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ABSTRACT

This paper proposes the Degradation Classification Pre-Training (DCPT), which
enables models to learn how to classify the degradation type of input images for
universal image restoration pre-training. Unlike the existing self-supervised pre-
training methods, DCPT utilizes the degradation type of the input image as an
extremely weak supervision, which can be effortlessly obtained, even intrinsic
in all image restoration datasets. DCPT comprises two primary stages. Initially,
image features are extracted from the encoder. Subsequently, a lightweight decoder,
such as ResNet18, is leveraged to classify the degradation type of the input image
solely based on the features extracted in the first stage, without utilizing the input
image. The encoder is pre-trained with a straightforward yet potent DCPT, which
is used to address universal image restoration and achieve outstanding performance.
Following DCPT, both convolutional neural networks (CNNs) and transformers
demonstrate performance improvements, with gains of up to 2.55 dB in the 10D all-
in-one restoration task and 6.53 dB in the mixed degradation scenarios. Moreover,
previous self-supervised pretraining methods, such as masked image modeling,
discard the decoder after pre-training, while our DCPT utilizes the pre-trained
parameters more effectively. This superiority arises from the degradation classifier
acquired during DCPT, which facilitates transfer learning between models of
identical architecture trained on diverse degradation types. Source code and models
are available at https://github.com/MILab-PKU/dcpt.

1 INTRODUCTION

Image restoration is the task of using models to improve low-quality (LQ) images into high-quality
(HQ) images. Recently, deep learning based methods (Li et al., 2022; Potlapalli et al., 2023; Ai et al.,
2024; Luo et al., 2023b; Zheng et al., 2024; Guo et al., 2025) have shown better performance and
efficiency than traditional methods (Buades et al., 2005; Dabov et al., 2007; Yang et al., 2010) in
scenarios with variable and mixed degradation. Prevailing methods use degradation representations of
the input image as discriminative prompts for universal restoration, such as gradients (Ma et al., 2020),
frequency (Ji et al., 2021), additional parameters (Potlapalli et al., 2023) and abstracted features
compressed by neural networks (Li et al., 2022; Ai et al., 2024; Luo et al., 2023b; Zheng et al., 2024;
Wang et al., 2024). Subsequently, these degradation representations serve as prompts for advanced
generative models that have been either fine-tuned or trained for the universal image restoration task.
Although such methods attain high performance through the use of precise and effective prompts,
they fail to utilize the latent prior information embedded within the restoration model itself.

Self-supervised pre-training strategies (Devlin et al., 2019; Radford et al., 2019; Brown et al., 2020;
Grill et al., 2020; Caron et al., 2021; Chen et al., 2021c; He et al., 2022; Xie et al., 2022) activate latent
discriminant information within neural networks, thereby facilitating the acquisition of universal input
signal representations and making the pre-trained model suitable for downstream tasks. Contrastive
learning (Chen et al., 2020b; He et al., 2020) discover representations by maximizing agreement
across multiple augmented views of the same sample using contrastive loss (Oord et al., 2018),
obtaining features with fine-grained discriminant information (Chen et al., 2021c). Masked image
modelling (MIM) (He et al., 2022; Xie et al., 2022; Tian et al., 2022) extends BERT’s (Devlin et al.,
2019) success from language to vision transformers and CNNs. MIM presents a challenging image
reconstruction task through a staggeringly high mask ratio (60 ~75%), forcing the model to excavate
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the intrinsic distribution of images. With GPT’s (Radford et al., 2019; Brown et al., 2020) success in
language generation, related methods (Chen et al., 2020a) are used in image generation. However,
self-supervised pre-training for image restoration is scarce (Liu et al., 2023a; Chen et al., 2023a),
limited to single-task applications, and does not leverage universal representations from large-scale
pre-training. It is imperative to find the discriminative information within the restoration models and
employ pre-training strategies to augment it. This will create a pre-trained restoration model capable
of addressing universal restoration tasks, including multi-task (all-in-one), single-task, and mixed
degradation scenarios.

In this paper, we propose that the degradation classification capability is an often overlooked yet pow-
erful discriminative information inherent in restoration models, and we employ it in the pre-training
for universal image restoration tasks. We first explore the degradation classification capabilities
intrinsic to established classic (Liang et al., 2021; Chen et al., 2022; Zamir et al., 2022) and all-in-
one (Potlapalli et al., 2023) image restoration architectures. It is striking to discover that the randomly
initialized models exhibit a preliminary ability to classify degradation, which is further enhanced
after all-in-one restoration training, enabling them to discern previously unseen degradation types.
This observation indicates that the network inherently possesses degradation identification prowess,
which is progressively refined through the training stage.

Inspired by this observation, we propose the Degradation Classification Pre-Training (DCPT) frame-
work for universal image restoration tasks. This approach endows the models with robust prior
information on degradation comprehension via conducting the degradation classification learning
phase beforehand, thereby augmenting the model’s universal restoration abilities. Specifically, DCPT
follows an encoder-decoder design, where the encoder converts input images into abstract features,
and a lightweight decoder classifies the degradation type based on the encoder’s output features.
The pre-trained encoder initializes a restoration model during fine-tuning for downstream tasks,
leading to significant performance gains. Experimental results demonstrate that the DCPT framework
significantly optimizes the performance of various architectures in the realm of restoration tasks,
encompassing all-in-one and mixed degradation conditions. Moreover, the pre-trained decoder
facilitates transfer learning between models of identical architecture trained on different degradation,
thereby enhancing the model’s ability to generalize across different types of degradation.

2 RELATED WORK

Image Restoration. Recent deep-learning methods (Liang et al., 2021; Geng et al., 2021; Chen
et al., 2021b; Mei et al., 2021; Zamir et al., 2022; Tu et al., 2022; Chen et al., 2022; 2023b; Yawei Li
et al., 2023; Jin et al., 2024) have consistently shown better performance and efficiency compared
to traditional methods in single-task image restoration. The proposed neural networks are based on
convolutional neural networks (CNNs) (LeCun et al., 2015) and Transformers (Vaswani et al., 2017).
CNNs (Lim et al., 2017; Zhang et al., 2018; Chen et al., 2021b; Mei et al., 2021; Chen et al., 2022; Niu
et al., 2020) are highly effective at processing local information in images, while Transformers (Liang
et al., 2021; Zamir et al., 2022; Wang et al., 2022; Yawei Li et al., 2023; Chen et al., 2023b) excel
at leveraging the local self-similarity of images by utilizing long-range dependencies. However,
these methods train respective models for each task, even datasets under the same degradation (Chen
et al., 2022; Yawei Li et al., 2023; Cui et al., 2022). This renders a significant proportion of methods
incapable of effectively addressing the diversities inherent in image restoration (Li et al., 2020).

Universal Image Restoration is born for this. It requires a single model to address numerous
degradation. In the early universal restoration methods, different tasks are handled by decoupling
learning (Fan et al., 2019) or adopting different encoder (Li et al., 2020) or decoder head (Chen
et al., 2021a). These methods necessitate that the model explicitly assess degradation and select
distinct network branches to cope with different degradation. Recently, AirNet (Li et al., 2022)
uses MoCo (He et al., 2020) while IDR (Zhang et al., 2023) creates various physical degradation
models to learn degradation representations for all-in-one image restoration. PromptIR (Potlapalli
et al., 2023) involves additional parameters via dynamic convolutions to achieve universal image
restoration without embedded features. DACLIP (Luo et al., 2023b), MPerceiver (Ai et al., 2024),
and DiffUIR (Zheng et al., 2024) use external large models (Radford et al., 2021; Van Den Oord et al.,
2017; Esser et al., 2021) or generative prior to achieve higher performance and handle more tasks.
OneRestore (Guo et al., 2025) focuses on mixed degradation restoration and offers a benchmark for
it. It appears that integrated models must necessitate the regulation of external parameters (Potlapalli

2



Published as a conference paper at ICLR 2025

et al., 2023), physical models (Zhang et al., 2023), human instructions (Marcos V. Conde, 2024),
and the abstract high-dimension feature extracted by large neural networks (Li et al., 2022; Ai et al.,
2024; Luo et al., 2023b; Zheng et al., 2024).

