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ABSTRACT

While Neural Network pruning typically requires retraining the model to recover
pruning-induced performance degradation, state-of-the-art Large Language Model
(LLM) pruning methods instead solve a layer-wise mask selection and reconstruc-
tion problem on a small set of calibration data to avoid full retraining, as it is
considered computationally infeasible for LLMs. Reconstructing single matrices
in isolation has favorable properties, such as convexity of the objective and sig-
nificantly reduced memory requirements compared to full retraining. In practice,
however, reconstruction is often implemented at coarser granularities, e.g., re-
constructing a whole transformer block against its dense activations instead of a
single matrix. In this work, we study the key design choices when reconstruct-
ing or retraining the remaining weights after pruning. We conduct an extensive
computational study on state-of-the-art GPT architectures, and report several sur-
prising findings that challenge common intuitions about retraining after pruning.
In particular, we observe a free lunch scenario: reconstructing attention and MLP
components separately within each transformer block is nearly the most resource-
efficient yet achieves the best perplexity. Most importantly, this Pareto-optimal
setup achieves better performance than full retraining, despite requiring only a
fraction of the memory. Furthermore, we demonstrate that simple and efficient
pruning criteria such as Wanda can outperform much more complex approaches
when the reconstruction step is properly executed, highlighting its importance. Our
findings challenge the narrative that retraining should be avoided at all costs and
provide important insights into post-pruning performance recovery for LLMs.

1 INTRODUCTION

LLMs have revolutionized Natural Language Processing (NLP) with state-of-the-art performance
across a wide range of tasks from text generation to code synthesis. However, their scale comes
with significant computational and memory demands, posing challenges for both researchers and
practitioners. Model compression, particularly post-training pruning (Han et al., 2015; Gale et al.,
2019; Hoefler et al., 2021), addresses these bottlenecks by identifying and removing redundant
weights in pretrained Neural Networks (NNs), yielding sparse models with reduced inference costs.

While conventional pruning approaches typically require full retraining of the model to recover
pruning-induced performance degradation, the drastic increase in model sizes has shifted the field’s
focus towards a more local perspective on the pruning problem, especially since full retraining of
pruned LLMs is considered computationally prohibitive, if not infeasible (Sun et al., 2023; Frantar &
Alistarh, 2023; Zimmer et al., 2023). In consequence, state-of-the-art approaches such as SparseGPT
(Frantar & Alistarh, 2023) or Wanda (Sun et al., 2023) focus on solving a layerwise pruning problem
and avoid retraining: Instead of finding a pruning mask and retraining the remaining weights in order
to minimize a global loss, such approaches minimize a per-layer local loss, and consequently split
the pruning problem into per-layer subproblems by pruning layers sequentially using a small set of
calibration data. These methods are applied independently to each weight matrix in the model, and
the final pruned model is then obtained by composing the individual pruned layers. Specifically,
given a single layer with calibration input X ∈ Rdin×B and weights W ∈ Rdout×din , the objective is

min
M,Ŵ

∥WX − (M ⊙ Ŵ )X∥
2

F
, (1)
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where M ∈ {0,1}dout×din is a binary pruning mask satisfying some sparsity constraint, e.g., ∥M∥0 ≤ k
for unstructured sparsity, Ŵ ∈ Rdout×din is the matrix of reconstructed weights, and ⊙ denotes the
element-wise multiplication or Hadamard product. Here, B denotes the total number of calibration
tokens (number of sequences times sequence length). The problem of Equation 1 can be split into
a mask selection problem, i.e., finding M given fixed weights W , and a reconstruction problem,
i.e., finding Ŵ given a fixed mask M . In this work, we focus on the latter. Reconstructing a
single matrix in isolation is a convex quadratic problem, which admits an analytical solution, and
requires significantly less memory compared to retraining the entire model. However, in practice,
the reconstruction is often implemented at coarser granularities, e.g., reconstructing a submodel f
consisting of multiple layers (such as a transformer block) to fit its dense counterpart (e.g., Guo et al.,
2024; Zimmer et al., 2023):

min
θ̂
∥f(X; θ) − f(X; θ̂)∥

2

F
, (2)

where f has parameters θ and θ̂ is restricted to the pruned parameterization.

In this work, we focus on the problem of reconstructing or retraining1 the remaining weights of
a pruned model, which we think is increasingly important as models become harder to prune and
retraining-free pruning methods often may not suffice2. We systematically investigate key design
choices for solving the reconstruction problem of Equation 1, including the choice of propagation
strategy (how the calibration data defines inputs and targets), loss function (how reconstruction quality
is measured), and the aforementioned granularity of reconstruction (the scope of the submodel that
is reconstructed at once). Through an extensive computational study on state-of-the-art Generative
Pretrained Transformer (GPT) architectures, we report several surprising findings that challenge
common intuitions about retraining and reconstruction. Intuitively, increasing the reconstruction
granularity should trade quality for resources: coarser granularity should improve final model quality
but demand more resources for backpropagation, with full retraining being the most resource-intensive
and per-matrix reconstruction the least. In fact, we find a sweet spot precisely when reconstructing the
attention and MLP components of each transformer block separately. Surprisingly, this granularity is
near the most resource-efficient yet achieves better perplexity and zero-shot accuracy than full-model
retraining.

