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Abstract

We introduce Generalized Instruction Tuning (called GLAN), a general and scalable
method for instruction tuning of Large Language Models (LLMs). Unlike prior work that
relies on seed examples or existing datasets to construct instruction-tuning data, GLAN
exclusively utilizes a pre-curated taxonomy of human knowledge and capabilities as input
and generates large-scale synthetic instruction data across all disciplines. Specifically, in-
spired by the systematic structure in human education system, we build the taxonomy by
decomposing human knowledge and capabilities to various fields, sub-fields and ultimately,
distinct disciplines semi-automatically, facilitated by LLMs. Subsequently, we generate a
comprehensive list of subjects for every discipline and proceed to design a syllabus tailored
to each subject, again utilizing LLMs. With the fine-grained key concepts detailed in ev-
ery class session of the syllabus, we are able to generate diverse instructions with a broad
coverage across the entire spectrum of human knowledge and skills. Extensive experiments
on large language models (e.g., Mistral) demonstrate that GLAN excels in multiple dimen-
sions from mathematical reasoning, coding, academic exams, logical reasoning to general
instruction following without task-specific training data. In addition, GLAN allows for
easy customization and new fields or skills can be added by simply incorporating a new
node into our taxonomy.

1 Introduction

Large Language Models (LLMs) have enabled unprecedented capabilities to understand and generate text
like humans. By scaling up model size and data size (Kaplan et al., 2020; Hoffmann et al., 2022), LLMs are
better at predicting next tokens and prompting to perform certain tasks with a few demonstrations (Brown
et al., 2020). However, these capabilities do not directly translate to better human instruction-following
ability (Ouyang et al., 2022). Instruction tuning (Wei et al., 2022) bridges this gap by fine-tuning LLMs on
instructions paired with human-preferred responses.

Previous work has constructed instruction tuning data using seed examples or existing datasets (Xu et al.,
2023a; Wang et al., 2023). For example, FLAN (Wei et al., 2022) aggregates traditional NLP datasets into
an instruction-following set. However, the availability of only a few thousand NLP tasks (Wang et al., 2022;
Longpre et al., 2023) restricts the generalization capabilities of LLMs trained on FLAN (Xu et al., 2023a).
Recently, the Self-instruct approach (Wang et al., 2023) has generated synthetic instruction tuning datasets
from a limited pool of human-written seed instructions. Evolve-Instruct (Xu et al., 2023a) further enhances
this by augmenting existing instruction tuning datasets through rewriting operations using LLMs. Despite
these advancements, these strategies primarily rely on data augmentation, meaning the range of domains or
tasks covered by the augmented datasets remains constrained by the original input datasets.

How to create a general instruction tuning dataset? We draw inspiration from the systematic structure
in human education system. The structure of human education includes several levels, starting from early
childhood education up to higher education and beyond (Wikipedia contributors, 2023). Within each level,
a student acquires knowledge, skills, and values in a systematic process. The courses a student learns from
primary school to college cover a broad range of knowledge and skills, which facilitates the development of
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Figure 1: Comparing GLAN with FLAN (Longpre et al., 2023), Self-Instruct (Wang et al., 2023) and Evolve-
Instruct (Xu et al., 2023a). The inputs of FLAN, Self-Instrct and Eovlve-Instruct are either seed examples or
existing datasets, which limits the scope of domains of instructions that these methods can generate. GLAN
takes the taxonomy of human knowledge & capabilities as input to ensure the broad coverage of generated
instructions in various domains. This taxonomy is then broken down into smaller pieces and recombined to
generate diverse instruction data.

a diverse array of abilities. We believe that the systemic framework of the human education system has the
potential to help the generation of high-quality and general instruction data, which spans a diverse range of
disciplinary areas.