Self-supervised Pre-training is a technique that allows the network to learn the distribution (Devlin
et al., 2019) or intrinsic prior concealed in input samples and use it to improve the performance in
downstream tasks. In computer vision, it is mainly divided into two schools: Contrastive Learning
(CL) (Chen et al., 2020b; He et al., 2020) and Masked Image Modeling (MIM) (He et al., 2022;
Xie et al., 2022). CL aligns features from positive pairs, and uniforms the induced distribution of
features on the hypersphere (Wang & Isola, 2020). MIM learns how to create before learning to
understand (Xie et al., 2022). However, it is difficult to extend to other architectures (Tian et al., 2022;
Gao et al., 2022; Yao et al., 2025) and discards the decoder during downstream tasks, resulting in
inconsistent representations between pre-training and fine-tuning (Han et al., 2023). Recently, many
pre-training methods (Chen et al., 2021a; 2023b; Li et al., 2023a) for restoration have been proposed.
Unfortunately, these methods only use larger dataset to train larger models under single-degradation
settings. The only self-supervised pre-training method (Liu et al., 2023a) for image restoration works
well in high-cost tasks but is inappropriate for low-cost tasks like image denoising.

3 DCPT: LEARN TO CLASSIFY DEGRADATION

3.1 MOTIVATION

When training a single network for the all-in-one image restoration task, the model is expected
to learn effective solutions for various degradation and to decide how to restore the input image
autonomously. We argue that image restoration models inherently have the capacity to differentiate
between various degradation, and this capacity can be further enhanced through restoration training.

We perform preliminary experiments for verification. The output feature before the restoration head
is extracted, and a k-nearest neighbour (kNN) classifier is employed to classify five degradation
types, including haze, rain, Gaussian noise, motion blur, and low-light, of the input image based
on this feature. We experiment with both classic image restoration networks (Liang et al., 2021;
Zamir et al., 2022; Chen et al., 2022) and a dedicated all-in-one task network (Potlapalli et al., 2023),
evaluating both randomly initialized models and those trained on the three distinct (3D) degradation
(haze, rain, Gaussian noise) all-in-one image restoration task. It is pertinent to mention that the five
target categories for classification encompass the three degradation utilized in the training phase.

Methods NAFNet SwinIR Restormer PromptIR

Acc. on Random initialized (%) 52± 1 64± 4 71± 4 55± 3

Acc. on 3D all-in-one trained 200k iterations (%) 90± 5 92± 6 93± 3 93± 5

Acc. on 3D all-in-one trained 400k iterations (%) 94± 4 95± 4 95± 4 95± 4

Acc. on 3D all-in-one trained 600k iterations (%) 94± 5 95± 4 97± 2 95± 4

Table 1: Degradation classification accuracy. The results are averaged under five random seeds.

The results are presented in Table 1 and Figure 1. It can be seen that randomly initialized models
can achieve 52 ~ 71 % degradation classification accuracy. After the 3D all-in-one training, models
achieve an accuracy of 94% or higher in classifying degradation, including unseen ones. Figure 1
plots the T-SNE results of PromptIR’s (Potlapalli et al., 2023) features on five degradation after
random initialization and 3D all-in-one training which provides a more natural depiction of the
restoration model’s classification ability in terms of input image’s degradation.

These results lead to three interesting conclusions: (1) Randomly initialized models demonstrate
an inherent capability to classify degradation. (2) Models trained on the all-in-one task exhibit
the ability to discern unkown degradation. (3) There is a degradation understanding step in the
early training of the restoration model. This indicates that the image restoration model inherently
possesses the capacity to classify various degradation types. Moreover, training models on the
all-in-one image restoration task will further enhance this ability. During the training process of the
all-in-one restoration model, it is speculated that while the model is tasked with restoration, it is also
simultaneously trained to discern the type of degradation present in the input image. These findings
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Figure 1: The T-SNE results of randomly initialized PromptIR’s feature (left) and all-in-one trained
PromptIR’s feature (right).
furnish the rationale for our motivation: To ensure superior restoration performance, it is imperative
that the restoration model attains sufficient degradation classification capabilities before training.1

3.2 METHODS

Based on this plain and simple idea, we propose the Degradation Classification Pre-Training (DCPT).
DCPT consists of an encoder which comprises restoration models (Liang et al., 2021; Zamir et al.,
2022; Chen et al., 2022; Potlapalli et al., 2023) without their restoration modules, and a decoder
which classifies the degradation of input images based on the encoder’s features. In the degradation
classification (DC) stage, given an input image xdegrad with degradation Dgt, encoder’s feature F
is fed into the decoder. Since the decoder’s role is classification rather than image reconstruction,
its design draws inspiration from classic classification networks (He et al., 2016), rather than the
architecture commonly found in classic autoencoder-style pre-training methods (He et al., 2022). In
the generation stage, encoder’s feature F is fed into the restoration module to preserve encoder’s
generation ability. Figure 2 illustrates this overall pipline.

Noise 
or 

blur 
or 

hazy 
or 
…

R
es

N
et

B
lo

ck

D
ow

n
sa

m
pl

e

R
es

N
et

B
lo

ck

D
ow

n
sa

m
pl

e

R
es

N
et

B
lo

ck

FC

So
ftM

ax

Encoder 
(Restoration Model)

Degraded Images

Decoder (Classifier)
(a) Degradation classification stage.

Clean Images

Encoder 
(Restoration Model)

Convolution

Clean Images

(b) Generation stage.

In
each

iteration,

(a) Lcls

(b)Lpix

next
iteration

backward

Figure 2: DCPT follows an encoder-decoder design. The encoder refers to a restoration network, and
the decoder is a degradation classifier. DCPT consists of two stages. In each training iteration,
(a) degradation classification stage and (b) generation stage occur performed alternately. Lcls and
Lpix are the losses incurred during stage (a) and stage (b). After DCPT, the encoder is fine-tuned for
downstream restoration tasks.
Extract multi-level features. To achieve more effective degradation classification, it’s crucial
to extract features from deeper layers that contain richer high-level semantic information (Cai
et al., 2023). However, image restoration models typically adhere to the design concept of residual

1We perform an experimental verification of this motivation in Appendix A.3.
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learning (Zhang et al., 2017). The sole reliance on features from the deepest layer for the loss
function calculation may result in gradient vanishing in the shallower layers, due to the loss of the
encoder’s long residual connections (Zhang et al., 2017) during feature extraction. To achieve a
balance, features are extracted from each block in the latter part of the encoder. We define these
extracted features as {Fi}, i ∈ 1, · · · , l

2 , where l is the number of the blocks in the network.

