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(a) Continually Adapt Navigation Agent for Universal Embodied Navigation

Uni-Walker V1

Task 1 … … Task t-1 …    … Task t 

Uni-Walker V2

Uni-Walker lifelong learning in multi-navigation scenes

Uni-Walker lifelong learning in multi-instruction styles

Go forward to the dining table,
then turn right and walk to the
sofa and turn right, keep walking
straight until you reach the door
and turn left, stop at the bed.

Thinking: Follow
the instruction to
complete navigation

Scene 1   Scene 2  Scene 3  Scene 4   Scene 5  Scene 6 Scene 7…   …Scene t

(Follow user step-by-step instructions)

Uni-Walker V3

Vision-Language Navigation

Please find a white
double bed in the
main bedroom on
the right room.

Thinking: What is
the object? And how
to navigate to find
the object?

(Explore the object destination)
Object Localization Navigation 

Thinking: How
to reasoning the
users dialogue
and navigation.

(Reasoning the users dialogue)
User A: I am at the stairs,
do I climb up or turn left?

User B: You should go
up the stairs, and ……

Dialogue Understanding Navigation

VLN
VLN + OLN

VLN
+ OLN

DUN

Figure 1: Illustration of the proposed lifelong embodied navigation learning (LENL) task. The pro-
posed Uni-Walker is able to evolve and continually learn multiple new navigation tasks based on
learned navigation knowledge, for developing universal embodied navigation. In lifelong learning,
the sequential navigation tasks include multi-scenes and multi-instruction styles (VLN, OLN, DUN).

ABSTRACT

Embodied navigation agents powered by large language models have shown
strong performance on individual tasks but struggle to continually acquire new
navigation skills, which suffer from catastrophic forgetting. We formalize this
challenge as lifelong embodied navigation learning (LENL), where an agent is
required to adapt to a sequence of navigation tasks spanning multiple scenes
and diverse user instruction styles, while retaining previously learned knowl-
edge. To tackle this problem, we propose Uni-Walker, a lifelong embodied nav-
igation framework that decouples navigation knowledge into task-shared and
task-specific components with Decoder Extension LoRA (DE-LoRA). To learn
the shared knowledge, we design a knowledge inheritance strategy and an ex-
perts co-activation strategy to facilitate shared knowledge transfer and refinement
across multiple navigation tasks. To learn the specific knowledge, we propose
an expert subspace orthogonality constraint together and a navigation-specific
chain-of-thought reasoning mechanism to capture specific knowledge and enhance
instruction-style understanding. Extensive experiments demonstrate the superior-
ity of Uni-Walker for building universal embodied navigation agents with lifelong
learning. We also provide the code of this work in the Supplementary Materials.

1 INTRODUCTION

Embodied navigation has emerged as a fundamental problem in embodied AI, aiming to build agents
that can follow user natural language instructions to reach destinations in visually complex scenes
Zheng et al. (2024); Wu et al. (2024); Liu et al. (2025). Beyond single-task navigation, universal
embodied navigation aspires to develop a universal agent capable of understanding diverse user
instruction styles and adapting to a wide range of navigation scenes Gao et al. (2025b); Zheng et al.
(2025a); Zhu et al. (2025b). Such a universal agent must flexibly solve different navigation tasks,
including Vision-and-Language Navigation (VLN) Anderson et al. (2018a), Object-and-Language
Navigation (OLN) Qi et al. (2020a), and Dialog Understanding Navigation (DUN) Thomason et al.
(2020), demonstrating robust generalization across diverse navigation scenes and user instructions.
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How to Continually Adapt Navigation Agent for 
Universal Embodied Navigation?
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Figure 2: Illustration of the LENL performance. (a) The catastrophic forgetting phenomenon under
the LENL settings. (b) Our proposed Uni-Walker has a better anti-forgetting performance.

To develop a universal embodied navigation agent, recent methods leverage pretrained large lan-
guage models (LLMs) Naveed et al. (2025) as the backbone and jointly fine-tune them on multi-
ple navigation datasets. For example, NaviLLM Zheng et al. (2024), NavA3 Zhang et al. (2025b),
SAME Zhou et al. (2024), and OctoNav Gao et al. (2025a) use LLMs to construct multi-task em-
bodied navigation agents. Although these agents undergo large-scale joint training across multiple
navigation tasks, they struggle to generalize across all tasks and often lack continual adaptabil-
ity to ever-changing new navigation scenarios. In contrast, humans continually learn and absorb
new knowledge through lifelong learning as they grow, allowing themselves to accumulate previ-
ously learned experiences over time and leverage these experiences to consecutively acquire new
skills Zheng et al. (2025b). Inspired by this observation, we aim for navigation agents to continually
evolve, learning to master diverse scenes and instruction styles for universal navigation, much like
humans. When continually learning new navigation tasks, existing multi-task agents may suffer from
catastrophic forgetting (see Fig. 2(a)) of previously learned tasks if there is insufficient memory and
computational resources to store the full training data of old tasks and retrain the pretrained LLMs.

To mitigate catastrophic forgetting, a straightforward strategy is to employ Low-Rank Adaptation
(LoRA) Hu et al. (2022) to fine-tune pretrained LLMs on each navigation task and store their task-
specific low-rank weights for inference. Unfortunately, such a naive strategy fails to explore task-
shared knowledge between new and old tasks, nor can it leverage the learning experiences accumu-
lated from previous navigation tasks to enhance adaptation to new navigation tasks. Additionally,
to capture the task-shared information across different navigation tasks, some recent studies, such
as MoE-LoRA Gao et al. (2024); Chen et al. (2024); Dou et al. (2024), HydraLoRA Tian et al.
(2024), and BranchLoRA Zhang et al. (2025a), propose multi-expert structures for jointly learning
all tasks. However, they assume a fixed number of experts, which limits their scalability for life-
long learning and deployment in diverse real-world scenarios. To address the above challenges, we
introduce Lifelong Embodied Navigation Learning (LENL) in this work, a novel problem where
agents are required to continually adapt to a sequence of navigation tasks while retaining previ-
ously acquired navigation knowledge, ultimately developing into a universal embodied navigation
agent (i.e., capable VLN, OLN, DUN), as Fig. 1. Inspired by the human lifelong learning process,
which summarizes and exploits acquired knowledge to continually learn new information, we argue
that the crucial challenges of efficient lifelong embodied navigation are consecutively learning new
navigation tasks while mitigating the catastrophic forgetting of old ones under the LENL setting.

To resolve the challenges in the LENL problem, we build a new lifelong embodied navigation bench-
mark and propose a novel lifelong embodied navigation model named Uni-Walker. To the best of
our knowledge, this paper is a pioneer exploration for lifelong embodied navigation learning. The
proposed Uni-Walker model explicitly decouples multi-navigation task knowledge into shared and
specific components with a new Decoder Extension LoRA (DE-LoRA). Inheriting and exploiting
the shared knowledge, It learns new tasks more effectively during continual learning. To learn the
shared navigation knowledge, we design a knowledge inheritance Strategy (KIS) and an experts
co-activation strategy (ECAS) to facilitate task-shared knowledge transfer and refinement across
multiple navigation tasks. To learn the specific navigation knowledge, we propose an expert sub-
space orthogonality constraint (ESOC) and a navigation-specific chain-of-thought (NSCoT) reason-
ing mechanism to facilitate the learning of task-specific knowledge representations and tailor reason-
ing processes according to different instruction styles (VLN, OLN, DUN). Extensive experiments
are performed to demonstrate that Uni-Walker can learn new navigation tasks without forgetting

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

previously learned tasks, and even produce satisfactory generalization performance in unseen tasks,
thus achieving the SOTA performance in LENL. The main contributions are outlined as follows:

•We introduce a novel Lifelong Embodied Navigation Learning (LENL) problem that enables navi-
gation agents to continually learn new navigation tasks, including new scenes and instruction styles.
We also build a new lifelong embodied navigation benchmark for training and evaluating.

• We propose Uni-Walker with a Decoder Extension LoRA (DE-LoRA) to decouple task-shared
knowledge and task-specific knowledge across multiple navigation tasks (with multiple scenes and
diverse instruction styles), to achieve efficient lifelong embodied navigation learning.

• We propose a Knowledge Inheritance Strategy (KIS) and an Experts Co-Activation Strategy
(ECAS) to facilitate task-shared knowledge transfer and continual refinement across multiple navi-
gation tasks, for exploring and exploiting the task-shared knowledge across multiple tasks.

• We propose an Expert Subspace Orthogonality Constraint (ESOC) to constrain each expert sub-
space to fully learn task-specific knowledge, and a Navigation Specific Chain of Thought (NSCoT)
to provide specific chain of thought reasoning processes for each instruction style navigation, for
exploring and exploiting the task-specific knowledge across multiple navigation tasks.

2 PROBLEM FORMULATION

Preliminary: In embodied navigation tasks, an agent operating in a 3D scene S is required to com-
plete various tasks T described in user natural language instructions I. Following recent researches
Zheng et al. (2024); Zhou et al. (2024); Wei et al. (2025), there are three typical types of embod-
ied navigation tasks: i). Vision-Language Navigation (VLN) Anderson et al. (2018a), denoted as
TV LN , requires the agent to follow the user step-by-step instructions and navigate to the destination
within the scene. ii). Object Localization Navigation (OLN) Qi et al. (2020a), denoted as TOLN ,
requires the agent to localize a distant destination object according to user concise high-level instruc-
tions. iii). Dialogue Understanding Navigation (DUN) Thomason et al. (2020), denoted as TDUN ,
requires the agent to understand the history dialogue from users and understand user requirements
from it, and navigate to the destination. To construct a universal navigation agent for accomplish-
ing multiple navigation tasks, following NavLLM Zheng et al. (2024), we use a pre-trained LLM,
i.e., Vicuna Chiang et al. (2023), as the basic navigation agent F . And for processing the agent’s
vision observation O during navigation, we use the CLIP Vision Transformer Encoder Sun et al.
(2023) to extract vision features V(O), and the last hidden state embeddings of its [CLS] token are
served as the agent real-time observation features. The architecture of our navigation agent model
is similar to the multimodal large language model LLaVA Liu et al. (2023). At each time i, the
navigation agent reasons user instruction Ii with the current observation Oi to output the the next
direction: Di = F(V(Oi), Ii), thus navigation step by step to the destination. However, as shown in
Fig. 1 (b), the agent’s adaptation to a new navigation task Tt including new navigation scenes St or
new user instruction styles {TV LN,t, TOLN,t, TDUN,t} causes catastrophic forgetting of the old task
{T1, T2, ..., Tt−1}. This phenomenon limits the flexible deployment of embodied navigation agents.

