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Abstract
Distributed optimization through federated learning (FL) suffers from data heterogeneity particu-
larly when the client datasets are highly imbalanced. Model aggregation via ensemble distillation
is an effective solution to address this issue. However, there is no previous work on ensemble
distillation in FL that considers hierarchical model aggregation, which is important for reducing
communication overhead over a large network. In this work, we propose new methods to enable
ensemble distillation for a hierarchical FL system. We develop a Federated Hierarchical Ensemble
Aggregation via Distillation (FedHEAD) algorithm that performs ensemble distillation by reusing
the clients’ local data within each network sector of the hierarchy. We also extend it to FedHEAD+
so as to take advantage of reference data when it is available at the server. We provide theoret-
ical analysis on FedHEAD and FedHEAD+, showing that under a wide range of conditions, our
proposed schemes achieve faster convergence than existing non-hierarchical alternatives. Further-
more, extensive experiments over computer vision, natural language processing, and network traffic
classification datasets show that the proposed schemes are robust towards hierarchical model ag-
gregation in the network.

1. Introduction

Ensemble distillation has shown great potential to address the challenge of data heterogeneity in
federated learning (FL) [3, 10, 14, 30]. In particular, FedDF [14] significantly improves upon the
standard FedAvg [16] by adding a server distillation phase where the global model is aligned to
the ensemble of all local models through distillation. However, the original ensemble distillation
schemes require a publicly available reference dataset for knowledge transfer, which must have
probability distribution similar to the actual aggregate data distribution of the clients. Such reference
dataset is often unavailable in FL, where data are often privacy sensitive and it is difficult to gather a
large amount of data samples is difficult to gather by any node in the network. Data-free distillation
schemes for FL [3, 30] mitigate these issues, but they suffer from poor performance compared with
those schemes using a reference dataset.

Furthermore, the existing ensemble distillation schemes naturally utilize only the server in FL to
build the ensemble and require direct communication between the server and the clients. Therefore,
they are not directly applicable in the emerging hierarchical FL systems [1, 5, 13, 15, 23, 29].
In hierarchical FL, typified by a client-edge-cloud system, the task of model aggregation is first
performed by multiple edge servers, and then a final aggregation is performed at the cloud server.
The communication with edge servers instead of the distant cloud server can greatly reduce latency
and communication cost over a large network. However, since the models are aggregated in multiple
locations, there is no single node where all the client models are present to build an ensemble.
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Figure 1: Federated learning over network sectors.

This renders ensemble distillation in a hierarchical FL a particularly challenging problem. We
provide a brief survey of the relevant works on FL using knowledge distillation in Appendix A in
the supplementary material.

In this paper, we introduce a novel federated hierarchical ensemble aggregation via distillation
(FedHEAD) scheme that facilitates hierarchical FL with ensemble distillation. It does not require
any reference dataset. Instead, we reuse the client data for distillation utilizing a decentralized
strategy in FL. Furthermore, in case a reference dataset becomes available at the server, we extend
our proposed scheme to FedHEAD+, which performs server distillation on top of FedHEAD.

Our main contributions are summarized as follows:

• We propose a novel FedHEAD framework that facilitates hierarchical FL using distillation
over a network partitioned into sectors. It requires no reference dataset and reuses the client’s
local datasets for aligning the global model to the ensemble predictions. Since FedHEAD ran-
domly chooses a client leader at each communication round, the existing convergence analy-
sis techniques do not apply. Hence, we provide new analysis for strongly convex and smooth
loss functions with bounded gradients, which indicates that under a wide range of conditions,
FedHEAD converges faster than FedAvg. This is the first study theoretically showing that a
reference data-free ensemble distillation scheme can converge faster than FedAvg.

• In the case that a reference dataset is available at the FL server, we further extend our scheme
to FedHEAD+ in order to make use of the additional data. FedHEAD+ involves a server
distillation phase on top of FedHEAD and thus can boost the learning performance further.
We also provide convergence analysis for FedHEAD+ and find the conditions under which
FedHEAD+ converges faster than FedDF.

• We conduct extensive experiments on computer vision, natural language processing, and net-
work traffic classification tasks using a variety of datasets including SVHN, CIFAR10, CI-
FAR100, AG News, SST-2, Unicauca75, and Unicauca141. In all cases with varying degrees
of data heterogeneity, we observe that FedHEAD and FedHEAD+ outperform a wide range of
alternatives. More interestingly, our experiments demonstrate that FedHEAD, without using
a reference dataset, often achieves a test accuracy at par with FedDF, which uses a reference
dataset.

2. Preliminaries

We consider the distributed optimization of a global machine learning model through FL, over a
network partitioned into M sectors as shown in Fig. 1. Each sector may belong to an organization
(e.g., hospitals, service providers, etc., owned by a parent institution). Under such circumstances,
it is well-known that hierarchical FL can substantially reduce the communication overhead while
facilitating collaboration among all clients in the network.
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For notational convenience only, we assume there is an equal number of clients per sector de-
noted by K, i.e., there are totally N = KM clients in the network. Each client has a local dataset
with true labels. The local dataset of the k-th client in the m-th sector is denoted by Dkm. Then the
local loss for the k-th client in the m-th sector is given by

Lkm(w) = 1
|Dkm|

∑
(x,y)∈Dkm

l(f(x;w),y), (1)

where | · | denotes the size of a set, f(·;w) is a classifier with model parameters w, and the loss
l(f(x;w),y) is computed between the classifier’s output for a single datapoint x and its true label
y. We define the sector loss for the m-th sector as

Lm(w) =
∑K

k=1
pkm
pm

Lkm(w). (2)

Finally, the global loss is formulated as:

L(w) =
∑M

m=1 pmLm(w) =
∑M

m=1

∑K
k=1 pkmLkm(w), (3)

where pkm = |Dkm|∑M
m=1

∑K
k=1 |Dkm|

and pm =
∑K

k=1 pkm. The goal of our FL system is to learn a

model w by minimizing the global loss function in a distributed manner without sharing local data.
In standard non-hierarchical FL, each client trains a local model for a few rounds on its local

dataset. The local model parameters for the k-th client in the m-th sector are denoted by wkm. After
local training, all the clients send their models to the server for aggregating the model parameters.
The server aggregates the local models into a global model and broadcasts the global parameters
to all clients. This constitutes one communication round. In Appendix B, we discuss how model
averaging can be leveraged for hierarchical FL and elaborate upon the motivation behind designing
our proposed algorithms.

3. Proposed Federated Hierarchical Ensemble Aggregation via Distillation

We present a detailed description of the proposed FedHEAD algorithm and its extension Fed-
HEAD+ in this section. We also provide theoretical analysis for both schemes under a general
non-iid setting.
3.1. Description of FedHEAD Algorithm

In the FedHEAD framework, the server selects a client leader randomly from each sector in every
communication round. This client leader will work as a mediator between the clients in that sector
and the distant server. We reuse the local data of the client leader for ensemble distillation. The
client leader is randomly chosen owing to the fact that the local data distribution of each client is
skewed when the data are not iid among clients. By distilling over the dataset of different clients in
different communication rounds, we mitigate the skewness of the distillation dataset.

The steps involved in FedHEAD are described in Algorithm 1 provided in Appendix C in the
supplementary material. The server initializes a global model for all clients. At the beginning of
every communication round, the server randomly designates a client in each sector as client leader
and notifies all the clients in a sector who their leader is. The probability of choosing the k-th client
in the m-th sector as leader is pkm

pm
. The server also provides each leader the client weights in their

sector, {pkm}Kk=1, ∀m, which will be later used by the client leader for model aggregation and
ensemble formation.

Then, FedHEAD proceeds with two distinct phases: namely, the local training phase and the
sector distillation phase.
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Local training phase. Each client trains their model on their local data for nl rounds and sends
the trained model to their corresponding client leader. Let wt

km denote the model of the k-th client
in the m-th sector at the t-th communication round. Upon receiving the models from the clients, the
client leaders perform pre-distillation sector aggregation as follows: wt

m =
∑K

k=1
pkm
pm

wt
km, ∀m.

