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ABSTRACT

Although deep neural networks (DNNs) constitute the state-of-the-art in many
tasks based on image, audio, or text data, their performance on heterogeneous,
tabular data is typically inferior to that of decision tree ensembles. To bridge
the gap between the difficulty of DNNs to handle tabular data and leverage the
flexibility of deep learning under input heterogeneity, we propose DeepTLF, a
framework for deep tabular learning. The core idea of our method is to transform
the heterogeneous input data into homogeneous data to boost the performance of
DNNs considerably. For the transformation step, we develop a novel knowledge
distillations approach, TreeDrivenEncoder, which exploits the structure of decision
trees trained on the available heterogeneous data to map the original input vectors
onto homogeneous vectors that a DNN can use to improve the predictive perfor-
mance. Through extensive and challenging experiments on various real-world
datasets, we demonstrate that the DeepTLF pipeline leads to higher predictive
performance. On average, our framework shows 19.6% performance improvement
in comparison to DNNs. The DeepTLF code is publicly available.

1 INTRODUCTION

Tabular data is the most commonly used form of data, and it is ubiquitous in various applications, such
as medical diagnosis based on patient history (Fatima et al., 2017), predictive analytics for financial
applications (Dastile et al., 2020), cybersecurity (Buczak & Guven, 2015), and so forth. Although
DNNs perform outstandingly well on homogeneous data, e.g., visual, audio, and textual data (Good-
fellow et al., 2016), heterogeneous, tabular data still pose a challenge to these models (Shwartz-Ziv &
Armon, 2021).

We hypothesize that the moderate performance of DNNs on tabular data comes from two major factors.
The first is the inductive bias(es) (Katzir et al., 2020); for example, DNNs assume that certain spatial
structures are present in the data (Mitchell et al., 2017), whereas tabular data do not have any spatial
connections. The second reason is the high information loss during the data preprocessing step since
tabular input data need to undergo cleansing (dealing with missing, noisy, and inconsistent values),
uniform discretized representation (handling categorical and continuous values together), and scaling
(standardized representation of features) steps. Along with these feature-processing steps, important
information contained in the data may get lost, and, hence, the preprocessed feature vectors (especially
when one-hot encoded) may negatively impact training and learning effectiveness (García et al.,
2015). As reported by Hancock & Khoshgoftaar (2020), an efficient transformation of heterogeneous
data for training DNNs is still a significant challenge.

Typically, when heterogeneous tabular data are involved, the first choice across all machine learning
(ML) algorithms are ensemble models based on decision trees (Nielsen, 2016), such as random
forests (RF) (Breiman, 2001) or gradient-boosted decision trees (GBDT) (Friedman, 2002). Since the
inductive bias(es) of the methods based on decision trees are well suited to non-spatial heterogeneous
data, the data preprocessing step is reduced to a minimum. In particular, the most common implemen-
tations of the GBDT algorithm—XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017),
and CatBoost (Prokhorenkova et al., 2018) — handle the missing values internally by searching for
the best approximation of missing data points.

However, the most significant computational disadvantage of the decision tree–based methods is while
training the need to store (almost) the entire dataset in memory (Katzir et al., 2020). Furthermore,
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in the multimodal datasets in which different data types are involved (e.g., visual and tabular data),
decision tree–based models are not able to provide state-of-the-art results, whereas DNN models
allow for batch-learning (no need to store the whole dataset), and for those multimodal data tasks,
DNNs demonstrate state-of-the-art performance (Gu & Budhkar, 2021).

Towards the goal of significantly boosting DNNs on tabular data, we propose DeepTLF, a novel deep
tabular learning framework that exploits the advantages of the GBDT algorithm as well as the flexibil-
ity of DNNs. The key element of the framework is a novel encoding algorithm, TreeDrivenEncoder,
which transforms the heterogeneous tabular data into homogeneous data by distilling knowledge
from nodes of trained decision trees. Thus, DeepTLF can preserve most of the information that is
contained in the original data and encoded in the structure of the decision trees and benefit from
preprocessing power of decision tree-based algorithms.

Through experiments on various freely available real-world datasets, we demonstrate the advantages
of such a composite learning approach for different prediction tasks. We argue that by transforming
heterogeneous tabular data into homogeneous vectors, we can drastically improve the performance of
DNNs on tabular data.

The main contributions of this work are: (I) We propose a deep tabular learning framework - DeepTLF
that combines the preprocessing strengths of GBDTs with the learning flexibility of DNNs. (II) The
proposed framework builds on a generic approach for transforming heterogeneous tabular data into
homogeneous vectors using the structure of decision trees from a gradient boosting model using a
novel encoding function – TreeDrivenEncoder. Hence, the transformation approach can also be used
independently from the presented deep learning framework. (III) In extensive experiments on various
datasets and compared with state-of-the-art ML approaches, we show that the proposed framework
mitigates well-known data-processing challenges and leads to unprecedented predictive performance,
outperforming all the competitors. (IV) We provide an open-source implementation of DeepTLF
https://github.com/xxxx/DeepTLF

2 RELATED WORK

In this section, we briefly review the main ideas from prior work that are relevant to our framework
and data encoding step. We provide more information on the state-of-the-art DL approaches for
tabular data in the Appendix B.

Independent works Moosmann et al. (2007); Geurts et al. (2006) demonstrate that data can be encoded
using the RF algorithm by accessing leaf indices in the decision trees. The idea was also utilized
by (He et al., 2014), where instead of the RF model, trees from a GBDT model are used for the
categorical data encoding. These works demonstrates that the decision trees are a powerful and
convenient way to implement non-linear and categorical feature transformations for heterogeneous
data. The DeepGBM framework Ke et al. (2019) further evolved the idea of distilling knowledge
from decision trees leaf index by encoding them using a neural network for online learning tasks. This
approach is quite popular, but the leaf indices’ from a decision tree embedding do not fully represent
the whole decision tree structure. Thus, each boosted tree is treated as a new meta categorical feature,
which might be an issue for the DNNs (Hancock & Khoshgoftaar, 2020).