Problem Definition: To address the above continual navigation learning challenges, we introduce a
new problem setting, Lifelong Embodied Navigation Learning (LENL). We define multiple sequen-
tial navigation tasks as T = {T1, T2, ..., Tt}, where t-th navigation task Tt = {Ot, It} comprising
multiple agent navigation vision observation Ot = {o1, o2, ..., oN} in a specific navigation scene
St ∈ {S1, S2, ..., SM}, and a specific user instruction style It ∈ {TV LN,t, TOLN,t, TDUN,t}. The
navigation agent F is required to learn all the navigation tasks T consecutively, and all the tasks
are tested after all task learning is complete. Please note that for more practical applications of the
LENL settings, the task-id t is agnostic during the testing phase. And St of each Tt does not overlap
with any previous tasks: St

⋂
(
⋃t−1

j=1 Sj)= ∅. In summary, the proposed LENL problem aims to let
a navigation agent F continually learn a sequence of new navigation tasks T while alleviating the
forgetting of old tasks, thus facilitating the development of a universal embodied navigation agent.

3 THE PROPOSED UNI-WALKER

The overall pipeline of our Uni-Walker is illustrated in Fig. 4. It includes a Decoder Extension
LoRA (DE-LoRA) adaptation to learn a series of multiple navigation tasks continually (§3.1), a
Navigation Chain-of-Thought (NCoT) to facilitate specific navigation reasoning (§3.2), and a Task-
Aware Knowledge Aggregation (TAKA) to automatically aggregate the learned knowledge (§3.3).
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Figure 3: Illustration of the proposed Uni-Walker pipeline. It includes (a) a Decoder Extension
LoRA Adaptation to achieve progressive knowledge decoupled learning, which decouples naviga-
tion knowledge into shared and specific parts, thereby facilitating new tasks learning using shared
knowledge while avoiding forgetting. (b) a Task-Aware Knowledge Aggregation to automatically
aggregate the learned knowledge according to a specific navigation task for task specific inference.

3.1 DECODER EXTENSION LORA ARCHITECTURE

As shown in Fig. 4 (a), in order to learn the t-th navigation task Tt, we extend the vanilla Lora
Hu et al. (2022) and propose a new low-rank adapter named Decoder Extension LoRA (DE-LoRA)
to finetune the pretrained NavLLM Fθ0 on each navigation task Tt = {Ot, It}, and then obtain an
adapted updated modelF ′

θ′
t
, where θ′t = θ0+∆θt, ∆θt = {∆Wl

t}Ll=1, and ∆Wl
t = Bl

tA
l
t ∈ Rbl×al

are learnable low-rank weight in l-th layer of a total of L layers. In this case, the features xl of each
transformer layer are processed as: yl = Wl

0x
l+Bl

tA
l
tx

l, where the low-rank learnable weights Bl
t ∈

Rbl×r can be regarded as decoder and Al
t ∈ Rr×al can be regarded as encoder. To address LENL, a

trivial solution is to train and save all low-rank adaptation weights for all navigation tasks so far, and
then load the specific weights at inference time. However, multiple navigation tasks share and have
specific knowledge with each other, and simple vanilla LoRA storing for a single task cannot enable
the agent to evolve during learning, limiting the development of a universal navigation agent. To
explore and exploit the task-shared and task-specific knowledge between navigation tasks, different
from vanilla LoRA, we use subspace A to learn task-shared knowledge and Bt to learn task-specific
knowledge, inspired by Zhang et al. (2025a); Tian et al. (2024). Specifically, in our DE-LoRA, all
navigation tasks use a shared subspace A and each navigation task uses TOP-K activated expert
subspace {B1, ...,BK} to exploit task-shared knowledge and to explore task-specific knowledge:

y = W0 · x+∆W · x = W0 · x+

K∑
n=1

(Bt,n · A · x), (1)

where Bn ∈ {B1, ...,BK} is the specific activated expert subspace. Different from existing shared
architecture HydraLoRA Tian et al. (2024), our DE-LoRA selects sparse activated experts to adapt
to the new navigation task and expands a specific expert subspace as the task is continually learned.

3.2 EXTENSION EXPERTS INCREMENTAL LEARNING

To explore the task-shared and task-specific knowledge between sequential navigation tasks set T ,
and consolidate the DE-LoRA architecture, we propose an Extension Experts Incremental Learning
strategy. Specifically, for the initial training, we use Kaiming initialization He et al. (2015) to initial-
ize knowledge base parameters K = {A,B1}, and then train the parameters {A,B1} to adapt task
T1. And then for learning the subsequent n-th task Tn, we dynamically increase one Bn to K.
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Inheritance Task-Shared Knowledge. When learning the subsequent new task Tt = {Se, Is}, t >
1 continually (with e-th navigation scene Se and s-th navigation instruction style Is), we propose
Knowledge Inheritance Strategy (KIS) and Experts Co-Activation Strategy (ECAS) on the new in-
creased expert subspace Bt to explore task-shared knowledge. In order to inherit user instruction
style knowledge, in KIS, we initialize the current expert Bt using the learned experts having the
same instruction knowledge, denoted as {Bi,Bi+1, ...,Bj}, that have previously learned tasks with
the same instruction style. We perform Principal Component Analysis (PCA) Abdi & Williams
(2010) on these experts to identify the low-dimensional subspace that captures the most signifi-
cant shared variations among them. Specifically, each expert parameter matrix Bk ∈ {Bi, ...,Bj}
is flattened into a vector θk = vec(Bk) ∈ Rd, and all vectors are concatenated to form an ex-
pert matrix M = [θi, θi+1, . . . , θj ] ∈ Rd×(j−i+1). Then we compute the mean parameter vector
µ = 1

j−i+1

∑j
k=i θk, and obtain centered vectors θ̃k = θk − µ. The covariance matrix is given by

C= 1
j−i+1

∑j
k=i θ̃kθ̃

⊤
k , then we perform SVD decomposition on the covariance matrix C = UΛV⊤

and take the top-r eigenvectors to form Ur=[u1, ..., ur]∈Rd×r. We further leverage the top-r prin-
cipal components to capture the dominant shared variations across previous experts. Specifically, we
compute the average direction of the subspace spanned by Ur and use it for knowledge inheritance:

Bt ← B̂ = matb×r(µ+
1

r

r∑
k=1

uk), (2)

where µ provides the central tendency of expert parameters, while the averaged principal directions
inject additional shared variation patterns. This initialization encourages the new expert to start not
only from the common mean but also aligned with the principal subspace that encodes instruction-
style knowledge. In addition to KIS, we also propose ECAS to explore shared knowledge between
multiple navigation tasks. Specifically, as shown in Fig. 4 (a), we activate TOP-K experts with the
TAKA strategy (§3.3) for each task, which includes not only the specific trainable Bt expert, but
also the related experts {B∗

1, ...,B∗
K−1} that are computed in the forward pass but parameter frozen:

y = W0 · x+∆W · x = W0 · x+ Bt · A · x+

K−1∑
n=1

(B∗
n · A · x), (3)

In addition to the exploration shared knowledge with TOP-K expert subspace {B∗
1, ...,B∗

K−1} and
Bt, in order to progressively refine the shared subspace A′ and avoid old task-specific knowledge
catastrophic forgetting, we also propose a shared smoothing consolidation loss for the subspace A′:

Lssc,t = λssc(||FA,t−1 ⊙ (A′ − A)||2F ), (4)

where A′ is current learnable shared subspace, A is the last task Tt−1 learned subspace. And λssc =
0.1 is the balance hyper-parameter, Ft−1 is the Fisher Information Matrix Kirkpatrick et al. (2017)
which measures the importance of each parameter A for the last task Tt−1, and it can be calculated:

FA,t−1 = E(x,y)∼Tt−1

[(
∂A log p(y | x;A)

)2]
, (5)

where x ∈ {Ot, It} is the navigation input data and y is the output annotation, and FA,t−1 measures
the importance of each parameter for the navigation agentF output performance, with a higher value
indicating greater importance. Furthermore, during the lifelong navigation learning, we also perform
incremental updates for the Fisher Matrix Ft in to achieve shared knowledge smooth learning:

FA,t = ω · FA,t−1 + (1− ω) · FA,t, (6)
where ω = 0.9 is the exponential moving average coefficient to control the smooth update of FA,t.

Exploration Task-Specific Knowledge. The exploration and exploitation of the above-mentioned
task-shared knowledge summarizes old task knowledge to facilitate new task learning while avoiding
old knowledge catastrophic forgetting. To further explore the independence of specific knowledge,
we also propose an Expert Subspace Orthogonality Constraint (ESOC) and a Navigation Specific
Chain of Thought (NSCoT). Specifically, to consolidate the shared architecture of subspace A and
facilitate task-specific knowledge learning, we propose ESOC to perform orthogonal constraint on
expert subspace Bt: during learning the t-th task, we prefer the expert subspace Bt be orthogonal
to the previous experts avoid knowledge overlap:

∑t−1
i=1 || tr((Bi)

TBt)||2F =0. In addition, to avoid
the expert subspace Bt degenerating into the trivial solution of a zero matrix (in this case, it will not
learn any knowledge, i.e., learnable weight ∆W = 0), we perform L2 normalization on the expert
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How to Continually Adapt Navigation Agent for 
Universal Embodied Navigation?

Vision-Language Navigation CoT
You are a navigation agent. You are required
to follow my instruction to navigate in the room.
My instruction: Go forward to the dining table,
then turn right and walk to the sofa and turn
right, keep walking straight until you reach…User

U
ni-W

alker

Object Localization Navigation CoT

User

U
ni-W

alker

Dialogue Understanding Navigation CoT

User

U
ni-W

alkerThinking: Based on observation and history to infer 
where is the current location, and then select the 
next direction from the candidates to go to the 
target location.
Reasoning: View 1

Thinking: Based on observation and history to infer 
where is the current location, then select the next 
direction from candidates to go to the target location.
Reasoning: View 2

You are a navigation agent. You are
required to understand the dialog to find
the described room and go to the room.
Dialog: A: I am at the stairs. Do I climb up
or turn left? B: Go up the stairs…

Thinking: The current observation contains several 
directions, candidate (0) is stop. Candidate: xxx.
You may also need the navigation history, which 
contains the images corresponding to previous 
decisions. The history: xxx.