{Fi} = Encoder(xdegrad). (1)
Degradation Classification. After multi-level feature extraction, we feed {Fi} into a lightweight
decoder to classify the degradation of the input images. The details of decoder architecture is shown
in Figure 2 (a). To aggregate the extracted features better, it is necessary to perform scaling (Luo
et al., 2023a; Yao et al., 2024; Hu et al., 2024) to features {Fi}. The scaling coefficient {ωi} is
learnable. Then, scaled feature F ′

i = ωiFi is plugged into the i-th last block in ResNet18 to classify
degradation. For stabling the training process (Liu et al., 2022), we replace the normalization layers
in decoder from BatchNorm (Ioffe & Szegedy, 2015) to LayerNorm (Ba et al., 2016).

Dpred = Decoder(F ′
1, F

′
2, · · · , F ′

l
2
). (2)

It is crucial to note that the challenge in obtaining image restoration data (Li et al., 2023b) results in
an imbalance in the number of datasets representing different types of degradation. For example, the
deraining dataset Rain200L (Yang et al., 2017) comprises only 200 images, whereas the dehazing
dataset RESIDE (Li et al., 2018) encompasses 72,135 images. This imbalance poses a significant
long-tail challenge in classifying degradation. To address this issue, we employ Focal Loss (Lin et al.,
2017) as the loss function for long-tail degradation classification.

Lcls = Focal Loss(Dpred, Dgt). (3)
Preserve generation ability. It is vital to recall that the objective of the encoder is to restore low-
quality images into higher-quality ones. Ensuring that the pre-trained encoder maintains its ability
to generate is important. Similar to the training process of classic generative methods (Kingma &
Welling, 2013), a convolution is added after the encoder to enable it to reconstruct x̂clean from the
feature Fl, as depicted in Figure 2 (b). The overall loss function of DCPT is as follows:

Ltotal = αLpix + Lcls = α||xclean − x̂clean||1 + Focal Loss(Dgt, Dpred), (4)
where α is 1 by default, and x̂clean = Convolution(Fl).
Divide one pre-training iteration into two alternating stages. During the DCPT, both loss functions
Lpix and Lcls necessitate the utilization of features generated by the encoder. Concurrently executing
the degradation classification stage and the generation stage would result in the encoder receiving
two distinct gradient flows simultaneously, a scenario that is impractical. To address this, we alternate
between these two stages within one pre-training iteration.
3.3 DC-GUIDED TRAINING

Unlike previous pre-training methods (He et al., 2022; Liu et al., 2023a), the decoder is not discarded
after pre-training. This leads to DC-guided training for cross-degradation transfer learning.

As illustrated in Figure 3, it is necessary to ensure that the feature of the restoration model can identify
the degradation of the input image while restoring clean image x̂restore. In DC-guided training,
decoder’s frozen parameters are set up by DCPT.
The overall loss function in DC-guided training is:

Lguide = αLpix + Lcls

= α||xgt − x̂restore||1
+ Cross Entropy Loss(Dgt, Dpred),

(5)

where α is 1 by default.
Cross Entropy Loss is employed as the classification loss for
DC-guided training due to its applicability under transfer-
learning conditions, specifically targeting a single type of
degradation. The role of the decoders is limited to clas-
sifying the input images into two categories: clean and
degraded. Given that the paired data provides an equal num-
ber of samples for both categories, there is no issue of class
imbalance, which permits the use of Cross Entropy Loss
instead of Focal Loss.

En
co

de
r

(R
es

to
ra

tio
n

M
od

el
)

C
on
vo
lu
tio
n

Clean ImagesNoisy Images

Noise 
or 

clean
Decoder

Figure 3: DC-guided training is used for
cross-degradation transfer learning. The
target task in this figure is denoising.
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4 EXPERIMENTS

We evaluate our DCPT in four different settings. (1) All-in-One: A single model is fine-tuned after
DCPT to perform image restoration across multiple degradation. Following previous state-of-the-art
works (Zhang et al., 2023; Luo et al., 2023b), we evaluate on five restoration (5D) tasks and 10D
tasks. (2) Single-task: We report the performance on unseen degradation of all-in-one trained models
without fine-tuning following (Zhang et al., 2023; Ai et al., 2024).To highlight DCPT’s impact on
single-task pre-training, we present fine-tuning results of DCPT pre-trained models in specific single-
task settings. (3) Mixed degradation: We evaluate the fine-tuned model under mixed degradation
to verify whether DCPT is suitable for the restoration of complex mixed-degraded images, such as
composite weather. (4) Transfer learning: We evaluate the transfer learning capability of restoration
models trained by DC-guided training or not between different image restoration tasks. The efficacy
of DC-guided training in enhancing the network’s cross-task transfer ability is demonstrated.

4.1 IMPLENTATION DETAILS.

For the 5/10D all-in-one restoration task, datasets comprising five or ten types of degradation are
employed to execute DCPT. In contrast, for other downstream restoration tasks, a uniform approach
utilizing datasets with ten types of degradation is adopted for DCPT. We use PSNR and SSIM in the
sRGB color space as distortion metrics. We also give the training and dataset details for each task in
Appendix B. Due to space constraints, all numerical results for methods under 10D all-in-one and
mixed degradation are presented in Appendix C.

4.2 ALL-IN-ONE IMAGE RESTORATION

We first assess the performance gain of DCPT on different networks in all-in-one image restoration.

5D all-in-one image restoration results with classic image restoration networks (Liang et al., 2021;
Zamir et al., 2022; Chen et al., 2022) are reported in Table 2 and Figure 4. It can be observed that
regardless of whether the network is CNN or Transformer, whether it is a straight network or a
UNet-like network, DCPT consistently achieves an average performance improvement of 2.08 dB
and above on the 5D all-in-one image restoration. This indicates that DCPT is compatible with a
wide range of network architectures. In comparison to multi-stage methods, DCPT also demonstrates
consistent performance improvement. When Restormer is taken as the basic model, the IDR is only
improved by 0.74 dB compared to its base method, while DCPT can give an performance gain of
2.44 dB. It is also important to note that IDR requires 1200 epochs training, whereas DCPT only
necessitates 20 epochs pre-training and 50 epochs fine-tuning.

Method Dehazing Deraining Denoising Deblurring Low-Light Average
PSNR↑/SSIM↑ PSNR↑/SSIM↑ PSNR↑/SSIM↑ PSNR↑/SSIM↑ PSNR↑/SSIM↑ PSNR↑/SSIM↑

AirNet 21.04 / 0.884 32.98 / 0.951 30.91 / 0.882 24.35 / 0.781 18.18 / 0.735 25.49 / 0.846
IDR 25.24 / 0.943 35.63 / 0.965 31.60 / 0.887 27.87 / 0.846 21.34 / 0.826 28.34 / 0.893
InstructIR 27.10 / 0.956 36.84 / 0.973 31.40 / 0.887 29.40 / 0.886 23.00 / 0.836 29.55 / 0.907

SwinIR 21.50 / 0.891 30.78 / 0.923 30.59 / 0.868 24.52 / 0.773 17.81 / 0.723 25.04 / 0.835
DCPT-SwinIR 28.67 / 0.973 35.70 / 0.974 31.16 / 0.882 26.42 / 0.807 20.38 / 0.836 28.47 / 0.894
NAFNet 25.23 / 0.939 35.56 / 0.967 31.02 / 0.883 26.53 / 0.808 20.49 / 0.809 27.76 / 0.881
DCPT-NAFNet 29.47 / 0.971 35.68 / 0.973 31.31 / 0.886 29.22 / 0.883 23.52 / 0.855 29.84 / 0.914
Restormer 24.09 / 0.927 34.81 / 0.962 31.49 / 0.884 27.22 / 0.829 20.41 / 0.806 27.60 / 0.881
DCPT-Restormer 29.86 / 0.973 36.68 / 0.975 31.46 / 0.888 28.95 / 0.879 23.26 / 0.842 30.04 / 0.911
PromptIR 25.20 / 0.931 35.94 / 0.964 31.17 / 0.882 27.32 / 0.842 20.94 / 0.799 28.11 / 0.883
DCPT-PromptIR 30.72 / 0.977 37.32 / 0.978 31.32 / 0.885 28.84 / 0.877 23.35 / 0.840 30.31 / 0.911

Table 2: 5D all-in-one image restoration results. All the classic architectures pre-trained with DCPT outperform
the methods that require two-stage training and external degradation identifying module (AirNet (Li et al., 2022)
and IDR (Zhang et al., 2023)).