In contrast to related methods, our aim is to holistically distill the information from decision trees, by
utilizes the whole decision tree, not only the output leafs. The DeepTLF combines the advantages
of GBDT (such as handling missing values, categorical variables) with the learning flexibility of
DNNs to achieve superior and robust prediction performance. Also, Medvedev & D’yakonov (2020)
demonstrated that a DNN which was trained using distilled data can outperform models trained on
the whole original data.

Other approaches such as NODE (Popov et al., 2019), Net-DNF (Katzir et al., 2020) try to mimic the
decision trees using DNNs. A difference to our framework is that DeepTLF is more robust to the data
inconsistencies and does not require new DNN architectures, hence, it is straightforward to use.
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Figure 1: A data pipeline for the DeepTLF framework. First, the original tabular data is used to train
a gradient boosted decision trees (GBDT) model. The heterogeneous data (i.e., training as well as the
test data) are transformed by exploiting the structures of the decision trees in the ensemble. More
specifically, the TreeDrivenEncoder algorithm distills information from trained decision trees of the
GBDT model to produce homogeneous binary vectors. These vectors are then used to train a DNN.
Note that DeepTLF does not require data preprocessing (such as normalization or handling missing
or categorical values); therefore, in total, it dramatically speeds up the data preprocessing time.

3 DEEPTLF: DEEP TABULAR LEARNING FRAMEWORK

In this section, we present the main components of our DeepTLF framework. As shown in Fig.
1, DeepTLF consists of three major components: (1) an ensemble of decision trees (in this work,
we utilize the GBDT algorithm), (2) a TreeDrivenEncoder that performs the transformation of the
original data into homogeneous, binary feature vectors by distilling the information contained in
the structures of the decision trees through the TreeDrivenEncoder algorithm, and (3) a deep neural
network model trained on the binary feature vectors obtained from the TreeDrivenEncoder algorithm.
We will describe the details of each component in the following subsections.

3.1 GRADIENT BOOSTED DECISION TREE

For the data encoding step, we selected one of the most powerful algorithms on tabular data, namely
the gradient boosted Decision Trees (GBDT) algorithm (Friedman, 2002). GBDT is a well-known and
widely used ensemble algorithm for tabular data both in research and industrial applications (Chen
& Guestrin, 2016) and is particularly successful for tasks containing heterogeneous features, small
dataset sizes, and "noisy" data (Nielsen, 2016). Especially when it comes to handling variance and
bias, gradient boosting ensembles show highly competitive performance in comparison with state-of-
the-art learning approaches (Friedman, 2002; Nielsen, 2016). In addition, multiple evaluations have
empirically demonstrated that the decision trees of a GBDT ensemble preserve the information from
the original data and can be used for further data processing (He et al., 2014; Ke et al., 2019).

The key idea of the GBDT algorithm is to construct a strong model by iterative addition of weak
learners. Formally, at each iteration k of the gradient boosting algorithm, the GBDT model ϕ can be
defined as:

ϕk(x) = ϕk−1(x) + λhk(x), (1)

where x is an input feature vector, ϕk−1 is the strong model constructed at the previous iteration, h is
a weak learner from a family of functionsH, and λ is the learning rate.

hk = argmin
h∈H

∑
i

(
−∂L(ϕ

k−1(xi), yi)

∂ϕk−1(xi)
− h(xi)

)2

. (2)

More specifically, a pseudo-residual −∂L(ϕk−1(xi),yi)
∂ϕk−1(xi)

should be approximated as well as possible
by the current weak model h(xi). The gradient w.r.t. the current predictions indicate how these
predictions should be changed in order to minimize the loss function. Informally, gradient boosting
can be thought of as performing gradient descent in the functional space.

3



Under review as a conference paper at ICLR 2022

Figure 2: A toy example of the proposed data transformation performed by the TreeDrivenEncoder
algorithm. On the left, we see two heterogeneous input feature vectors x1 and x2 from the original
datasetD, where xi ∈ R4, f1, f2, f4 are numerical features, and f3 is a categorical feature in a tabular
dataset. Note there is also a missing value − for the feature f3 in x2. To encode the input data, we
use two trained decision trees on the dataset D, with 5 inner nodes in total. By evaluating the Boolean
function in each inner node for a given input vector, we construct two homogeneous feature vectors
xb
1 and xb

2, where a component of these vectors is set to 1 if the corresponding Boolean function
evaluates to true and 0 otherwise.

The set of weak learnersH is usually formed by shallow decision trees, which are directly trained on
the original data. Consequently, almost no data preparation is needed, and the information loss is
minimized. We denote a GBDT model as a set of decision trees:

GB(X,y) = {T1, T2, ..., Tk},

where X is a matrix of observations, y is a vector or matrix of labels.

3.2 KNOWLEDGE DISTILLATION FROM GRADIENT BOOSTED DECISION TREES USING
TREEDRIVENENCODER

The trained GBDT model provides structural data information, which also encodes dependencies
between the input features with respect to the prediction task. In order to distill the knowledge from a
tree-based model, we propose a novel data transformation algorithm – TreeDrivenEncoder. For every
input vector from the original data, the proposed encoding method maps all features occurring in the
decision trees of the GBDT ensemble to a binary feature vector xb. This has the advantage that the
neural network in the final component can form its own feature representations from homogeneous
data. In Fig. 2, we illustrate the transformation obtained by applying the TreeDrivenEncoder
algorithm on a toy example. There we have two input feature vectors x1 and x2 with categorical and
numerical values are encoded into corresponding homogeneous binary feature vectors xb

1 and xb
2.

