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ABSTRACT

In recent, single-frame temporal action localization (STAL) has captured the at-
tention of the computer vision community. Due to the sparse single-frame annota-
tions, current STAL methods generally employ pseudo-labels strategies to bridge
the gap between weakly-supervised methods and fully-supervised methods. How-
ever, these methods derive pseudo-labels from single-frame of the corresponding
instances, yet the intra-class affinity from the current single-frame to other action
snippets remains neglected. To capitalize on this affinity, we design a dual-level
prototypes guidance (DPG) method with the graph matching random walk (Gm-
Rw) algorithm to achieve instance-level and video-level prototype guidance for
pseudo-labels refinement. For instance-level guidance, the Gm-Rw exploits the
high affinity prototype among instances of the current video to build intra-class
associations. For video-level guidance, an online memory bank is constructed to
iteratively summarize more discriminative prototype. After Gm-Rw builds affin-
ity among intra-class videos, an exponential moving average (EMA) mechanism is
designed to achieve dual-level prototypes guidance for pseudo-labels refinement.
Notably, the dual-level guidance is mutually reinforcing, prompting us to propose
a novel adaptive collaborative strategy (ACS) for dynamic optimization. Exten-
sive experiments on THUMOS14, GTEA, BEOID, and ActivityNet1.3 reveal that
our method significantly outperforms state-of-the-art methods.

1 INTRODUCTION

Temporal action localization (TAL) Field et al. (2007); Ma et al. (2005); Vishwakarma & Agrawal
(2013) is one of the most fundamental tasks of video understanding, which aims to localize start
and end timestamps of actions within video sequences. Thanks to precise boundary annotations, the
fully-supervised TAL (FTAL) Dai et al. (2017); Long et al.; Shou et al. (2017); Chao et al. (2018);
Zhao et al. (2020); Sridhar et al. (2021) methods have triggered remarkable progress. However,
the frame-level annotation of action instances is labor-intensive and time-consuming. To mitigate
this issue, learning with only video-level labels, weakly-supervised temporal action localization
(WTAL) Zhang et al. (2020); Narayan et al. (2020); Luo et al. (2021); Ma et al. (2021); Huang et al.
(2021); Luo et al. (2020); Li et al. (2022a) has drawn considerable interest recently. Conventionally,
WTAL follows a localization and classification pipeline based on snippet-wise classification score
but coarse-grained labels limit its performance. Fortunately, the single-frame temporal action lo-
calization (STAL) Lee & Byun (2021); Fu et al. (2022); Yu et al. (2023); Li et al. (2024) bridges a
gap between FTAL and WTAL tasks, adding only a timestamp for each video instance under WTAL
paradigm. This pioneering research consumes almost comparable labor costs as video-level annota-
tions while providing more pronounced localization results. This prompted us to address TAL from
the perspective of STAL. We provide more related work about TAL in appendix A.1.

Special single-frame annotation for STAL provides sparse location information but brings important
feature representation. In this case, pseudo-labels methods are proposed, which exploit pseudo ac-
tion snippets from the WTAL paradigm to perform FTAL optimization. These pseudo-labels meth-
ods utilize similarity metrics to derive pseudo-labels based on single-frame features, which are then
propagated using dynamic programming algorithms. Unfortunately, this sparse annotation causes
sub-optimal single-frame feature representation, the following issues naturally arise: ❶ Insufficient
feature discrimination leads to an inferior metrics process; and ❷ Lacking feature completeness
hinders dynamic propagation. Tackling these two issues could provide insights into the compre-
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Figure 1: Comparison of pseudo-labels methods. (a) illustrates the pseudo-labels method in STAL
based on threshold segmentation and single-frame filtering methods. (b) shows the STAL methods
for generating pseudo-labels based on similarity metrics for a single frame of the corresponding
instance. (c) briefly shows the way we proceeded for the pseudo-labels guidance, where the intra-
class affinity prototype is utilized.