Next, the client leaders forward the aggregated models {wt
m}Mm=1 to the server. The server performs

pre-distillation server aggregation: zt =
∑M

m=1 pmwt
m and sends back the aggregated model zt to

the client leaders. Thus, only the client leader communicates with the distant server, and hierarchical
aggregation is accommodated in FedHEAD. Note that pre-distillation aggregation performs global
synchronization for distillation, which prevents client drift [7].

Sector distillation phase. Once each client leader receives the aggregated model zt from the
server, the distillation begins. Each client leader forms an ensemble of the local models in its
sector. For a sample point x, let us denote the output from the local model of the k-th client
in the m-th sector as f(x;wt

km). For distillation, the ensemble model in each sector, f̄ t
m(x) :=∑K

k=1
pkm
pm

f(x;wt
km), ∀m, is used as a teacher, and the aggregated model zt serves as a student.

Each client leader performs ensemble distillation on its local dataset for ns rounds. Note that since
the distillation is performed by reusing local datasets, FedHEAD does not require any reference data
unlike FedDF. However, as the local datasets are non-iid, it is recommended to use early stopping
by monitoring validation loss similar to FedDF. In particular, the client leaders keep track of vali-
dation loss during sector distillation and once the loss is plateaued for some consecutive number of
iterations, the distillation stops. After distillation, the client leaders again send the distilled models
{ztm}Mm=1 to the server for post-distillation aggregation as follows: wt =

∑M
m=1 pmztm. Finally, the

server broadcasts wt to the client leaders and the client leaders distribute wt as the updated global
model within each sector.

We discuss the communication cost of FedHEAD in Appendix D in the supplementary material.

3.2. Convergence Analysis of FedHEAD

Since a client leader is randomly selected in every communication round for sector distillation,
to prove the convergence of FedHEAD is non-trivial. Here, we give a convergence analysis of
FedHEAD in a general non-iid setting.

Let us consider the stochastic gradient descent (SGD) updates throughout different phases in
FedHEAD. During the local training phase, each client updates their models computing the gradient
of the loss against the true labels. Recall that we denote the loss of the k-th client in the m-th sector
by Lkm(·). Next, in the sector distillation phase, each client leader updates their models computing
the gradient of the loss against the sector ensemble predictions. We denote the distillation loss by
L̃km(·) if the k-th client in the m-th sector is designated as a client leader. L̃km(·) is given by

L̃km(w) = 1
|Dkm|

∑
(x,y)∈Dkm

l(f(x;w), f̄ t
m(x)). (4)

Similar to (2) and (3), we can also define the sector distillation loss for the m-th sector as L̃m(·) =∑K
k=1

pkm
pm

L̃km(·) and the global distillation loss as L̃(·) =
∑M

m=1 pmL̃m(·) =
∑M

m=1

∑K
k=1 pkmL̃km(·).

We require Assumptions 1, 2, 3, 4, and 5 about Lkm(·) and L̃km(·), regarding the properties of
smoothness, strong convexity, bounded variance of stochastic gradient, bounded second moment of
stochastic gradient and ϵ-noisy distillation, respectively. They are commonly assumed properties in
the literature on convergence analysis. The details of these assumptions are provided in Appendix
E.
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Furthermore, we define the degree of client data heterogeneity, Γclient = L∗−
∑M

m=1

∑K
k=1 pkmL∗

km

and sector data heterogeneity, Γsec = L∗ −
∑M

m=1 pmL∗
m where L∗

km,L∗
m,L∗ are the minimum of

the local, sector and global losses defined in (1), (2) and (3). From the definition of the expected
risk minimization (ERM),

∑M
m=1

∑K
k=1 pkmL∗

km ≤
∑M

m=1 pmL∗
m ≤ L∗. Hence, Γsec ≤ Γclient.

Let w1, wt+1 and w∗ be the initial global model, the global model after t communication
rounds, and the minimizer of the global loss L(·), respectively. Let us denote ∆1 = E||w1 −
w∗||2. We further consider a single iteration index τ that runs through all the local training, sector
distillation, and server distillation phases. In other words, we define a virtual global model θτ as
follows:

θτ =

{ ∑M
m=1

∑K
k=1 pkmwτ

km, τ ∈ local training phase,∑M
m=1 pmzτm, τ ∈ sector distillation phase,

(5)

where wτ
km is the model at the k-th client in the m-th sector at the τ -th iteration, and zτm is the model

at the m-th client leader at the τ -th iteration. Note that in Algorithm 1, we only access θτ during
the pre-distillation aggregation and post-distillation aggregation, but it is a mathematical construct
that will be used throughout our proof.

Our analysis further considers early stopping during the sector distillation phase according to
following criterion.

Definition 1 (Early stopping criterion for sector distillation) The SGD update during sector dis-
tillation stops at the τ -th iteration if L̃(θτ ) < L̃(w∗), τ ∈ sector distillation phase and θτ is
returned as the final model.

Note that this criterion prevents overfitting on the ensemble predictions and drifting away from w∗,
but it is not feasible to implement since we do not have access to w∗. However, in practice, as
shown in [14], early stopping can be implemented by monitoring validation loss.

Now, we proceed to show the convergence of FedHEAD.

Theorem 2 Suppose Assumptions 1, 2, 3, 4, and 5 hold, and n̄s ≤ ns is the average number of
sector distillation rounds per communication round before early stopping according to Definition
1. FedHEAD guarantees that after t communication rounds

E[L(wt+1)]− L∗ ≤ κ

(nl + n̄s)t+ γ

(
2Bl + 2Bs

µ
+

µγ

2
∆1

)
(6)

where κ = L
µ , γ = max{nl, ns, 8κ},

Bl = 6LΓclient + σ2
∑M

m=1

∑K
k=1 p

2
km + 8(nl − 1)2G2, (7)

Bs = 6LΓsec + 6Lϵ+ (1− δ)σ2
∑M

m=1 p
2
m + (1− δ)G2

∑M
m=1 p

2
m + 8(1− δ)(ns − 1)2G2,

(8)

and L, µ, σ,G, δ and ϵ are defined in Assumptions 1-5.

Furthermore, we add the following observation comparing the convergence rate of FedHEAD and
FedAvg.
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Remark 3 For Tcomm communication rounds, the convergence rates of FedHEAD and FedAvg
are given by O

(
Bl+Bs+γG2

µ(nl+n̄s)Tcomm

)
and O

(
Bl+γG2

µnlTcomm

)
, respectively. FedHEAD converges faster than

FedAvg if n̄s ≥ nl
Bs
Bl

. In particular, when ns = nl, if δ
ϵ ≥ 3L

4n2
sG

2 , there exists a n̄s such that
FedHEAD converges faster than FedAvg.

The proof of Theorem 2 and Remark 3 mainly depend on the observation that the local training
phase of FedHEAD is similar to FedAvg among clients minimizing the loss against true labels, and
the sector distillation phase of FedHEAD is based on distributed optimization among client leaders
minimizing the loss against ensemble predictions. Extra care is given to further account for the
random selection of client leaders. The details are provided in Appendix E in the supplementary
material.
3.3. Extension to FedHEAD+

For FedHEAD, we do not need a reference dataset for distillation. However, if an unlabeled refer-
ence dataset is available at the server (same as in FedDF), we want to make use of it. Therefore,
we propose FedHEAD+, which performs ensemble distillation at the server on top of FedHEAD.
Thus, for FedHEAD+, in addition to the local training and sector distillation phases of FedHEAD,
we also have a server distillation phase.

Server distillation phase. After post-distillation server aggregation in Algorithm 1, we have the
aggregated model wt. Now the server builds an ensemble of the client leaders’ models, f̄ t(x) :=∑M

m=1 pmf(x; ztm). Then, ensemble distillation is performed for ng rounds using reference dataset
Dref with wt as a student and the ensemble as a teacher. Similar to FedDF, it is recommended to
use early stopping by monitoring validation loss. At the end of distillation, the server broadcasts
distilled wt to the client leaders, which is the same as in Algorithm 1.

Note that since we have already performed ensemble distillation at each sector, every client
leader’s model contains the knowledge of the corresponding sector. The distillation at the server
then aligns the model with global consensus. Clearly, FedHEAD+ does not incur any communica-
tion cost beyond FedHEAD, which is indicated in Table 1 given in Appendix D. The convergence
analysis of FedHEAD+ is discussed in Appendix F and further details are provided in Appendix G
in the supplementary material.