In other words, we first observe a free-lunch scenario: With the exception of per-matrix reconstruction,
the reconstruction granularity does not have a significant impact on the final model performance, but
finer granularities require far less memory and compute than full-model reconstruction or retraining,
which makes them feasible even for massive LLMs. Second, our results reveal another surprising
but consistent pattern: per-matrix reconstruction consistently underperforms, despite being the
natural mathematical formulation of the reconstruction problem. Finally, we demonstrate that, when
reconstruction is done properly, simple and efficient pruning methods like Wanda not only match but
also outperform more complex approaches such as SparseGPT, even when both approaches undergo
a reconstruction procedure after pruning.

Contributions. We summarize our main contributions as follows.

• Analyzing LLM post-pruning reconstruction at scale. We conduct an extensive computa-
tional study to systematically analyze reconstruction design choices, including propagation
strategies (how calibration data defines inputs and targets), loss functions (how recon-
struction quality is measured), and reconstruction granularities ranging from per-matrix to
full-decoder.

• Questioning the narrative of retraining infeasibility. Our study highlights multiple
surprising findings: First, per-matrix reconstruction consistently underperforms, despite
corresponding to the most common formulation of the reconstruction problem. Second,
there is a surprising sweet spot when it comes to the optimal setting for reconstruction:
reconstructing attention and MLP components separately within each block is near the most

1We distinguish between reconstruction (local adaptation using intermediate activations as targets) and
retraining (adaptation of the entire pruned model using true labels).

2While LLaMA-2-7B and LLaMA-3-8B achieve similar baseline perplexity on WikiText-2 (6.01 vs. 5.83),
after pruning to 50% sparsity with Wanda, LLaMA-2 degrades to 6.71 while LLaMA-3 suffers a much larger
drop to 8.96, hence making the pruned LLaMA-2 outperform its supposedly superior successor.

2
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resource-efficient yet achieves the same performance as less granular reconstructions. Most
importantly, this setup achieves much higher memory efficiency and better performance
than full retraining, seemingly a free-lunch scenario for post-pruning reconstruction.

• Highlighting the importance of (proper) reconstruction. Leveraging these insights, once
optimal local reconstruction is applied, we find that simple and efficient pruning criteria can
outperform much more complex approaches, highlighting the importance of reconstruction,
if done properly.

Together, these findings challenge the avoid retraining at all costs narrative. When done properly,
local post-pruning reconstruction can deliver better perplexity and zero-shot accuracy than full-model
retraining while using a fraction of the memory and compute, and it further enables simple pruning
methods to match or surpass more complex mask-selection algorithms, highlighting the importance
of reconstruction.

OPT-1.3B OPT-6.7B LLaMA-3-8B LLaMA-2-13B
0

5

10
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20

Perplexity

OPT-1.3B OPT-6.7B LLaMA-3-8B LLaMA-2-13B
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50

100

Peak GPU memory usage (GB)

Block size 1
2

Block size 1 Block size 2 1
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Figure 1: Perplexity and memory usage of four different models pruned to 2:4 sparsity with Wanda
and reconstructed with different granularities. The number of calibration samples is 1024. 1

4
of the

model is 6, 8, 8, and 10 transformer blocks for OPT-1.3B, OPT-6.7B, LLaMA-3-8B, and LLaMA-2-
13B, respectively. Displayed are the best results propagation strategies and loss functions.

2 BACKGROUND AND METHODOLOGY

We begin by surveying the existing literature on post-pruning reconstruction and related work. We
then discuss the key design choices for local reconstruction, including the propagation strategy, loss
function, and granularity.

2.1 BACKGROUND AND RELATED WORK

We discuss existing approaches to post-pruning reconstruction, with particular attention to the scope
of the submodel that is reconstructed at once, which we term the granularity.

Layer-wise pruning. Both Wanda (Sun et al., 2023) and RIA (Zhang et al., 2024) are pure mask
selection methods which operate at the per-matrix level. Wanda adapts magnitude pruning to LLMs
by scaling the weight importance by the norm of their corresponding activations, and RIA extends
this idea by further accounting for relative neuron importance. Frantar & Alistarh (2023), Zhao
et al. (2024), and Boža (2024) integrate mask selection with weight reconstruction at the per-matrix
level. SparseGPT (Frantar & Alistarh, 2023) builds upon the Optimal Brain Surgeon (OBS) (Hassibi
et al., 1993) framework, which prunes one weight at a time and simultaneously adjusts the remaining
weights based on the Hessian of the global loss using a greedy algorithm. SparseGPT makes this
approach scalable for LLMs by solving the problem per matrix and using the local reconstruction
objective instead of the global one, and pruning multiple weights simultaneously. FISTAPruner
(Zhao et al., 2024) transforms the sparsity constraint into an ℓ1-norm penalty, solving the resulting
problem via fast iterative shrinkage-thresholding. Boža (2024) introduces a method that alternates
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between pruning weights using the Wanda criterion and reconstructing the remaining weights using
the Alternating Direction Method of Multipliers (ADMM) method.