hensive use of single-frame, and motivate us to improve the pseudo-labels from a prototype view.
More directly, single-frame features are regarded as non-learnable prototypes. To solve issue ❶,
the single-frame features within the current video are regarded as instance-level prototype, which
have high affinity among instances and can improve discrimination. As for issue ❷, we construct a
memory bank to collect and sort high discriminative single-frame features from intra-class videos
as video-level prototype, and diversity supports the feature completeness. After dual-level proto-
types summarizing, i.e. instance-level and video-level, we design a novel graph matching random
walk (Gm-Rw) algorithm to match and enhance the representations of action snippets continuously.
Gm-Rw algorithm mines node-to-node correspondences in graph structures based on the inherent
similarity details and then gets a higher quality single frame based on instance-level and video-
level prototype guidance. Importantly, the instance-level prototype leads to stable and sustainable
representation enhancement. Differently, the video-level prototype depends on the memory bank’s
storage, which is a progressive process when updating discrimination. Thus, dual-level guidance
is mutually complementary, and we additionally propose an adaptive collaborative strategy that dy-
namically optimizes our dual-level prototypes guidance.

The prototype guidance has some appealing qualities. Stability: The sources of the prototype are di-
rectly accessible, which can support a non-learnable prototype and ensure the reliability of features.
The kinds of prototype are diverse (e.g., instance-level prototype, video-level prototype), which can
prompt the model to learn more action features and ensure the effectiveness of the experiments. Ex-
plainability: The proposed dual-level prototypes guidance falls under the category of non-learnable
prototype and holds natural explainability by continuous guidance through similarity-based metrics.
Therefore, the proposed model can make explainable inferences, which is ahead of most models that
failed to expound exactly the model’s working process. Flexibility: Dual-level prototypes guidance
owns a complementary collaborative strategy that can meet the requirements of the weight of dif-
ferent tasks. Its core epistemology is learning from data at different granularity (e.g., instance-level
learning, video-level learning, etc.) to achieve a generalized vision framework.

In summary, our contributions are three-fold:

(1) We rethink to refine pseudo-labels for STAL in a prototype view using the Gm-Rw algorithm.
For instance-level guidance, we leverage the affinity between single-frame features and action in-
stances to enhance action representations. For video-level guidance, we summarize and store more
discriminative prototypes to provide intra-class prototype guidance.
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(2) The DPG is collaborative, thus we additionally design an adaptive collaborative strategy (ACS)
to achieve more comprehensive prototype guidance.

(3) Comprehensive experiments on four standard benchmarks demonstrate that our proposed method
achieves state-of-the-art results.

2 EXISTING PSEUDO-LABELS METHODS FOR STAL

Point-level pseudo-labels. Point-level pseudo-labels of STAL refers to using a single-frame label
as the action label in each action instance while following the WTAL paradigm for training. In
the point-level weakly-supervision setting, each action instance is annotated with only a timestamp,
showing negligible additional cost compared to video-level instances. Ma et al. (2020); Lee & Byun
(2021) starts with single-frame annotation, mines pseudo action frames and background frames,
and constructs point-level classification results, making full use of single-frame supervision to train
the model. Experimental results show that compared with full-supervision annotation, single-frame
annotation greatly saves annotation time and can effectively improve the WTAL model. Its perfor-
mance is even better than the full-supervision method.

Instance-level pseudo-labels. Although point-level supervision can provide more action-related
information, due to the sparsity of single-frame annotations, the model in this mode still cannot
obtain complete action instances. To solve the quality problem of single-frame annotations, Fu et al.
(2022) starts from the similarity of single-frame and considers that the features of different fragments
in action instances should be similar. We try to use point-level annotations to mine training samples
for feature learning to ensure that two similar samples in different feature spaces are similar, which
enhances the compactness of feature representation and reduces intra-action variations.

Pseudo-labels improving. At present, although research has made progress in improving the quality
of single-frame, due to the gap between classification and positioning models, pseudo-labels based
on CAS mining will inevitably introduce noise. To solve this problem, Li et al. (2024) proposed a
guidance strategy based on semantic neighborhood. The core idea is that the similarity of adjacent
segments is relatively high. This guidance strategy can help improve the quality of pseudo-labels
and thus suppress pseudo-labels noise. Experiments show that this strategy can obtain higher quality
pseudo-labels and achieve good results.

The above studies mainly improve the quality of single-frame from a single instance or video. Al-
though these methods have achieved results, they still face the problem of low single-frame quality.
To solve this problem, we designed a dual-level prototypes guidance architecture from the perspec-
tive of non-learning prototypes, which constructs the discriminability and integrity of single-frame
at both the instance-level and the video-level to improve the quality of single-frame and has been
effectively verified on the benchmarks THUMOS14, GTEA, and BEOID.