In this paper, we introduce a generalized instruction tuning paradigm GLAN (shorthand for Generalized
Instruction-Tuning for Large LANguage Models) to generate synthetic instruction tuning data almost from
scratch. As shown in Figure 1, unlike existing work (Xu et al., 2023a; Luo et al., 2023b;a; Mukherjee et al.,
2023), GLAN exclusively utilizes a pre-curated taxonomy of human knowledge and capabilities as input and
generates large-scale instruction data systematically and automatically across all disciplines. Specifically,
inspired by the structure of the human education system, the input taxonomy is constructed by decomposing
human knowledge and capabilities to various fields, sub-fields, and, ultimately, distinct disciplines semi-
automatically, facilitated by LLMs and human verification. The cost of human verification process is low
due to the limited number of disciplines in the taxonomy. As shown in Figure 1, we then further break
down these disciplines into even smaller units. We continue to generate a comprehensive list of subjects for
every discipline and proceed to design a syllabus tailored to each subject, again utilizing LLMs. With the
fine-grained key concepts detailed in every class session of the syllabus, we can first sample from them and
then generate diverse instructions with broad coverage across the entire spectrum of human knowledge and
skills. The process described above mirrors the human educational system, where educators in each discipline
craft a series of subjects for student learning. Instructors then develop a syllabus for each subject, breaking
down the content into specific class sessions. These sessions are then further divided into core concepts that
students must comprehend and internalize. Based on these detailed core concepts outlined in the syllabus,
teaching materials and exercises are subsequently created, which are our instruction tuning data.

GLAN is general, scalable and customizable. GLAN is a general method, which is task-agnostic and
is capable of covering a wide range of domains. GLAN is scalable. Similar to Wang et al. (2023); Xu
et al. (2023a), GLAN generates instructions using LLMs, which can produce instructions on a massive
scale. Moreover, the input of GLAN is a taxonomy, which is generated by prompting an LLM and human
verification, requiring minimal human effort. GLAN allows for easy customization. New fields or skills can
be added by simply incorporating a new node into our taxonomy. Note that each node of the taxonomy can
be expanded independently, which means that we only need to apply our method to the newly added nodes
without re-generating the entire dataset. Extensive experiments on large language models (e.g., Mistral)
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demonstrate that GLAN excels in multiple dimensions from mathematical reasoning, coding, academic
exams, and logical reasoning to general instruction following without using task-specific training data of
these tasks.

2 GLAN: Generalized Instruction-Tuned Language Models

GLAN aims to create synthetic instruction data covering various domains of human knowledge and capa-
bilities on a large scale. As shown in Algorithm 1, we first build a taxonomy of human knowledge and
capabilities using frontier LLMs (i.e., GPT-4) and human verification. The taxonomy naturally breaks down
human knowledge and capabilities to fields, sub-fields, and ultimately different disciplines (see Section 2.1).
The following steps are fully autonomously facilitated by GPT-4 (or GPT-3.5). Then for each discipline,
we again instruct GPT-4 to further decompose it into a list of subjects within this discipline (Section 2.2).
Similar to an instructor, GPT-4 continues to design a syllabus for each subject, which inherently breaks a
subject into various class sessions with key concepts that students need to master (Section 2.3). With the
obtained class sessions and key concepts, we are ready to construct synthetic instructions. We prompt GPT-4
to generate homework questions based on randomly sampled class sessions and key concepts as well as the
syllabus (Section 2.4). We recursively decompose human knowledge and capabilities into smaller units until
atomic-level components (i.e., class sessions and key concepts). We expect to randomly combine these class
sessions and key concepts to ensure the coverage and diversity of synthetic instructions.