We include our experimental results in Appendix H in the supplementary material.

4. Conclusion

In this paper, we propose a new FedHEAD scheme that performs ensemble distillation in hierarchi-
cal FL in the distributed optimization of a global learning model, to reduce both the impact of data
heterogeneity and the cost of communication. A salient feature of this scheme is that local datasets
of the clients are reused for the purpose of distillation. With theoretical analysis, we show that Fed-
HEAD converges faster than FedAvg under mild conditions. Furthermore, we extend the proposed
scheme to FedHEAD+ to make use of a reference dataset when it is available at the server. We
derive conditions under which FedHEAD+ converges faster than FedDF. Our experimental results
confirm that FedHEAD and FedHEAD+ outperform their respective counterparts over a variety of
CV, NLP, and NTC tasks. Furthermore, unlike other data-free distillation schemes in FL, FedHEAD
often performs at par with FedDF, even though it does not require a reference dataset and it sup-
ports hierarchical ensemble distillation for significantly reduced communication overhead. Further
experiments on the impact of the number of sectors and random choice of client leader reveal that
FedHEAD and FedHEAD+ are robust towards hierarchical aggregation over network sectors.
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Supplementary Material

Appendix A. Related Works

Knowledge distillation in non-hierarchical FL. FedMD was proposed in [10] where each client
has access to a labeled reference dataset. Before the original FL begins, the client models are
pretrained on the reference dataset. Once FL commences, the clients share their predictions on the
reference dataset and learn from the global consensus. Subsequently, the authors of [14] introduced
FedDF to alleviate the need for true labels in the reference dataset. In every communication round,
using an unlabeled reference dataset, the server distills knowledge from the ensemble of the client
models to the global model. Another knowledge distillation-based personalized FL scheme was
proposed in [27] where the clients update their models on both private and reference datasets and
share a knowledge coefficient matrix that is aggregated at the server.

Collecting a large reference dataset is often infeasible in a privacy-sensitive FL setting. Hence,
in recent years, data-free knowledge distillation schemes for FL have been proposed. In [30], the
authors introduced FedGen, where a generator is used at the server instead of a reference dataset.
The authors in [3] introduced FedHKD, a hyper-knowledge distillation framework, where in addi-
tion to sharing model parameters, the clients also share means of latent representations as well as
the logit outputs for each class. However, when compared with FedMD, FedGen and FedHKD give
degraded performance as data-free distillation results in less effective knowledge transfer.

Knowledge distillation in hierarchical FL. As far as we are aware, there does not exist any prior
work on ensemble distillation over hierarchical FL. In a recent work termed FedHKT [4], the clients
associated with each edge first collaborate to train an edge server model. Then, the knowledge
from the ensemble of edge server models is transferred to a larger cloud server model using a
reference dataset. Finally, the cloud server model is distilled back to the edge server models using
the reference dataset again. However, FedHKT does not really perform hierarchical FL since the
model aggregation only occurs in the edge servers, and not in the cloud server. Indeed, FedDF can
be directly modified to give identical performance as FedHKT by first distilling from the ensemble
to a larger server model and then from that larger server model to a smaller server model that is
identical in size to the client models.

Convergence analysis of FL with distillation. The convergence of ensemble distillation in dis-
tributed setting has been investigated in [18] and [2]. However, the analysis in [18] is limited to
kernel ridge regression (KRR). The analysis in [2] assumes mean squared loss. The authors in [14],
provide a worst-case generalization bound for FL using ensemble distillation. To the best of our
knowledge, there exists no prior work that provides a general mathematical analysis of ensemble
distillation even for non-hierarchical FL.

In contrast, our convergence analysis for FedHEAD and FedHEAD+ is for ensemble distilla-
tion in hierarchical FL, with or without a reference dataset, and it is more general with standard
assumptions such as smoothness and strong convexity of the loss function.

Appendix B. Naive Aggregation via Hierarchical Averaging

The advantage of model aggregation via averaging is that it is flexible enough to accommodate hi-
erarchical FL. For a network partitioned into multiple sectors as shown in Fig. 1, a communication-
efficient strategy is to perform model aggregation first at each sector level and then at the server
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level. This eliminates the need for all clients to directly send their models to the server. In each
communication round, the aggregated model at the m-th sector can be written as

wm =
∑K

k=1
|Dkm|∑K

k=1 |Dkm|
wkm =

∑K
k=1

pkm
pm

wkm. (9)

Next, the server-level aggregation is performed to obtain the global model as follows:

w =
∑M

m=1 pmwm =
∑M

m=1

∑K
k=1 pkmwkm. (10)

Note that this hierarchical aggregation gives us the same global model as in the standard FedAvg.
However, the downside of aggregation via averaging is that it severely suffers from data hetero-

geneity. As explained previously, ensemble distillation can address this issue by aligning the global
model with the consensus of the local models [14].

Appendix C. FedHEAD Algorithm

Algorithm 1 FedHEAD Algorithm

Initialize: Broadcast initial global model, w1 to all clients.
1: for t = 2, ..., Tcomm do
2: Server executes:
3: Select a client leader randomly out of K clients in each sector with probability of choosing

the k-th client pkm
pm

.
4: Notify the clients in each sector of the index of their client leader.
5: Send the m-th client leader the client weights, {pkm}Kk=1, ∀m.
6: Clients execute in parallel:
7: Train global model using local datasets for nl rounds.
8: Send models {wt

km}K,M
k=1,m=1 to corresponding client leaders.

9: Client leaders execute in parallel:
10: Perform pre-distillation sector aggregation: wt

m =
∑K

k=1
pkm
pm

wt
km, ∀m.

11: Send aggregated models {wt
m}Mm=1 to server.

12: Server executes:
13: Perform pre-distillation server aggregation: zt =

∑M
m=1 pmwt

m.
14: Broadcast zt to client leaders.
15: Client leaders execute in parallel:
16: Build ensemble of models in each sector,

∑K
k=1

pkm
pm

f(x;wt
km), ∀m.

17: Perform ensemble distillation for ns rounds using each client leader’s local dataset with zt as
a student and the ensemble as a teacher.

18: Send distilled models {ztm}Mm=1 to server.
19: Server executes:
20: Perform post-distillation aggregation: wt =

∑M
m=1 pmztm.

21: Broadcast wt to client leaders.
22: Client leaders execute in parallel:
23: Broadcast wt to clients in each sector as the updated global model.
24: end for

11
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Appendix D. Communication Cost of FedHEAD

Since the communication within each sector is localized, the total communication cost is dominated
by the communication between the sectors and the distant server. It is shown in Table 1 for different
algorithms after Tcomm communication rounds. Note that in FedHEAD, each client leader talks
with the server twice per communication round. For FedDF, the communication cost scales linearly
with the number of clients, N , because all clients in the network need to send their models to the
server in every communication round. However, thanks to hierarchical aggregation for FedAvg and
FedHEAD, the communication cost between the sectors and the server is independent of N .

Table 1: Total communication cost for different FL algorithms (assuming unit cost per round trip).

Algorithm Hierarchical
Total comm. cost betn.

the sectors and the server

FedAvg (Hier. Agg.) ✓ MTcomm
FedDF ✗ NTcomm

FedHEAD ✓ 2MTcomm
FedHEAD+ ✓ 2MTcomm

Appendix E. Proof of Theorem 2 and Remark 3

E.1. Assumptions on Lkm(·) and L̃km(·)

We require the following set of assumptions about Lkm(·) and L̃km(·), which are common in the
literature.

Assumption 1 (Smoothness) Lkm, ∀k,m, are L-smooth, i.e., for all u and v, Lkm(u) ≤ Lkm(v)+
(u− v)T∇Lkm(v) + L

2 ||u− v||2, ∀k,m. The same assumption holds for L̃km(·), ∀k,m.

Assumption 2 (Strong convexity) Lkm, ∀k,m, are µ-strongly convex, i.e., for all u and v,
Lkm(u) ≥ Lkm(v) + (u − v)T∇Lkm(v) + µ

2 ||u − v||2, ∀k,m. The same assumption holds
for L̃km(·), ∀k,m.