3 THE PROPOSED METHOD

In this section, we first introduce the problem formulation, as presented in section 3.1. Following
this, a concise depiction of the preliminaries about the baseline network will be presented in section
3.2. Subsequently, our innovative dual-level prototypes guidance method will be provided in com-
prehensive detail in section 3.3. Lastly, the introduction of the adaptive complement strategy will be
presented in section 3.4.

3.1 PROBLEM FORMULATION

We assume that a set of training videos is denoted as {vi}Ni=1, where N represents the total number
of training videos. Each video, vi, is associated with a corresponding video label, yi ∈ RC and
an additional timestamp, τi ∈ T , where C signifies the classes. During the testing phase, we
endeavor to predict a set of action proposals, denoted as {(ts, te, c, q)} for each video. Here, ts and
te respectively denote the start and end times of an action instance, c indicates the predicted action
class, and q represents the confidence score associated with the prediction.
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3.2 PRELIMINARIES

Baseline Setup. We adopt extracted features as our input. The features include RGB features
F rgb ∈ RT×D and optical flow features F flow ∈ RT×D, where T and D are the number of
snippets and the dimension, respectively. In addition, we obtain the corresponding single-frame
features based on the single-frame annotations τ . The video-level class label pi can be derived by
accumulating the point-level labels using the temporal top-k pooling for aggregation. We only use
F to denote the two kinds of features in the following sections for simplicity and adopt LAC Lee &
Byun (2021) as the baseline setting. Appendix A.2 has more descriptions about the baseline.

Discussion. Our selection of baseline adheres to the pseudo-labels method illustrated in Fig. 1.
(b) of STAL, where pseudo-labels are generated based on the corresponding single frame features
using a similarity metric. However, a problem arises with single-frame, as they represent specific
frames within an action that may only capture one aspect of the action. When the single-frame label
represents non-significant parts, the quality of the pseudo-labels is sub-optimal. The effectiveness
of improving the model localization performance is heavily reliant on the quality of the pseudo-
labels. Therefore, we must consider leveraging single-frame features from other action instances.
The single-frame of instances can be derived from two sources: the instances from current video
and other videos. This observation motivates us to address the issue at dual-level, i.e. instance-level
and video-level . To this end, we propose a dual-level prototypes guidance strategy.
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Figure 2: Network architecture. (a) The proposed network consists of the baseline Lee & Byun
(2021) and two important modules, i.e. the dual-level prototypes guidance (DPG) and adaptive
collaborative strategy (ACS). (b) The DPG uses the graph matching random walk algorithm (Gm-
Rw) to realize affinity prototype guidance at the instance-level and video-level, respectively. (c) In
video-level prototype guidance, a memory bank is proposed to store affinity prototypes of various
videos. (d) ACS describes the weight changes for dual-level dynamic mutual optimum.

3.3 DUAL-LEVEL PROTOTYPES GUIDANCE

Prototype summary. Single-frame features exhibit highly salient action representations with strong
activation in class activation sequences (CAS). Instances of the same action class demonstrate highly
consistent representational patterns, leading to strong correlations from single-frame features to ac-
tion snippets. These correlations are demonstrated to be both affine and highly discriminative for
action recognition. we extract single-frame features for the action instances within the single-frame
timestamps τ and form a frame sequence Fτ . The current conceptual framework is constrained in
its ability to assess more similar affinity solely within a single video. We leverage activation values
from CASτ as an index for discriminative features, preserving intra-class prototype for each action
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category. By exploiting the correspondence between CASτ and single-frame features, we establish
two memory tables to store the single-frame features and their associated scores. Given the single-
frame features of a video, we derive their prediction scores from action classification. The index of
each class C is denoted as:

Indexc = Sort(Scores⊕ CASτ ) (1)

We reference the existing scores and their prediction scores of the corresponding single-frame fea-
tures, retaining their index values. The CASτ serves as the foundation for updating and enhancing
the memory bank, which is a structure to store the more discriminative affinity prototype and is
updated throughout the Gm-Rw algorithm.

Mc = argmaxIndexc
(Mc ⊕ Fτ ) (2)

Where ⊕ means that we contact stored memory prototypes based on scores and single-frame features
of current videos. Then we remain the most discriminative M points for each class based on the
index sorted values.