To formally describe the TreeDrivenEncoder algorithm, we first need a definition of the decision
trees:

Definition 1 (Decision Tree) Let T be a structure T = (V,E, µ), where V is a set of nodes, E ⊆
V × V is a set of edges and µ = (µv)v∈V is a sequence of mapping functions µv : Rd → V ∪ {∅}
that map input vectors to (child) nodes. We call T a (binary) decision tree if it satisfies the following
properties:

1. (V,E) is a directed acyclic graph

2. There is exactly one designated node vr ∈ V , called the root, which has no entering edges,
i.e. for a node v ∈ V :

v = vr ⇔ ∀w ∈ V : (w, v) 6∈ E.

3. Every node v ∈ V \{vr} has exactly one entering edge with the parent node at its other end:

w ∈ V : (w, v) ∈ E ⇔ w = parent(v) .

4. Each node has either two or zero outgoing edges. We call the nodes with two outgoing edges
inner nodesinner nodes and all others nodes leavesleaves. We denote the sets of inner nodes and leaves with
VI and VL, respectively.
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5. µv maps feature vectors from inner nodes to their child nodes and from leaves to ∅.
v ∈ VI ⇒ ∀x ∈ Rd : (v, µv(x)) ∈ E, (3)

v ∈ VL ⇒ ∀x ∈ Rd : µv(x) = ∅. (4)

In the following, we denote the number of inner nodes as |T | = |VI |. Furthermore, we assume that
the child nodes can be identified as left or right child. For each inner node v ∈ VI , we use a modified
mapping function µ̃v : Rd → {0, 1} (i.e., a Boolean function) where 0 encodes the left child and 1
encodes the right child.

Figure 3: t-SNE visualizations
of original heterogeneous tab-
ular default of clients dataset
(top), and the same dataset
after the TreeDrivenEncoder
transformation (bottom).

For an input vector x ∈ Rd, we exploit the structure of T to derive
a binary vector of length |T |. To this end, as shown in Alg. 1, we
employ a breadth-first-search approach on the nodes of T . More
specifically, for every feature that is evaluated at an inner node v
of T , we retrieve the corresponding value from x and evaluate that
value at v based on the associated Boolean function. Note that other
node visiting strategies (e.g., depth-first search) can be used as well.
It is only important that the same strategy is used across all decision
trees and vectors.

Finally, we concatenate all the vectors generated from the single
decision trees of the ensemble T on the input vector x, which gives
us the final binary representation xb of x. We kindly ask the Reader
to refer to the supplementary materials - we summarize the full
algorithm in Alg. 1,

For mathematical completeness, the mapping obtained by applying
TreeDrivenEncoder is formalized as follows. Given the feature
vector x that represents an instance from the training dataset D and
a trained decision tree ensemble T (i.e., a collection of decision
trees) on the same dataset, we exploit the structure of each tree
T ∈ T to produce a binary feature vector for the original feature
vector x = (x1, ..., xd) and employ a transformation function:

mapT : Rd → {0, 1}|T |, (5)
mapT : x 7→ (µ̃v(x))v∈VI

, (6)

where VI again represents the inner nodes in a well-defined order
and |T | their number. The mapping is performed such that at an
inner node v of T , the corresponding component xj of x is mapped
to 1 if the Boolean function at v evaluates to true for xj and 0
otherwise. Note that we apply the transformation function to each
node in the decision tree T , even if a node does not belong to the
decision path of x, hence, it holds that mapT (x) ∈ {0, 1}|T |.
For the multiple decision trees T1, ..., Tk we construct a function

TreeDrivenEncoder : Rd → {0, 1}
∑k

i=1 |Ti| (7)

with
TreeDrivenEncoder(x) = (mapT1(x)...mapTk

(x)) (8)

3.3 DEEP LEARNING MODELS FOR ENCODED HOMOGENEOUS DATA

After the data distillation by the TreeDrivenEncoder algorithm, the new binary representations of the
feature vectors are used to train and validate a chosen neural network model.

4 EXPERIMENTS

To evaluate the performance of DeepTLF against state-of-the-art models, we employ several real-
world heterogeneous datasets of varying sizes from different application domains. In the following,

5



Under review as a conference paper at ICLR 2022

Table 1: Details of the datasets used in the experimental evaluations. #Sample is the number of data
points, #Num is the number of numerical variables, and #Cat is the number of categorical variables
in a dataset.

Dataset #Samples #Num #Cat Task

D1 HIGGS 11,000,000 28 0 Binary classification
D2 Default of clients 30,000 14 9 Binary classification
D3 Telecom churn 51,047 38 18 Binary classification
D4 Zillow 167,888 31 27 Regression
D5 Avocado prices 18,249 8 3 Regression
D6 California housing 20,640 8 0 Regression
D7 E-commerce clothing reviews 23,486 6 4 Binary classification

Table 2: Experimental results based on (stratified) 5-fold cross-validation. We use the same fold
splitting strategy for every dataset. The cross-entropy measure (lower is better) is selected for
classification tasks and MSE measure (lower is better) is selected for regression problems respectively.
The top results for each dataset are marked in bold.