10D all-in-one image restoration results. Furthermore, the degradation types are scaled up to 10 to
ascertain the efficacy of DCPT in the presence of a greater number of degradation types. Following
the DACLIP (Luo et al., 2023b) and InstructIR (Marcos V. Conde, 2024), we use NAFNet as the
basic restoration model because its concision. The averaged performance of the restoration model
under 10 degradation is presented in Table 3. It can be observed that, in comparison to abstract CLIP
embeddings (Luo et al., 2023b), complex human instruct (Marcos V. Conde, 2024; Guo et al., 2025),
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Dehazing (GT)

SwinIR NAFNet Restormer PromptIR

DCPT-SwinIR DCPT-NAFNet DCPT-Restormer DCPT-PromptIR

Deraining (GT)

SwinIR NAFNet Restormer PromptIR

DCPT-SwinIR DCPT-NAFNet DCPT-Restormer DCPT-PromptIR

Denoising (GT)

SwinIR NAFNet Restormer PromptIR

DCPT-SwinIR DCPT-NAFNet DCPT-Restormer DCPT-PromptIR

Deblurring (GT)

SwinIR NAFNet Restormer PromptIR

DCPT-SwinIR DCPT-NAFNet DCPT-Restormer DCPT-PromptIR

Low-Light (GT)

SwinIR NAFNet Restormer PromptIR

DCPT-SwinIR DCPT-NAFNet DCPT-Restormer DCPT-PromptIR

Figure 4: Visual comparison on 5D all-in-one image restoration datasets. Zoom in for best view.

and large diffusion model (Zheng et al., 2024), the latent degradation classification prior of the model
trained with DCPT is more effective in addressing the all-in-one restoration task. This conclusion can
be substantiated by the superior performance gain (2.55 dB in PSNR) of NAFNet trained with DCPT
on the 10D all-in-one restoration task. We also provide a radar chart to show that DCPT-NAFNet
outperforms existing all-in-one restoration models across all tasks. The specific metric values have
been provided in Appendix C.2.

4.3 SINGLE-TASK IMAGE RESTORATION

A further analysis is conducted to determine the suitability of DCPT for single-task image restoration
pre-training from two perspectives. i. Zero-shot (ZS): This assesses whether models trained with
DCPT under 5D all-in-one fine-tuning are used to solve single tasks without optimization. ii. Fine-
tuning (FT): This assesses whether the model weights pre-trained with DCPT can be directly used
for fine-tuning on single-task image restoration. The degradation classifier guided method is not used
in single-task fine-tuning for a fair comparison.

[ZS] Gaussian Denoising. Table 4 reports the Gaussian denoising results of image restoration models
pre-trained with DCPT at different noise levels. It can be observed that the DCPT pre-trained model
has achieved notable improvements in all networks and all datasets. This is particularly evident on the
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PSNR↑ SSIM↑

DCPT-NAFNet (Ours)DACLIP-NAFNetNAFNet Instruct-NAFNet

Figure 5: The radar chart of 10D all-in-one image restoration results.

Method 10D-Average
PSNR↑/SSIM↑

AirNet 26.41 / 0.842
TransWeather 22.83 / 0.779
WeatherDiff 24.60 / 0.793
PromptIR 27.93 / 0.851
DiffUIR-L 28.75 / 0.869

NAFNet 27.17 / 0.837
+DACLIP 27.42 / 0.798
+Instruct 28.30 / 0.862
+DCPT (Ours) 29.72 / 0.888

Table 3: Averaged 10D all-in-
one image restoration results.

high-resolution dataset Urban100 (Huang et al., 2015). In this context, DCPT-SwinIR demonstrates
an improvement of 1.11 dB compared to SwinIR on Gaussian denoising with σ = 50.

Method Urban100 Kodak24 BSD68
σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50

AirNet 33.16 30.83 27.45 34.14 31.74 28.59 33.49 30.91 27.66
IDR 33.82 31.29 28.07 34.78 32.42 29.13 34.11 31.60 28.14

SwinIR 32.79 30.18 26.52 33.89 31.32 27.93 33.31 30.59 27.13
DCPT-SwinIR 33.64 31.14 27.63 34.63 32.11 28.86 33.82 31.16 27.86
NAFNet 33.14 30.64 27.20 34.27 31.80 28.62 33.67 31.02 27.73
DCPT-NAFNet 33.64 31.23 27.98 34.72 32.28 29.21 33.94 31.31 28.12
Restormer 33.72 31.26 28.03 34.78 32.37 29.08 34.03 31.49 28.11
DCPT-Restormer 34.14 31.79 28.58 34.96 32.49 29.40 34.09 31.46 28.25
PromptIR* 33.27 30.85 27.41 34.44 31.95 28.71 33.85 31.17 27.89
DCPT-PromptIR 33.88 31.49 28.15 34.78 32.30 29.14 33.96 31.32 28.08

Table 4: [ZS] Gaussian Denoising results on Urban100, Kodak24
and BSD68 datasets in terms of PSNR ↑.

Method UIEB
PSNR ↑ SSIM ↑

AirNet 15.46 0.745
IDR 15.58 0.762

SwinIR 15.31 0.740
DCPT-SwinIR 15.78 0.774
NAFNet 15.42 0.744
DCPT-NAFNet 15.67 0.773
Restormer 15.46 0.745
DCPT-Restormer 15.79 0.774
PromptIR* 15.48 0.748
DCPT-PromptIR 15.78 0.772

Table 5: [ZS] Under-water
Enhancement results.

[ZS] Under-water Enhancement. Table 5 presents the results of the underwater image enhancement.
In comparison to the base methods, the image restoration models pre-trained with DCPT exhibited
an average performance increase of 0.25 ~ 0.47 dB, indicating that DCPT has the capacity for
generalization in the unseen degradation.

Dataset Method Deblur- Deblur- SRN DMPHN Restormer Restormer Restormer
GAN GANv2 +DegAE +DCPT (Ours)

GoPro PSNR ↑ 28.70 29.55 30.26 31.20 32.92 33.03 (+0.11) 33.12 (+0.20)
SSIM ↑ 0.858 0.934 0.934 0.940 0.961 - 0.962 (+0.01)

HIDE PSNR ↑ 24.51 26.62 28.36 29.09 31.22 31.43 (+0.21) 31.47 (+0.25)
SSIM ↑ 0.871 0.875 0.915 0.924 0.942 - 0.946 (+0.04)

Table 6: [FT] Single Image Motion Deblurring results in the single-task setting on GoPro dataset.
DCPT outperforms DegAE (Liu et al., 2023a) on the image motion deblurring task pre-training.