Coarser-grained pruning. BESA (Xu et al.) and LLM-BIP (Wu, 2024) perform mask selection
for a transformer block using an optimization objective that allocates different amounts of sparsity
to different submatrices within the block. EBFT (Guo et al., 2024) reconstructs entire transformer
blocks and shows substantial improvements even when paired with strong pruning methods such as
SparseGPT or Wanda. Shin et al. (2024) expand on this approach by introducing global propagation,
which aims to better align the outputs of the pruned block with those of the original block. Instead
of using local reconstruction, Zimmer et al. (2023); Muñoz et al. (2024) make full-model retraining
feasible by using parameter-efficient fine-tuning methods like LoRA (Liu et al., 2020), which avoid
the prohibitive costs associated with full-model retraining. SEFT (Xiao et al., 2025) builds on this
strategy by dynamically evolving pruning masks during fine-tuning, allowing the sparsity patterns
to adapt over time, akin to dynamic sparse training (Liu et al., 2020). Lastly, the importance of
granularity has already been highlighted in the context of quantization. Li et al. (2021) initially
demonstrated that block-wise reconstruction following quantization outperforms both layer-wise and
full-model strategies for Convolutional Neural Networks (CNNs). Jeon et al. (2022) extended this
approach using non-uniform quantization and applying it to transformer architectures.

2.2 KEY DESIGN CHOICES WHEN RECONSTRUCTING AFTER PRUNING

We analyze three crucial design choices for local reconstruction: the propagation strategy, which
determines how calibration data is transmitted through the model; the loss function, by which
reconstruction quality is measured; and the granularity, which specifies the size of the submodel
reconstructed at once.

Propagation: How to define inputs and targets? Pruning a model locally involves splitting it into
submodels and sequentially pruning each submodel. Before discussing the different propagation
strategies, recall the pruning objective in Equation 2 and let us specify how the input activations
X for the submodel f we want to prune are computed. We denote by X ∶= f0(X0; θ0) the output
of the submodel f0 consisting of all layers prior to f with parameters θ0 based on input data X0.
Further, we denote by X̂ ∶= f0(X0; θ̂0) the output of the submodel f0 using the pruned weights θ̂0.
The different propagation strategies are defined by whether we use calibration inputs X̂ or X, and
similarly, whether to align the outputs with f(X; θ) or f(X̂; θ). We outline three distinct strategies:

1. Dense Propagation (DP): Both inputs and targets are sourced from the original dense
model, i.e., the objective is minθ̂ ∥f(X; θ̂) − f(X; θ)∥

2

F
. Here, the pruned submodel is

reconstructed to best match the dense one, ignoring the error caused by pruning the prior
submodels.

2. Sparse Propagation (SP): Inputs come from the pruned model and targets are generated
by further processing the sparse inputs through the dense model, i.e., the objective is
minθ̂ ∥f(X̂; θ̂) − f(X̂; θ)∥

2

F
. This approach is consistent with the EBFT method (Guo et al.,

2024), where the reconstruction objective takes into account the error caused by pruning the
prior submodels.

3. Mixed Propagation (MP): Inputs come from the pruned model, while targets are sourced
from the dense model, i.e., the objective is minθ̂ ∥f(X̂; θ̂) − f(X; θ)∥

2

F
. This approach tries

to correct for the error caused by pruning the prior submodels by steering the activations to
those of the dense model. Shin et al. (2024) refer to this strategy as global propagation.

Loss: How to measure reconstruction quality? The loss function measures the similarity between
the outputs of the reconstructed submodel and the target activations. We consider two loss functions:
Mean Squared Error (MSE), the squared Euclidean distance averaged over batches; and Cosine
Similarity (CS), a well-known measure of similarity between latent representations in NLP (Mikolov
et al., 2013; Gromov et al., 2024).

Granularity: How to split the model into submodels? The reconstruction granularity determines
how many layers are reconstructed jointly. In the following, a transformer block refers to the attention

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

component followed by the feed-forward component. We explore five different reconstruction
granularities:

i) Per-matrix: Each weight matrix is reconstructed independently, cf. Equation 1.
ii) Block size one-half : Attention and feed-forward components of one block are reconstructed

separately.
iii) Block size one: Each transformer block is reconstructed independently, cf. Guo et al. (2024).
iv) Multi-block: Block sizes greater than one but smaller than the total number of transformer

blocks in the model.
v) Full decoder: All transformer blocks are reconstructed simultaneously.

The full decoder approach resembles full-model distillation, except that the embedding layer re-
mains frozen, and the Language Modeling (LM) head is excluded from the loss calculation, as the
reconstruction objective is to align the output of the final transformer block with the target activations.

