
MICo coefficient 0.5 0.01
Target network update coefficient 0.005 0.05

Dynamics objective
Dynamics loss coefficient 1.0 0.01
In-distribution transitions weighting 1.0 1.0
Out-of-distribution states weighting 1.0 1.0
Out-of-distribution actions weighting 0.5 0.5

Advantage distillation objective
Advantage prediction coefficient 0.25 -
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Table 6: Hyperparameters used for PPG and DCPG in Procgen experiments. Hyperparameters
shared between methods are only reported if they change from the method above. All runs employ-
ing a specific (or combination of) representation learning objective use the same hyperparameters.

Parameter Procgen

PPG
γ 0.999
λGAE 0.95
rollout length 256
minibatches per epoch policy phase 8
minibatch size policy phase 2048
minibatches per epoch auxiliary phase 512
minibatch size auxiliary phase 1024
Jπ clip range 0.2
number of environments 64
Adam learning rate 5e-4
Adam ϵ 1e-5
max gradient norm 0.5
value clipping no
return normalisation yes
value loss coefficient policy phase 0.5
value loss coefficient auxiliary phase 1.0
entropy coefficient 0.01
policy phase epochs 1
auxiliary phase epochs 6
number of policy phases per auxiliary phase 32
policy regularisation coefficient βc 1.0
auxiliary value distillation coefficient 1.0

DCPG
value loss coefficient policy phase 0.0
delayed value loss coefficient policy phase 1.0

MICo objective
MICo coefficient 0.5
Target network update coefficient 0.005

Dynamics objective
Dynamics loss coefficient 1.0
In-distribution transitions weighting 1.0
Out-of-distribution states weighting 1.0
Out-of-distribution actions weighting 0.5

26


	Introduction
	Background
	Categorising and quantifying the information extracted by learned representations
	Information specialisation in actor and critic representations
	Warmup: an assembly line inspection problem
	The actor's optimal representation

	The critic's optimal representation
	Confirming specialisation in the Procgen benchmark

	Representation learning for the actor
	The critic's objective(s) will influence data collection
	Related work
	Conclusion
	Theoretical results
	Additional Figures and Tables
	Implementation details
	Mutual Information Estimation
	Procgen
	Brax