[FT] Single Image Motion Deblurring. Table 6 shows that Restormer pre-trained with DCPT
outperform 0.2 dB on GoPro (Nah et al., 2017). DCPT is suitable for pre-training under single task.
4.4 IMAGE RESTORATION ON MIXED DEGRADATION

Results of restoration on mixed degradation are displayed in Table 7 to demonstrate that DCPT
can also deliver substantial performance enhancements to the restoration model in mixed degradation
scenarios. We performed experiments on CDD11 (Guo et al., 2025), a mixed degradation restoration
benchmark. NAFNet pre-trained with DCPT achieves the highest performance.

Models pre-trained with DCPT robustly reconstruct HQ images in various mixed degradation by
incorporating latent degradation classification prior to image restoration models. When employing
NAFNet as the restoration backbone, DCPT demonstrates a performance enhancement of 5.20
dB for mixed degradations involving low-light, haze, and rain degradation, and 5.58 dB for those
involving low-light, haze, and snow degradation. For compelling evidence, Figure 6 provides the
visual comparison of image restoration in three composite degradation samples (low-light + haze +
rain). NAFNet pre-trained with DCPT can restore more natural result from mixed-degraded image
and fully preserve image texture and detail such as lighting.
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LQ NAFNet Insturct-NAFNet

GT DACLIP-NAFNet DCPT-NAFNet

Figure 6: Visual comparison on low-light + haze
+ rain samples. The DCPT enables the NAFNet to
restore HQ images from mixed degradation while
adjusting lighting to realistic conditions. In con-
trast, neither CLIP nor human-instruct can achieve
both tasks concurrently. Zoom in for best view.

Method low-light+haze+rain low-light+haze+snow
PSNR↑/SSIM↑ PSNR↑/SSIM↑

AirNet 21.80 / 0.708 22.23 / 0.725
TransWeather 21.55 / 0.678 21.01 / 0.655
WeatherDiff 21.23 / 0.716 21.03 / 0.698
PromptIR 23.74 / 0.752 23.33 / 0.747
DiffUIR-L 25.46 / 0.799 25.89 / 0.802
OneRestore 25.18 / 0.795 25.28 / 0.797

NAFNet 21.03 / 0.682 20.82 / 0.690
+DACLIP 22.96 / 0.712 23.32 / 0.751
+Instruct 24.84 / 0.777 24.32 / 0.760
+DCPT (Ours) 26.23 / 0.805 26.40 / 0.807

Table 7: Mixed degraded image restoration results on
CDD (Guo et al., 2025) dataset.

4.5 TRANSFER LEARNING CROSS DIFFERENT DEGRADATION

We are curious about whether the degradation classifiers help model generalization across different
degradation. We run these experiments to study the cross-task generalization of image restoration
models with or without DC-guided training, e.g., Restormer (Zamir et al., 2022).

DC-guided Target task Denoise Deblur Derain
Source task Deblur Derain Denoise Derain Denoise Deblur

✘ PSNR ↑ 31.50 31.65 25.44 27.51 31.99 32.85
✔ PSNR ↑ 31.62 31.69 30.36 28.79 36.29 35.77

Supervised PSNR ↑ 31.78 32.92 36.74

Table 8: Transfer learning results with and without degradation classifier (DC) guided. "Supervised"
means the model is randomly initialized and trained without the DC-guided training method.

Transfer learning results are shown in Table 8. The results of the non-DC-guided experiments
presents that image restoration model is hard to generalize cross different degradation. In comparison
to random initialization, the performance of the model is reduced by 7.48 dB in the image motion
deblurring and 4.75 dB in the image deraining when the model is initialized with a trained model on
the Gaussian denoising.

However, the DC-guided model shows higher performance in cross-task transfer learning. When
model is guided by DC, the reduction is down to 2.56 dB in the image motion deblurring and 0.45 dB
in the image deraining when the model is initialized with a trained model on the Gaussian denoising.
This suggests that DC has the ability to help image restoration models generalize across tasks.

DC-guided training achieves greater performance gains on tasks that are more difficult to generalize
to. To illustrate, the model trained for deraining can achieve a 1.28 dB gain after DC guidance, while
the model trained for denoising can achieve a 4.92 dB gain after DC-guided. However, the former
has superior generalization performance without DC-guided. This phenomenon is of considerable
interest. The cross-task generalization ability of image restoration models may be worth studying.

4.6 ABLATION STUDIES

We demonstrate the necessity of decoder architecture, multi-scale feature extraction, and training
stages in DCPT through the performance of several ablation experiments. These experiments are
performed with PromptIR (Potlapalli et al., 2023) on the 5D all-in-one image restoration task.

Impact of the decoder architecture. Table 9 illustrates that the decoder architecture can impact the
pre-training performance of DCPT. When Vision Transformer is used as the decoder, DCPT achieves
better pre-training effects. Investigating the design of DCPT decoders for various restoration models
presents an intriguing direction for future research.
Impact of multi-level feature extraction. Table 10 shows that multi-level feature extraction can
provide further performance gains for models pre-trained with DCPT.
Impact of different training stages. Table 11 demonstrates that combining degradation classification
stage (SDC) and generation stage (SG) can optimize the model’s performance. If SDC is the only
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Decoder Dehazing Deraining Denoising Debluring Low-light
PSNR ↑ PSNR ↑ PSNR ↑ PSNR ↑ PSNR ↑

ResNet 30.72 37.32 31.32 28.84 23.35

ViT 30.88 37.74 31.37 28.93 23.22

ViM 30.64 37.30 31.32 28.80 23.18

Table 9: Ablations of the decoder architecture.
The denoising results are calculated on σ = 25.
ResNet is the baseline. ViT is Vision Trans-
former while ViM is Vision Mamba.

Multi-level Dehazing Deraining Denoising Debluring Low-light
PSNR ↑ PSNR ↑ PSNR ↑ PSNR ↑ PSNR ↑

None 25.20 35.94 31.17 27.32 20.94

✘ 30.23 36.88 31.27 28.14 23.00

✔ 30.72 37.32 31.32 28.84 23.35

Table 10: Ablations of multi-level feature ex-
traction. The denoising results are calculated
on σ = 25. "None" means the model is trained
without DCPT.

training stage of DCPT, restoration models still benefit from it. This suggests that the performance
gain brought by DCPT is primarily due to the degradation classification part rather than the generative
ability learning. If SG is the only training stage of DCPT, residual learning (Zhang et al., 2017) will
cause the model to an identity function, reducing model’s representation ability and contradicting the
aim of pre-training.

Necessity of pre-training. DC-Train is subjected to ablation to evaluate the necessity of pre-training.
The distinction between DC-Train and DCPT lies in DC-Train’s direct utilization of paired degraded-
clean image pairs for restoration training during the generation stage, eschewing pre-training and
fine-tuning for downstream restoration tasks. The results presented in Table 12 demonstrate that
DCPT surpasses DC-Train, thereby underscoring the necessity of pre-training.

SDC SG Dehazing Deraining Denoising Debluring Low-light

✘ ✘ 25.20 35.94 31.17 27.32 20.94

✘ ✔ 24.88 31.79 30.04 24.59 17.32

✔ ✘ 30.22 37.08 31.21 27.96 21.22

✔ ✔ 30.72 37.32 31.32 28.84 23.35

Table 11: Results of different losses in terms of
PSNR ↑. The denoising results are calculated on
σ = 25.