Classification Datasets Regression Datasets

D1 D2 D3 D4 D5 D6

LR 0.637±0.001 0.470±0.001 0.584±0.001 0.028±0.001 0.966±0.001 0.552±0.063
RF 0.502±0.001 0.444±0.007 0.564±0.003 0.028±0.001 0.025±0.001 0.254±0.008
GBDT 0.498±0.001 0.429±0.006 0.559±0.003 0.027±0.003 0.026±0.003 0.217±0.021
Leafs+LR 0.659±0.001 0.453±0.002 0.580±0.002 0.029±0.001 0.105±0.036 0.358±0.032

Deep Neural Network Models

DNN 0.511±0.001 0.437±0.005 0.579±0.002 0.028±0.001 0.069±0.002 0.339±0.122
RLN 0.507±0.002 0.433±0.051 0.599±0.001 0.399±0.042 0.275±0.244 0.947±0.228
DeepGBM 0.487±0.001 0.457±0.023 0.589±0.001 0.026±0.001 0.038±0.045 0.299±0.017
TabNet 0.503±0.001 0.447±0.001 0.591±0.005 0.049±0.001 0.073±0.002 0.455±0.106
VIME 0.514±0.001 0.453±0.006 0.593±0.002 0.030±0.003 0.120±0.016 0.684±0.023
TabTransformer 0.581±0.002 0.515±0.003 0.650±0.021 0.029±0.001 0.073±0.002 0.994±0.501
TabNet 0.503±0.001 0.447±0.001 0.591±0.005 0.049±0.001 0.073±0.002 0.455±0.106
Net-DNF 0.561±0.001 0.512±0.001 0.594±0.003 0.027±0.001 0.321±0.093 2.491±0.051
NODE 0.489±0.006 0.458±0.006 0.598±0.001 0.028±0.001 0.104±0.030 0.722±0.052
DeepTLF (ours) 0.483±0.001 0.427±0.006 0.557±0.003 0.026±0.001 0.021±0.005 0.215±0.012

we first provide details about our experimental setup, including a description of the datasets. We then
compare the performance between different ML models and DeepTLF. After, we present a training,
inference, and data preprocessing runtime analysis. For the purpose of reproducibility we provide
technical details of the experiments. Furthermore, in the Appendix A, we provide more empirical
results to support our work.

4.1 EXPERIMENTAL SETTINGS

4.1.1 DATASETS

For the evaluation of DeepTLF, we used six heterogeneous and one multimodal dataset from dif-
ferent domains as described in Table 4, each dataset was previously featured in multiple published
studies. The web access points and disruptions of each dataset are in the Appendix D.1. The data
is pre-processed in the same way for each experiment; we do normalization and missing values
subsection steps, except for GBDT and DeepTLF; since these approaches can handle missing values
independently.

4.1.2 BASELINE MODELS

For the baseline models, we select the following algorithms: LR, linear or logistic regression
models; Random Forest (RF) (Breiman, 2001); for GBDT (Friedman, 2002), we utilize the XGBoost
implementation (Chen & Guestrin, 2016); DNN, A deep neural network with three fully-connected
layers and two DropOut layers (Srivastava et al., 2014); Leafs+LR, A hybrid model, combining leaf
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Figure 4: Left: Noisy labels experiment. Right: Noisy data experiment. The DNN here is identical
to the DL part in the DeepTLF. Note the test data is not corrupted. We report the ROC AUC value
(higher is better). Results are averages over five trials for the telecom churn (D3) dataset.

index from a trained GBDT model and generalized linear models proposed by He et al. (2014);
RLNs (Shavitt & Segal, 2018), Regularization Learning Networks (RLNs) is a dedicated to tabular
learning DNN, which uses the counterfactual loss to tune its regularization hyperparameters efficiently.
TabNet (Arik & Pfister, 2019) is a deep tabular data learning architecture, which uses sequential
attention to choose which features to reason from at each decision step; Neural Oblivious Decision
Ensembles (NODE) (Popov et al., 2019) is a deep tabular data learning architecture, which generalizes
ensembles of oblivious decision trees, but benefits from both end-to-end gradient-based optimization
and the power of multilayer hierarchical representation learning; DeepGBM (Ke et al., 2019), a deep
learning framework distilled by the GBDT algorithm; Net-DNF (Katzir et al., 2020); VIME (Yoon
et al., 2020), a self-supervised learning framework for tabular data; TabTransformer (Huang et al.,
2020), a framework built using self-attention transformers; Lastly, DeepTLF (the proposed algorithm),
consisting of a four fully-connected layers with the two DropOut layers to lower the overfitting effect.
We deliberately select a relatively simple neural network model without advanced layers such as
batch normalization or attention (transformer) to demonstrate the power of our approach. By applying
more sophisticated DL techniques, the model performance can be further improved.

4.2 PERFORMANCE EVALUATION

Main benchmark. In our performance evaluation, we partitioned each of the datasets using (strati-
fied) 5-fold cross-validation. We use the following quality measures cross-entropy loss for classifica-
tion tasks and mean-squared error (MSE) for regression tasks. Results are reported in terms of mean
and standard deviation values in Table 2.

Corrupted data. We also compare the performance of DeepTLF with a plain DNN and GBDT under
corrupted data to verify how the proposed model performs in scenarios of noisy labels and noisy data
in the training dataset (Fig. 4).

Noisy training data and labels. We use two different setups: noisy training labels and noisy training
data. We artificially corrupted the customer churn dataset (Sec. 4.1.1) by introducing random noise
either to the training labels (labels were shuffled) and the training dataset. Note that for validation
purposes, the test dataset was not corrupted. A distinguishing strength of the DeepTLF framework
compared to other state-of-the-art approaches in the field is that it can handle missing values internally
through the proposed gradient-boosting embeddings.

Missing values experiment. Figures 9 in the Appendix show the performance of DNN, GBDT, and
DeepTLF models with different proportions of missing in the training dataset. As we can see, the
performance of the DNNs drops drastically, while DeepTLF shows stable performance.

Sensitivity to hyperparameters. This experiment demonstrates how the GBDT hyperparameters
contribute to the final performance of the DeepTLF such as the number of decision trees (Fig. 5) and
learning rate (Fig. 10). For comparison purposes, we also add the GBDT baseline to the figures. It
can be seen that DeepTLF does not require extensive hyperparameter tuning, since it reaches the
saturation level.

t-SNE visualizations. We also compare t-SNE visualizations (Van der Maaten & Hinton, 2008)
of the default of the clients dataset and a TreeDrivenEncoder encoded version of the same dataset,
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Table 3: A comparison of the training and inference runtime for selected models from different
categories on the whole Zillow dataset (167,888 samples). The results related to the training, inference
and preprocessing time are averages over five runs over the whole dataset for training and inference
tests. The data preprocessing step includes: data scalling, handling missing values.