Algorithm 1 GLAN Instruction Generation
D← build_taxonomy() ▷ build a taxonomy and return a list of disciplines (Section 2.1)
L← ∅
for each discipline d ∈ D do

S← generate_subjects(d) ▷ Obtain a list of subjects in d (Section 2.2)
for each subject s ∈ S do
A ← generate_syllabus(s, d) ▷ Return syllabus A for s (Section 2.3)
C,K← extract_class_details(A) ▷ Extract class sessions and key concepts (Section 2.3)
Q← generate_instructions(A,C,K, d) ▷ Generate instructions by sampling class sessions and

key concepts (Section 2.4)
L← L ∪Q

end for
end for
return L

2.1 Taxonomy of Human Knowledge and Capabilities

We build a taxonomy of human knowledge and capabilities to guide the generation of synthetic instructions.
Therefore, its coverage is important. On the other hand, it is also essential to make the taxonomy highly
extensible, since the preferred capabilities of LLMs may change over time. In the first step, we propose
to generate the taxonomy by prompting GPT-4 with a set of different instructions (e.g., list all fields
of human knowledge and capabilities). Then, we do human post-editing to ensure its correctness and
completeness. Due to the limited number of fields, sub-fields, and disciplines in our taxonomy, the cost of
human verification is reasonably low. Another advantage of human post-editing is that we can easily add
new fields or disciplines to the taxonomy as needed.

Our taxonomy currently covers a diverse range of knowledge and capabilities in both academic education
and vocational training. The top level of the taxonomy contains fields such as Natural Sciences, Humanities,
or Services (vocational training). These fields branch out to various sub-fields and/or disciplines such as
Chemistry, Sociology or Retailing. We keep breaking down nodes of the taxonomy until disciplines, and
we leave the breaking down of disciplines to automatic methods described in the following sections. By
collecting the leaf nodes of the taxonomy, we obtain a list of disciplines D = {d1, d2, . . . , dM}.
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2.2 Subject Generator

As in Algorithm 1, for each discipline d, we aim to extract the list of subjects in it through prompt engineering.
Specifically, we instruct GPT-4 to act as an education expert of discipline d and design a list
of subjects a student should learn. The completion of GPT-4 contains a comprehensive list of subjects
and their meta data (e.g., level, introduction and subtopics of the subject) in unstructured text format, which
can not be directly used in subsequent steps. We therefore used another round of prompting to convert the
completion to JSONL format:

Prompt
Transform the above to JSONL format so that it is easier for a computer to understand. Enclose the JSONL output
between two sets of triple backticks. For each JSONL object, use the keys “subject_name”, “level” and “subtopics”.

It is worth noting that generating a subject list in JSONL format using a single prompt is feasible. However,
we refrain to do so, because we observe that incorporating additional formatting instructions directly into
the prompt can compromise the quality of the resulting subject list. These extracted subjects (as well as
their meta data) S = {s1, s2, . . . , sN} can be subsequently used in next steps. For each s ∈ S, let s.name,
s.level and s.subtopics denote the name, grade level and subtopics of subject s, respectively. We can
apply the above prompts multiple times to ensure better coverage of subjects within this discipline.

2.3 Syllabus Generator

For each subject s, we have already extracted its name (s.name), grade level (s.level), and a small set of
included sub-topics (s.subtopics) in a structured format. In this section, we aim to further segment each
subject into smaller units, making them more suitable for creating homework assignments. We consult GPT-4
to design a syllabus for this subject. We opt for syllabus generation for the following reasons. Firstly, a
syllabus essentially breaks down the main topic of a subject into smaller segments in a hierarchical manner.
Specifically, each subject comprises several class sessions, and each session covers a variety of sub-topics
and key concepts. Secondly, a syllabus provides an introduction, objectives, and expected outcomes of a
subject, which are inherently useful for formulating homework questions. We instruct GPT-4 to 1) design
a syllabus based on its meta data (s.level, s.name and s.subtopics); 2) break the subject into different
class sessions; 3) provide details for each class session with a description and detailed key concepts students
need to master.