Method Dehazing Deraining Denoising Debluring Low-light

DC-Train 30.28 37.00 31.28 28.54 22.78

DCPT 30.72 37.32 31.32 28.84 23.35

Table 12: Ablations of whether pre-training in
terms of PSNR ↑. The "DC-Train" method
means that degraded-clean image pairs are used
directly in the generation stage of DCPT without
pre-training and fine-tuning. The denoising re-
sults are calculated on σ = 25.

4.7 DISCUSSION

Discrimination hidden in restoration. Previous research (Liu et al., 2023b) has investigated the
super-resolution model’s ability to distinguish between different types of degradation during the
restoration process. The preliminary experiment presented in Sec. 3.1 demonstrated that the randomly
initialized model is capable of degradation classifying. Furthermore, the application of supervised
all-in-one training enhanced the models’ ability to classify degradation while also imparting certain
generalization capabilities. These results indicate that there is discrimination hidden in restoration.

The results presented in our paper highlight the effectiveness of discriminative prior in pre-training
for image restoration. They reveal that incorporating sufficient discriminative information into the
model before training can significantly improve its performance. We hypothesize that integrating
superior degradation-aware discriminative information into the restoration model and maximizing its
discriminative capacity will further enhance its performance. It is anticipated that this hypothesis will
pave the way for the development of lots of novel pre-training methods for universal restoration field.

5 CONCLUSION

In this paper, we observed that the randomly initialized model exhibited baseline capability in
degradation classification, while the model trained in an all-in-one manner demonstrated a remarkably
higher degree of accuracy in this regard. Furthermore, this ability exhibited generalization across
different contexts. To fully expand and utilize the degradation classification ability of the restoration
model, we developed Degradation Classification Pre-Training (DCPT) and confirmed its effectiveness
in universal image restoration and transfer learning tasks. Owing to the incorporation of degradation
classification prior via DCPT, restoration models pre-trained with this method demonstrate an all-in-
one performance improvement surpassing 2 dB and exhibit a performance augmentation exceeding 5
dB under mixed degradation conditions. Further investigation is warranted into the discriminative
behavior of the restoration model to the input image. This may potentially lead to the development of
more generalized universal image restoration techniques.
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Ethics Statement. This paper presents work whose goal is to advance the field of image restoration.
There are many potential societal consequences of our work. Given the increasing capabilities of
image restoration techniques, we advocate avoiding the misuse of related technologies, such as
forging misleading images or restoring and enhancing images for malicious purposes.

Reproducibility Statement. We state that DCPT is highly reproducible. Appendix A encompasses
the experimental details of the pre-experiment in Sec. 3.1 and try to explain why DCPT works.
Comprehensive dataset details are delineated in Appendix B.1. Implementation details on our main
experiences are provided in Appendix B.2, and the Pytorch-like source code of DCPT is presented
in Appendix D. It is anticipated that these supplementary materials can sufficiently demonstrate the
reproducibility of DCPT.
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A DETAILS OF EXPERIENCE IN MOTIVATION

A.1 DATASETS

We randomly select 500 images from the listed datasets for the motivation verification experiment,
with 100 images randomly chosen for each degradation. Source datasets: Test100L (Yang et al.,
2019) for deraining; SOTS (Li et al., 2018) for dehazing; SIDD (Abdelhamed et al., 2018) for
denoising; GoPro (Nah et al., 2017) for motion deblurring; and LOL (Wei et al., 2018) for low-light
enhancement.

Once the input images are determined, they are sent to the restoration model to obtain the features. To
ensure that the output features have the same dimension, we choose center-cropped images with the
resolution of 128× 128. The output features are flattened for subsequent classification using kNN.

A.2 IMPLEMENTATION DETAILS

Dataset split. Before the experiment, we randomly divide the training set and the test set in a ratio of
2:1. We ensure that the data volume of each degradation in the training set and the test set is evenly
distributed.

3D all-in-one trained models. For evaluating the degradation classification ability of 3D all-in-one
trained models, we train image restoration models under all-in-one settings following AirNet (Li
et al., 2022).

kNN settings. We classify the degradation type using the last block’s feature of restoration model.
Uniform weight function is used in prediction. KDTree algorithm is used to compute the nearest
neighbors. The iteration numbers for this kNN are set to 2k.

A.3 MORE RESULTS ON PRELIMINARY EXPERIENCE

Based on the motivation in Section 3.1, we conjecture that the significant improvement of DCPT
is due to DCPT can advance the degradation understanding step before restoration training. We
conducted experiments on NAFNet to test this hypothesis. If it is correct, the model’s performance
will improve as the initial degradation classification accuracy increases.

DCPT iterations 0 25k 50k 75k 100k

Initial DC Acc. (%) 52 75 88 93 94

PSNR (dB) 27.76 29.32 29.67 29.84 29.84

Table 13: NAFNet’s performance improved as the initial degradation classification accuracy increased.
The PSNR are averaged among 5 tasks in 5D all-in-one restoration.
As shown, NAFNet’s performance improved as the initial degradation classification accuracy in-
creased. This supports our conjecture that one of the core reasons why DCPT works is that it
advances the degradation understanding step before restoration training.

A.4 ABLATION STUDY ON CLASSIFICATION DATASETS

To demonstrate the capability of restoration models in classifying degradation rather than datasets,
we design an ablation study on classification datasets. We used 485 normal-light images from
LOL-v1 (Wang et al., 2021) as clean images and applied five degradations: downsample, blur, noise,
JPEG, and low-light. The new results are shown below.

Methods NAFNet SwinIR Restormer PromptIR

Acc. on Random initialized (%) 33± 5 38± 6 40± 6 34± 4

Acc. on 3D all-in-one trained (%) 79± 3 83± 4 85± 3 80± 2

Table 14: Degradation classification accuracy in ablation study on classification datasets. The results
are averaged under five random seeds.
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It can be seen that Randomly initialized models achieve 33 ~ 40% accuracy in degradation classifica-
tion. After 3D all-in-one training, accuracy improves to 79% or higher, even for unseen degradations,
confirming the assertions in Sec. 3.1.

Go back to Section 3.1.

B DETAILS OF MAIN EXPERIENCES

B.1 DATASET DETAILS

Dataset for all-in-one setting. To ensure that the model is not exposed to wider images during the
pre-training, resulting in performance gains, the dataset in the all-in-one setting is identical to that in
the DCPT, with only slight modifications in the sampler.

For 3D and 5D all-in-one restoration, following AirNet (Li et al., 2022), a combination of various
image restoration datasets is employed: Rain200L (Yang et al., 2017), which contains 200 training
images for deraining; RESIDE (Li et al., 2018), which contains 72,135 training images and 500 test
images (SOTS) for dehazing; BSD400 (Martin et al., 2001b) and WED (Ma et al., 2016), which
contain 5,144 training images for Gaussian denoising; GoPro (Nah et al., 2017), which contains
2,103 training images and 1,111 test images for single image motion deblurring; and LOL (Wei et al.,
2018), which contains 485 training images and 15 test images for low-light enhancement.

For 10D all-in-one restoration, a combination of various image restoration datasets is employed:
RainH&RainL (Yang et al., 2017), which contains 3000 training images for deraining; RESIDE (Li
et al., 2018), which contains 72,135 training images and 500 test images (SOTS) for dehazing;
Snow100K (Liu et al., 2018) for image desnowing; BSD400 (Martin et al., 2001b) and WED (Ma
et al., 2016), which contain 5,144 training images for Gaussian denoising, JPEG, demosaic, and
inpainting; GoPro (Nah et al., 2017), which contains 2,103 training images and 1,111 test images
for single image motion deblurring; DPDD (Abuolaim & Brown, 2020) for single image defocus
deblurring; and LOL (Wei et al., 2018), which contains 485 training images and 15 test images for
low-light enhancement.