Graph matching random walk (Gm-RW). Currently, we will contemplate the comprehensive and
efficient utilization of the summarized affinity prototype. In the field of computer vision, the Graph
Matching (GM) Aldous & Fill (2002) algorithms are designed to identify node-to-node correspon-
dences between graph structures by leveraging the similarity information inherent in these structures.
Given that the GM seeks node-to-node matches, its outcomes are typically represented by an assign-
ment matrix X . In the context of Single-frame Temporal Action Localization (STAL), individual
single-frame timestamps τ are construed as nodes within the graph. The similarity matrix computed
between single-frame timestamps and the current video can be viewed as a form of graph matching
structure. This insight prompts us to explore the integration of the graph matching algorithms.

In our previous discussion, we summarized dual-level prototypes, which enable us to construct the
affinity from single-frame features to action snippets as a node-to-node relationship for the current
video. To establish this relationship, we try to build the assignment matrix for the GM algorithm
which could realize instance-level and video-level prototype seeking and matching, as illustrated in
Fig. 3. Thus, we derive two forms of node relation, namely the affinity association graphAa and the
discriminative association graph Ad, representing the summarized prototype for the current video.
The computation of these two matrices is outlined as follows:

Aa = Softmax(Norm1(Fτ ∗ FT ))

Ad = Softmax(Norm1(Mc ∗ FT ))
(3)

Here, we employ Norm1 for normalization. By adhering to the principles of graph matching, there
are two graphs with matching in the problem form of graph matching, whereas random walk is only
performed on a single graph. Next, we try to build the assignment matrix from these two association
graphs, which are calculated to represent the similarity between the nodes.

WA =

T∑
k=1

A⊤
a ·Norm1(Aa)

WD =

T∑
k=1

A⊤
d ·Norm1(Ad)

(4)

The resulting matrices WA and WD provide insights into the similarity structure among the eigen-
vectors in F , delineated by their associations with matrix Fτ or Mc. Specifically, if two vectors in
F engage with vectors in Fτ or Mc in an akin way (i.e., their dot products with vectors in Fτ or Mc

are analogous), then the corresponding elements of these two vectors in the resultant matrix will be
amplified, indicating their analogous patterns of action in their interactions with Fτ or Mc.
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The diagonal elements of the similarity matrix contain node-to-node similarity information and the
off-diagonal elements contain edge-to-edge similarity information. The implication is to simulta-
neously maximize the first-order similarity as well as the second-order similarity in the matching
results. Mathematically, this problem is unable to find a globally optimal solution in polynomial
time. Therefore, researchers have proposed the random walk algorithm to solve the problem effi-
ciently and accurately.

We address this matter at both the instance-level and video-level with the Gm-Rw algorithm. In
the graph structure of the Gm-Rw algorithm, our nodes consist of two types: single video affinity
and intra-class discriminative properties. The Gm-Rw algorithm defines the redistribution of node
weights during the random walk as a linear solution process for the assignment matrix and the
current action instances.

Instance-level affinity prototype. Multiple action instances within a single video should exhibit
high affinity. Therefore, the single-frame features of the current instance should have high affinity
with some snippets of other action instances, and we should find them and activate them with the aim
of suppressing contextual interference at the same time. Therefore, we use the Gm-Rw algorithm to
linearly solve for fragments that are affinity with single-frame features in other action instances:

(I − ω1
2 ∗WA) ·XA = I (5)

Where XA represents the solution to the linear equation satisfied by the high affinity of the current
video sequence with the single-frame features Fτ , and is the prototype of the affinity snippets we
wish to obtain inter-guidance within a single video from the current single-frame features to other
action snippets. I participates as an identity matrix, which solves a regularized linear system and is
used to find a steady state or equilibrium.

Video-level affinity prototype. For intra-class videos, action features show greater variability, while
discriminative features play a dominant role. Therefore, we need to collect such discriminative
single-frame features. We maintain an online memory bank that stores a certain amount of discrim-
inative features Mc for each class. Then, we use the Gm-Rw to linearly solve for fragments that are
affinity with single-frame features from other intra-class videos.

(I − ω2
2 ∗WD) ·XD = I (6)

Likewise, XD represents the solution to the linear equation satisfied by the more discriminative
affinity of the current video sequence with theMc from the memory bank and is the affinity prototype
of the discriminative snippets we wish to propagate within intra-class videos.