You are a navigation agent. You shouldto
go to the location to complete the given task.
Task: Find a white double bed in the
bedroom on the right.

Thinking: The current observation contains several 
directions, candidate (0) is stop. Candidate: xxx.
You may also need the navigation history, which 
contains the images corresponding to previous 
decisions. The history: xxx.

Thinking: Based on history and observation to infer 
current progress, and then select the next direction 
from candidates.
Reasoning: View 3

Thinking: The current observation contains several 
directions, candidate (0) is stop. Candidate: xxx.
You may also need the navigation history, which 
contains the images corresponding to previous 
decisions. The history: xxx.

Figure 4: Illustration of the Navigation Chain-of-Thought to design various specific LLM chains of
thought for specific instruction style tasks to facilitate the embodied navigation performance.

subspace Bt to project these experts onto the unit sphere subspace B̃t. Thus, the ESOC loss is:

Lesoc,t = λesoc

t−1∑
i=1

| tr((B̃i)
TB̃t)|, B̃i =

Bi

|| Bi ||F +ϵ
, B̃t =

Bt

|| Bt ||F +ϵ
. (7)

where λesoc = 0.1 is the balance subspace orthogonality hyper-parameter, and ϵ = 0.01 is the
perturbation for avoiding the computational avalanches caused by molecules || Bt ||2F equal to 0.

In addition to ESOC, we also propose NSCoT to perform specific navigation reasoning pro-
cesses for each specific user instruction style navigation task. Specifically, as shown in Fig. 4
(b), we provide three types of chain of thought for three types of specific user instructions
{TV LN,t, TOLN,t, TDUN,t}. In VLN task, the agent is required to follow the user’s detailed step-
by-step instructions, and the reasoning tends to be navigation process tracking. In OLN task, the
agent is required to reason about the user’s desired destination based on observations and gradually
track the navigation process to reach the destination. In DUN task, the agent is required to compre-
hend user dialogues, reason user requirements, and complete navigation based on the requirements.

In summary, during the lifelong navigation learning process for the t-th task Tt, the total adaptation
loss for the LLM-based navigation agent F performing auto-regressive action generation training is:

Lt = −λ
N∑

n=1

logPt(An, P̂n|I,O) + Lssc,t + Lesoc,t, (8)

where Pt(An, P̂n|I,O) denotes the predicted probability of annotation navigation actions under the
current observation IO = {It,Ot}, and the balance hyper-parameter is λ = 1− (λssc + λewc).

3.3 TASK-AWARE KNOWLEDGE AGGREGATION

After learning a series of navigation tasks continually, Uni-Walker is required to recall which expert
knowledge learned is valuable for the current specific navigation task and utilize this knowledge
to better complete the current navigation task. We propose a Task-Aware Knowledge Aggregation
(TAKA) strategy to automatically activate the TOP-K experts most relevant to the current task.
Specifically, as shown in Fig. 4 (c), Uni-Walker adapts to each task T = {T1, T2, ..., TH} by learn-
ing specific expert subspaces {A, {B1,B2, ...,BH}} while also preserving the task retrieval em-
bedding Re = {(ES,1, EI,1), (ES,2, EI,2), ..., (ES,H , EI,H)}, where ES,t are the t-th task’s scene
embedding and EI,t are its instruction embedding. ES,t = EV (O1

t ,O2
t , ...,OM

t ) are the embed-
ding observed by the agent during navigation, using the CLIP vision encoder Radford et al. (2021).
EI,t = ET (I1t , I2t , ..., INt ) are the embedding provided by user instructions in t-th task, using the
CLIP text encoder. And to reduce storage space, we remove elements in {ES,t, EI,t} with cosine
similarity greater than 0.9. Under the LENL setting, the agent is agnostic about the task-id during
inference, so we use Re to retrieve an unknown navigation task to decide which expert subspace to
use. We compute the cosine similarity for each ES,t based on the agent’s observation embeddings
Eo = EV (Oq) and each EI,t based on the embedding provided by user instruction Ei = ET (Iq):

SmO,t(ES,t, Eo)=
Eo · ES,t

∥Eo ∥2F ·∥ES,t ∥2F
, SmI,t(EI,t, Ei)=

Ei · EI,t

∥Ei ∥2F ·∥EI,t ∥2F
, t=1, 2, ..., H. (9)

Subsequently, we set elements greater than µ in {SmI,1, SmI,2, ..., SmI,H} to 1 and other elements
to 0 to form a mask matrixM. We apply maskM to similarity set {SmO,1, SmO,2, ..., SmO,H},
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then select the TOP-K experts {B∗
q}kq=1 to activate to perform inference for the test agnostic task Tq:

{B∗
q}kq=1 = top-k(M⊙{SmO,1, SmO,2, ..., SmO,H}), (10)

Finally, activated experts {B∗
q}kq=1 are combined with subspace A to perform inference with Eq.(1).

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Task1: S1            Task2: S2          Task3: S3 Task4: S4       Task5: S5 Task6: S6

Scene: 1LXtFkjw3qL Scene: 1pXnuDYAj8r Scene: pRbA3pwrgk9 Scene: 5q7pvUzZiYa Scene: 759xd9YjKW5 Scene: VVfe2KiqLaN

Task7: S7            Task8: S8 Task9: S9     Task10: S10 Task11: S11      Task12: S12  

Scene: 82sE5b5pLXE Scene: p5wJjkQkbXX Scene: B6ByNegPMKs Scene: 7y3sRwLe3Va Scene: D7N2EKCX4Sj

Task13: S13 Task14: S14      Task15: S15 Task16: S16     Task17: S17 Task18: S18  

Scene: EDJbREhghzL Scene: V2XKFyX4ASd Scene: VzqfbhrpDEA

Scene: mJXqzFtmKg4

Scene: ULsKaCPVFJR Scene: cV4RVeZvu5T Scene: rPc6DW4iMge 

Figure 5: Illustration of the lifelong navigation bench-
mark. We establish a total of 18 navigation tasks for life-
long learning, including 18 navigation scenes and 3 types
of user instruction styles (VLN is marked in blue color,
OLN is green, and DUN is purple). We use the first 15
tasks for lifelong learning, and the last 3 tasks are used to
evaluate unseen scene generalization performance.

Lifelong Embodied Navigation
Benchmark Settings: To evaluate
the proposed LENL task, we follow
the classic works on visual navigation
Anderson et al. (2018a); Qi et al.
(2020a); Thomason et al. (2020); Zheng
et al. (2024) using the Matterport3D
Simulator Anderson et al. (2018a) as
navigation scene simulator, and con-
struct a new lifelong navigation LENL
benchmark. The proposed benchmark
settings are shown in Fig. 5, including
eighteen different navigation scenes
with three embodied navigation instruc-
tion styles, i.e., VLN, OLN, DUN, as
described in the Problem Definition (§
2). The first fifteen tasks are used for
continual learning, while the last three
tasks are used for generalization testing
in unseen scenes. Please note that in the
LENL setting, the task-id t is only visible during continual training, but agnostic during testing.
More details for the constructed LENL benchmark are provided in our Appendix §C.

Training and Evaluation Settings: To ensure fair comparisons, our methods and all comparison
methods are performed with NavLLM Zheng et al. (2024) as the baseline backbone. We use eight
NVIDIA RTX 6000 Ada Generation GPUs with PyTorch 2.1.2 (cu121) for training and testing. And
the Adam optimizer with an initial learning rate of 3.0 × 10−5 is used for training. The low-rank
r = 16 of LORA, the number of experts is k = 2, µ = 0.5, and all the other hyperparameters
are consistent with the NavLLM. Following previous studies Zheng et al. (2024); Wei et al. (2025);
Anderson et al. (2018a), we report three key evaluation metrics: success rate (SR), success rate
weighted by path length (SPL), and oracle success rate (OSR). In addition, to evaluate the anti-
forgetting rate in lifelong learning, we propose three evaluation metrics, SR Forgetting Rate (SR-F),
SPL Forgetting Rate (SPL-F), OSR Forgetting Rate (OSR-F). These metrics can be calculated by:

SR-Ft=
M -SRt − SRt

M -SRt
, SPL-Ft=

M -SPLt − SPLt

M -SPLt
, OSR-Ft=

M -OSRt −OSRt

M -OSRt
, (11)

where M -SRt, M -SPLt, and M -OSRt represents the t-th task completion status with success rate,
success rate weighted by path length, and oracle success rate, under learning only the 1-st to t-th
task. Thus the larger SR-Ft, SPL-Ft, and OSR-Ft the greater the degree of t-th task forgetting.

4.2 COMPARISON EXPERIMENT RESULTS

This experiment verifies the superior performance of our Uni-Walker. We compare it against the
SOTA LoRA-based continual learning approaches: Seq-FT is sequential fine-tuning across all tasks;
LwF-LoRA Li & Hoiem (2017) employs knowledge distillation to preserve previously acquired
tasks; EWC-LoRA Xiang et al. (2023) constrains important parameters of past tasks to reduce
navigation forgetting; Dense MoLE Chen et al. (2024) adopts dense expert routing, while Sparse
MoLE Dou et al. (2024) applies sparse expert routing in MoE-LoRA; MoLA Gao et al. (2024)
extends Sparse MoLE by introducing deeper-level experts; HydraLoRA Tian et al. (2024) uses
a shared module A for common knowledge and multiple B modules for task-specific learning,
BranchLoRA Zhang et al. (2025a) further strengthens the sparse selection mechanism; O-LoRA
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Table 1: Test results (task-wise SR ↑, %) of comparison experiment with our LENL settings.

Comparison Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 Avg.