We use repeated sampler for all-in-one dataset following (Li et al., 2022; Zhang et al., 2023).

Dataset Sampler in all-in-one setting. For degradation with lesser training data, such as image
deraining, we use repeat sampler technology to ensure that there are enough training pairs for each
degradation. The repeat ratio is [1H, 120R, 9N], where H, R, and N represent dehaze, derain, and
denoise, respectively. For the 5D all-in-one image restoration, the datasets for dehazing, deraining,
Gaussian denoising, motion deblurring, and low-light enhancement are integrated for fine-tuning.
The repetition ratio is [1H, 300R, 15N, 5B, 60L], where the H, R, N, B, and L represent dehaze,
derain, denoise, deblur, and low-light enhancement, respectively.

Dataset for single-task setting. In single-task setting, for zero-shot (ZS) settings, we evaluate the 5D
all-in-one models on Urban100 Huang et al. (2015), Kodak24 (Franzen, 2013) and BSD68 (Martin
et al., 2001a) for Gaussian denoising; and UIEB (Li et al., 2019) for under-water image enhancement,
which is a training-unseen task. For fine-tune (FT) settings, we train Restormer (Zamir et al., 2022) on
GoPro (Nah et al., 2017) for single image motion deblurring for a fair comparison with DegAE (Liu
et al., 2023a).

Dataset for mixed degradation setting. We use CDD training and test datasets for testing on
mixed degradation setting. CDD encompassing 11 categories of image degradations and their
clear counterparts. These degraded samples include low (low-light), haze, rain, snow, low+haze,
low+rain, low+snow, haze+rain, haze+snow, low+haze+rain, and low+haze+snow. There are 1,383
high-resolution clear images for producing 11 composite degradations. The overall dataset is split
into 13,013 image pairs for training and 2,200 for testing.

Dataset for transfer-learning setting. Following Restormer (Zamir et al., 2022), the training datasets
employed are DF2K (Agustsson & Timofte, 2017), WED (Ma et al., 2016) and BSD400 (Martin et al.,
2001b) for Gaussian denoising; GoPro (Nah et al., 2017) for motion deblurring; and Rain13K (Chen
et al., 2021b) for image deraining. The denoising, deblurring and deraining results are tested on the
BSD68 (Martin et al., 2001a), GoPro (Nah et al., 2017) testset and Rain100L (Yang et al., 2019),
respectively.
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B.2 IMPLEMENTATION DETAILS

Implementation details for DCPT. During DCPT, image restoration models (encoder) and degra-
dation classifiers (decoder) are all trained by AdamW (Kingma & Ba, 2014) with no weight decay
for 100k iters with batch-size 32 on 128× 128 image patches on 4 NVIDIA L40 GPUs. Due to the
heterogeneous encoder-decoder design, we employ distinct learning rates for encoder and decoder.
The learning rate is set to 3× 10−4 for encoder and 1× 10−4 for decoder. The learning rate does not
alter during the DCPT. After DCPT, the parameters of encoder will be used to initialize the image
restoration models.

Implementation details in all-in-one setting. We initialize the image restoration models using the
parameters pre-trained by DCPT. For fairness and convenience, we adopt the same training policy for
different backbones. We use the AdamW (Kingma & Ba, 2014) optimizer with the initial learning
rate 3× 10−4 gradually reduced to 1× 10−6 with the cosine annealing schedule to train our image
restoration models. The training runs for 750k iters with batch size 32 on 4 NVIDIA L40 GPUs.

Implementation details for fine-tuning in single-task setting. The training hyper-parameters
employed are identical to those utilized by Restormer (Zamir et al., 2022). The sole distinction is that
we use the DCPT pre-trained parameters to initialize the model. The fine-tuning runs on 1 NVIDIA
A100 GPU.

Implementation details for fine-tuning in mixed degradation setting. We initialize the NAFNet
using the parameters pre-trained by DCPT on 10D all-in-one restoration datasets. We use the
AdamW (Kingma & Ba, 2014) optimizer with the initial learning rate 3× 10−4 gradually reduced to
1× 10−6 with the cosine annealing schedule to train our image restoration models on CDD training
dataset. The training runs for 750k iters with batch size 32 on 4 NVIDIA L40 GPUs.

Implementation details for transfer learning. The initialization of the image restoration models is
contingent upon the parameters that have been trained from the source task. The image restoration
models are trained on the source task dataset with 100k iterations using a learning rate of 3× 10−4

and batch size of 8. When DC guides the restoration model to execute cross-task transfer learning,
we add Lcls into the loss function to help the model discern the degradation of the input images. We
use the DC generated by DCPT in 5D all-in-one image restoration task. DC’s parameters are frozen
during the transfer learning. The fine-tuning runs on 1 NVIDIA A100 GPU.

C MORE RESULTS ON MAIN EXPERIENCES

C.1 3D ALL-IN-ONE IMAGE RESTORATION

3D all-in-one image restoration results are reported in Table 15. PromptIR (Potlapalli et al., 2023),
an efficient image restoration network designed for all-in-one tasks, achieves an average performance
gain of 0.81 dB after DCPT. It is worth mentioning that PromptIR after DCPT improves performance
across all tasks. For example, DCPT can provide a 2.06 dB gain on the image deraining task, and a
1.33 dB gain on the outdoor image dehazing task.

Method
Dehazing Deraining Denoising on BSD68 Averageon SOTS on Test100L σ = 15 σ = 25 σ = 50

PSNR↑/SSIM↑ PSNR↑/SSIM↑ PSNR↑/SSIM↑PSNR↑/SSIM↑PSNR↑/SSIM↑ PSNR↑/SSIM↑

BRDNet 23.23 / 0.895 27.42 / 0.895 32.26 / 0.898 29.76 / 0.836 26.34 / 0.693 27.80 / 0.843
LPNet 20.84 / 0.828 24.88 / 0.784 26.47 / 0.778 24.77 / 0.748 21.26 / 0.552 23.64 / 0.738
FDGAN 24.71 / 0.929 29.89 / 0.933 30.25 / 0.910 28.81 / 0.868 26.43 / 0.776 28.02 / 0.883
MPRNet 25.28 / 0.955 33.57 / 0.954 33.54 / 0.927 30.89 / 0.880 27.56 / 0.779 30.17 / 0.899
DL 26.92 / 0.931 32.62 / 0.931 33.05 / 0.914 30.41 / 0.861 26.90 / 0.740 29.98 / 0.876
AirNet 27.94 / 0.962 34.90 / 0.968 33.92 / 0.933 31.26 / 0.888 28.00 / 0.797 31.20 / 0.910
PromptIR 30.58 / 0.974 36.37 / 0.972 33.98 / 0.933 31.31 / 0.888 28.06 / 0.799 32.06 / 0.913

DCPT-PromptIR 31.91 / 0.981 38.43 / 0.983 34.17 / 0.933 31.53 / 0.889 28.30 / 0.802 32.87 / 0.918

Table 15: 3D all-in-one image restoration results. DCPT outperforms previous all-in-one methods
on all tasks, achieving an average performance gain of 0.81dB compared to its base method Promp-
tIR (Potlapalli et al., 2023).
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LQ TransWeather AirNet Promptir DCPT (Ours)

Figure 7: Visual comparison on 3D all-in-one image restoration datasets. Top row: Gaussian color
denoising on BSD68 (Martin et al., 2001a). Middle row: Image deraining on Test100L (Yang et al.,
2019). Bottom row: Image dehazing on SOTS (Li et al., 2018). DCPT-PromptIR can remove the
degradation while avoiding the incorrect reconstruction of detailed textures.