Assumption 3 (Bounded variance of stochastic gradient) Let ξ be a stochastic sample. The
variance of the stochastic gradient is bounded, i.e., for all w, E ||∇Lkm(w, ξ)−∇Lkm(w)||2 ≤
σ2, ∀k,m. Furthermore, for L̃km(·), ∀k,m, we assume the variance of the stochastic gradient is

more tightly bounded, i.e., for all w, E
∣∣∣∣∣∣∇L̃km(w, ξ)−∇L̃km(w)

∣∣∣∣∣∣2 ≤ (1− δ)σ2, ∀k,m, where
0 ≤ δ ≤ 1.

Assumption 4 (Bounded second moment of stochastic gradient) The second moment of the stochas-
tic gradient is uniformly bounded, i.e., for all w, E ||∇Lkm(w, ξ)||2 ≤ G2, ∀k,m. Furthermore,
for L̃km(·), ∀k,m, we assume the second moment of the stochastic gradient is more tightly bounded

i.e., for all E
∣∣∣∣∣∣∇L̃km(w, ξ)

∣∣∣∣∣∣2 ≤ (1− δ)G2, ∀k,m, where 0 ≤ δ ≤ 1.

Assumption 5 (ϵ-noisy distillation) Distillation losses are ϵ-noisy, i.e., for all w, |L̃km(w) −
Lkm(w)| ≤ ϵ

2 , ∀k,m.

12
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Assumptions 3 and 4 about L̃km(·), ∀k,m are due to the fact that knowledge distillation is a
sophisticated label smoothing technique [24, 25] and δ could be viewed as the benefit of distillation.
However, since the ensemble teacher’s predictions are noisy, the effectiveness of distillation also
depends on how accurate the teacher is, which is indicated by ϵ in Assumption 5. Whether distilling
from an ensemble teacher improves performance depends upon the balance between δ and ϵ.

E.2. Proof of Theorem 2

To track the performance of learning over time, we define ∆τ = E||θτ − w∗||2. The expectation
is taken over all sources of randomness in the corresponding FL algorithm. For FedHEAD, the
randomness is due to stochastic gradients as well as the choice of the client leader in each commu-
nication round. Note that this definition is consistent with the definition of ∆1 in the statement of
Theorem 2 since θ1 = w1.

Local training phase. In the local training phase of FedHEAD, the clients run FedAvg computing
the gradient of loss against the true labels. Therefore, we can borrow part of the results on the
convergence of FedAvg from [12]. Let us denote the stochastic gradient at the k-th client in m-
th sector as gτ

km(ξ) = ∇Lkm(wτ
km, ξ) and the full gradient, gτ

km = Egτ
km(ξ). The learning

rate at τ -th iteration is given by ητ = β
τ+γ , where β > 1

µ and γ > 0 such that η1 ≤ 1
4L and

ητ ≤ 2min{ητ+nl
, ητ+ns}, ∀τ . The following three lemmas is a restating of Lemma 1, 2, and 3

from [12] and thus are given without proof.

Lemma 4 Suppose Assumption 1 and 2 hold. If ητ ≤ 1
4L , then in the local training phase of

FedHEAD, we have

E
∥∥θτ+1 −w∗∥∥2 ≤ (1−µητ )E ∥θτ −w∗∥2 + 6Lη2τΓclient

+ η2τE

∥∥∥∥∥
M∑

m=1

K∑
k=1

pkmgτ
km(ξ)−

M∑
m=1

K∑
k=1

pkmgτ
km

∥∥∥∥∥
2

+ 2

M∑
m=1

K∑
k=1

pkmE ∥θτ −wτ
km∥2 .

(11)

Lemma 5 Suppose Assumption 3 holds. We have

E

∥∥∥∥∥
M∑

m=1

K∑
k=1

pkmgτ
km(ξ)−

M∑
m=1

K∑
k=1

pkmgτ
km

∥∥∥∥∥
2

≤ σ2
M∑

m=1

K∑
k=1

p2km. (12)

Lemma 6 Suppose Assumption 4 holds, and ητ is non-increasing and ητ ≤ 2ητ+nl
for all τ ≥ 0.

We have
M∑

m=1

K∑
k=1

pkmE ∥θτ −wτ
km∥2 ≤ 4η2τ (nl − 1)2G2. (13)

Plugging (12) and (13) into (11), we obtain a recurrence relation for a single-step SGD update
during the local training phase of FedHEAD as follows:

∆τ+1 ≤ (1− µητ )∆τ + η2τBl, τ ∈ local training phase, (14)

where Bl = 6LΓclient + σ2
∑M

m=1

∑K
k=1 p

2
km + 8(nl − 1)2G2.
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Sector distillation phase. Next, in the sector distillation phase, the client leaders run FedAvg
computing gradient against sector ensemble predictions. Hence, the model is updated using the
stochastic gradient of distillation loss on the client leaders until early stopping according to Defi-
nition 1. However, the main complication in sector distillation phase is that, the m-th client leader
itself is randomly selected out of all the clients in the m-th sector.

Let us denote the id of the client that is selected as client leader in the m-th sector as k′. Then, we
write the stochastic gradient of the distillation loss at the client leader in m-th sector as g̃τ

k′m(ξ) =
∇L̃k′m(zτm, ξ) and the full gradient of the m-th sector as g̃τ

m = Eg̃τ
k′m(ξ) where the expectation

is taken over two sources of randomness: the choice of stochastic sample, ξ, and the choice of
client leader, k′. We observe g̃τ

m = Eg̃τ
k′m(ξ) =

∑K
k=1 E[1(k′ = k)g̃τ

km(ξ)] =
∑K

k=1 E[1(k′ =
k)]g̃τ

km =
∑K

k=1
pkm
pm

g̃τ
km where we use E[1(k′ = k)] = Pr(k′ = k) = pkm

pm
, which is the

probability of choosing the k-th client as leader in the m-th sector.
To proceed, we require three additional lemmas as follows.

Lemma 7 Suppose Assumption 1, 2 and 5 hold. If ητ ≤ 1
4L , then in the sector distillation phase of

FedHEAD, we have

E
∥∥θτ+1 −w∗∥∥2 ≤ (1− µητ )E ∥θτ −w∗∥2 + 6Lη2τΓsec + 6Lη2τ ϵ

+ η2τE

∥∥∥∥∥
M∑

m=1

pmg̃τ
k′m(ξ)−

M∑
m=1

pmg̃τ
m

∥∥∥∥∥
2

+ 2

M∑
m=1

pmE ∥θτ − zτm∥2 .
(15)

Proof Given a fixed set of the sectors’ client leaders in each communication round, the sector dis-
tillation phase resembles FedAvg among M client leaders. However, the loss function is no longer
against true labels but the distillation loss against ensemble predictions. Therefore, we rewrite
Lemma 4 for M participants substituting the loss function against true labels with the distillation
loss against ensemble predictions. Thus, firstly, the stochastic gradients needs to be replaced by
g̃τ
k′m(ξ) ∀m. Secondly, before early stopping according to Definition 1, we have L̃(θτ ) ≥ L̃(w∗).

Thirdly, Γclient will be changed to
∑M

m=1 pmL̃m(w∗) −
∑M

m=1 pmL̃∗
m where L̃∗

m is the minimum
of the distillation loss L̃m(·). We have

M∑
m=1

pmL̃m(w∗)−
M∑

m=1

pmL̃∗
m

=

M∑
m=1

pmL̃m(w∗)−
M∑

m=1

pmLm(w∗) +

M∑
m=1

pmLm(w∗)−
M∑

m=1

pmL∗
m +

M∑
m=1

pmL∗
m −

M∑
m=1

pmL̃∗
m

≤
M∑

m=1

pm|L̃m(w∗)− Lm(w∗)|+ L∗ −
M∑

m=1

pmL∗
m +

M∑
m=1

pm|L∗
m − L̃∗

m|

(a)

≤
M∑

m=1

pm|L̃m(w∗)− Lm(w∗)|+ L∗ −
M∑

m=1

pmL∗
m +

M∑
m=1

pmmax
w

|Lm(w)− L̃m(w)|

(b)

≤ ϵ

2
+ L∗ −

M∑
m=1

pmL∗
m +

ϵ

2

= Γsec + ϵ
(16)
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where (a) is due to the fact |minx f(x)−minx g(x)| ≤ maxx |f(x)− g(x)|, and (b) is obtained
from Assumption 5. Making the three modifications mentioned above, we deduce Lemma 7 from
Lemma 4.