Seq-FT (sequential fine-tuning) 0 0 0 5 4 0 5 18 8 9 8 21 20 25 86 0 0 0 12
LwF-LoRA (Li & Hoiem (2017)) 0 5 0 5 6 0 5 22 8 12 10 30 45 36 85 5 0 0 15
EWC-LoRA (Xiang et al. (2023)) 0 5 0 10 4 0 5 20 8 9 8 31 49 40 86 5 5 0 16
Dense MoLE (Chen et al. (2024)) 10 10 4 10 8 3 10 18 16 19 17 30 56 51 85 12 10 8 21
Sparse MoLE (Dou et al. (2024)) 15 12 0 17 6 6 16 18 18 24 15 32 58 53 84 16 12 10 23
MoLA (Gao et al. (2024)) 15 12 0 12 6 10 20 18 13 26 19 34 61 59 86 20 12 11 24
HydraLoRA (Tian et al. (2024)) 16 14 15 19 6 15 16 24 17 17 21 41 68 57 86 18 14 16 27
BranchLoRA (Zhang et al. (2025a)) 26 20 20 25 8 21 20 26 20 18 22 39 78 54 86 28 20 15 30
SEMA (Wang et al. (2025)) 38 34 32 34 19 32 33 38 42 30 33 51 84 61 86 39 42 36 43
NBAgent (Liang et al. (2024)) 29 26 23 26 10 23 23 28 24 22 26 42 81 57 86 31 24 17 33
O-LoRA (Wang et al. (2023a))+TAKA 55 61 50 54 42 42 54 79 48 66 56 54 88 63 86 65 53 36 58
SD-LoRA (Wu et al. (2025))+TAKA 58 57 54 46 49 42 57 76 51 59 57 54 81 62 87 68 55 48 59

Uni-Walker (ours) 67 67 75 67 57 50 67 83 50 73 62 53 88 65 86 74 61 51 66

Table 2: Test results (task-wise SR-F ↓, %) of comparison experiment with our LENL settings.

Comparison Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 Avg.

Seq-FT (sequential fine-tuning) 100 100 100 94 93 100 93 78 90 88 88 61 77 62 0 100 100 100 85
LwF-LoRA (Li & Hoiem (2017)) 100 93 100 94 90 100 93 74 90 84 84 44 49 45 0 94 100 100 80
EWC-LoRA (Xiang et al. (2023)) 100 93 100 87 93 100 93 76 90 88 88 43 44 38 0 94 92 100 79
Dense MoLE (Chen et al. (2024)) 86 85 95 87 87 95 86 79 81 74 73 44 36 22 0 86 84 85 71
Sparse MoLE (Dou et al. (2024)) 78 82 100 79 90 89 77 79 79 68 77 41 34 18 0 81 81 82 69
MoLA (Gao et al. (2024)) 78 82 100 85 90 82 71 79 85 65 70 37 31 9 0 76 82 80 67
HydraLoRA (Tian et al. (2024)) 77 79 81 76 90 73 77 72 67 77 68 27 24 14 0 79 79 71 63
BranchLoRA (Zhang et al. (2025a)) 63 71 75 69 87 62 71 69 62 76 66 30 13 17 0 67 71 73 58
O-LoRA (Wang et al. (2023a))+TAKA 21 13 37 33 30 24 23 7 8 12 14 4 2 3 0 23 22 35 17
SD-LoRA (Wu et al. (2025))+TAKA 17 19 32 43 21 24 19 11 2 21 12 4 10 5 0 19 19 13 16

Uni-Walker (ours) 4 4 5 16 5 4 4 2 4 3 5 4 2 0 0 12 10 7 5

(a) Comparison Results with SPL (%)      (b) Comparison Results with SPL-F (%)       (c) Comparison Results with OSR (%)      (b) Comparison Results with OSR-F (%)
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Figure 6: Test results (average (a) SPL ↑, (b) SPL-F ↓, (c) OSR ↑, (d) OSR-F ↓) of comparison
experiment with our LENL settings. For detailed task-wise results, please refer to Appendix §C.

Wang et al. (2023a) leverages orthogonal loss to capture task-specific knowledge; SD-LoRA Wu
et al. (2025) dynamically combines LoRA modules from previously learned skills. And SD-LoRA
and O-LoRA are combined with our proposed TAKA. Additional comparison details are provided in
the Supplementary Materials. The evaluation results with SR are summarized in Table 1 and Table
2. Uni-Walker achieves a higher average success rate of 66%, surpassing the previous best (59%)
by 7%, and a lower forgetting rate of 5%, improving the prior best (16%) by 11%. The results with
SPL and OS are summarized in Fig. 6. Uni-Walker achieves a higher SPL of 61%, surpassing the
previous best (38%) by 23%, and a lower forgetting rate of 7%, improving the prior best (42%)
by 35%. It achieves a higher OSR of 81%, surpassing the previous best (79%) by 2%, and a lower
forgetting rate of 5%, improving the prior best (7%) by 2%. Detailed results are in Appendix §C.

Table 3: Results (SR%) for Generalization.

Comparisons S16 S17 S18 Avg

HydraLoRA 18 14 16 16.0
BranchLoRA 28 20 15 21.0
O-LoRA + TAKA 65 53 36 51.3
SD-LoRA + TAKA 68 55 48 57.0
Uni-Walker (ours) 74 61 51 62.0

How Does Uni-Walker Perform on Generalization
in Unseen Scenes? We also provide a dedicated com-
parison on the three unseen generalization tasks (S16,
S17, S18). The evaluation results with SR (%) are
summarized in Table 3. Uni-Walker achieves a higher
average success rate of 62%, surpassing the previous
best (57%) by 5%. This superior generalization ca-
pability results from: Decoupled knowledge learning
via DE-LoRA, ESOC, and KIS, ensuring that shared
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Table 4: Ablation study results (%) for the methods with Task Shared Knowledge Exploration.

Methods KIS ECAS SSC SR ↑ SR-F ↓ SPL ↑ SPL-F ↓ OSR ↑ OSR-F ↓
Baseline ✗ ✗ ✗ 55.7 21.1 37.0 45.0 76.7 8.7
Uni-Walker w/o KIS ✗ ✓ ✓ 60.3 14.2 50.2 23.9 77.6 7.7
Uni-Walker w/o SSC ✓ ✓ ✗ 59.7 15.1 44.7 30.6 77.9 7.3
Uni-Walker w/o ECAS ✓ ✗ ✓ 58.1 17.4 44.7 32.3 78.3 6.9

Our Uni-Walker ✓ ✓ ✓ 67.3 4.3 62.3 5.7 81.3 3.5

Table 5: Ablation study results (%) for the methods with Task Specific Knowledge Exploration.

Methods ESOC NSCoT SR ↑ SR-F ↓ SPL ↑ SPL-F ↓ OSR ↑ OSR-F ↓
Baseline ✗ ✗ 49.0 29.2 33.9 45.0 72.3 14.0
Uni-Walker w/o ESOC ✗ ✓ 63.5 9.8 60.6 8.2 79.7 5.3
Uni-Walker w/o NSCoT ✓ ✗ 51.1 27.3 35.5 46.3 75.3 10.5

Our Uni-Walker ✓ ✓ 67.3 4.3 62.3 5.7 81.3 3.5

Table 6: Ablation study results (%) for the Task-Aware Knowledge Aggregation methods.

Methods IM OM MM SR ↑ SR-F ↓ SPL ↑ SPL-F ↓ OSR ↑ OSR-F ↓
Uni-Walker w IM ✓ ✗ ✗ 35.0 50.1 23.2 65.0 46.6 49.5
Uni-Walker w OM ✗ ✓ ✗ 65.1 9.6 62.7 7.5 80.1 5.5

Our Uni-Walker ✗ ✗ ✓ 67.3 4.3 62.3 5.7 81.3 3.5

navigation knowledge is preserved while task-specific expertise remains disentangled rather than en-
tangled or overwritten; Dynamic knowledge aggregation through TAKA, which activates the most
relevant experts for unseen scenes, to reuse transferable skill knowledge when encountering un-
seen scenes. Together, these mechanisms allow Uni-Walker to adapt to new tasks while retaining
previously learned knowledge, leading to significantly better performance in unseen generalization.

4.3 ABLATION STUDIES

How Does Navigation Tasks Shared Knowledge Perform? The ablation studies results of the ex-
ploration for navigation tasks shared knowledge are summarized in Table 4. Specifically, the “KIS”
denotes the proposed Knowledge Inheritance Strategy, which summarizes previously learned knowl-
edge and utilizes it for learning new tasks. Removing the inheritance leads to slower convergence
and weaker transfer to new tasks. The “ECAS” denotes the proposed Experts Co-Activation Strategy,
which directly utilizes previously acquired knowledge to accomplish the current task. Removing the
co-activation leads to a reduction in the exploitation of previous knowledge. The “SSC” denotes the
proposed shared smoothing consolidation loss for shared subspace A′, which facilitates the smooth
updating of shared subspaces during the continual learning process. Removing the loss leads to
overfitting new knowledge and the catastrophic forgetting of old knowledge. Based on the abla-
tion results, the proposed methods enable Uni-Walker to explore and exploit task-shared knowledge
between diverse tasks, effectively improving new task learning and reducing catastrophic forgetting.

How Does Navigation Tasks Specific Knowledge Perform? These ablation studies’ results about
the exploration for navigation tasks shared knowledge are summarized in the Table 5. Specifically,
the “ESOC” denotes the proposed Expert Subspace Orthogonality Constraint on B, which facil-
itates the independence of each expert subspace to learn task-specific knowledge. Removing the
orthogonality constraint may lead to overlapping of the expert subspaces, resulting in the failure of
knowledge decoupling. The “NSCoT” denotes the proposed Navigation Specific Chain of Thought,
which provides specific reasoning processes for each specific navigation task. Removing NSCoT
and applying a fixed reasoning template (prompting only the reasoning user instructions to complete
navigation tasks) leads to a decline in complex task performance. Based on the ablation results,
the proposed methods enable Uni-Walker to explore and exploit task-specific knowledge between
diverse navigation tasks, effectively improving the new specific navigation task learning efficiency.

How Does Task-Aware Knowledge Aggregation Perform? These ablation studies’ results about
the Task-Aware Knowledge Aggregation are summarized in the Table 6. Specifically, the “IM” de-
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notes matching with user instruction; the “OM” denotes matching with agent observation; the “MM”
denotes our proposed mixed matching method. Based on the ablation results, the proposed aggrega-
tion method comprehensively considers both matching modes and achieves the best performance.

How does computational complexity scale as the number of tasks increases? We analyze the
resource cost of LoRA and the Fisher Information Matrix in our DE-LoRA architecture. For each
additional task, Uni-Walker adds: ≈ 2.1 MB for the LoRA expert subspace and maintains a Fisher
Matrix of the same size. Thus, even when the number of tasks grows beyond 100, the total storage
remains modest: 100 × 4.2 MB ≈ 0.4 GB. Such overhead is negligible for modern LLM-based
navigation systems (7B, 13B, or larger), demonstrating the practical scalability of the architecture.