C.2 10D ALL-IN-ONE IMAGE RESTORATION

Here we provide a more detailed comparison between our method with other approaches for 10D
all-in-one image restoration. The results on PSNR and SSIM are shown in Table 16 and Table 17.

PSNR (dB) ↑ Denoise Motion-blur Defocus-blur JPEG Dehaze Desnow Derain Demosaic Low-light Inpainting Average

AirNet 27.51 26.25 24.87 26.98 23.56 24.87 28.45 37.22 14.24 30.15 26.41

NAFNet 27.16 26.12 24.66 26.81 24.05 25.94 27.32 38.45 22.16 29.03 27.17

PromptIR 27.56 26.50 25.10 26.95 25.19 27.23 29.04 38.32 23.14 30.22 27.93

DACLIP-NAFNet 24.28 27.03 24.98 23.86 28.19 27.12 28.94 36.72 22.09 30.94 27.42

InstructIR 27.13 28.70 25.33 27.02 26.90 27.35 28.11 38.18 22.81 31.48 28.30

DCPT-NAFNet (Ours) 28.16 30.29 25.68 27.56 30.45 29.30 29.17 40.53 22.87 33.24 29.72

Table 16: Comparison of our method with other all-in-one image restoration approaches in terms of
PSNR on 10D all-in-one restoration task.

SSIM ↑ Denoise Motion-blur Defocus-blur JPEG Dehaze Desnow Derain Demosaic Low-light Inpainting Average

AirNet 0.769 0.805 0.772 0.783 0.916 0.846 0.867 0.972 0.781 0.911 0.842

NAFNet 0.768 0.804 0.726 0.780 0.926 0.869 0.848 0.943 0.809 0.901 0.837

PromptIR 0.774 0.815 0.704 0.784 0.933 0.887 0.876 0.992 0.829 0.918 0.851

DACLIP-NAFNet 0.569 0.810 0.731 0.540 0.965 0.859 0.854 0.946 0.809 0.894 0.798

InstructIR 0.799 0.842 0.789 0.791 0.952 0.860 0.833 0.988 0.836 0.933 0.862

DCPT-NAFNet (Ours) 0.799 0.900 0.810 0.800 0.972 0.912 0.878 0.990 0.858 0.965 0.888

Table 17: Comparison of our method with other all-in-one image restoration approaches in terms of
SSIM on 10D all-in-one restoration task.

C.3 MIXED DEGRADATION DATASET

Here we provide a more detailed comparison between our method with other approaches for mixed
degradation image restoration on CDD test dataset. The results on PSNR and SSIM are shown in
Table 18 and Table 19.
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PSNR (dB) ↑ l h r s l+h l+r l+s h+r h+s l+h+r l+h+s

NAFNet 24.50 25.34 29.24 29.54 21.91 22.75 22.79 23.67 23.86 21.03 20.82

AirNet 24.83 24.21 26.55 26.79 23.23 22.82 23.29 22.21 23.29 21.80 22.24

TransWeather 23.39 23.95 26.69 25.74 22.24 22.62 21.80 23.10 22.34 21.55 21.01

WeatherDiff 23.58 21.99 24.85 24.80 21.83 22.69 22.12 21.25 21.99 21.23 21.04

PromptIR 26.32 26.10 31.56 31.53 24.49 25.05 24.51 24.54 23.70 23.74 23.33

OneRestore 26.55 32.71 33.48 34.50 26.15 25.83 25.56 30.27 30.46 25.18 25.28

InstructIR 26.70 32.61 33.51 34.45 24.36 25.41 25.63 28.80 29.64 24.84 24.32

DACLIP-NAFNet 26.86 33.09 33.91 35.29 25.82 25.74 26.08 29.36 29.75 22.96 23.32

DCPT-NAFNet (Ours) 27.61 36.71 35.75 37.92 27.15 26.75 26.70 32.63 33.40 26.23 26.40

Table 18: Comparison of our method with other universal image restoration approaches in terms of
PSNR on mixed degradation restoration task (CDD dataset). In this table’s header, "l" stands for
low-light, "h" stands for haze, "r" stands for rain, and "s" stands for snow.

SSIM ↑ l h r s l+h l+r l+s h+r h+s l+h+r l+h+s

NAFNet 0.736 0.960 0.899 0.931 0.747 0.665 0.676 0.871 0.904 0.682 0.690

AirNet 0.778 0.951 0.891 0.919 0.779 0.710 0.723 0.868 0.901 0.708 0.725

TransWeather 0.725 0.924 0.899 0.890 0.721 0.694 0.661 0.876 0.868 0.678 0.655

WeatherDiff 0.763 0.904 0.885 0.888 0.756 0.730 0.707 0.868 0.868 0.716 0.698

PromptIR 0.805 0.969 0.946 0.960 0.789 0.771 0.761 0.924 0.925 0.752 0.747

OneRestore 0.827 0.991 0.964 0.974 0.829 0.803 0.797 0.960 0.966 0.795 0.797

InstructIR 0.809 0.978 0.940 0.948 0.800 0.782 0.778 0.921 0.959 0.777 0.760

DACLIP-NAFNet 0.803 0.984 0.957 0.958 0.811 0.793 0.780 0.949 0.960 0.712 0.751

DCPT-NAFNet (Ours) 0.833 0.995 0.975 0.985 0.830 0.812 0.808 0.973 0.980 0.805 0.807

Table 19: Comparison of our method with other universal image restoration approaches in terms
of SSIM on mixed degradation restoration task (CDD dataset). In this table’s header, "l" stands for
low-light, "h" stands for haze, "r" stands for rain, and "s" stands for snow.
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D PYTORCH-LIKE CODE OF DCPT

To illustrate the simplicity and efficacy of DCPT, we present the PyTorch-like code of DCPT here.
We hope that this code will further improve the reproducibility of DCPT.

### train to generate the clean image
encoder.train()
decoder.eval()
optimizer_encoder.zero_grad()
pix_output = encoder(gt, hook=False)

l_total = 0
# pixel loss
if cri_pixel:

l_pix = cri_pixel(pix_output, gt)
l_total += l_pix

### train to classify the degradation
decoder.train()
optimizer_decoder.zero_grad()

hook_outputs = encoder(lq, hook=True)
cls_output = decoder(lq, hook_outputs[::-1])

# classification loss
if cri_cls:

l_cls = cri_cls(cls_output, dataset_idx)
l_total += l_cls

l_total.backward()
optimizer_encoder.step()
optimizer_decoder.step()

E FUTURE WORKS

We have validated the efficacy of DCPT under a majority of degradation conditions. In the future,
we intend to undertake more comprehensive evaluations of DCPT’s performance. Specifically, our
future investigations will focus on: 1) Assessing DCPT’s capability to enhance model performance in
more intricate, real-world scenarios, such as those encountered in the wild; and 2) Addressing mixed
degradation scenarios directly during the degradation classification phase. Numerous real-world
super-resolution studies can inform the former, while the latter may involve framing degradation
classification as a multi-target classification problem.
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