Model Training Inference Data preprocessing #Learning
time (s) time (s) time (s) parameters

GBDT (CPU) 13.5 0.5 0 200 trees, depth 4
GBDT (GPU) 3.1 0.3 0 200 trees, depth 4

DeepGBM (GPU) 23.9 5.2 0.3 222,548 weights
TabNet (GPU) 79.1 2.2 0.3 584,832 weights
NODE (GPU) 310.2 15.5 0.3 27,105,922 weights
DeepTLF (GPU) 15.1 3.2 0 80,351 weights

the results are shown in Fig. 3. It can be seen that TreeDrivenEncoder indeed preserves valuable
information from the trained decision trees.

Multimodal data. In this experiment, we demonstrate how our framework performs on multimodal
data. We select the e-commerce clothing reviews dataset (Agarap, 2018), which has two data
modalities textual and tabular data, and compare to DNN and DeepTLF models on unseen validation
data (Fig. 6). The only difference between the DNN and DeepTLF models in this experiment is the
tabular data representation, for DNN it is the original heterogeneous dataset, where the proposed
framework utilizes TreeDrivenEncoder for the data transformation step. The results demonstrate the
efficiency of our framework in the multimodal setting.

Training/Inference Runtime Comparison. Finally, we compare the runtime performance between
several DL-based algorithms with GBDT (XGBoost (Chen & Guestrin, 2016)). Table 3 summarizes
our results. To make a fair comparison, we used the latest available versions of the corresponding
implementations. Also, we utilize the same DL framework, PyTorch (Paszke et al., 2017), and the
same number of epochs for each DL-based baseline. One of the possible reasons for the gap between
the proposed method and other DL-based approaches is that DeepTLF utilizes a simple deep neural
network, whereas other approaches apply transformer networks or specialized decision tree-like
layers. We also report the data preprocessing time for each baseline.

5 DISCUSSION

Figure 5: A relationship between a num-
ber of trees in the GBDT and the final per-
formance of the proposed DeepTLF frame-
work. The precise same GBDT model is
used for the data encoding in the DeepTLF.
Results are averaged over five trials for the
D3 dataset.

Empirical evaluations. We can derive the following
observations from all experiments: Our framework,
DeepTFL, combines the preprocessing strengths of
gradient-enhanced decision trees with the learning flex-
ibility of deep neural networks. It can handle hetero-
geneity in the data very well and hence shows to be
highly efficient. Also, it shows a stable performance
independently of data size. Moreover, the proposed
encoding algorithm can be employed for multimodal
learning problems Ngiam et al. (2011); Gu & Budhkar
(2021), where multimodal data involve both tabular and
other data sources (text, image, sound) in an integrated
manner (i.e., end-to-end deep learning) while achiev-
ing a robust performance. Finally, with regard to data
quality issues (noisy data and labels, misssing values),
our approach clearly outperforms the DNN and GBDT
models, thus showing to be applicable to many real-
world applications where data loss occurs frequently.

Decision tree model choice. Noteworthy, the proposed
prediction approach can use any decision tree ensemble
as a basic algorithm; in this work, we adopted GBDT
because of its well-known superior performance and its robust feature handling capacities. In addition,
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the GBDT algorithm sequentially constructs the trees; at each step, the next tree maximally reduces
the loss given the current loss. Thus, there are conditional dependencies between the trees in the
GBDT ensemble, and as a consequence, they provide adequate coverage of the data distribution.

Figure 6: A multimodal data experiment on
the textual and tabular from the D7 dataset,
the DNN and DeepTLF have identical DL
architectures and training setups. Results
are averaged over five trials.

Hyperparameter selection for DeepTLF. In our ex-
periments, we demonstrate that the DeepTLF frame-
work does not required extensive tinning for the of the
decision tree ensemble part (Fig. 5 and Fig. 8), after
reaching the saturation level, the number of trees does
not have significant effect.

Tabular data encoding. Besides constructing a new
homogeneous representation for the heterogeneous,
tabular data, TreeDrivenEncoder encodes information
about the whole dataset, as represented by the structures
of the decision trees, which can be seen as a local fea-
ture selection (and feature engineering). Furthermore,
in terms of efficient representation, the encoded binary
data has a drastically smaller size than the original het-
erogeneous data, since real-valued features are typically
represented as 32-bit float types. In contrast, a binary
vector can be efficiently represented by a sequence of
Boolean values (i.e., 1 bit per value). This allows for ef-
ficient training in the final component for the DeepTLF
model.

Future work and limitations. Further analysis is needed to investigate the performance of DeepTLF
in online learning scenarios. We also see further potential in improving the efficiency of DeepTLF
by replacing the decision trees with an efficient neural net transformation layer, thus achieving an
end-to-end deep learning mechanism for heterogeneous and multimodal data. Further improvements
of our approach could be the usage of more advanced deep learning architectures such as convolution
or attention-based (Transformers) neural networks.

6 CONCLUSION

In this work, we discussed the challenge of learning from heterogeneous tabular data with deep neural
networks. The challenge stems from the concurrent existence of numerical and categorical feature
types, complex, irregular dependencies between the features, and other data-related issues such as
scales, outliers, and missing values. To address the challenge, we proposed DeepTLF, a framework
that exploits the decision trees’ structures from an ensemble model to map the original data into
a homogeneous feature space where deep neural networks can be effectively and robustly trained.
This allows DeepTLF to distill and conserve relevant information in the original data and utilize it
in the deep-learning process. Furthermore, the distillation step reduces the required preprocessing
to a minimum and can mitigate the mentioned data-related issues by exploiting decision trees’ data-
processing advantages (internal handling, missing values, and data scaling). Our extensive empirical
evaluation on real-world datasets of different sizes and modalities convincingly showed that DeepTLF
consistently outperforms the evaluated competitors, which are state-of-the-art approaches in this field.
Also, the proposed framework showed robust performance on corrupted data (noisy labels, noisy
data, and missing values). Compared to most approaches in this field, DeepTLF is easy to use and
does not require changes to existing ML pipelines, which is essential for many practical applications.
Moreover, we provide an open-source implementation of DeepTLF which can be used researchers
and practitioners for various learning tasks on heterogeneous or multimodal tabular data.