Let A denote the generated syllabus. The resulting syllabus A is in unstructured text format. However, class
session names and key concepts of each class are required in the instruction generation step (see Algorithm
1). Similar to the process of subject list extraction in Section 2.2, we again extract these meta data of each
class session by prompting GPT-4. As a result, we obtain a list of class sessions C = {c1, c2, . . . , c|C|} and
their corresponding key concepts K = {k1, k2, . . . , k|C|}. The detailed prompt for syllabus generation is in
Appendix A.3.

2.4 Instruction Generator

Given a syllabus A as well as a list of its class sessions C and their associated key concepts K, we are ready
to generate homework questions and their answers. To generate diverse homework questions, we first sample
one or two class session names from C and one to five key concepts under these selected class sessions. Let Ĉ
denote the selected class session names and K̂ the selected key concepts. Then we prompt GPT-4 (or GPT-3.5)
to generate a homework question given the selected class sessions Ĉ and key concepts K̂ as well as the syllabus
A. We intend to give GPT-4/3.5 more context (e.g., what students have already learned in previous sessions)
when creating assignments. Therefore, we additionally instruct GPT to consider that students have learned
up to class sessions Ĉ when crafting homework and try to leverage multiple key concepts across different
class sessions. See details of our prompt for instruction generation in Appendix A.4.

Sampling Class Sessions and Key Concepts In a single syllabus, there are numerous class sessions and
key concepts. We have two strategies to sample from them. In the first strategy, we generate assignments
from a single class session. Therefore, we have only one class session name. Suppose we have m key
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concepts in total in this session. We randomly sample one to five key concepts from the m key concepts,
which means we have totally

∑5
i=1

(
m
i

)
unique combinations. In this strategy, we focus on creating basic

homework questions. To make the resulting questions more challenging (combine knowledge from multiple
class sessions), we propose a second strategy to combine key concepts from two class sessions in the second
strategy. We intend to generate questions leverage knowledge from two different class sessions. Suppose we
have m1 and m2 key concepts in the first and second class sessions, respectively. We can have

∑5
i=2

(
m1+m2

i

)
−∑5

i=2
(

m1
i

)
−

∑5
i=2

(
m2

i

)
different combinations, which is significantly more than that of the first strategy.

We use both strategies to ensure our created questions are diverse in difficulty levels.

Answer Generation After we generate questions in previous steps, we simply send these questions to
GPT-3.5 and collect answers. We use GPT-3.5 for answer generation, because we find the quality of generated
answers from GPT-3.5 is sufficiently good and using GPT-3.5 is significantly faster than GPT-4. The resulting
question-answer pairs are our instruction tuning data. With a huge amount of question-answer pairs ranging
from different disciplines with various difficulty levels, we expect the resulting LLM can excel in a wide range
of tasks.

3 Experiments

3.1 Data Generation

Taxonomy Creation By asking GPT-4 to create a taxonomy of human knowledge and capabilities, we end
up with a set of fields, sub-fields, and disciplines that cover a broad range of domains in human knowledge
and capabilities. Next, we ask human annotators to decide whether these elements in the taxonomy should
be kept or not in order to reduce the redundancy of the taxonomy while maintaining its correctness. Note
that if a field or sub-field is marked as remove, we remove its descendant as well. We kept 126 disciplines
after majority voting (provided in supplementary materials). Note that it is feasible to manually add extra
disciplines, sub-fields, or fields whenever necessary.

Subject and Syllabus Generation During the subject list and syllabus generation, we prompt GPT-4 and
employ nucleus sampling (Holtzman et al., 2020) with temperature T = 1.0 and top-p = 0.95 to encourage
diversity. We do not use GPT-3.5-turbo since some subjects belong to the long-tail distribution which
may not be effectively modeled by GPT-3.5-turbo. To ensure diversity and completeness of the generated
subjects, we query GPT-4 10 times for each discipline (Section 2.2). There are 100 to 200 subjects for each
discipline on average. It is worth noting that the same subjects may appear in different disciplines. For
instance, the subject calculus is both in physics and mathematics. We do not de-duplicate those subjects,
since it may reflect their importance in human knowledge. Given a subject in a specified discipline, we query
GPT-4 for only one time to design a syllabus (see details in section 2.3). The temperature and top-p are still
set to 1.0 and 0.95, respectively. The number of class sessions contained in each syllabus varies from 10 to
30 and each class session contains around five key concepts.