Prototype guidance with EMA. Using the aforementioned Gm-Rw algorithm, we successfully
determine the dual-level affinity prototypes. Then, we shift our focus to devise a strategy to utilize
this affinity prototype to guide more optimal activation of CAS. In certain semi-supervised learning
scenarios Wang et al. (2022); Sohn et al. (2020); Hu et al. (2021), the Exponential Moving Average
(EMA) can incorporate more historical states in the model learning process, which is necessary to
generate pseudo-labels to train the network from the current model predictions. In practice, we
propose to utilize the EMA for updating original features Fi.

Given the instance-level affinity XA and video-level discriminative XD, we attempt to leverage
these affinity prototypes to update and improve the representation of action features. Furthermore,
in each training epoch, our EMA operates at a dual-level scale. In detail, we consider both the
affinity solution of the current video and the discriminative solution stored in the memory bank
as the discriminative affinity obtained during the current iteration. We update the momentum at
different ratios for these two solutions as follows, respectively.

F ∗
i = ω1XA + (1− ω1).Fi

F ∗
i = ω2XD + (1− ω2).Fi

(7)

The dual-level momentum updating occurs simultaneously with ω1 and ω2 representing the updating
ratios. We observe that the same hyperparameters ω1 and ω2 are used in both the random walk
process and the EMA update process, and we will analyze the reasons for this in section 3.4.
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3.4 ADAPTIVE COLLABORATIVE STRATEGY

To achieve dual-level prototypes guidance for higher-quality pseudo-labels of action instance, we
summarize instance-level affinity prototype Fτ and video-level affinity prototype Mc. Fτ is derived
from the current video, whose action instances have more similar action representations and show
stable and sustainable impact. Thus, we set ω1 to a constant value to maintain this sustainable guid-
ance. Differently, when video-level affinity prototype guidance is implemented, Mc summarizes
more discriminative affinity prototypes under the selection mechanism. To balance the contributions
between the instance-level prototype and the video-level prototype, we introduce the adaptive col-
laborative strategy for the dual-level prototypes guidance as shown in Fig. 2. We set ω2 to a variable
that changes with the training epoch. We compute ω2 as follows:

ω2 = λ · tanh(∆ · (epoch− start)) + ω1 (8)

Where λ and ∆ are hyper-parameters representing the amplitude of the change of the dynamic
weights. At the instance-level, the performance of affinity is relatively stable, and specifying a
constant ω2 during model training could maintain optimal performance. As the weight of ω2 changes
dynamically, the classification model first focuses on the current similar parts and gradually starts
to focus on the parts with high discriminative affinity snippets of actions. The single focus of the
model is alleviated, and comprehensive prototype guidance of the entire instance is further achieved.
Comprehensively, the quality of generated pseudo-labels is greatly improved with ACS.

With the help of the ACS strategy, we have improved our Gm-Rw algorithm to achieve dual-level
prototypes guidance as shown in Algorithm 1: the Gm-Rw Algorithm for DPG.

Algorithm 1 the Gm-Rw Algorithm for DPG
1: Input: FT , Fτ , Mc

2: Initialize ω1, λ, ∆ and start epoch
3: for each epoch E do
4: Compute association matrix Aa and Ad

5: Aa = Softmax(Norm1(Fτ ∗ FT ))
6: Ad = Softmax(Norm1(Mc ∗ FT ))
7: Compute similarity matrix WA and WD

8: WA =
∑T

k=1 A⊤
a ·Norm1(Aa)

9: WD =
∑T

k=1 A⊤
d ·Norm1(Ad)

10: Compute ω2:
11: ω2 = λ · tanh(∆ · (E − start)) + ω1

12: Random Walk on two similarity matrixs:
13: (I − ω1

2 ∗WA) ·XA = I
14: (I − ω2

2 ∗WD) ·XD = I
15: Dual-level prototypes guidance with EMA:
16: F ∗

i = ω1 ∗XA/2 + ω2 ∗XD/2 + (2− ω1 + ω2)/2 ∗ Fi

17: return F ∗

18: Output: Refined F ∗

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

Dataset. Four datasets: GTEA Fathi et al. (2011) consists of 28 videos of 7 daily actions in the
kitchen. They are split into 21 samples for training and 7 samples for testing, with an average of
17.5 single-frame labels per training sample. BEOID Fathi et al. (2011) provides 58 video samples
with 30 action classes with an average duration of 60s, with an average of 12.5 action instances
per video. THUMOS14 Jiang et al. (2014) has 413 untrimmed videos of 20 action categories,
where 200 validation samples are used for training and 213 test samples for performance evaluation.
This dataset is challenging due to the varying lengths and diverse occurrence frequencies of action
instances. ActivityNet v1.3 Heilbron et al. (2015) consists of 10024 training videos, 4926 validation
videos, and 5044 testing videos belonging to 200 action categories.