5 RELATED WORKS

Embodied Navigation. Embodied navigation requires an agent to follow user language instructions
and reach a goal in a visual scene Liu et al. (2025); Han et al. (2025); Bar et al. (2025); Nie et al.
(2025). Recent research has established three representative tasks. Vision-and-Language Navigation
(VLN) Anderson et al. (2018a) requires user step-by-step grounding of detailed instructions, and
has been widely studied in both discrete Anderson et al. (2018b); Ku et al. (2020); Qi et al. (2020b);
Fu et al. (2020); Hong et al. (2020) and continuous environments Krantz et al. (2020); Raychaud-
huri et al. (2021); Chen et al. (2020; 2022). Object Localization Navigation (OLN) Qi et al. (2020a)
requires the agent to localize a distant object given concise referring expressions, emphasizing high-
level semantic understanding Arnaud et al. (2025); Yu & Saniie (2025); Lei et al. (2025). Dialog-
based Understanding Navigation (DUN) Thomason et al. (2020) extends this paradigm to interactive
settings, where agents need to interpret multi-turn dialogues to reason user intent Majumdar et al.
(2025); Qiao et al. (2025). Building upon these advances, recent efforts aim to construct universal
navigation agents by jointly training across multiple tasks, leveraging large pretrained LLMs Zheng
et al. (2024); Zhou et al. (2024); Qiao et al. (2025); Gao et al. (2025a); Zhang et al. (2025b). How-
ever, these methods typically assume fixed task distributions and are prone to catastrophic forgetting
when adapting to new scenes or instruction styles. This motivates the study of lifelong navigation
learning, where agents continually integrate knowledge from sequential tasks without forgetting.

Continual Learning. Continual learning seeks to enable models to acquire new skills over time
without erasing previously learned ones Li et al. (2025); Yang et al. (2025); Wang et al. (2024).
Existing approaches can be broadly grouped into three categories. Parameter regularization meth-
ods constrain weight updates to preserve important parameters for past tasks Rebuffi et al. (2017);
Li & Hoiem (2017); Derakhshani et al. (2021); Douillard et al. (2020). Architecture-based meth-
ods dedicate specific network components to different sequential tasks Jung et al. (2020); Wu et al.
(2021); Wang et al. (2022); Toldo & Ozay (2022). Replay-based methods store or generate data
from past tasks to rehearse old skills Bang et al. (2021); Rebuffi et al. (2017); Sun et al. (2022); Wan
et al. (2024); Li et al. (2022); Xiang et al. (2019); Sun et al. (2024), though such approaches can
be memory-intensive and raise privacy concerns. In robotics, continual learning has been explored
to enable agents to expand their skill repertoire through lifelong interaction Meng et al. (2025);
Yao et al. (2025); Zhu et al. (2025a); Ayub et al. (2025b;a). Despite progress, these existing tech-
niques rarely address the unique challenges of embodied navigation, where both scene diversity and
instruction variability require balancing shared knowledge transfer and task-specific reasoning.

6 CONCLUSION

In this work, we introduce Lifelong Embodied Navigation Learning (LENL), a novel task that en-
ables a navigation agent to continually learn new multiple navigation tasks, including new scenes and
with new user instruction styles. We also propose Uni-Walker, a lifelong embodied navigation frame-
work that decouples navigation knowledge into task-shared and task-specific components with De-
coder Extension LoRA (DE-LoRA). For the shared knowledge, we design a Knowledge Inheritance
Strategy and Experts Co-Activation Strategy to facilitate shared knowledge transfer and refinement
across multiple navigation tasks. For the specific knowledge, we propose an Expert Subspace Or-
thogonality Constraint together and a Navigation-Specific Chain-of-Thought reasoning mechanism
to capture task-specific knowledge and enhance specific instruction styles understanding. Extensive
experiments are performed to demonstrate the effectiveness and superiority of proposed Uni-Walker.
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navigating anywhere, finding anything. arXiv preprint arXiv:2508.04598, 2025b.

Duo Zheng, Shijia Huang, Lin Zhao, Yiwu Zhong, and Liwei Wang. Towards learning a generalist
model for embodied navigation. In 2024 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 13624–13634, 2024. doi: 10.1109/CVPR52733.2024.01293.

Jinliang Zheng, Jianxiong Li, Dongxiu Liu, Yinan Zheng, Zhihao Wang, Zhonghong Ou, Yu Liu,
Jingjing Liu, Ya-Qin Zhang, and Xianyuan Zhan. Universal actions for enhanced embodied foun-
dation models. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp.
22508–22519, 2025a.

Junhao Zheng, Shengjie Qiu, Chengming Shi, and Qianli Ma. Towards lifelong learning of large
language models: A survey. ACM Computing Surveys, 57(8):1–35, 2025b.

Gengze Zhou, Yicong Hong, Zun Wang, Chongyang Zhao, Mohit Bansal, and Qi Wu. Same: Learn-
ing generic language-guided visual navigation with state-adaptive mixture of experts, 2024.

Ruiqi Zhu, Endong Sun, Guanhe Huang, and Oya Celiktutan. Efficient continual adaptation of
pretrained robotic policy with online meta-learned adapters. arXiv preprint arXiv:2503.18684,
2025a.

Ziyu Zhu, Xilin Wang, Yixuan Li, Zhuofan Zhang, Xiaojian Ma, Yixin Chen, Baoxiong Jia, Wei
Liang, Qian Yu, Zhidong Deng, Siyuan Huang, and Qing Li. Move to understand a 3d scene:
Bridging visual grounding and exploration for efficient and versatile embodied navigation, 2025b.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

APPENDIX

A EXPERIMENTS IMPLEMENTATION

Below we provide a detailed experiment implementation.

Benchmark and task setup. We evaluate on the Lifelong Embodied Navigation (LENL) benchmark
built on the Matterport3D simulator Anderson et al. (2018a). The benchmark contains 18 distinct
navigation scenes and three instruction styles: (1) VLN (step-by-step route instructions), (2) OLN
(object-localization style instructions), and (3) DUN (dialogue-style instructions). Tasks are pre-
sented as an ordered sequence of 18 tasks: the first 15 tasks are used for continual (lifelong) learning
while the final 3 tasks are reserved for zero-shot generalization tests in unseen environments. In
the LENL protocol the task identifier t is available to the training procedure (to allow task-specific
adapter/expert creation) but is not provided at test time (evaluation is task-agnostic). The scene splits
and examples are illustrated in Fig. 5 of the main paper. The specific statistical information for the
18 tasks is shown in Table 7.

Table 7: Statistics of the 18 sequential tasks of LENL benchmark. Each task corresponds to a
unique scene under one instruction style.

Task ID Type Scene ID INST Style Train INST Number Test INST Number
S1 Continual Learning 1LXtFkjw3qL VLN 801 99
S2 Continual Learning 1pXnuDYAj8r VLN 813 90
S3 Continual Learning pRbA3pwrgk9 OLN 336 195
S4 Continual Learning 5q7pvUzZiYa VLN 738 63
S5 Continual Learning 759xd9YjKW5 OLN 693 147
S6 Continual Learning VVfe2KiqLaN DUN 255 24
S7 Continual Learning 82sE5b5pLXE VLN 837 63
S8 Continual Learning p5wJjkQkbXX OLN 1671 444
S9 Continual Learning B6ByNegPMKs VLN 801 72

S10 Continual Learning 7y3sRwLe3Va OLN 291 153
S11 Continual Learning D7N2EKCX4Sj VLN 837 63
S12 Continual Learning mJXqzFtmKg4 DUN 228 36
S13 Continual Learning ULsKaCPVFJR OLN 1848 75
S14 Continual Learning cV4RVeZvu5T VLN 837 63
S15 Continual Learning rPc6DW4iMge OLN 654 141
S16 Unseen Generalization EDJbREhghzL VLN – 72
S17 Unseen Generalization V2XKFyX4ASd OLN – 69
S18 Unseen Generalization VzqfbhrpDEA DUN – 27

Comparisons. All methods (our method and comparisons) use the same NavLLM backbone to en-
sure a fair comparison. Following NavLLM (Zheng et al. (2024)), visual encodings are produced
by a CLIP visual encoder (Radford et al. (2021)) and fused into the language model i.e., Vicuna
(Chiang et al. (2023)), via the same multi-modal interface used across experiments. Implementation
details of the multimodal interface follow the main paper (§2). For a fair and informative compari-
son we re-implemented or configured a collection of state-of-the-art LoRA-based continual learning
and Mixture-of-Experts (MoE) methods on the same NavLLM backbone, input preprocessing, train-
ing schedule and evaluation pipeline. All baselines train only adapter/LoRA-style parameters while
keeping the backbone model weights frozen unless otherwise stated. Below we summarize each
baseline, the key implementation choices used in our experiments, and their inference behavior.

• Seq-FT. Sequential fine-tuning of the base model using a vanilla LoRA adapter per task.
For each task we train a standalone LoRA module (rank r = 64). No explicit mechanism
is used to avoid forgetting; after finishing the whole curriculum the stored LoRA module
corresponding to a requested task is used for inference. Seq-FT serves as a lower-bound
reference for catastrophic forgetting.

• LwF-LoRA Li & Hoiem (2017). Extension of the Learning-without-Forgetting paradigm
to LoRA: during training on a new task we apply knowledge-distillation losses to a frozen
copy of the model (logits and selected hidden states) so as to encourage the newly-trained
LoRA to preserve behavior on previously seen tasks. We follow the distillation configura-
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tion and hyper-parameterization recommended in Li & Hoiem (2017). At inference time
the stored LoRA corresponding to the target task is loaded (rank r = 64).

• EWC-LoRA Xiang et al. (2023). Elastic Weight Consolidation adapted to LoRA parame-
ters: after each finished task we estimate parameter importance (Fisher information) for the
trained LoRA parameters and penalize future updates to parameters with high importance.
We apply the EWC penalty only to LoRA adapter weights and follow the hyperparameter
schedule described in Xiang et al. (2023). The stored per-task LoRA adapter is used for
evaluation after training (rank r = 64).