Lemma 8 Suppose Assumption 3 and 4 hold. We have

E

∥∥∥∥∥
M∑

m=1

pmg̃τ
k′m(ξ)−

M∑
m=1

pmg̃τ
m

∥∥∥∥∥
2

≤ (1− δ)σ2
M∑

m=1

p2m + (1− δ)G2
M∑

m=1

p2m. (17)

Proof

E

∣∣∣∣∣
∣∣∣∣∣

M∑
m=1

pmg̃τ
k′m(ξ)−

M∑
m=1

pmg̃τ
m

∣∣∣∣∣
∣∣∣∣∣
2

= E

∣∣∣∣∣
∣∣∣∣∣

M∑
m=1

K∑
k=1

pm1(k
′ = k)g̃τ

km(ξ)−
M∑

m=1

K∑
k=1

pkmg̃τ
km

∣∣∣∣∣
∣∣∣∣∣
2

=
M∑

m=1

p2mE

∣∣∣∣∣
∣∣∣∣∣
K∑
k=1

1(k′ = k)

(
g̃τ
km(ξ)−

K∑
k=1

pkm
pm

g̃τ
km

)∣∣∣∣∣
∣∣∣∣∣
2

=
M∑

m=1

K∑
k=1

p2m Pr(k′ = k)E

∣∣∣∣∣
∣∣∣∣∣g̃τ

km(ξ)−
K∑
k=1

pkm
pm

g̃τ
km

∣∣∣∣∣
∣∣∣∣∣
2

=
M∑

m=1

p2m

K∑
k=1

pkm
pm

E

∣∣∣∣∣
∣∣∣∣∣g̃τ

km(ξ)−
K∑
k=1

pkm
pm

g̃τ
km

∣∣∣∣∣
∣∣∣∣∣
2

=
M∑

m=1

p2m

K∑
k=1

pkm
pm

E ||g̃τ
km(ξ)− g̃τ

km||2 +
M∑

m=1

p2m

K∑
k=1

pkm
pm

∣∣∣∣∣
∣∣∣∣∣g̃τ

km −
K∑
k=1

pkm
pm

g̃τ
km

∣∣∣∣∣
∣∣∣∣∣
2

(a)

≤
M∑

m=1

p2m

K∑
k=1

pkm
pm

E ||g̃τ
km(ξ)− g̃τ

km||2 +
M∑

m=1

p2m

K∑
k=1

pkm
pm

||g̃τ
km||2

(b)

≤ (1− δ)σ2
M∑

m=1

p2m + (1− δ)G2
M∑

m=1

p2m

(18)

where (a) is due to the fact that the variance is smaller than the second moment, and (b) is obtained
from Assumption 3 and 4.

Lemma 9 Suppose Assumption 4 holds, ητ is non-increasing, and ητ ≤ 2ητ+ns for all τ ≥ 0. We
have

M∑
m=1

pmE ∥θτ − zτm∥2 ≤ 4η2τ (ns − 1)2G2. (19)
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Proof Since we perform global synchronization through pre-distillation aggregation (see lines 10-
13 in Algorithm 1), for any τ ∈ sector distillation phase, there exists a τ0 ≤ τ , such that τ − τ0 ≤
ns − 1 and zτ0m = θτ0 , ∀m. Also, θτ =

∑M
m=1 pmzτm. Following the proof of Lemma 6 in [12], we

have
∑M

m=1 pmE ∥θτ − zτm∥2 ≤ 4η2τ (ns − 1)2G2.

We now continue the proof of Theorem 2. Plugging (17) and (19) into (15), we obtain a recurrence
relation for a single-step SGD update during the sector distillation phase of FedHEAD as follows:

∆τ+1 ≤ (1− µητ )∆τ + η2τBs, τ ∈ sector distillation phase, (20)

where Bs = 6LΓsec +6Lϵ+ (1− δ)σ2
∑M

m=1 p
2
m + (1− δ)G2

∑M
m=1 p

2
m +8(1− δ)(ns − 1)2G2.

Overall bound on ∆τ . Let v = max
{

β2Bl
βµ−1 ,

β2Bs

βµ−1 , (γ + 1)∆1

}
. We prove that ∆τ ≤ v

τ+γ , ∀τ ,
by induction. Firstly, note that the inequality holds for ∆1. Let it be true for some ∆τ , τ ∈
local training phase. Then, we have

∆τ+1 ≤ (1− µητ )∆τ + η2τBl

≤ (1− βµ

τ + γ
)

v

τ + γ
+

β2Bl

(τ + γ)2

=
τ + γ − 1

(τ + γ)2
v +

[
β2Bl

(τ + γ)2
− βµ− 1

(τ + γ)2
v

]
(a)

≤ τ + γ − 1

(τ + γ)2
v

≤ τ + γ − 1

(τ + γ)2 − 1
v

=
v

τ + γ + 1

(21)

where (a) is obtained by the definition of v. Note that the result also holds for τ ∈ sector distillation phase
due to the definition of v. Therefore, from Assumption 1, we get

E[L(θτ+1)]−L∗ ≤ L

2
∆τ+1 ≤

L

2

v

τ + γ + 1
≤ L

2(τ + γ + 1)

(
β2Bl

βµ− 1
+

β2Bs

βµ− 1
+ (γ + 1)∆1

)
.

(22)
We set β = 2

µ and γ = max{nl, ns, 8κ}−1. One can check η1 ≤ 1
4L and ητ ≤ 2min{ητ+nl

, ητ+ns}, ∀τ .
After t communication rounds, the total number of iterations τ = (nl + n̄s)t where n̄s ≤ ns is the
average number of sector distillation rounds per communication round before early stopping ac-
cording to Definition 1, and θτ+1 ≡ wt+1. Thus, we have

E[L(wt+1)]− L∗ ≤ κ

(nl + n̄s)t+ γ + 1

(
2Bl

µ
+

2Bs

µ
+

µ(γ + 1)

2
∆1

)
. (23)

Rewriting γ := γ − 1, we obtain the statement of Theorem 2.

E.3. Details of Remark 3

To compare against FedAvg, we reproduce Theorem 1 of [12] here.
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Theorem 10 Suppose Assumptions 1, 2, 3, and 4 hold. FedAvg guarantees that after t communi-
cation rounds

E[L(wt+1)]− L∗ ≤ κ

nlt+ γ

(
2Bl

µ
+

µγ

2
∆1

)
(24)

where κ = L
µ , γ = max{nl, 8κ}, Bl is defined in (7), and L, µ, σ,G, δ and ϵ are defined in

Assumptions 1-5.

Now, for strongly convex loss functions, we have ∆1 ≤ 4G2

µ2 . Substituting this in (6) and
(24), and setting t = Tcomm, we obtain the convergence rates for FedHEAD and FedAvg in terms
of dominant terms O

(
Bl+Bs+γG2

µ(nl+n̄s)Tcomm

)
and O

(
Bl+γG2

µnlTcomm

)
, respectively. The convergence rate for

FedHEAD is higher than FedAvg if Bl+Bs

nl+n̄s
≤ Bl

nl
. By mediant inequality, this is true if Bs

n̄s
≤

Bl
nl

=⇒ n̄s ≥ nl
Bs
Bl

.
Furthermore, when ns = nl, if Bs ≤ Bl, there exists a n̄s such that n̄s ≤ ns and n̄s ≥ nl

Bs
Bl

. As

the variance is smaller than the second moment, we must have σ2 < G2. Also, since
∑M

m=1 p
2
m ≤ 1

and ns ≥ 1, we have σ2
∑M

m=1 p
2
m + G2

∑M
m=1 p

2
m + 8(ns − 1)2G2 ≤ 8n2

sG
2. Thus, we can

approximate Bl ≈ 6LΓclient+8n2
lG

2 and Bs ≈ 6LΓsec+6Lϵ+8(1−δ)n2
sG

2. Since Γsec ≤ Γclient,
we have δ

ϵ ≥ 3L
4n2

sG
2 =⇒ Bs ≤ Bl. Hence, we obtain Remark 3 comparing FedHEAD against

FedAvg.