7 ETHICS STATEMENT

The proposed deep tabular framework and data encoding algorithm closes the performance gap
between deep learning and tree-based ensemble approaches, such as gradient boosting decision trees,
on heterogeneous tabular data. Thus, with DeepTLF, well-studied deep learning and decision-tree-
based approaches, along with privacy-preserving mechanisms, can be also applied to challenging
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settings related to heterogeneous tabular data. Moreover, the homogeneous decision tree encoded
vectors from the DeepTLF algorithm can be used for further interpretation tasks by implementing
importance analysis using SHAP (Lundberg & Lee, 2017) or LIME (Ribeiro et al., 2016) algorithms.

8 REPRODUCIBILITY DETAILS

For the purpose of reproducibility, we provide details of experiment settings, including hyper-
parameter ranges for tuning, and access points for datasets of the study are available in Appendix D.
Besides, we also make publicly available our implementation of the DeepTLF framework with the
scoring function which we used in this study.
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(a) D1 - HIGGS dataset (b) D3 - Telecom churn dataset (c) D6 - California housing dataset

Figure 7: The comparison of the DeepTLF (a green line) and the deep neural model (DNN) (a red line)
models on validation (unseen) data. DeepTLF and DNN models have the exact same architecture.
The results are computed over ten runs with different random seeds.

(a) Accuracy score (b) ROC AUC score (c) Cross-entopy loss

Figure 8: A relationship between number of decision trees and the DeepTLF performance. The
accuracy score (higher is better), ROC AUC score (higher is better), cross-entopy loss (lower is better)
metrics for the same experiment. The exact same GBDT model is used for the data encoding in the
DeepTLF. The results are averages over five trials for the telecom churn (D3) dataset.

A ADDITIONAL EXPERIMENTS

In this Section, we provide more experimental results.

Validation loss curves. We examine DNNs and our DeepTLF model separately using only the
validation (unseen) data. To enable a fair comparison, the deep learning part in DeepTLF is identical
to the DNN we used. The results are presented in Fig. 7.

Is there a correlation between GBDT’s performance and the final performance of the
DeepTLF? In this experiment, we examine the correlation between the performance of GBDT
(which is used for data encoding) and DeepTLF. In other words, we want to demonstrate that if the
performance of the GBDT improves, the performance of the DeepTLF rises. Fig. 11 presents the
results of the experiments; as it can be observed, there is indeed a high positive correlation between
the performance of the GBDT and DeepTLF. It is also noticeable that the DeepTLF performance in
many cased the GBDT results.

A "sanity check" experiment. In this simple experiment, we want to verify that our heterogeneous
encoding function distills knowledge better than a random heterogeneous "encoding function". We
design the random function in the what it extracts random features f with random splitting value. The
experiment confirms that indeed the proposed encoder performs better than a random set of Boolean
rules for a given dataset (Fig. 12).

B EXTENDED RELATED WORK

In recent years, deep learning on tabular data has received much attention from the machine learning
and data science communities (Arik & Pfister, 2019; Popov et al., 2019; Yin et al., 2020; Huang et al.,
2020; Guo et al., 2017; Ke et al., 2019; He et al., 2014; Shavitt & Segal, 2018; Katzir et al., 2020;
Yoon et al., 2020; Padhi et al., 2020; Levy et al., 2020; Ballet et al., 2019; Akrami et al., 2020; Gupta
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(a) Accuracy score (b) ROC AUC score (c) Cross-entopy loss

Figure 9: The missing data experiment. The accuracy score (higher is better), ROC AUC score
(higher is better), cross-entopy loss (lower is better) metrics for the same experiment. The exact same
GBDT model is used for the data encoding in the DeepTLF. The DNN model is identical in training
and architecture to the DeepTLF’s DNN part. The results are averages over five trials for the telecom
churn (D3) dataset.

(a) Accuracy score (b) ROC AUC score (c) Cross-entopy loss

Figure 10: Learning rate. The results are averages over five trials for the telecom churn (D3) dataset.

(a) Accuracy score (b) ROC AUC score (c) Cross-entopy loss

Figure 11: Correlation plots for different quality measurements. The exact same GBDT model is used
for the data encoding in the DeepTLF. The results demonstrate that there is indeed a high positive
relationship between the performance of GBDT and DeepTLF. Thus, the proposed data distillation
algorithm can successfully distill the knowledge from trees. The results are averaged over five trials
for the telecom churn (D3) dataset.
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Figure 12: A "sanity check" experiment. A comparison of the TreeDrivenEncoder and random
encoding functions. The random encoding mimics the TreeDrivenEncoder, but it selects a random
feature and splitting value. The experiment verifies that the TreeDrivenEncoder is able to distill the
knowledge using trained decision trees in a GBDT algorithm. The results are averaged over five
trials.

et al., 2021). The existing approaches can be grouped into two broad categories - architecture-based
and data transformation-based models.