3 EXPERIMENTS

We perform experiments on OPT-1.3B, OPT-6.7B, LLaMA-2-13B, and LLaMA-3-8B (Zhang et al.,
2022; Touvron et al., 2023; Grattafiori et al., 2024), using sequences sampled from C4 (Raffel et al.,
2020) as calibration data. Models are evaluated on perplexity (lower is better) on WikiText-2 (Merity
et al., 2016) and zero-shot accuracy (higher is better) using the EleutherAI evaluation suite (Gao
et al., 2024). Unless stated otherwise, we use one-shot layer-wise pruning with Wanda (Sun et al.,
2023), considering both unstructured sparsity and N :M semi-structured patterns (Mishra et al., 2021).
Following Sun et al. (2023), all linear layers except the embedding and final LM head are pruned
with uniform sparsity. For each configuration, we sweep learning rates in [10−6,10−3] with a linear
schedule and 10% warm-up, and the number of epochs in {1,5,10,20}. Unless stated otherwise, we
use 1024 calibration samples for both pruning and reconstruction. Retraining and reconstruction use
AdamW (Loshchilov & Hutter, 2019) with a batch size of two. Results are averaged over multiple
random seeds, and our code will be publicly released to ensure reproducibility.

3.1 PROPAGATION STRATEGIES AND LOSS FUNCTIONS HAVE NO SYSTEMATIC IMPACT.

As an additional metric, we define recovery as the fraction of the pruned-to-dense perplexity gap
closed by reconstruction:

recovery =
PPLpruned − PPLreconstructed

PPLpruned − PPLdense
. (3)

Recovery measures the improvement achieved by reconstruction, normalized by the difference
between the pruned and dense perplexity. Recovery equals one when reconstruction fully restores
dense performance, zero when no improvement occurs, and negative when reconstruction degrades
performance.

Before presenting our main results, we justify our default hyperparameter choices through ablation
studies. Perplexity decreases up to approximately 20 epochs for all local reconstruction approaches
(see Figure 3). A learning rate sweep over [10−6,10−3] reveals that each model has an optimal
learning rate in this range (see Figure 4 in the appendix).

Figure 2 summarizes the impact of propagation strategies (MP, SP, DP) and loss functions (MSE,
CS) on recovery (defined in Equation 3). Each panel shows histograms comparing two methods,
indicating how often one outperforms the other and by how much. The horizontal axis represents
recovery between the two options (values greater than zero mean the option named first did better;
values less than zero mean it did worse). The vertical axis counts runs in each difference bin. The
orange bars compare the two options while keeping everything else the same (same model, sparsity,
reconstruction granularity, learning rate/epochs search, and propagation strategy or loss function
depending on what is being compared). Green bars compare each method’s optimal configuration for
a given model and sparsity.

The orange bars show that no propagation strategy or loss function consistently outperforms others
when hyperparameters are identical. The green bars indicate that MP tends to achieve the highest

5
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Figure 2: Histograms of recovery differences (Equation 3) between methods. Orange bars compare
methods under identical hyperparameter configurations. Green bars compare each method’s optimal
setting for a given model and sparsity. The data used to generate these plots is shown in Table 4,
Table 6, Table 7, and Table 8 in Appendix B.

recovery across propagation strategies, and MSE is more often favorable than CS. However, these
effects are small and have little practical impact on final model quality. For the remainder of our
experiments, we therefore focus on reconstruction with MP and MSE loss. Full results for all
propagation strategies and loss functions are reported in Appendix B.

Figure 4 shows that the optimal learning rate is stable across models and sparsity types. For
reconstruction with block size 1

2
under MP and MSE loss, we consistently observe the optimal

learning rate near 3 × 10−5 across all four models (OPT-1.3B/6.7B, LLaMA-2-13B, LLaMA-3-8B)
and both unstructured and semi-structured sparsity. This stability reduces the need for extensive grid
searches in practice.

3.2 GRANULARITY MATTERS: CHALLENGING THE AVOID-RETRAINING-AT-ALL-COSTS
NARRATIVE

We next analyze the effect of reconstruction granularity and present several surprising findings.

Per-matrix reconstruction consistently underperforms, while local reconstruction outperforms
full retraining. Table 2 shows full results for OPT-6.7B reconstructed at different granularities. As
stated, we now mainly focus on the columns corresponding to MP propagation and MSE loss. Layer
norm parameters are fixed across all settings since they are not updated by per-matrix reconstruction.
For 2:4 sparsity, the best per-matrix reconstructed model performs worse in perplexity and zero-shot
accuracy than the worst model using any other granularity. For both sparsity types, MP reconstruction
collapses completely for per-matrix approaches, while coarser granularities perform well. This
suggests that individual matrices lack the capacity to absorb pruning-induced errors from earlier
layers. Similar trends hold across different models (see Appendix B).

Most surprisingly, full retraining consistently yields the worst perplexity across calibration sizes and
epochs in Figure 3, underperforming local reconstruction approaches.