Appendix F. Convergence Analysis of FedHEAD+

To perform convergence analysis on FedHEAD+, let us denote the distillation loss using the refer-
ence dataset at the server by L̃ref(w) = 1

|Dref|
∑

(x,y)∈Dref
l(f(x;w), f̄ t(x)). We make an additional

Assumption 6 as detailed in Appendix G, which postulates that the set of assumptions regarding
L̃km(·) ∀k,m, also applies to L̃ref(·).

Furthermore, only for the sake of analysis, let us denote the loss computed over the reference
dataset against true labels as Lref(w) = 1

|Dref|
∑

(x,y)∈Dref
l(f(x;w),y). Then, we write the degree

of reference data heterogeneity as Γref = Lref(w
∗) − L∗

ref where L∗
ref is the minimum of the loss

Lref(·). Since the reference data distribution at the server is different from the client data distribution,
the minimizer of the loss over reference dataset Lref(·) is different from w∗.

Similarly to the analysis on FedHEAD above, we define the virtual global model θτ below:

θτ =


∑M

m=1

∑K
k=1 pkmwτ

km, τ ∈ local training phase,∑M
m=1 pmzτm, τ ∈ sector distillation phase,

wτ , τ ∈ server distillation phase,

(25)

where wτ is the student model in server distillation phase, which is updated, through computing the
gradients against server ensemble predictions. In addition to early stopping in the sector distillation
phase according to Definition 1, we also consider early stopping in the server distillation phase as
follows.

Definition 11 (Early stopping criterion in server distillation phase) The SGD update during server
distillation stops at the τ -th iteration if L̃ref(θ

τ ) < L̃ref(w
∗), τ ∈ server distillation phase and θτ

is returned as the final model.
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We have the following theorem about the convergence of FedHEAD+.

Theorem 12 Suppose Assumptions 1, 2, 3, 4, 5, and 6 hold, and n̄s ≤ ns and n̄g ≤ ng are
the average number of sector and server distillation rounds per communication round before early
stopping according to Definitions 1 and 11. FedHEAD+ guarantees that after t communication
rounds

E[L(wt+1)]− L∗ ≤ κ

(nl + n̄s + n̄g)t+ γ

(
2Bl + 2Bs + 2Bg

µ
+

µγ

2
∆1

)
(26)

where κ = L
µ , γ = max{nl, ns, 8κ}, Bl and Bs are defined in (7) and (8), respectively,

Bg = 2LΓref + 2Lϵ+ (1− δ)σ2, (27)

and L, µ, σ,G, δ and ϵ are defined in Assumptions 1-5.

Furthermore, we add the following observation comparing the convergence rate of FedHEAD+ and
FedDF.

Remark 13 For Tcomm communication rounds, the convergence rate of FedHEAD+ and FedDF
are given by O

(
Bl+Bs+Bg+γG2

µ(nl+n̄s+n̄g)Tcomm

)
and O

(
Bl+Bg+γG2

µ(nl+n̄g)Tcomm

)
, respectively. FedHEAD+ converges

faster than FedDF if n̄s ≥ nl

Bs

(
1+

n̄g
nl

)
Bl+Bg

In particular, when ng = ns = nl, if Γref ≥ 3Γclient and

δ ≥ 1
2 + 5Lϵ

8n2
sG

2 , there exists a n̄s such that FedHEAD+ converges faster than FedDF.

The proof of Theorem 12 and Remark 13 is similar to that of FedHEAD except for the additional
server distillation phase. The details are provided in Appendix G in the supplementary material.

Interestingly, from our analysis of FedDF to arrive at Remark 13, we can also conclude that
FedDF has faster convergence than FedAvg (see Theorem 15 in Appendix G). Note that the same
conclusion was not proven but only inferred through numerical study in (Lin et al. 2020), but our
analysis here provides a definitive proof.

We further note that the performance of FedDF and FedHEAD+ depends on the quality of the
reference dataset. If the reference dataset collected by the server is not similar to the client dataset,
the server ensemble distillation on the reference dataset will be ineffective for both FedDF and
FedHEAD+. In that case, FedHEAD will converge faster.

Appendix G. Proof of Theorem 12 and Remark 13

G.1. Assumption on L̃ref(·)

We require an additional assumption about L̃ref(·).
Assumption 6 (Distillation using reference dataset) Assumptions 1, 2, 3, 4, and 5 regarding
L̃km(·), ∀k,m, also hold for L̃ref(·).

G.2. Proof of Theorem 12

For FedHEAD+, in addition to the local training and sector distillation phases, we have a server
distillation phase where the model wτ is updated, through computing the gradients against server
ensemble predictions until early stopping according to Definition 11. We define ∆τ = E||θτ −
w∗||2. The expectation is taken over stochastic gradients as well as the choice of the client leader in
each communication round for FedHEAD+.
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Server distillation phase. Let us denote the stochastic gradient computed using the reference
dataset at the τ -th iteration as g̃τ

ref(ξ) = ∇L̃ref(w
τ , ξ) and the full gradient g̃τ

ref = Eg̃τ
ref(ξ).

We first show a recurrence relationship concerning ∆τ in the following lemma.

Lemma 14 Suppose Assumption 6 holds. If ητ ≤ 1
4L , then in the server distillation phase of

FedHEAD+, we have

E
∥∥θτ+1 −w∗∥∥2 ≤ (1− µητ )E ∥θτ −w∗∥2 + 2η2τLΓref + 2η2τLϵ+ η2τ (1− δ)σ2. (28)

Proof

E
∥∥θτ+1 −w∗∥∥2

≤ E ∥θτ − ητ g̃
τ
ref(ξ)−w∗ − ητ g̃

τ
ref + ητ g̃

τ
ref∥

2

= E ∥θτ −w∗ − ητ g̃
τ
ref∥

2 − 2ητE⟨θτ −w∗ − ητ g̃
τ
ref, g̃

τ
ref(ξ)− g̃τ

ref⟩+ η2τE ∥g̃τ
ref(ξ)− g̃τ

ref∥
2

(a)

≤ E ∥θτ −w∗ − ητ g̃
τ
ref∥

2 + η2τ (1− δ)σ2

= E ∥θτ −w∗∥2 − 2ητE⟨θτ −w∗, g̃τ
ref⟩+ η2τ ∥g̃τ

ref∥
2 + η2τ (1− δ)σ2

(b)

≤ E ∥θτ −w∗∥2 − 2ητ

(
L̃ref(θ

τ )− L̃ref(w
∗) +

µ

2
E ∥θτ −w∗∥2

)
+ η2τ ∥g̃τ

ref∥
2 + η2τ (1− δ)σ2

(c)

≤ (1− µητ )E ∥θτ −w∗∥2 − 2ητ

(
L̃ref(θ

τ )− L̃ref(w
∗)
)
+ 2η2τL

(
L̃ref(θ

τ )− L̃∗
ref

)
+ η2τ (1− δ)σ2

= (1− µητ )E ∥θτ −w∗∥2 − 2ητ (1− ητL)
(
L̃ref(θ

τ )− L̃ref(w
∗)
)
+ 2η2τL

(
L̃ref(w

∗)− L̃∗
ref

)
+ η2τ (1− δ)σ2

(d)

≤ (1− µητ )E ∥θτ −w∗∥2 + 2η2τL
(
L̃ref(w

∗)− L̃∗
ref

)
+ η2τ (1− δ)σ2

(e)

≤ (1− µητ )E ∥θτ −w∗∥2 + 2η2τLΓref + 2η2τLϵ+ η2τ (1− δ)σ2

(29)

where L̃∗
ref is the minimum of the loss L̃ref(·), (a) is due to the bounded variance of stochastic

gradients, (b) is due to strong convexity, (c) uses the Polyak-Lojasiewicz condition for L-smooth
functions, (d) is due to early stopping criterion in Definition 11 and ητL ≤ 1, and (e) is obtained as
follows:

L̃ref(w
∗)− L̃∗

ref ≤ Lref(w
∗)− L∗

ref + |L̃ref(w
∗)− Lref(w

∗)|+ |L∗
ref − L̃∗

ref|
(a)

≤ Γref + |L̃ref(w
∗)− Lref(w

∗)|+max
w

|Lref(w)− L̃ref(w)|

(b)

≤ Γref + ϵ

(30)

where (a) is due to the fact |minx f(x)−minx g(x)| ≤ maxx |f(x)− g(x)|, and (b) is obtained
from Assumption 5.