• Dense MoLE Chen et al. (2024). A dense Mixture-of-LoRA-Experts design in which all
experts are activated for every forward pass (i.e., dense combination of expert outputs). This
design captures cross-task interactions more richly but increases per-step computation and
memory usage compared to sparse routing. Expert outputs are aggregated with learnable
gating coefficients; the full MOE-LoRA set of adapters is retained for inference (rank r =
16, K = 8).

• Sparse MoLE Dou et al. (2024). Sparse routing MoE applied to LoRA adapters: an input
is routed to only a subset of experts to reduce computation and encourage specialization.
We use a top-k routing policy with k = 2 experts per instance, implement load-balancing
auxiliary losses where applicable, and keep gating parameters trainable. After training the
full sparse MOE-LoRA checkpoint (all expert adapters and the gating network) is used for
inference (rank r = 16, K = 8).

• MoLA Gao et al. (2024). Builds on Sparse MoLE by introducing hierarchical/deeper expert
layers for richer adaptation. Concretely, we instantiate a two-level expert hierarchy with
4 shallow experts and 16 deep experts (shallow experts feed into deeper expert layers).
Routing is performed at both levels; during inference the trained MoLA adapter collection
and gating modules are used (rank r = 16.

• O-LoRA Wang et al. (2023a). Per-task vanilla LoRA storage combined with an
orthogonality-promoting regularizer applied during training to encourage disentangled task
representations. Practically this requires storing one LoRA module per task. For inference
we adopt the proposed TAKA selection method. (rank r = 24.

• HydraLoRA Tian et al. (2024). A hybrid design that shares a global module A across
all tasks to capture common knowledge while using multiple task-specific B modules for
specialization. During each task’s training only the corresponding B (and optionally A)
are updated according to the method specification. At inference the composed HydraLoRA
adapter (A combined with selected B) is loaded (rank r = 16, K = 8).

• BranchLoRA Zhang et al. (2025a). Extends sparse routing with an explicit branching
mechanism that allows the model to select different B branches for different input modes
or instruction styles. Branch selection is learned, and branch-specific LoRA adapters are
stored per branch. For evaluation, BranchLoRA uses branch selection to pick the appropri-
ate B at test time (rank r = 16, K = 8).

• SD-LoRA Wu et al. (2025). Stores T task-specific LoRA modules and dynamically com-
poses them during inference to synthesize behavior for the current input. We follow the
composition rules and hyper-parameter choices recommended in Wu et al. (2025). For in-
ference we adopt the proposed TAKA selection method. (rank r = 24.

Evaluation metrics. Let an agent’s executed trajectory within an episode be denoted by T =
(p1,p2, . . . ,pn), where pi is the agent’s position at timestep i. Let g denote the goal position and
d(·, ·) be the distance function in the environment (e.g., geodesic or Euclidean distance depending
on the simulator). We use three standard navigation metrics described below. In all experiments we
adopt a success threshold ϵ (we set ϵ = 1.0 m unless stated otherwise).

Success rate (SR). An episode is counted as successful if the final agent position is within ϵ of the
goal. Formally, the per-episode success indicator is

SRep =

{
1, if d(pn,g) ≤ ϵ,

0, otherwise.
(12)
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The reported SR is the mean of SRep over all test episodes. Oracle success rate (OSR). Oracle
success measures whether the agent visited a position within ϵ of the goal at any time during the
episode. It is defined per episode as

OSRep =

{
1, if min1≤i≤n d(pi,g) ≤ ϵ,

0, otherwise,
(13)

and the dataset-level OSR is the average of OSRep across episodes.

Success weighted by Path Length (SPL). SPL jointly measures success and path efficiency. For
episode j, let Sj ∈ {0, 1} be the success indicator (as above), let Lj denote the length of the agent’s
executed path, and let L∗

j denote the shortest-path (optimal) distance from the start to the goal. The
standard per-episode contribution for SPL is

SPLep = Sj ·
L∗
j

max(Lj , L∗
j )
, (14)

and the reported SPL is the mean of SPLep over all episodes. SPL penalizes long or inefficient
trajectories while counting only successful attempts.

We use eight NVIDIA RTX 6000 Ada Generation GPUs with PyTorch 2.1.2 (cu121) for training
and testing. And the Adam optimizer with an initial learning rate of 3.0× 10−5 is used for training.
The low-rank r = 16 of LORA, the number of experts is k = 2, µ = 0.5, and all the other hyper-
parameter are consistent with the NavLLM (Zheng et al. (2024)). We summarize some important
parameter settings as shown in Table 8.

Table 8: Summary of primary hyper-parameters used in experiments.

Hyper-parameter Value

TOP-K activated expert K = 2
LoRA rank r = 16
balance hyperparameter of Lssc,t λssc = 0.1
balance hyperparameter of Lesoc,t λesoc = 0.1
perturbation for avoiding the computational avalanches ϵ = 0.01
Fisher smoothing ω = 0.9
elements threshold µ = 0.5
LLM Vicuna-7B-v0
ViT EVA-CLIP-02-Large (428M)
training steps 2000
batch size 64
sampling strategy with a temperature 0.01

B ALGORITHM SUMMARY

For ease of readers understanding, a summary of the proposed Uni-Walker training algorithm is
provided in the Algorithm 1, and a summary of inference algorithm is provided in the Algorithm 2.

C DETAILED COMPARISON RESULTS

Fig. 6 presents the average results for SPL, SPL-F, OSR, and OSR-F. In this section, we provide the
task-wise comparison results. The original comparison results (SPL, F-SPL, OSR, F-OSR) for Fig. 6
are summarized in Table 9, Table 10, Table 11, and Table 12. Uni-Walker achieves a higher average
success rate of 66%, surpassing the previous best (59%) by 7%, and a lower forgetting rate of 5%,
improving the prior best (16%) by 11%. Uni-Walker achieves a higher SPL of 61%, surpassing the
previous best (38%) by 23%, and a lower forgetting rate of 7%, improving the prior best (42%)
by 35%. It achieves a higher OSR of 81%, surpassing the previous best (79%) by 2%, and a lower
forgetting rate of 5%, improving the prior best (7%) by 2%. Based on the results, our Uni-Walker
achieves consistent superiority across various metrics. The visualization examples of VLN, OLN,
DUN are visualized in Fig. 7.
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Algorithm 1 Uni-Walker: Lifelong Training

Require: Frozen backbone Fθ0 , initialize shared A, initial expert set {B1}, task sequence
{T1, . . . , TT }, TAKA indexRe = ∅

1: for task t = 1 to T do
2: if t > 1 then
3: Create new expert Bt

4: Initialize Bt via Knowledge Inheritance Strategy (KIS) with E.q2
5: end if
6: Add (ES,t, EI,t) placeholder to retrieval indexRe

7: Compute t-th Fisher Matrix Ft with Eq.5.
8: Update and save the t-th Fisher Matrix Ft with Eq.6.
9: for epoch = 1 to max epochst do

10: for each minibatch (O, I,A) from task Tt do
11: Eo ← CLIP V(O), Ei ← CLIP T(I)
12: Activating TOP-K expert subspace K ← TAKA(Eo, Ei,Re, µ) with E.q10
13: Compute Lssc,t (shared smoothing consolidation loss) using Fisher matrices with Eq.4
14: Compute Lesoc,t (expert subspace orthogonality constrain loss) with Eq.7
15: Compute Lt (auto-regressive action generation loss) with Eq.8
16: Back-propagate and update only A and Bt parameters (freeze other Bn)
17: end for
18: end for
19: Save expert checkpoint Bt and shared A checkpoint
20: end for
21: return saved {B1, . . . ,BT }, final A, retrieval indexRe

Algorithm 2 Uni-Walker: Inference with TAKA and Expert Co-activation

Require: Frozen backbone Fθ0 , shared A, saved experts {B1, . . . ,BT }, retrieval index Re, input
(Oq, Iq), threshold µ, top-K

Ensure: Predicted action token sequence
1: Eo ← CLIP V(Oq), Ei ← CLIP T(Iq)
2: Compute instruction similarities si,t = cosine(Ei, EI,t) for all (·, EI,t) ∈ Re with Eq.9
3: Build instruction mask Mt = 1{si,t ≥ µ}
4: Compute observation similarities so,t = cosine(Eo, ES,t), then s̃t = Mt · so,t with Eq.9
5: Select top-K experts K = TopK(s̃t,K)
6: Forward using Fθ0 with adapters combined over K with Eq.3
7: Generate tokens to produce next actions using the model’s policy head
8: return action token sequence

Table 9: Test results (task-wise SPL ↑, %) of comparison experiment with our LENL settings.

Comparison Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 Avg.

Seq-FT (sequential fine-tuning) 0 0 0 2 2 0 2 10 6 6 8 15 10 12 79 0 0 0 8
LwF-LoRA (Li & Hoiem (2017)) 0 0 0 0 2 0 2 11 5 4 6 21 36 24 80 0 0 0 11
EWC-LoRA (Xiang et al. (2023)) 0 2 0 4 0 0 0 10 6 2 4 25 32 30 80 0 0 0 11
Dense MoLE (Chen et al. (2024)) 2 2 2 4 4 0 2 10 8 12 10 20 36 40 78 2 0 2 13
Sparse MoLE (Dou et al. (2024)) 2 2 0 10 2 0 10 13 12 15 10 24 34 42 78 0 2 0 14
MoLA (Gao et al. (2024)) 4 6 0 6 2 5 12 12 13 11 15 23 36 44 80 6 6 0 16
HydraLoRA (Tian et al. (2024)) 8 10 12 13 2 10 12 16 8 12 16 22 37 45 80 14 11 10 19
BranchLoRA (Zhang et al. (2025a)) 8 10 13 15 4 12 15 19 15 16 18 27 41 36 78 15 10 11 20
O-LoRA (Wang et al. (2023a))+TAKA 30 31 32 45 26 24 34 36 25 34 35 26 65 48 80 32 32 31 37
SD-LoRA (Wu et al. (2025))+TAKA 32 33 34 35 26 26 36 38 26 36 37 26 66 49 80 38 30 42 38

Uni-Walker (ours) 66 63 59 61 49 50 65 74 50 72 56 51 82 56 80 71 55 45 61

D DETAILED ABLATION RESULTS

We perform three ablation about our Uni-Walker in the main paper. In this section, we provide the
task-wise ablation results. The ablation studies results of the exploration for navigation tasks shared
knowledge are summarized in Table 4, and the task-wise ablation results (SR) are summarized in
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Figure 7: Illustration of three visualization examples of VLN, OLN, DUN. We visualize each step
of the Uni-Walker’s selection process and annotate it with arrows to clearly illustrate the navigation
sequence.