Reconstructing at block size 1
2

is most effective. For OPT-1.3B in Figure 3, block size 1
2

(recon-
structing attention and MLP separately) consistently achieves the lowest perplexity, while block sizes
1, 12, and 24 yield essentially identical performance. For OPT-6.7B (Table 9 in the appendix), block
size 1

2
remains superior to coarser granularities, though the gap is smaller. For LLaMA-2-13B and

LLaMA-3-8B (Table 1), all block sizes perform nearly identically in both perplexity and zero-shot
accuracy, with no clear advantage for any particular granularity. Meanwhile, Figure 1 shows that peak
memory usage grows substantially with block size, meaning finer granularities achieve comparable
quality at lower memory cost. Together, these results indicate that block size 1

2
provides the best

trade-off: equal or better performance at lower computational cost.
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Table 1: Perplexity and zero-shot accuracy of four different models pruned to 50% unstructured and
2:4 sparsity with Wanda and reconstructed with MSE and MP. The best result for each (sparsity type,
model) combination is highlighted in bold. ↓: lower is better, ↑: higher is better.

Model
Dense PPL

Block size Perplexity ↓ Zero-shot accuracy (in %) ↑

unstructured 2:4 unstructured 2:4

LLaMA-3-8B
5.83

No rec. 8.96 21.85 56.89 45.67
1
2

7.79 10.24 59.77 55.23
1 7.72 10.31 58.67 54.44
2 7.75 10.32 58.36 52.72
8 7.89 10.53 57.90 52.87

LLaMA-2-13B
4.57

No rec. 5.54 8.39 60.25 53.23
1
2

5.25 6.22 61.14 58.77
1 5.25 6.29 61.43 58.65
2 5.27 6.35 60.86 57.84

10 5.28 6.32 61.06 57.11

100 1k 10k

16

17

Number of samples

Pe
rp

le
xi

ty

0 10 20 30 40 50

Number of epochs

Block size 1
2

Block size 1 Block size 12 Full decoder (block size 24) Full fine-tuning

Figure 3: OPT-1.3B pruned to 50% unstructured sparsity with Wanda, showing mean perplexity vs.
number of calibration samples (left) and number of epochs (right). The shaded areas indicate the
min-max range over random seeds. Reconstruction uses MSE loss and DP. Full fine-tuning uses
cross-entropy loss and true labels.

3.3 RECONSTRUCTION ENABLES SIMPLE PRUNING METHODS TO OUTPERFORM COMPLEX
ONES

Table 3 compares magnitude pruning, Wanda, and SparseGPT on LLaMA-2-13B and LLaMA-
3-8B under block size 1

2
with MP and MSE loss. Magnitude pruning and Wanda are relatively

simple approaches: magnitude pruning requires no calibration data and prunes based solely on
weight magnitudes, while Wanda extends this with a single forward pass to scale importance by
activation norms. In contrast, SparseGPT is more complex, alternating between mask selection and
Hessian-based weight updates at the per-matrix level.

Two consistent patterns emerge. First, pruning difficulty increases across model generations: mag-
nitude pruning without reconstruction yields perplexity comparable to Wanda and SparseGPT for
LLaMA-2-13B, but collapses entirely for LLaMA-3-8B. Second, local reconstruction substantially
improves simple methods. On LLaMA-2-13B, magnitude pruning with reconstruction not only
recovers performance but surpasses SparseGPT under both unstructured and semi-structured sparsity.
Wanda with reconstruction achieves further gains, consistently outperforming SparseGPT on both

7
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Table 2: Perplexity and zero-shot accuracy of OPT-6.7B pruned to different sparsity types with
Wanda and reconstructed at various granularities. Layer norm parameters are fixed for comparability
with per-matrix reconstruction, the layer norm parameters are fixed in every setting. The best result
for each setting is underlined, the best result for each sparsity type is highlighted in bold. ↓: lower is
better, ↑: higher is better. Dense baseline: 10.86 perplexity, pruned unstructured: 12.06, pruned 2:4:
16.05.

Perplexity ↓ Zero-shot accuracy (in %) ↑

Sparsity type Block size SP MP DP SP MP DP

MSE CS MSE CS MSE CS MSE CS MSE CS MSE CS

unstructured

Per-matrix 11.55 11.72 98.15 49.72 11.96 11.99 49.39 49.48 43.64 44.95 48.78 48.98
1
2

11.49 11.27 11.66 11.34 11.51 11.40 49.99 50.62 50.60 50.49 49.86 50.14
1 11.65 11.59 11.95 11.90 11.56 11.71 49.85 50.54 49.97 50.27 49.86 50.61
2 11.61 11.56 11.78 11.84 11.60 11.57 50.02 50.52 50.23 50.18 49.92 50.62
8 11.84 11.90 11.86 11.91 11.88 11.93 49.73 49.75 50.02 49.89 49.84 49.68

2:4

Per-matrix 14.25 15.82 293.26 104.03 16.06 15.52 47.02 46.94 38.42 40.62 45.53 45.99
1
2

13.39 12.98 12.97 12.72 13.45 12.97 47.87 48.18 48.90 48.80 47.84 48.28
1 13.29 13.04 13.85 13.58 13.59 13.21 47.91 48.61 48.31 48.59 47.84 48.76
2 13.43 12.93 13.46 13.40 13.41 12.90 47.83 48.47 48.48 48.78 48.03 48.75
8 13.47 13.51 13.52 13.55 13.64 13.24 47.92 47.98 48.35 48.31 47.82 48.25

Table 3: Perplexity of LLaMA-2-13B and LLaMA-3-8B when pruned with different pruning methods
under four sparsity types and reconstructed with MP and MSE at block size 1

2
. The best result for

each model and sparsity type is highlighted in bold.