Instruction Data Generation Each instruction data consists of a question and its answer. We choose
to generate questions and answers separately since we observed that separate generations lead to higher
quality outputs. After question generation with GPT-4, each question is then answered by GPT-3.5-turbo
with temperature T = 0.7, top-p = 0.95 (we use a lower temperature in order to make the resulting answers
more accurate). We use GPT-3.5-turbo instead of GPT-4 for answer generation, because GPT-3.5-turbo is
significantly faster with reasonably good results. According to the calculation method outlined in Section
2.4, we have over 500 million unique combinations of class sessions and key concepts, which guarantees
the diversity of the generated data. In this paper, we generate 10 million instruction-response pairs in
total and then we do training data decontamination. Specifically, the training instruction-response pairs are
decontaminated by removing pairs that contain questions or input prompts from the test and training (if
any) sets of benchmarks we evaluate. We exclude the training set of benchmarks we evaluate to verify the
generalization capability of our synthetic data.
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Table 1: Main results on Mathematical Reasoning, Coding, Logical Reasoning, and Academic Exam bench-
marks. Best results are in boldface, while the second best results are underscored.

Model θ HumanE MBPP GSM8K MATH BBH ARC-E ARC-C MMLU
GPT-4 – 88.4 80.0 92.0 52.9 86.7 95.4 93.6 86.4
GPT-3.5-turbo – 72.6 70.8 74.1 37.8 70.1 88.9 83.7 70.0
LLaMA2 7B 12.8 36.2 15.4 4.2 39.6 74.6 46.3 45.9
Orca 2 7B 17.1 28.4 55.7 10.1 42.8 87.8 78.4 53.9
WizardLM v1.2 13B 31.7 47.9 46.8 9.0 48.4 74.2 50.2 52.7
Mistral 7B 28.0 50.2 43.4 10.0 56.1 79.5 53.9 62.3
Mistral Instruct 7B 46.7 31.7 24.4 8.2 46.0 76.9 52.0 53.7
MetaMath Mistral 7B 35.4 48.6 77.7 28.2 55.7 77.3 51.0 61.0
WizardMath v1.1 7B 51.2 54.1 83.2 33.0 58.2 79.8 53.2 60.3
Mistral CodeAlpaca 7B 35.4 50.2 34.6 8.3 56.1 79.1 54.2 60.9
GLAN 7B 48.8 57.6 80.8 32.7 60.7 90.7 81.1 62.9

Inference Cost The inference cost of GLAN is closely tied to the models used for data generation.
Note that GLAN is not limited to GPT-4 or GPT-3.5; it can be applied to any open-source or closed-
source models. To best showcase GLAN’s performance, we selected the top available models at the time
of writing—specifically, GPT-4 and GPT-3.5. We queried GPT-4 approximately 26,000 times for taxonomy,
subject, and syllabus generation combined. For instruction generation, we queried GPT-4 10 million times,
and for answer generation, we queried GPT-3.5 also 10 million times. For more details, please refer to
Appendix A.5.

3.2 Model Training

We employ Mistral 7B (Jiang et al., 2023) as our base model. During training, we concatenate each instruc-
tion and response pair to a single sequence and only compute loss on response tokens. We train our model
for 3 epochs with a learning rate of 3e-6. The batch size is set to approximately 512 instruction-response
pairs. We employ a dynamic batch size to ensure a constant total number of tokens per batch. We use a
cosine learning rate schedule and we start with a linear warm-up of 1000 steps and the final learning rate is
reduced to 0. The training requires approximately 8 days using 32 A100 GPUs.