Architecture-based models. This group aims at developing new deep learning architectures for
heterogeneous data (Arik & Pfister, 2019; Popov et al., 2019; Guo et al., 2017; Ke et al., 2019;
Shavitt & Segal, 2018). For example, the authors of (Guo et al., 2017) proposed distinct neural
network architecture for reducing the preprocessing and feature engineering effort by introducing
a data sharing strategy between a deep and a wide network so that low- and high-level interactions
between the inputs can be learned simultaneously, based on the ideas of Factorization Machines
(FM) proposed in (Rendle, 2010). The work (Lian et al., 2018) extended the sharing strategy using
the FM for structured data further. In (Ke et al., 2019), the authors propose an integrated solution
by introducing two special neural networks, one for handling categorical features and another for
numerical data. However, for mentioned approaches ((Guo et al., 2017; Lian et al., 2018; Ke et al.,
2019)), it is not clear how other data-related issues, such as missing values, different scaling of
numeric features, and noise, influence the predictions produced by the models.

Another line of research in this group tries to combine the advantages of decision trees and neural
networks. For example, the authors of (Rota Bulo & Kontschieder, 2014) introduced Neural Decision
Forests, an ensemble of neural decision trees, where split functions in each tree node are randomized
Multi-Layer Perceptrons (MLPs). Another approach (Denoyer & Gallinari, 2014) presented a strategy
for selecting paths in a neural directed acyclic graph to produce the prediction for a given input.
Hence, the selected neural paths are specialized to specific inputs. In (Wang et al., 2017), the authors
empirically showed that neural networks with random forest structure could have better generalization
ability across various input domains.

A fully differentiable architecture for deep learning, which generalizes ensembles of oblivious
decision trees on tabular, is also introduced in (Popov et al., 2019). Their architecture (coined NODE)
employs the entmax transformation (Peters et al., 2019) and thus maps a vector of real-valued scores
to a discrete probability distribution.

Other approaches focus on architectures that build on attention-based (Transformers) mecha-
nisms (Vaswani et al., 2017). For example, the authors of (Arik & Pfister, 2019) and (Huang
et al., 2020) propose an attentive transformer architecture for deep tabular learning. Their architecture
also offers the possibility to interpret the input features; however, for reliable performance, a large
amount of training data is needed. Another drawback is that the attention mechanism is only applied
to categorical data. Hence, the continuous data does not throw the self-attention block, meaning that
correlations between categorical and continuous features are dropped. The work (Yoon et al., 2020)
proposes a variation of a transformer and offers semi-supervised learning.

However, no clear statements can be drawn for all methods described so far regarding the relationship
between data heterogeneity and prediction quality (especially robustness under noisy data or labels).
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Moreover, many of the solutions in this line of research are quite challenging from a practical
perspective since it is often unclear which architectural choices should be employed in realistic
scenarios. These architecture-based approaches generally rely on novel neural network architectures,
which are difficult to (re-)implement and optimize for specific real-world use cases. Also, the work (?)
promotes localized decisions that are taken over small subsets of the features. Especially for critical,
data-intensive applications, e.g., data streaming, large-scale recommendation systems (Baylor et al.,
2017), and many more, it is not clear what additional adjustments to the working pipeline are needed.

Data transformation-based models. Another way for improving the predictive quality in the
presence of tabular data is to transform heterogeneous data into homogeneous feature vectors. The
transformation can range from simple data preprocessing, such as the normalization of numerical
variables or binary encoding of categorical variables, to linear or non-linear embedding schemes
(e.g., generated by advanced autoencoders) (García et al., 2015; Hancock & Khoshgoftaar, 2020).
The advantage of such data transformation approaches is that they do not require adapting the deep
learning architecture. However, they may reduce the information content by smoothing critical values
that might have been highly relevant for the final prediction.

The method proposed by Moosmann et al. (2007) showed how the data could be encoded using
the Random Forests (RF) algorithm by accessing leaf indices in the decision trees. The same idea
was presented in (He et al., 2014), where instead of the random forest algorithm, trees from the
Gradient Boosted Decision Tree (GBDT) are used for the categorical data encoding. This work
empirically demonstrates that the boosted decision trees are a powerful and convenient way to
implement non-linear and categorical feature transformations for heterogeneous data. The DeepGBM
framework (Ke et al., 2019) further evolved the idea of distilling knowledge from decision trees leaf
index by encoding them using a neural network for online learning tasks.

This leaf embedding approach received much attention. However, the leaf indices’ from decision
tree embeddings do not fully represent the structure of the decision tree. Hence, each boosted tree
is treated as a new meta categorical feature. Bruch et al. (2020) proposed a gradient-descent-based
strategy that exploits the decision tree structure to propagate gradients in the learning process. Instead,
our approach has a strong focus on the exploitation of the tree structures for the data transformation
process, that is, the transformation of the heterogeneous tabular data into homogeneous vectors that
are especially suited for deep learning but also other machine learning techniques. The observation
that local Boolean features can be quite informative for global modeling is also reported in (Pedapati
et al., 2020), where the authors exploit sparse local contrastive explanations of a black-box model to
obtain custom Boolean features. A globally transparent model is then trained on the Boolean features
only; empirically, the global model shows a predictive performance that is only slightly worse than
that of state-of-the-art approaches.

In summary, in contrast to state-of-the-art methods that exploit decision tree structures and mainly
focus on leaf indices, DeepTLF utilizes the whole decision tree structure from a GBDT model, and it
furthermore considers the representation of each feature independently in the information distillation
process. The framework proposed in this work combines the advantages of gradient boosted trees
(such as handling different scales, different attribute types, missing values, outliers, and many more)
with the learning flexibility of neural networks to achieve excellent predictive performance.

C TREEDRIVENENCODER ALGORITHM

In this section, we present the psedo code for our TreeDrivenEncoder algorithm (Alg. 1).