7
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Table 1: Results on THUMOS14 testing set. We report the mAP values at different IoU thresholds.
And I3D denotes the I3D features. ∗ means the methods utilize the additional weak supervision.

Supervision Method mAP(%)@IoU AVG
0.1 0.2 0.3 0.4 0.5 0.6 0.7 (0.1:0.7) (0.1:0.5) (0.3:0.7)

Frame-level (Full)
BSN Lin et al. (2018) - - 53.5 45.0 36.9 28.4 20.0 - - 36.8
BMN Lin et al. (2019) - - 56.0 47.4 38.8 29.7 20.5 - - 38.5
BSN++ Su et al. (2021) - - 59.9 49.5 41.3 31.9 22.8 - - 41.1

Video-level (Weak)

DCC(I3D) Li et al. (2022a) 69.0 63.8 55.9 45.9 35.7 24.3 13.7 44.0 54.1 35.1
ASM-Loc(I3D) He et al. (2022) 71.2 65.5 57.1 46.8 36.6 25.2 13.4 45.1 55.4 35.8
TEN(I3D) Li et al. (2022b) 69.7 64.5 58.1 49.9 39.6 27.3 14.2 46.1 56.3 37.8
RSKP(I3D) Huang et al. (2022) 71.3 65.3 55.8 47.5 38.2 25.4 12.5 45.1 55.6 35.9
DELU(I3D) Chen et al. (2022) 71.5 66.2 56.5 47.7 40.5 27.2 15.3 46.4 56.5 37.4
P-MIL(I3D) Ren et al. (2023) 71.8 67.5 58.9 49.0 40.0 27.1 15.1 47.0 57.4 38.0
RFBS(I3D) Liu et al. (2023) 72.3 - 59.2 - 37.7 - 13.7 46.4 57.1 -
DDG-Net(I3D) Tang et al. (2023) 75.1 68.9 60.2 48.9 38.3 26.8 14.7 47.2 58.2 37.7
PivoTAL(I3D) Rizve et al. (2023) 74.1 69.6 61.7 52.1 40.0 27.1 15.1 47.0 57.4 38.0

Frame-level (Weak∗)

STAR(I3D) Xu et al. (2019) 68.8 60.0 48.7 34.7 23.0 - - - 47.0 -
SF-Net(I3D) Ma et al. (2020) 68.3 62.3 52.8 42.2 30.5 20.6 12.0 41.2 51.2 31.6
DCM(I3D) Ju et al. (2021) 72.8 64.9 58.1 46.4 34.5 21.8 11.9 44.3 55.3 34.5
LAC(I3D) Lee & Byun (2021) 75.7 71.4 64.6 56.5 45.3 34.5 21.7 52.8 62.7 45.8
ARIM(I3D) Yu et al. (2023) 73.1 66.8 58.6 47.9 37.0 24.3 12.8 45.8 56.6 36.1
CRRC-Net(I3D) Fu et al. (2022) 77.8 73.5 67.1 57.9 46.6 33.7 19.8 53.8 64.6 45.1
NGPR(I3D) Li et al. (2024) 77.9 73.9 66.6 59.4 48.6 36.7 22.7 55.1 65.3 46.8
Ours(I3D) 81.8 77.0 70.3 61.2 51.2 37.2 23.1 57.4 67.0 47.5

Table 2: Results on GTEA and BEOID validation sets. AVG means the average mAP from IoU=0.1
to 0.7.

GTEA BEOID
Method mAP(%)@IoU mAP(%)@IoU

0.1 0.3 0.5 0.7 AVG 0.1 0.3 0.5 0.7 AVG
SF-Net Ma et al. (2020) 58.0 37.9 19.3 11.9 31.0 62.9 40.6 16.7 3.5 30.9
DCM Ju et al. (2021) 59.7 38.3 21.9 18.1 33.7 63.2 46.8 20.9 5.8 34.9
Li et al. Li et al. (2021) 60.2 44.7 28.8 12.2 36.4 71.5 40.3 20.3 5.5 34.4
LAC Lee & Byun (2021) 63.9 55.7 33.9 20.8 43.5 76.9 61.4 42.7 25.1 51.8
NGPR Li et al. (2024) 74.3 62.8 35.7 13.7 46.6 77.2 64.3 44.0 24.5 53.1
Ours(I3D) 71.8 61.5 37.8 16.7 46.9 77.3 69.7 53.7 25.5 56.5

Evaluation Metrics. We follow the standard evaluation protocol by reporting mean average preci-
sion (mAP) values under different intersection over union (IoU) thresholds.