Overall bound on ∆τ . Combining Lemma 14 with the recurrence relation for FedHEAD obtained
in the proof of Theorem 2, we write the recurrence relation for FedHEAD+ as follows:

∆τ+1 ≤


(1− µητ )∆τ + η2τBl, τ ∈ local training phase,
(1− µητ )∆τ + η2τBs, τ ∈ sector distillation phase,
(1− µητ )∆τ + η2τBg, τ ∈ server distillation phase,

(31)
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where Bl, Bs, and Bg are defined in (7), (8) and (27), respectively. As done previously, letting v =

max
{

β2Bl
βµ−1 ,

β2Bs

βµ−1 ,
β2Bg

βµ−1 , (γ + 1)∆1

}
and using induction, we obtain the statement of Theorem 12.

Note that after t communication rounds, the total number of iterations is (nl + n̄s + n̄g)t, where
n̄g ≤ ng is the average number of server distillation rounds per communication round before early
stopping according to Definition 11.

G.3. Details of Remark 13

To compare against FedDF, we first note that FedDF is a degraded form of FedHEAD+ with the
sector distillation phase removed. Therefore, we directly have the following theorem about the
convergence of FedDF.

Theorem 15 Suppose Assumptions 1, 2, 3, 4, 5, and 6 hold, and n̄g ≤ ng is the average number of
server distillation rounds per communication round before early stopping according to Definition
11. FedDF guarantees that after t communication rounds

E[L(wt+1)]− L∗ ≤ κ

(nl + n̄g)t+ γ

(
2Bl + 2Bg

µ
+

µγ

2
E||w1 −w∗||2

)
(32)

where κ = L
µ , γ = max{nl, 8κ}, Bl and Bg are defined in (7) and (27), respectively, and

L, µ, σ,G, δ and ϵ are defined in Assumptions 1-5.

Now, for strongly convex loss functions, ∆1 ≤ 4G2

µ2 . Substituting this in (32) and (26) and
setting t = Tcomm, we obtain the convergence rate for FedDF and FedHEAD+ in terms of their
dominant terms O

(
Bl+Bs+Bg+γG2

µ(nl+n̄s+n̄g)Tcomm

)
and O

(
Bl+Bg+γG2

µ(nl+n̄g)Tcomm

)
, respectively. The convergence rate

for FedHEAD+ is higher than FedDF if Bl+Bs+Bg

nl+n̄s+n̄g
≤ Bl+Bg

nl+n̄g
. By mediant inequality, this is true if

Bs
n̄s

≤ Bl+Bg

nl+n̄g
=⇒ n̄s ≥ nl

Bs

(
1+

n̄g
nl

)
Bl+Bg

.

Furthermore, when ng = ns = nl, if Bs ≤ Bl+Bg

2 , there exists a n̄s such that n̄s ≤ ns and

n̄s ≥ nl

Bs

(
1+

n̄g
nl

)
Bl+Bg

. As before, we can approximate Bl ≈ 6LΓclient +8n2
lG

2, Bs ≈ 6LΓsec +6Lϵ+

8(1−δ)n2
sG

2, and Bg ≈ 2LΓref+2Lϵ. If Γref ≥ 3Γclient and δ ≥ 1
2 +

5Lϵ
8n2

sG
2 , we have Bs ≤ Bl+Bg

2 .
Hence, we obtain Remark 13 comparing FedHEAD+ against FedDF.

A side benefit of obtaining Theorem 15 is that we can observe FedDF has a higher convergence
rate in comparison with FedAvg in Theorem 10 if Bl+Bg

nl+n̄g
≤ Bl

nl
. By mediant inequality, this is true

if Bg

n̄g
≤ Bl

nl
=⇒ n̄g ≥ nl

Bg

Bl
.

Furthermore, when ng = nl, if Bg ≤ Bl, there exists a n̄g such that n̄g ≤ ng and n̄g ≥ nl
Bg

Bl
.

As before, we can approximate Bl ≈ 6LΓclient +8n2
lG

2, and Bg ≈ 2LΓref +2Lϵ. If Γref ≤ 3Γclient
and Lϵ

4n2
l G

2 ≤ 1, we have Bg ≤ Bl. Note that this conclusion was not proven but only inferred
through numerical study in [14], since the generalization bound for FedDF derived in [14] has the
same scaling as that of FedAvg. In contrast, our analysis here provides a definitive proof.
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(a) α = 0.1
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(b) α = 1
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(c) α = 100

Figure 2: Number of samples per class (proportional to dot size) distributed over the clients for
different values of Dirichlet parameter, α.

Appendix H. Experimental Results

H.1. Datasets and Experimental Setup

We run experiments on SVHN [17], CIFAR10 [8] and CIFAR100 [8] datasets for computer vision
(CV) tasks; AG News [28] and SST-2 [21] datasets for natural language processing (NLP) tasks;
and Unicauca75 [19] and Unicauca141 [20] datasets for network traffic classification (NTC) tasks.
Since the NTC datasets are huge, we draw a subset limiting the number of samples per class by
5000 and 2000 for Unicauca75 and Unicauca141, respectively.

As a default setting, we consider a network with a total of 20 clients randomly partitioned into
two sectors. For simulating the data heterogeneity among clients, we follow the strategy of [11, 26]
and create local datasets of clients using the Dirichlet distribution with parameter α. A smaller
α indicates a more data heterogeneous setting whereas a larger α implies a lesser degree of data
heterogeneity among the clients as illustrated in Fig. 2.

For computer vision tasks, we perform image classification using Resnet8 and Resnet32 [6].
For NLP tasks, we perform text classification using a bidirectional LSTM model consisting of an
embedding layer followed by two bidirectional LSTM layers with 128 and 64 neurons, a global max
pooling layer, five fully connected hidden layers with 1024, 512, 256, 128, 64 neurons, respectively,
and finally, an output layer with softmax activation. For NTC tasks, we perform network traffic
classification into application types using an MLP consisting of four fully connected hidden layers
with 200 neurons each and an output layer with softmax activation. In all hidden layers, we apply
RELU activation.

We compare FedHEAD and FedHEAD+ against four state-of-the-art FL baselines including
FedAvg [16] and FedHKD [3], which do not require a reference dataset for distillation, and FedMD
[10] and FedDF [14], which need a reference dataset. We do not compare against FedHKT [4] since
as explained in Appendix A, FedHKT is not hierarchical and obtains unfair performance advantage
over FedDF only by using a larger model at the server. Furthermore, we do not implement generator-
based or prototype-based FL algorithms e.g., FedGen [30], FedProto [22], etc, as baselines because
FedHKD has already been shown to outperform these methods [3].

For CIFAR10 and CIFAR100, we use 5000 images randomly sampled from CIFAR100 and Tiny
Imagenet [9] respectively as reference datasets. For all other datasets, we use a subset of the training
dataset with 5000 samples as the reference dataset. We report the test accuracy for all schemes to
compare the performance of our proposed algorithms against the baselines.
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Table 2: Test accuracy for CV tasks using Resnet8 with varying Dirichlet parameter, α.