Table 10: Test results (task-wise SPL-F ↓, %) of comparison experiment with our LENL settings.

Comparison Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 Avg.

Seq-FT (sequential fine-tuning) 100 100 100 97 96 100 97 88 88 92 86 72 88 79 0 100 100 100 88
LwF-LoRA (Li & Hoiem (2017)) 100 100 100 100 96 100 97 87 90 95 90 61 57 58 0 100 100 100 85
EWC-LoRA (Xiang et al. (2023)) 100 97 100 94 100 100 100 88 88 97 93 54 61 47 0 100 100 100 84
Dense MoLE (Chen et al. (2024)) 97 97 97 94 92 100 97 88 85 84 83 63 57 30 0 98 100 96 81
Sparse MoLE (Dou et al. (2024)) 97 97 100 85 96 100 85 85 77 79 83 56 60 26 0 100 97 100 79
MoLA (Gao et al. (2024)) 94 91 100 91 96 90 82 86 75 85 75 57 57 24 0 93 91 100 77
HydraLoRA (Tian et al. (2024)) 88 85 81 80 96 81 82 81 85 84 73 61 56 22 0 85 84 79 72
BranchLoRA (Zhang et al. (2025a)) 88 85 79 77 92 77 78 78 72 79 69 53 51 38 0 84 85 77 70
O-LoRA (Wang et al. (2023a))+TAKA 56 52 48 31 50 54 51 58 53 55 41 54 23 17 0 65 53 35 44
SD-LoRA (Wu et al. (2025))+TAKA 53 49 45 46 50 50 47 55 51 52 37 54 21 16 0 58 56 13 42

Uni-Walker (ours) 3 3 5 6 6 4 6 13 6 4 5 11 5 3 0 22 19 8 7

Table 11: Test results (task-wise OSR ↑, %) of comparison experiment with our LENL settings.

Comparison Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 Avg.

Seq-FT (sequential fine-tuning) 12 12 14 16 18 16 17 19 16 18 15 35 36 36 100 16 15 15 24
LwF-LoRA (Li & Hoiem (2017)) 12 15 16 15 13 15 16 29 16 32 32 45 55 51 100 13 15 16 28
EWC-LoRA (Xiang et al. (2023)) 13 15 16 15 15 16 15 29 15 34 36 46 56 52 100 16 18 17 29
Dense MoLE (Chen et al. (2024)) 21 22 18 23 16 18 19 31 16 33 41 48 69 68 100 22 20 17 33
Sparse MoLE (Dou et al. (2024)) 23 23 19 25 19 21 23 36 19 26 40 47 69 72 100 25 26 18 35
MoLA (Gao et al. (2024)) 26 24 16 24 19 23 25 37 21 29 45 48 69 73 100 28 22 26 36
HydraLoRA (Tian et al. (2024)) 27 25 21 25 20 25 24 36 22 27 46 48 72 68 100 29 26 22 37
BranchLoRA (Zhang et al. (2025a)) 32 29 23 26 24 26 28 36 26 31 46 51 88 73 100 33 30 31 41
O-LoRA (Wang et al. (2023a))+TAKA 76 81 80 64 82 82 71 82 67 70 62 86 98 80 100 77 68 69 77
SD-LoRA (Wu et al. (2025))+TAKA 76 82 85 66 88 84 76 85 67 72 66 85 98 81 100 79 68 71 79

Uni-Walker (ours) 82 87 88 67 90 90 72 83 63 73 62 84 100 78 100 84 76 79 81

Table 13, and the task-wise ablation results (F-SR) are summarized in Table 14, and the task-wise
ablation results (SPL) are summarized in Table 15, and the task-wise ablation results (F-SPL) are
summarized in Table 16, and the task-wise ablation results (OSR) are summarized in Table 17, and
the task-wise ablation results (F-OSR) are summarized in Table 18. The ablation studies’ results
about the exploration for navigation tasks shared knowledge are summarized in the Table 5, and
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Table 12: Test results (task-wise OSR-F ↓, %) of comparison experiment with our LENL settings.

Comparison Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 Avg.

Seq-FT (sequential fine-tuning) 86 87 84 77 80 83 77 78 75 76 77 59 64 58 0 83 83 83 73
LwF-LoRA (Li & Hoiem (2017)) 86 83 82 79 86 84 80 66 75 57 54 48 45 40 0 86 83 81 67
EWC-LoRA (Xiang et al. (2023)) 85 83 82 79 84 83 81 66 77 55 48 47 44 39 0 83 79 80 66
Dense MoLE (Chen et al. (2024)) 75 75 80 67 83 80 76 64 75 56 41 44 31 20 0 77 77 80 61
Sparse MoLE (Dou et al. (2024)) 73 74 79 64 79 77 71 58 71 65 42 45 31 15 0 74 70 79 59
MoLA (Gao et al. (2024)) 69 73 82 66 79 75 68 56 68 61 35 44 31 14 0 71 74 70 58
HydraLoRA (Tian et al. (2024)) 68 72 77 64 78 73 70 58 68 64 33 44 28 20 0 69 70 74 57
BranchLoRA (Zhang et al. (2025a)) 62 67 74 63 74 72 65 58 62 59 33 41 12 14 0 65 65 64 53
O-LoRA (Wang et al. (2023a))+TAKA 11 9 11 9 11 11 10 4 3 7 10 0 2 6 0 19 21 20 9
SD-LoRA (Wu et al. (2025))+TAKA 11 8 6 6 4 9 4 0 3 4 4 1 2 5 0 17 21 17 7

Uni-Walker (ours) 4 2 2 4 2 2 8 2 7 3 5 2 0 8 0 12 12 8 5

Table 13: Ablation study results (SR ↑, %) for the methods with task-shared navigation knowledge
exploration.

Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Avg.

Baseline 50 56 46 51 39 38 51 71 46 60 51 48 82 60 86 56
Uni-Walker w/o KIS 61 60 51 55 43 46 56 74 48 68 59 49 86 63 86 60
Uni-Walker w/o SSC 60 59 49 56 42 45 56 75 48 69 58 47 84 62 86 60
Uni-Walker w/o ECAS 59 58 48 53 42 45 55 72 46 62 55 46 82 62 86 58

Uni-Walker (ours) 67 67 75 67 57 50 67 83 50 73 62 53 88 65 86 67

Table 14: Ablation study results (F-SR ↓, %) for the methods with task-shared navigation knowledge
exploration.

Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Avg.

Baseline 29 20 42 36 35 27 27 16 12 20 22 14 9 8 0 21
Uni-Walker w/o KIS 13 14 35 31 28 12 20 13 8 9 9 13 4 3 0 14
Uni-Walker w/o SSC 14 16 38 30 30 13 20 12 8 8 11 16 7 5 0 15
Uni-Walker w/o ECAS 16 17 39 34 30 13 21 15 12 17 15 18 9 5 0 17

Uni-Walker (ours) 4 4 5 16 5 4 4 2 4 3 5 5 2 0 0 4

Table 15: Ablation study results (SPL ↑, %) for the methods with task-shared navigation knowledge
exploration.

Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Avg.

Baseline 29 30 30 42 25 23 32 35 24 33 34 25 65 48 80 37
Uni-Walker w/o KIS 36 37 38 49 33 35 48 75 51 46 46 45 78 56 80 50
Uni-Walker w/o SSC 36 36 37 48 33 35 46 43 36 43 45 42 76 51 80 46
Uni-Walker w/o ECAS 35 36 35 49 32 32 45 43 35 42 42 40 75 49 80 45

Uni-Walker (ours) 66 63 59 61 49 50 65 74 50 72 56 51 82 56 80 62

the task-wise ablation results (SR) are summarized in Table 19, and the task-wise ablation results
(F-SR) are summarized in Table 20, and the task-wise ablation results (SPL) are summarized in
Table 21, and the task-wise ablation results (F-SPL) are summarized in Table 22, and the task-wise
ablation results (OSR) are summarized in Table 23, and the task-wise ablation results (F-OSR) are
summarized in Table 24.

E COMPARISON WITH OTHER EMBODIED NAVIGATION AGENTS

We construct universal embodied navigation agents through lifelong learning. We also perform com-
parison experiments with the other state-of-the-art universal navigation agents that are pre-trained
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Table 16: Ablation study results (F-SPL ↓, %) for the methods with task-shared navigation knowl-
edge exploration.

Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Avg.

Baseline 57 54 52 35 52 56 54 59 55 56 42 56 24 17 0 45
Uni-Walker w/o KIS 47 43 39 25 37 33 30 12 4 39 22 21 9 3 0 24
Uni-Walker w/o SSC 47 45 40 26 37 33 33 49 32 43 24 26 12 12 0 31
Uni-Walker w/o ECAS 49 45 44 25 38 38 35 49 34 44 29 30 13 16 0 32

Uni-Walker (ours) 3 3 5 6 6 4 6 13 6 4 5 11 5 3 0 6

Table 17: Ablation study results (OSR ↑, %) for the methods with task-shared navigation knowledge
exploration.

Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Avg.

Baseline 75 80 79 63 81 81 70 82 62 70 61 80 91 75 100 77
Uni-Walker w/o KIS 77 82 78 65 82 88 71 82 62 70 61 80 91 75 100 78
Uni-Walker w/o SSC 78 81 79 66 82 89 71 82 61 71 62 80 91 75 100 78
Uni-Walker w/o ECAS 77 81 79 66 81 88 72 82 62 71 61 81 95 78 100 78

Uni-Walker (ours) 82 87 88 67 90 90 72 83 63 73 62 84 100 78 100 81

Table 18: Ablation study results (OSR-F ↓, %) for the methods with task-shared navigation knowl-
edge exploration.

Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Avg.

Baseline 12 10 12 10 12 12 10 4 9 7 6 7 9 12 0 9
Uni-Walker w/o KIS 9 8 13 7 11 4 9 4 9 7 6 7 9 12 0 8
Uni-Walker w/o SSC 8 9 12 6 11 3 9 4 10 5 5 7 9 12 0 7
Uni-Walker w/o ECAS 9 9 12 6 12 4 8 4 9 5 6 6 5 8 0 7

Uni-Walker (ours) 4 2 2 4 2 2 8 2 7 3 5 2 0 8 0 3

Table 19: Ablation study results (SR ↑, %) for the methods with task-specific navigation knowledge
exploration.

Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Avg.

Baseline 45 50 42 46 42 32 42 60 41 52 48 41 76 59 71 50
Uni-Walker w/o ESOC 65 62 70 61 54 45 59 78 48 69 59 50 85 63 85 64
Uni-Walker w/o NSCoT 46 51 43 46 43 33 45 61 42 55 49 44 77 60 71 51

Uni-Walker (ours) 67 67 75 67 57 50 67 83 50 73 62 53 88 65 86 67

Table 20: Ablation study results (F-SR ↓, %) for the methods with task-specific navigation knowl-
edge exploration.

Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Avg.

Baseline 36 29 47 43 30 38 40 29 21 31 26 27 16 9 17 29
Uni-Walker w/o ESOC 7 11 11 24 10 13 16 8 8 8 9 11 6 3 1 10
Uni-Walker w/o NSCoT 34 27 46 43 28 37 36 28 19 27 25 21 14 8 17 27

Uni-Walker (ours) 4 4 5 16 5 4 4 2 4 3 5 5 2 0 0 4

on large-scale datasets. The results are summarized in Table 25. Based on the results, although these
agents undergo large-scale joint training across multiple navigation tasks, they struggle to generalize
across all tasks and often lack continual adaptability to ever-changing new navigation scenarios. Uni-
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Table 21: Ablation study results (SPL ↑, %) for the methods with task-specific navigation knowledge
exploration.

Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Avg.

Baseline 27 28 29 41 22 20 30 31 22 31 30 22 60 40 75 34
Uni-Walker w/o ESOC 65 61 55 60 45 49 64 73 48 70 55 50 81 55 78 61
Uni-Walker w/o NSCoT 29 31 31 42 23 21 32 33 25 33 31 23 61 41 76 35

Uni-Walker (ours) 66 63 59 61 49 50 65 74 50 72 56 51 82 56 80 62

Table 22: Ablation study results (F-SPL ↓, %) for the methods with task-specific navigation knowl-
edge exploration.

Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Avg.

Baseline 60 57 53 37 58 62 57 64 58 59 49 61 30 31 6 45
Uni-Walker w/o ESOC 4 6 11 8 13 6 7 14 9 7 7 12 6 5 3 8
Uni-Walker w/o NSCoT 57 52 50 35 56 60 54 61 53 56 47 60 29 29 5 46

Uni-Walker (ours) 3 3 5 6 6 4 6 13 6 4 5 11 5 3 0 6

Table 23: Ablation study results (OSR ↑, %) for the methods with task-specific navigation knowl-
edge exploration.

Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Avg.

Baseline 65 71 70 53 77 80 66 81 60 70 59 77 85 71 100 72
Uni-Walker w/o ESOC 80 86 79 66 89 89 71 82 63 70 62 84 100 75 100 80
Uni-Walker w/o NSCoT 67 73 72 55 80 82 67 82 62 70 61 81 100 78 100 75

Uni-Walker (ours) 82 87 88 67 90 90 72 83 63 73 62 84 100 78 100 81

Table 24: Ablation study results (F-OSR ↓, %) for the methods with task-specific navigation knowl-
edge exploration.

Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Avg.

Baseline 24 20 22 24 16 13 15 5 12 7 9 10 15 16 0 14
Uni-Walker w/o ESOC 6 3 12 6 3 3 9 4 7 7 5 2 0 12 0 5
Uni-Walker w/o NSCoT 21 18 20 21 13 11 14 4 9 7 6 6 0 8 0 11

Uni-Walker (ours) 4 2 2 4 2 2 8 2 7 3 5 2 0 8 0 3

Walker demonstrates the feasibility of constructing a universal embodied navigation agent through
lifelong learning.

F DISCUSSIONS ON THE PROPOSED COMPONENTS

As shown in our ablation studies (Tables 4–6), every component of Uni-Walker provides perfor-
mance improvement. Below, we summarize their roles and contributions.

Knowledge Inheritance Strategy (KIS). KIS equips Uni-Walker with a human-inspired capability
to efficiently acquire new skills by leveraging previously learned shared knowledge. It initializes the
new expert subspace using relevant past knowledge (Eq. 2), enabling efficient adaptation. Removing
KIS results in a 7.0% SR degradation.

Experts Co-Activation Strategy (ECAS). ECAS is the core architectural mechanism of DE-LoRA:
it directly activates previously learned experts that are most relevant to the current task (Eq. 3),
enabling knowledge sharing across tasks. Without ECAS, SR decreases by 9.2
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Table 25: Comparison of the other state-of-the-art universal navigation agents: averaged metrics on
the 18-task with our LENL settings.

Comparison Methods Avg SR ↑ (%) Avg SPL ↑ (%) Avg OSR ↑ (%)

NaviLLM Zheng et al. (2024) 50 39 58
ScaleVLN Wang et al. (2023b) 53 42 61

SAME Zhou et al. (2024) 55 45 62

Uni-Walker 66 61 81

Real-World Task Uni-Walker SR SD-LoRA SR

S19 (Indoor) 58% 49%
S20 (Outdoor) 52% 44%

Table 26: Real-world lifelong navigation performance of Uni-Walker.

Shared Smoothing Consolidation (SSC). SSC is in order to progressively refine the shared sub-
space A, mitigating catastrophic forgetting of previous tasks (Eq. 4). Removing SSC leads to a 7.6%
SR degradation.

Expert Subspace Orthogonality Constraint (ESOC). ESOC performs orthogonal constraint
across expert subspaces B, promoting decoupled representation of navigation knowledge and pre-
venting subspace mixing (Eq. 7). Its removal causes 3.8% SR degradation.

Navigation-Specific Chain of Thought (NSCoT). NSCoT provides task-style–specific reasoning
for different instruction styles. It invokes relevant pretrained LLM knowledge and guides the agent
toward more targeted decision-reasoning. Removing NSCoT yields the largest drop (16.2% SR),
showing that style-aware reasoning is crucial for LLM-based navigation

Task-Aware Knowledge Aggregation (TAKA). TAKA is indispensable for task-ID–agnostic infer-
ence. It selects the most relevant experts using mixed matching and enables Uni-Walker to perform
navigation in ID-agnostic task. We also provide ablation results that validate the effectiveness of the
mixed matching strategy used by TAKA.

In summary, ECAS, TAKA, and NSCoT are the core components for accomplishing the LENL task,
while the training strategies KIS, SSC, and ESOC promote disentangled representation of embodied
navigation knowledge and further improve performance. We suggest that since ESOC has a relatively
low impact (only +3.8%), it can be selectively removed when users have to simplify the Uni-Walker
architecture.

G REAL-WORLD DEPLOYMENT

To address the deployment of a 7B LLM in real robots, we design a practical sens-
ing–communication–inference pipeline. Uni-Walker runs on a remote server, while a quadruped
robot (DeepRobotDog Lite2) equipped with multiple Hikvision DS-E12 cameras perform local sens-
ing. The onboard camera continuously captures multiple RGB observations, which are transmitted to
the server through a lightweight WiFi module. The server runs the Uni-Walker inference process and
sends navigation commands back to the robot, forming a closed-loop control system, as shown in
Figure 8. Beyond the 18 simulation tasks, we also construct two real-world lifelong navigation sce-
narios, one indoor and one outdoor, to further validate our framework. For each scenario, we collect
400 trajectories for training and conduct 100 evaluation trials. During execution, the robot selects
the next direction predicted by Uni-Walker and then moves 30 cm along the chosen direction. This
step size ensures stable and consistent motion increments throughout navigation. Our Uni-Walker
performs continual learning on tasks S19 and S20 based on previous 18 tasks. The quantitative re-
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Figure 8: Illustration of our deployment strategy for a real-world robotic navigation platform.

Figure 9: Illustration of a indoor real-world navigation visualization (S19).

Figure 10: Illustration of a outdoor real-world navigation visualization (S20).

sults of the experiment are shown in Table 26. The visualization of the indoor navigation task is
shown in Figure 9, and the visualization of the outdoor task is shown in Figure 10.

H DISCUSSIONS AND FUTURE WORKS

FUTURE WORKS

While Uni-Walker demonstrates improved lifelong navigation performance under the LENL proto-
col, several future works remain: Sim-to-real gap. Experiments are conducted in simulated Mat-
terport3D environments; transferring learned behaviors to physical robots will introduce percep-
tion, dynamics, and sensor-noise challenges that the current framework does not explicitly address.
Broader embodied task generalization. Extend high-order adaptation principles to other embod-
ied tasks, such as object manipulation, multi-agent coordination, or language-guided manipulation,
and evaluate whether the DE-LoRA + TAKA paradigm generalizes beyond navigation.

SOCIETAL IMPACTS

Our work aims to improve the adaptability and longevity of embodied agents, which can enable
beneficial applications in assistive robotics, inspection, and disaster response. At the same time, sev-
eral societal risks should be considered: Privacy and surveillance. Navigation agents operating in
private or sensitive spaces may collect and store visual and spatial data. Mitigation: adopt strict data
governance, on-device processing, and data minimization; use privacy-preserving techniques (e.g.,
differential privacy, anonymization) where appropriate. Safety and misuse. Autonomous navigation
systems may cause harm if they behave unpredictably in crowded or safety-critical settings. Miti-
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gation: incorporate verifiable safety constraints, human-in-the-loop control, conservative fallback
behaviors, and thorough scenario-based testing before deployment.

I SOURCE CODE AND REPRODUCIBILITY

The supplementary submission contains an anonymized code package to reproduce the principal
results reported in this manuscript. Please read the file ‘README.md’ for reproducibility. We
promise that all source codes will be made publicly available after this paper is accepted.

J DISCLOSURE OF LLM USAGE

To improve clarity and readability of the manuscript text, we used the large language model
(ChatGPT-5) solely as an editing aid. Its assistance was limited to proofreading, grammatical correc-
tion, and stylistic polishing of english prose; the model was not used to generate scientific content,
experimental designs, results, or claims. All edits suggested by the model were carefully reviewed,
revised where appropriate, and explicitly approved by the authors. The authors accept full responsi-
bility for the final text and for any remaining errors or inaccuracies.
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