Model Sparsity type SparseGPT Wanda Magnitude

No rec. Rec. No rec. Rec. No rec. Rec.

LLaMA-2-13B

50% unstructured 5.52 5.29 5.54 5.25 6.37 5.36
60% unstructured 7.46 6.83 7.78 6.25 8.21 6.42

2:4 8.04 6.37 8.38 6.22 8.45 6.50
4:8 6.45 5.79 6.54 5.72 6.75 5.93

LLaMA-3-8B

50% unstructured 8.67 7.96 9.01 7.78 152.11 13.18
60% unstructured 14.12 9.43 19.38 8.91 823.65 17.46

2:4 14.46 10.09 21.82 9.94 765.06 26.22
4:8 11.08 9.84 12.76 9.42 337.78 18.16

models even when both use reconstruction. Since SparseGPT combines mask selection with second-
order updates, these results show that its algorithmic complexity provides no advantage once local
reconstruction is applied—Wanda then achieves superior performance.

4 CONCLUSION

In this work, we revisited post-pruning retraining of LLMs through the lens of local reconstruction.
Across models, we consistently observe that reconstructing attention and MLP components separately
within each transformer block (block size 1

2
) is Pareto-optimal: it matches or outperforms coarser

granularities in perplexity and zero-shot accuracy while requiring only a fraction of the memory.
We further ablate propagation strategies and loss functions. When hyperparameters are identical,
no strategy (SP, MP, DP) or loss function (MSE, CS) universally outperforms others; in optimal-
configuration comparisons, MP paired with MSE tends to have a slight advantage. Finally, once
proper local reconstruction is applied, simple mask-selection methods such as Wanda can match or
surpass more complex algorithms like SparseGPT across sparsity regimes, underscoring the central
role of the reconstruction step.

Taken together, our results suggest a practical recipe for post-pruning recovery in LLMs: favor block
size 1

2
local reconstruction, pair it with MP and MSE, and use simple pruning methods when possible.

This configuration is simple, memory-efficient, and reliably competitive, outperforming full-model
fine-tuning on the same calibration data in our evaluations.

8
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A USE OF LARGE LANGUAGE MODELS

Large language models were used to aid in writing (polishing text), retrieving related work, generating
code for plots, and implementing standard components. No novel research ideas or results were
produced by LLMs.

B ADDITIONAL EXPERIMENTS

In this section, we present additional experiments with OPT-1.3B, OPT-6.7B, LLaMA-2-13B, and
LLaMA-3-8B models.
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Figure 4: Learning rate ablation for reconstruction after pruning with Wanda to 50% unstructured
sparsity (left) and 2:4 semi-structured sparsity (right). The y-axis is the recovery defined in Equation 3.
Reconstruction was performed with block size 1

2
, MP, and MSE loss.

Table 4: Perplexity and zero-shot accuracy of OPT-1.3B pruned to different sparsity types with Wanda
and reconstructed in different settings with 1024 calibration samples on a single random seed. The
best result for each setting is underlined, the best result for each sparsity type is highlighted in bold.
SP, MP, DP: sparse, mixed, and dense propagation. CS: cosine similarity. ↓: lower is better, ↑: higher
is better. Base perplexity of OPT-1.3B dense: 14.62, pruned unstructured: 18.31, pruned 2:4: 28.11.

Perplexity ↓ Zero-shot accuracy (in %) ↑

Sparsity type Block size SP MP DP SP MP DP

MSE CS MSE CS MSE CS MSE CS MSE CS MSE CS

50%
unstructured

1
2

15.60 15.45 15.47 15.43 15.60 15.45 44.99 45.16 44.63 44.99 44.68 45.02
1 16.01 15.86 16.42 16.52 16.07 16.12 44.03 44.63 44.08 44.32 44.11 44.78
2 16.03 15.81 16.26 16.34 16.03 15.78 43.86 44.47 44.26 44.27 44.00 44.49
6 16.12 16.17 16.17 16.25 16.14 16.20 44.38 44.35 44.27 44.41 44.51 44.29
12 16.20 16.34 16.19 16.28 16.22 16.38 43.99 44.02 44.11 44.33 44.26 44.03
24 16.29 16.44 16.29 16.42 16.31 16.43 44.24 44.34 44.22 44.38 44.32 44.27