4.2 IMPLEMENTATION DETAILS

We employ the Inflated 3D ConvNet (I3D) Gkalelis et al. (2009), pre-trained on the Kinetics-400
dataset, as our feature extractor. The embedded module consists of a 1D conventional layer with the
rectified linear unit (ReLU) activation function. Each video is segmented into 16-frame segments,
which serve as inputs to the feature extractor, yielding 2048-dimensional late-fusion features. We
maintain the original number of segments as ψ without any form of sampling. Our model is opti-
mized using the Adam optimizer, with a learning rate set to 1e-4 and a batch size of 16. Hyperpa-
rameters are selected via grid search, with γ = 0.95 and ψ = 0.1. The video-level threshold θvid is
established at 0.5, while the segment-level threshold θseg ranges from 0 to 0.25, with increments of
0.05. Non-maximum suppression (NMS) is applied with a threshold of 0.7. In adaptive collabora-
tive strategy, we set ω1 = 0.2, ω2 = 0.04, λ = 0.2 and ∆ = 0.0025 for dynamically update to balance
dual-level prototypes guidance.

4.3 COMPARISON WITH STATE-OF-THE-ART METHODS

We report experimental results for DPG in Table 1, Table 2, and Table 3. These results are based
on the THUMOS14, BEOID, GTEA, and ActivityNet1.3 validation datasets. The proposed method
outperforms state-of-the-art methods on the datasets. First, our model significantly outperforms
state-of-the-art point-level weakly supervised action localization methods. On THUMOS14, our
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Table 3: Results on ActivityNet1.3 validation set. AVG means the average mAP from IoU=0.5 to
0.95.

ActivityNet1.3 mAP(%)@IoU
0.5 0.75 0.95 AVG

LAC Lee & Byun (2021) 40.4 24.6 5.7 25.1
CRRC Fu et al. (2022) 39.8 24.1 5.9 24.0
NGPR Li et al. (2024) 41.3 30.9 4.8 26.5
Ours(I3D) 42.4 31.6 6.3 26.7

Table 4: Ablation studies on the THUMOS14. The model with Lbase is our baseline. And the model
with instance-level and video-level prototype guidance is the full model.

Lbase ins − level vid − level
mAP(%)@IoU

0.1 0.3 0.5 0.7 AVG
✓ - - 75.7 64.6 45.3 21.8 52.8
✓ ✓ - 78.6 67.3 45.8 22.8 54.5
✓ - ✓ 79.9 69.2 49.1 22.7 56.3
✓ ✓ ✓ 81.3 70.3 51.2 23.1 57.4

DPG significantly improves mAP by 2.3% over NGPR at AVG mAP (0.1:0.7). Under low IoU
thresholds, our performance advantage is great, for example, the improvement of mAP@IoU = 0.1 is
3.9%, and the improvement of mAP@IoU = 0.2 is 3.1%. It is worth noting that our point-supervised
method can surpass the performance of fully supervised methods such as BSN++ (6.4% higher at
AVG mAP (0.3:0.7)). In addition, in terms of AVG mAP (0.1:0.7), compared with NGPR, our
method significantly improved by 0.3% on GTEA, 3.4% on BEOID, and 0.2% on ActivityNet1.3.
The effectiveness of the proposed method and its versatility on different datasets are demonstrated.