D REPRODUCIBILITY DETAILS

We use the following implementation of baseline ML models: kNN, RF, LR, algorithms are from
the widely used open-source machine learning python library Scikit-Learn Pedregosa et al. (2011),
for GBDT we select the python version of distributed gradient boosting library XGBoost Chen &
Guestrin (2016), RLN, we use the official TensorFlow implementation from the GitHub repository1,
we use well-tested PyTorch implementation of TabNet2. We use the official implementation of

1https://github.com/irashavitt/regularization_learning_networks
2https://github.com/dreamquark-ai/tabnet
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Algorithm 1 For a GBDT model T and an instance x from the underlying dataset, the TreeDrivenEn-
coder procedure visits the inner nodes of each T ∈ T (in a breadth-first search manner) and exploits
their Boolean functions to construct a binary vector according to the feature values of x.

procedure TREEDRIVENENCODER(x, T ))
xb vector of length 0
for tree T ∈ T do

u vector of length |T | . binary vector we aim to construct
i := 0 . position index in the binary vector
Q := ∅ an empty queue
Q.enqueue(T.root)
while Q.notEmpty do

v := Q.dequeue()
x := getFeatureValue(x, v) . get from x the value of the feature that is evaluated at v
if v.evaluate(x) == true then . evaluate x at v

add u(i) = 1
else

add u(i) = 0
end if
i++
for all children v′ of v do

if v′ is an inner node (v′ ∈ VI ) then
Q.enqueue(v′)

end if
end for

end while
xb = concat(xb,u)

end for
return xb

end procedure

Net-DNF3. We use the official PyTorch implementation of NODE from the GitHub repository4,
we adapt the official implementation of DeepGBM5 to our need using the PyTorch framework.
VIME6 and TabTansformer7 implementations are from official GitHub repositories. DeepTLF, for
the encoding part, we employ the XGBoost8 implementation of the GBDT algorithm; for the deep
learning part, PyTorch (Paszke et al., 2017) is used. Additionally, we will provide a TensorFlow
implementation. Note, other implementations of GBDT can be used as well. We select the AdaBelief
Optimizer Zhuang et al. (2020) for proposed framework.

For the hyper-parameter selection task for all baseline, we apply the tree-structured parzen estimator
(TPE) optimization algorithmBergstra et al. (2011) using the HyperOpt library Bergstra et al. (2013).

t-SNE Experiment For the t-SNE experiments, we normalized the original datasets. We did not
pre-procces the encoded homogeneous dataset after the TreeDrivenEncoder transformation.

Computing infrastructure. Out experimental setup for all experiments has two RTX2080Ti GPUs
and a single CPU AMD 3960X 24-Core.

D.1 DATASETS DESCRIPTION

Among these, the HIGGS dataset, which stems from experimental physics, is the largest dataset in
our evaluation. As an exemplary dataset from the financial industry, we include the dataset defaults
of clients, which contains information on default payments, demographic factors, credit data, history

3https://github.com/amramabutbul/DisjunctiveNormalFormNet
4https://github.com/Qwicen/node
5https://github.com/motefly/DeepGBM
6https://github.com/jsyoon0823/VIME
7https://github.com/lucidrains/tab-transformer-pytorch
8https://xgboost.readthedocs.io/en/latest/
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Table 4: URLs for datasets of the study.

Dataset URL

D1 HIGGS https://archive.ics.uci.edu/ml/datasets/HIGGS

D2 Default of clients https://www.kaggle.com/uciml/default-of-credit-card-clients-dataset

D3 Telecom churn https://www.kaggle.com/c/zillow-prize-1

D4 Zillow https://www.kaggle.com/neuromusic/avocado-prices

D5 Avocado prices https://www.kaggle.com/blastchar/telco-customer-churn

D6 California housing https://www.kaggle.com/camnugent/california-housing-prices

D7 E-commerce clothing reviews https://www.kaggle.com/nicapotato/womens-ecommerce-clothing-reviews

of payment, and bill Statements of credit card clients in Taiwan from April 2005 to September 2005.
In addition, the Zillow dataset represents typical heterogeneous data from the real estate sector. It
is important to emphasize that in this dataset around 47 % of the data inputs are missing values.
The avocado dataset is another representative of tabular datasets, which provides historical data on
avocado prices. The telecom churn dataset presents customer data of different feature types with the
goal to estimate the behavior of a customer. Lastly, we employ the California housing dataset which
contains information about house pricing in 1990. E-commerce clothing reviews dataset (Agarap,
2018) has multiple data modalities - text and tabular data.

All these datasets are collected from real-world problems and contain numerical as well as categorical
data. Moreover, these datasets are freely available online and common in tabular data processing:
each dataset was previously featured in multiple published studies. We deliberately chose these
six datasets to cover different domain areas (web, natural sciences, etc.), tasks (classification and
regression), and different dataset sizes.

We prepossessed the data in the same way for every machine learning model by applying standard
normalization. For the linear regression, logistic regression, and models based on neural networks,
the missing values were substituted with zeros since these methods cannot handle them otherwise.
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https://archive.ics.uci.edu/ml/datasets/HIGGS
https://www.kaggle.com/uciml/default-of-credit-card-clients-dataset
https://www.kaggle.com/c/zillow-prize-1
https://www.kaggle.com/neuromusic/avocado-prices
https://www.kaggle.com/blastchar/telco-customer-churn
https://www.kaggle.com/camnugent/california-housing-prices
https://www.kaggle.com/nicapotato/womens-ecommerce-clothing-reviews

	Introduction
	Related Work
	DeepTLF: Deep Tabular Learning Framework
	Gradient Boosted Decision Tree
	Knowledge Distillation from Gradient Boosted Decision Trees using TreeDrivenEncoder
	Deep Learning Models for Encoded Homogeneous Data

	Experiments
	Experimental Settings
	Datasets
	Baseline Models

	Performance Evaluation

	Discussion
	Conclusion
	Ethics Statement
	Reproducibility Details
	Additional Experiments
	Extended Related Work
	TreeDrivenEncoder Algorithm
	Reproducibility Details
	Datasets Description