2:4

1
2

18.49 17.96 17.67 17.82 18.52 18.04 43.39 43.39 44.09 44.17 43.50 43.56
1 19.39 18.41 19.37 19.74 19.67 18.94 42.67 43.53 42.97 43.27 42.66 43.64
2 19.33 18.50 18.96 19.25 19.37 18.45 42.52 43.34 42.82 43.08 42.41 43.23
6 19.28 19.21 19.25 19.38 19.37 19.23 42.76 43.30 43.17 43.14 42.88 43.42
12 19.49 19.47 19.38 19.43 19.56 19.59 43.09 42.57 43.26 42.98 42.90 42.77
24 19.76 19.85 19.73 19.81 19.76 19.84 43.02 42.92 43.04 42.84 42.94 42.88
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Table 5: Perplexity and zero-shot accuracy of OPT-1.3B pruned to different sparsity types with Wanda
and reconstructed in different settings with 1024 calibration samples on a single random seed. The
best result for each setting is underlined, the best result for each sparsity type is highlighted in bold.
SP, MP, DP: sparse, mixed, and dense propagation. CS: cosine similarity. ↓: lower is better, ↑: higher
is better. Base perplexity of OPT-1.3B dense: 14.62, pruned unstructured: 18.31, pruned 2:4: 28.11.

Perplexity ↓ Zero-shot accuracy (in %) ↑

Sparsity type Block size SP MP DP SP MP DP

MSE CS MSE CS MSE CS MSE CS MSE CS MSE CS

50%
unstructured

Per-matrix 17.31 17.88 21.74 22.01 18.41 18.32 44.13 43.70 42.54 42.47 43.42 43.56
1
2

15.53 15.46 15.47 15.44 15.59 15.46 44.80 45.32 44.86 45.03 44.94 45.29
1 16.02 15.91 16.42 16.54 16.09 16.13 44.16 44.80 44.05 44.30 44.27 44.91
2 16.03 15.82 16.25 16.35 16.04 15.80 43.94 44.40 44.27 44.28 44.00 44.55
6 16.12 16.17 16.17 16.25 16.14 16.20 44.47 44.36 44.30 44.19 44.45 44.34

2:4

Per-matrix 24.48 26.25 42.62 46.41 27.96 27.69 41.84 41.08 40.35 40.86 41.44 41.84
1
2

18.50 18.02 17.77 17.85 18.59 18.09 43.34 43.42 44.04 44.26 43.21 43.57
1 19.72 18.42 19.40 19.78 19.86 18.92 42.73 43.52 43.54 43.18 42.76 43.63
2 19.15 18.47 18.99 19.22 19.38 18.41 42.59 43.41 42.90 43.15 42.38 43.16
6 19.33 19.24 19.48 19.71 19.41 19.26 42.75 43.09 42.63 42.66 42.89 43.41

Table 6: Perplexity and zero-shot accuracy of OPT-6.7B pruned to different sparsity types with Wanda
and reconstructed in different settings with 1024 calibration samples on a single random seed. The
best result for each setting is underlined, the best result for each sparsity type is highlighted in bold.
SP, MP, DP: sparse, mixed, and dense propagation. CS: cosine similarity. ↓: lower is better, ↑: higher
is better. Base perplexity of OPT-6.7B dense: 10.86, pruned unstructured: 12.06, pruned 2:4: 16.05.

Perplexity ↓ Zero-shot accuracy (in %) ↑

Sparsity type Block size SP MP DP SP MP DP

MSE CS MSE CS MSE CS MSE CS MSE CS MSE CS

50%
unstructured

1
2

11.51 11.36 11.48 11.37 11.51 11.36 49.94 50.08 50.38 50.47 50.08 50.24
1 11.64 11.63 11.92 11.88 11.58 11.69 49.92 50.62 50.03 50.20 49.82 50.52
2 11.59 11.54 11.75 11.91 11.61 11.53 49.97 50.60 50.28 50.04 49.90 50.63
8 11.85 11.89 11.89 11.95 11.84 11.90 49.84 49.76 50.03 49.90 49.76 49.78

2:4

1
2

13.41 13.01 12.96 12.72 13.40 12.93 47.71 48.24 48.92 48.94 47.67 48.35
1 13.75 13.08 13.77 13.56 13.55 13.22 47.70 48.77 48.31 48.75 47.82 48.76
2 13.30 12.93 13.38 13.39 13.42 12.85 47.99 48.29 48.53 48.76 47.94 48.66
8 13.49 13.45 13.56 13.57 13.54 13.45 47.93 48.14 48.07 48.28 47.86 48.09

Table 7: Perplexity and zero-shot accuracy of LLaMA-2-13B (40 transformer blocks) pruned to
different sparsity types with Wanda and reconstructed in different settings with 1024 calibration
samples on a single random seed. The best result for each setting is underlined, the best result for
each sparsity type is highlighted in bold. SP, MP, DP: sparse, mixed, and dense propagation. CS:
cosine similarity. ↓: lower is better, ↑: higher is better. Base perplexity of LLaMA-2-13B dense: 4.57,
pruned unstructured: 5.54, pruned 2:4: 8.39.