3.3 Benchmark Evaluation

The instruction data GLAN generated spans a wide range of subjects. We evaluate its effectiveness in
mathematical reasoning, coding, logical reasoning, and academic exams.

Mathematical Reasoning: Mathematics is a common subject in many different disciplines. Hence, it is
necessary to test the math reasoning ability of GLAN. We choose the two popular benchmarks for evaluation
(i.e., GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021b)). GSM8K (Cobbe et al., 2021) is
a high-quality math problem dataset that measures the basic multi-step mathematical reasoning ability. It
contains around 7k problems for training and 1K problems for test. MATH (Hendrycks et al., 2021b) is
a challenging math dataset that contains mathematics competition-level problems from AMC, AIME, etc.
The 7.5k training and 5K test problems cover seven math subjects, i.e., Prealgebra, Precalculus, Algebra,
Intermediate Algebra, Number Theory, Counting and Probability, and Geometry. Note that GLAN does
not use any examples in the training set of GSM8K or MATH. Following Luo et al. (2023a), we report 0-shot
setting results for GLAN. Coding: To evaluate the coding capability of GLAN, we opt for two coding
benchmarks HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021). We employ 0-shot setting
for HumanEval and 3-shot setting for MBPP following prior art (Chen et al., 2021; Luo et al., 2023b).
BBH : The instruction dataset we generated covers many disciplines, which can potentially enhance the
reasoning ability of GLAN. Therefore, we evaluate GLAN on the BIG-Bench Hard dataset (BBH (Suzgun
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Table 2: Detailed Results on Academic Exam benchmarks.

Model ARC-E ARC-C MMLU
STEM Humanities Social Sciences Other

Mistral 79.5 53.9 52.0 56.5 73.3 70.1
GLAN 90.7 81.1 60.1 54.9 71.8 68.6

et al., 2023)), which contains 23 challenging tasks from Big-Bench (Srivastava et al., 2023). We employ the
standard 3-shot setting with chain-of-thought demonstrations. Academic Exams: We also evaluate GLAN
on different academic benchmarks to verify whether GLAN is capable of solving exam questions. We choose
two benchmarks (i.e., ARC (Clark et al., 2018) and MMLU (Hendrycks et al., 2021a)). Both benchmarks
are composed of multi-choice questions. AI2 Reasoning Challenge (ARC (Clark et al., 2018)) contains grade-
school level, multi-choice science questions. It contains two sub-sets, which are ARC-Challenge (ARC-C)
and ARC-Easy (ARC-E). Massive Multitask Language Understanding (MMLU (Hendrycks et al., 2021a))
consists of a set of multiple-choice questions about 57 subjects ranging in difficulty from elementary levels
to professional levels. It covers various of domains of knowledge, including humanities, STEM and social
sciences. Note that there is a training set for ARC. However, we have excluded it from our training set
during the decontamination process described in Section 3.1. Previous models mostly leverage probability-
based methods on ARC and MMLU, which returns the best option based on the probabilities of the four
options conditioned on the corresponding multi-choice question. We observe that after training on 10 million
instructions, GLAN is able to generate its predicted options and analysis of multi-choice questions in plain
text as GPT-3.5 does. We therefore opt for 0-shot setting for GLAN and extract predictions using rules
based on its completions as in Mitra et al. (2023).

Results Our main results are shown in Table 1. We compare GLAN against general domain models
(Orca 2 (Mitra et al., 2023), Mistral Instruct (Jiang et al., 2023) and WizardLM (Xu et al., 2023a)), math
optimized models (MetaMath (Yu et al., 2024) and WizardMath (Luo et al., 2023a)) and coding optimized
models (CodeAlpaca (Chaudhary, 2023)). We also report results of base LLMs (i.e., LLaMA2 (Touvron et al.,
2023) and Mistral (Jiang et al., 2023)) as references. GLAN either obtains the best results or results close
to the best across all benchmarks. We observe that capabilities of math or coding optimized models increase
on math or coding benchmarks while usually not others. After instruction tuning, GLAN excels on multiple
dimensions from mathematical reasoning, coding, reasoning, and academic exams with a systematical data
generation approach. Also note that our method does not use any task-specific training data such as training
sets of GSM8K, MATH, or ARC as in Orca 2, MetaMath, and WizardMath, which indicates the general
applicability of GLAN.