4.4 ABLATION STUDY

Effectiveness of dual-level knowledge guidance. As shown in Table 4, we study the two major
elements of dual-level guidance, namely instance-level guidance for improving single-frame dis-
crimination and video-level guidance for improving single-frame completeness. The mAP@IoU
from 0.1 to 0.7 of base-line are 75.7%, 64.6%, 45.3%, and 21.8% respectively. After the baseline is
guided by instance-level prototype, we observe that the above performance indicators are improved,
which highlights the importance of instance-level guidance and verifies that our method is also ef-
fective in the case of a single video. In addition, after introducing video-level guidance into the
baseline, our performance indicators are improved by 4.2%, 4.6%, 3.8%, and 0.9%, respectively,
with an AVG mAP improvement of 3.5%. Finally, by integrating the two guidance techniques, the
proposed method achieves the best performance in all five indicators compared with the baseline.
For example, the mAP@IoU from 0.1 to 0.7 is 5.6%, 5.7%, 5.9%, and 1.3% higher than the baseline,
and the AVG mAP is improved by 4.6%. This shows that the proposed instance-level prototype and
video-level prototype guidance can work together and prove the respective effect of the dual-level
prototypes guidance.

Effectiveness of ACS. In the above, we proposed a collaborative optimization strategy to improve
the effect of instance-level prototype guidance and video-level prototype guidance on the entire
model. As shown in Table 5, the full model with ACS has improved in every benchmark indicator
compared to the full model without ACS, and the AVG has increased by 1.1%, which is very
consistent with the purpose of designing ACS, that is, to ensure that the prototype guidance in DPG
is diverse within the same class and encourage extensive learning of different features of actions
within the class. This also means that the collaborative optimization method of multiple instances
and multiple videos also promotes the improvement of model performance.

Effectiveness of M . Above, we proposed using memory banks to store features of the same class to
improve the integrity of single-frame information. Table 6 reports experiments with the number of
features M in the memory bank from 2 to 11. We can conclude that the value of M has a significant
impact on the performance of our model and M = 5 can obtain the best result 57.5%. We found
that when M is set too small, the learned features are not complete enough and cannot function as
a memory bank. When M is set too large, there is redundant single-frame information in a single
frame in the memory bank, and the effect is not significantly improved.
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Table 5: Results on THUMOS14 testing set. AVG means the average mAP from IoU=0.1 to 0.7.
Method mAP(%)@IoU

0.1 0.3 0.5 0.7 AVG
without ACS 80.1 68.8 48.9 22.1 56.3
with ACS 81.3 70.3 51.2 23.1 57.4

Table 6: Results of different M values on video-level and dual-level.
Method AVG mAP(%)(0.1:0.7)

2 3 4 5 7 9 11
video-level 55.4 55.9 56.1 56.3 56 56.1 56.1
dual-level 55.9 56.7 57.3 57.5 57.5 57.4 57.4

4.5 QUALITATIVE RESULTS

To demonstrate the effectiveness of the proposed method, we visualize several examples of localized
action instances in Fig. 3. These results are from the THUMOS14 testing set, where Baseline, Ours,
and GT stand for results on LAC, our method, and the ground truth, respectively. Three examples
are selected: CliffDiving, FrisbeeCatch1 and FrisbeeCatch2. First, when the three videos are com-
pared with the baseline, the proposed method DPG improves the completeness of the localization
performance. Second, it can be observed in CliffDiving that the co-occurring background, as well as
highly similar affinity foreground actions, exist between multiple instances of the same video. Third,
there are associated clips between different videos of the same class, as shown in FrisbeeCatch1 and
FrisbeeCatch2, which are guided by the modules we designed so that they can interact with each
other and guide to promote pseudo-labels.

baseline

ours
GT

baseline

ours
GT

baseline

ours
GT

CliffDiving
1 2 3 4 5

1 2 3 4 5

1 2

21 3

1 2 3

1 2

FrisbeeCatch 1

FrisbeeCatch 2

Figure 3: Comparison of effectiveness. We show the two class three untrimmed videos, namely,
CliffDiving, FishbeeCatch1, and FishbeeCatch2. GT is the ground truth of the videos, the baseline
is the LAC Lee & Byun (2021), and DPG is the method we proposed.

5 CONCLUSION

We expand upon previous STAL methods which focused on generating pseudo-labels to catch up
with the accuracy of fully-supervised. Unlike previous pseudo-labels methods, we extend the scope
of generating pseudo-labels from corresponding instances of single-frame to dual-level intra-class
instances. Thus, we refine pseudo-labels from the perspective of instance-level and video-level
affinity prototype. Innovatively, we design the Gm-Rw algorithm to explore the affinity prototype,
and then achieve the collaborative dual-level prototypes guidance under the EMA mechanism. The
evaluation of our method on three benchmark datasets, including THUMOS14, GTEA, BEOID, and
ActivityNet1.3 demonstrates that our proposed method achieves state-of-the-art performance.
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