Perplexity ↓ Zero-shot accuracy (in %) ↑

Sparsity type Block size SP MP DP SP MP DP

MSE CS MSE CS MSE CS MSE CS MSE CS MSE CS

unstructured

1
2

5.33 5.33 5.26 5.33 5.34 5.35 60.53 60.84 60.99 60.96 60.59 60.59
1 5.32 5.35 5.26 5.34 5.33 5.37 61.18 61.03 61.25 61.30 61.02 60.75
2 5.32 5.36 5.27 5.33 5.33 5.37 60.93 60.45 60.91 60.84 60.62 60.61
10 5.30 5.31 5.29 5.30 5.31 5.33 60.94 60.99 61.09 61.01 61.06 60.95

2:4

1
2

6.76 6.80 6.24 6.59 6.71 6.80 56.16 56.15 58.66 58.30 56.34 56.10
1 6.68 6.72 6.32 6.63 6.67 6.79 56.42 56.47 58.75 58.52 56.61 56.45
2 6.56 6.64 6.35 6.52 6.60 6.73 55.94 56.35 57.81 58.38 56.93 56.33
10 6.37 6.37 6.33 6.35 6.39 6.42 56.64 56.70 57.03 56.82 56.36 56.36
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Table 9: Perplexity and zero-shot accuracy of four different models pruned to 50% unstructured and
2:4 sparsity with Wanda and reconstructed with MSE and MP. The best result for each (sparsity type,
model) combination is highlighted in bold. ↓: lower is better, ↑: higher is better.

Model
Dense PPL

Block size Perplexity ↓ Zero-shot accuracy (in %) ↑

unstructured 2:4 unstructured 2:4

OPT-1.3B
14.62

No rec. 18.31 28.11 43.35 41.43
1
2

15.49 17.70 44.76 43.70
1 16.42 19.35 44.08 42.94
2 16.26 19.02 44.26 42.82
6 16.17 19.25 44.27 43.17

OPT-6.7B
10.86

No rec. 11.96 16.05 48.02 45.89
1
2

11.45 12.88 50.63 48.97
1 11.95 13.63 50.13 48.28
2 11.82 13.36 50.32 48.51
8 11.91 13.61 49.97 48.12

LLaMA-3-8B
5.83

No rec. 8.96 21.85 56.89 45.67
1
2

7.79 10.24 59.77 55.23
1 7.72 10.31 58.67 54.44
2 7.75 10.32 58.36 52.72
8 7.89 10.53 57.90 52.87

LLaMA-2-13B
4.57

No rec. 5.54 8.39 60.25 53.23
1
2

5.25 6.22 61.14 58.77
1 5.25 6.29 61.43 58.65
2 5.27 6.35 60.86 57.84

10 5.28 6.32 61.06 57.11

Table 8: Perplexity and zero-shot accuracy of LLaMA-3-8B (32 transformer blocks) pruned to
different sparsity types with Wanda and reconstructed in different settings with 1024 calibration
samples on a single random seed. The best result for each setting is underlined, the best result for
each sparsity type is highlighted in bold. SP, MP, DP: sparse, mixed, and dense propagation. CS:
cosine similarity. ↓: lower is better, ↑: higher is better. Base perplexity of LLaMA-3-8B dense: 5.83,
pruned unstructured: 8.96, pruned 2:4: 21.58.

Perplexity ↓ Zero-shot accuracy (in %) ↑

Sparsity type Block size SP MP DP SP MP DP

MSE CS MSE CS MSE CS MSE CS MSE CS MSE CS

unstructured

1
2

7.99 8.00 7.75 7.99 7.84 7.99 57.57 57.54 58.81 57.44 58.80 57.64
1 7.76 8.00 7.70 7.92 7.75 8.02 58.55 57.77 58.08 58.45 58.84 57.66
2 7.75 7.98 7.72 7.79 7.74 8.02 58.31 58.39 58.21 58.67 58.29 58.20
8 7.82 7.89 7.86 7.83 7.83 7.95 58.07 57.94 57.86 58.04 58.10 57.76

16 8.06 7.99 8.06 7.96 8.02 8.03 57.26 57.48 57.41 57.76 57.16 57.53

2:4

1
2

15.79 15.28 9.96 11.96 11.36 12.78 46.91 47.58 55.74 50.71 51.18 49.66
1 11.14 12.60 10.34 11.84 10.95 12.67 52.48 50.99 54.55 55.77 52.65 50.55
2 10.74 11.90 10.34 11.18 10.56 12.04 52.00 51.24 52.78 53.33 51.51 50.16
8 10.44 10.59 10.57 10.59 10.52 10.88 52.47 52.51 52.92 53.44 52.40 51.77

16 11.10 10.90 11.18 10.92 11.11 11.02 51.81 52.07 51.83 52.55 51.16 51.60
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