A Closer Look at Academic Exams ARC and MMLU are all multi-choice based benchmarks on
academic exams. However, we observe that improvements of GLAN over Mistral on ARC are much larger
than these on MMLU (see Table 1). By grouping the 57 subjects in MMLU into four categories (i.e., STEM,
Humanities, Social Sciences, and Other (business, health, misc.)), we observe GLAN wildly improves on
STEM in MMLU while not in other categories (Table 2). This is consistent with recent findings that
Chain-of-Thought (CoT) primarily aids in symbolic reasoning problems rather than other types of questions
(Sprague et al., 2024). Also note that ARC is composed of high school science problems, which are also
STEM questions. GLAN is good at STEM subjects may be because responses of our dataset are from
GPT-3.5-turbo, which by default generates responses with CoT reasoning. Indeed, we observe that GLAN
generates solutions with CoT for multi-choice questions.

3.4 Scaling Property of GLAN

We investigate the scaling property of GLAN by training Mistral on different numbers of examples (i.e., 50K,
200K, 500K, 1M, and 10M) we generated. The results on downstream tasks are shown in Figure 2. It can be
observed that overall task performance tends to increase as we increase the data size. It’s important to note

7



Under review as submission to TMLR

5e4 2e5 5e5 1e6 1e7
42

43

44

45

46

47

48

49

Pa
ss

@
1

HumanEval

5e4 2e5 5e5 1e6 1e7

58.5

59.0

59.5

60.0

60.5

Ex
ac

t M
at

ch

BBH

5e4 2e5 5e5 1e6 1e7
60

65

70

75

80

Ex
ac

t M
at

ch

GSM8K

5e4 2e5 5e5 1e6 1e7

20

22

24

26

28

30

32

Ex
ac

t M
at

ch

MATH

Figure 2: The scaling curve of GLAN on downstream tasks. The x-axis denotes GLAN data size (in log10
scale following (Kaplan et al., 2020)), and the y-axis denotes the task performance.

Table 3: The evaluation of loss values between the test data and training data. Large positive ∆ (or ∆(%))
indicates task-specific in-domain training data might be exposed to the model during training.

Benchmark/Loss LLaMA2-7B Orca2-7B Mistral-7B-Instruct WizardLM-13B-V1.2 GLAN-7B

ARC-C ∆ -0.01 0.05 -0.01 -0.01 -0.03
∆ (%) -0.5% 2.10% -0.43% -0.47% -0.74%

ARC-E ∆ -0.02 0.04 -0.03 -0.02 -0.01
∆ (%) -0.95% 1.61% -1.19% -0.91% -0.23%

GSM8K ∆ 0 0.13 0 0.05 0.02
∆ (%) 0% 11.4% 0% 4.39% 0.92%

MATH ∆ -0.03 0.03 -0.03 -0.02 -0.03
∆ (%) -2.70% 2.54% -2.67% -1.63% -1.79%

the performance drop observed in the 200K to 1M data range for both HumanEval and BBH benchmarks.
This regression might be attributed to the relatively small average number of data points per discipline at
these scales. Our dataset encompasses 126 disciplines, with an average of approximately 2,000 examples per
discipline at the 200K total, increasing to about 8,000 examples per discipline at the 1M total. Interestingly,
we observe a significant performance boost when scaling from 1M to 10M examples on both HumanEval
and BBH. This improvement suggests that the increase in data points per domain crosses a threshold where
it becomes substantial enough to positively impact model performance. Note that none of the curves have
reached a plateau, indicating the potential for further improvement through continued scaling of GLAN.
We leave further exploration on the scaling property of GLAN to future work.