Datasets α FedAvg FedHKD FedHEAD FedMD FedDF FedHEAD+

SVHN
0.1 70.24±0.04% 66.01±0.04% 79.93±0.04% 69.84±0.04% 67.24±0.04% 78.31±0.04%
1 86.33±0.03% 87.75±0.03% 89.05±0.03% 88.18±0.03% 84.79±0.03% 88.16±0.03%

CIFAR10
0.1 40.45±0.07% 40.01±0.07% 48.81±0.07% 45.32±0.07% 46.44±0.07% 50.15±0.08%
1 55.78±0.08% 59.74±0.08% 60.45±0.06% 60.35±0.07% 60.58±0.07% 61.03±0.07%

CIFAR100
0.1 21.47±0.06% 22.72±0.06% 31.45±0.07% 23.74±0.05% 30.43±0.07% 31.48±0.06%
1 28.47±0.06% 30.24±0.07% 36.12±0.07% 30.21±0.07% 34.46±0.07% 34.98±0.07%

Table 3: Test accuracy for NLP tasks with varying Dirichlet parameter, α.

Datasets α FedAvg FedHKD FedHEAD FedMD FedDF FedHEAD+

AG News
0.1 86.38±0.04% 86.14±0.04% 86.83±0.05% 85.71±0.05% 85.43±0.05% 87.02±0.04%
1 88.36±0.04% 88.53±0.04% 88.89±0.05% 87.59±0.05% 87.68±0.05% 88.66±0.05%

SST-2
0.1 87.71±0.05% 87.44±0.05% 88.53±0.05% 87.38±0.06% 87.45±0.06% 87.91±0.06%
1 88.93±0.05% 88.72±0.05% 89.60±0.05% 87.29±0.06% 87.15±0.06% 88.84±0.06%

For local training, sector distillation, and server distillation, we use the Adam optimizer with
a weight decay of 1 × 10−4 and a learning rate of 10−3. Each client trains its model on the local
dataset for 20 epochs. The number of distillation rounds at the sector and server is also set to 20.
We use early stopping by monitoring validation loss and end distillation after the validation loss has
plateaued for 5 consecutive epochs.

We build our models and run the experiments in Python 3.8 using Tesla P100 GPUs. The total
number of communication rounds is set to 50. We use a batch size of 128 for both local training and
distillation. In all experiments, we obtain a 95% confidence interval for inference by bootstrapping
the test set.

H.2. Performance on CV Tasks

We present the performance of all algorithms on CV tasks in Table 2. For SVHN and α = 0.1,
we observe that FedAvg performs better than FedMD and FedDF. This implies that distillation
using a reference dataset does not always improve performance. However, since the distillation in
FedHEAD reuses the local datasets of the clients, FedHEAD outperforms FedAvg by achieving a
test accuracy of 79.93%. Furthermore, FedHEAD+ falls short of FedHEAD, which confirms that
distilling on the reference dataset has a negative impact in this case.

For CIFAR10, we see an opposite pattern. For α = 0.1, FedAvg achieves an accuracy of 40.45%
whereas the accuracy of FedMD and FedDF are 45.32% and 46.44%, respectively. FedHEAD
outperforms all of them and achieves an accuracy of 48.81% without using a reference dataset.
Furthermore, FedHEAD+ improves on top of FedHEAD achieving an accuracy of 50.15%. Finally,
for CIFAR100, FedHEAD either achieves similar accuracy or outperforms FedHEAD+.
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Table 4: Test accuracy for NTC tasks with varying Dirichlet parameter, α.

Datasets α FedAvg FedHKD FedHEAD FedMD FedDF FedHEAD+

Unicauca75
0.1 63.51±0.04% 63.73±0.04% 64.01±0.03% 63.61±0.04% 63.92±0.03% 64.79±0.04%
1 66.36±0.04% 66.42±0.04% 66.77±0.03% 66.51±0.04% 66.74±0.03% 67.03±0.05%

Unicauca141
0.1 77.42±0.04% 77.58±0.04% 77.86±0.04% 77.51±0.04% 77.61±0.03% 78.30±0.04%
1 78.15±0.03% 78.34±0.03% 79.03±0.04% 78.16±0.03% 78.24±0.03% 79.22±0.04%

Table 5: Test accuracy for CIFAR10 using Resnet32 with varying number of clients, N , for α = 1.

Schemes N = 20 N = 40 N = 60

FedAvg 57.82±0.07% 54.55±0.07% 51.79±0.07%
FedHKD 60.91±0.07% 54.62±0.07% 52.23±0.07%

FedHEAD 62.30±0.06% 59.89±0.08% 58.10±0.07%
FedMD 62.19±0.07% 56.81±0.07% 53.98±0.07%
FedDF 62.43±0.07% 61.39±0.07% 58.81±0.07%

FedHEAD+ 63.76±0.06% 62.53±0.07% 58.84±0.07%

H.3. Performance on NLP Tasks

Table 3 summarizes the performance of all algorithms on NLP tasks. For AG News and SST-2,
FedHEAD and FedHEAD+ outperform all other methods for α = 0.1 and 1. Take the performance
on SST-2 with α = 1. FedAvg and FedDF achieve an accuracy of 88.93% and 87.15%, respectively
whereas FedHEAD and FedHEAD+ achieve an accuracy of 89.60% and 88.84%.

H.4. Performance on NTC Tasks

Table 4 shows the performance of all algorithms on NTC tasks. On Unicauca75 and Unicauca141
datasets, FedHEAD outperforms FedAvg and FedDF for both α = 0.1 and 1. Furthermore, Fed-
HEAD+ improves on top of FedHEAD. For example, in the case of Unicauca141 with α = 1,
FedAvg and FedDF achieve an accuracy of 78.15% and 78.24% where as FedHEAD achieves an
accuracy of 79.03%. However, FedHEAD+ outperforms all of them by achieving an accuracy of
79.22%.

H.5. Impact of Number of Clients in the Network

In Table 5, we show the performance on CIFAR10 using Resnet32 varying the total number of
clients, N , but keeping fixed the number of sectors, M = 2. We observe that generally the accuracy
of all methods drops with an increasing number of clients in the network. Overall, FedHEAD
outperforms FedAvg and FedHKD whereas FedHEAD+ outperforms FedMD and FedDF.

H.6. Impact of Number of Network Sectors

We investigate the impact of number of network sectors with varying number of clients in Table 6.
For α = 0.1 and N = 20, the client data distribution is very heterogeneous and the performance
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Table 6: Test accuracy for CIFAR10 using Resnet8 with various numbers of clients, N , and number
of sectors, M , for different values of α.

α N M = 1 M = 2 M = 4 M = 8

0.1
20 51.19±0.06% 48.81±0.07% 47.98±0.07% 45.12±0.07%
40 54.72±0.07% 53.95±0.07% 50.04±0.07% 49.19±0.07%
60 53.72±0.07% 52.94±0.07% 50.99±0.07% 49.79±0.07%

1
20 61.48±0.07% 60.45±0.06% 59.33±0.07% 59.29±0.07%
40 58.53±0.07% 58.45±0.07% 58.61±0.07% 58.96±0.07%
60 57.62±0.07% 57.82±0.08% 57.77±0.07% 57.83±0.07%

Table 7: Test accuracy for CV tasks using Resnet8 with fixed and randomized choices of client
leaders for α = 0.1.

Datasets Fixed Randomized

SVHN 77.53±0.04% 79.93±0.04%
CIFAR10 46.62 ±0.07% 48.81 ±0.07%
CIFAR100 29.76 ±0.07% 31.45 ±0.07%

deteriorates as the clients are segregated into more sectors. However, as the number of clients in-
creases, the drop becomes less severe. For α = 1, we observe that FedHEAD is robust towards
the sectorization of the network and the performance does not drop much. Therefore, if the com-
munication overhead is no issue, it is always better to partition the network into a fewer number of
sectors, particularly in a highly non-iid setting. Furthermore, for M = 1, our system model reduces
to the conventional non-hierarchical FL setup and FedHEAD achieves the best performance in this
scenario. However, we remark that in this case the communication reduction benefit of hierarchical
FL is lost.

H.7. Impact of Randomized Client Leader

Finally, we study the impact of choosing a random client as client leader at every communication
round in FedHEAD as described in Algorithm 1. In Table 7, we show the performance on SVHN,
CIFAR10, and CIFAR100 datasets by comparing the fixed and randomized choices of client leader.
For the fixed choice, we designate the client with the largest dataset in each sector as the client leader
throughout all communication rounds. We observe that our randomized choice of client leaders in
FedHEAD results in better performance than the fixed one as it mitigates the skewness in client data
distribution.
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