3.5 Task-specific Training Data

GLAN is a generalized method to create synthetic data for instruction tuning. In order to evaluate the
generalization capabilities of this synthetic data, we deliberately exclude task-specific training sets from all
benchmarks on which we conduct our assessments. Similar to Wei et al. (2023), we explore whether models
have been trained on task-specific in-domain data. We compute the training loss Ltrain and test loss Ltest

on ARC Challenge (ARC-C), GSM8K, and MATH for GLAN and other models in comparison. We choose
these datasets because among all benchmarks evaluated in Section 3.3, these benchmarks contain training
sets. Intuitively, the larger ∆ = Ltest − Ltrain is, the more likely the training set is exposed. To make ∆
easier to interpret, we additionally compute the relative difference ∆(%) = (Ltest − Ltrain)/Ltest. Table
3 shows the losses of the training and test splits for GLAN are nearly identical (or ∆ is negative). This
suggests that GLAN has not been exposed to in-domain data during training and tuning procedures. Please
refer to the detailed losses of Ltrain and Ltest in Table 8 (in Appendix). Additionally, as shown in Table 8,
we observe that GLAN obtains higher losses on both test and training splits on GSM8K, MATH, and ARC
compared to other models, while performances of GLAN on these datasets are high (see Table 1). This
might imply that synthetic data generated by GLAN is diverse and our resulting model avoids convergence
to any specific domain or style present in existing benchmarks.
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Table 4: Instruction following capability evaluation on IFEval.

Model Prompt-level
strict-accuracy

Instruction-level
strict-accuracy

Prompt-level
strict-accuracy

Instruction-level
loose-accuracy

GPT-3.5-turbo 53.8 64.7 56.6 67.5
GPT-4 77.1 83.7 79.7 85.6
LLaMA2-7B 14.8 27.1 16.6 29.4
Orca2-7B 19.4 28.9 26.1 34.7
Mistral-7B-Instruct-v0.1 32.0 42.8 37.7 48.0
WizardLM-13B-V1.2 23.1 33.5 26.6 37.6
GLAN-7B 34.0 44.8 41.2 51.6

3.6 Instruction Following Evaluation

IFEval We assess the instruction-following capabilities of GLAN utilizing the Instruction Following Eval-
uation dataset (IFEval (Zhou et al., 2023b)). IFEval consists of a collection of “verifiable instructions”,
encompassing 25 distinct types of instructions (around 500 prompts in total). Each prompt comprises one
or more verifiable instructions. The evaluation involves four types of metrics at both prompt level and
instruction level, evaluating strict and loose accuracies. As shown in Table 4, GLAN demonstrates superior
instruction-following capabilities in both prompt-level and instruction-level evaluations. However, there is
still a considerable gap compared to GPT-3.5-turbo and GPT-4.

Evol-Instruct Test Evol-Instruct testset (Xu et al., 2023a) contains real-world human instructions from
diverse sources, and it consists of 218 instances with 29 distinct skills. Each instruction is associated with
a difficulty level from 1 to 10. The responses are often open-ended descriptions, and we believe this bench-
mark is a necessary supplement to IFEval (answers to their instructions are “verifiable”). Following Xu
et al. (2023a) and Chiang et al. (2023), we adopt a GPT-4-based automatic evaluation method to conduct a
pairwise comparison between GLAN and other models. Specifically, GPT-4 is instructed to assign a score
between 1 and 10 overall score w.r.t. the helpfulness, relevance, accuracy, and level of detail of responses gen-
erated by two different models for a given input question. A higher score indicates better overall performance.
To mitigate potential order bias, we perform bidirectional comparisons for each response pair and determine
their average score. The average score difference to GLAN (i.e., avg_score(GLAN)− avg_score(x)) serves
as the final metric. Table 5 presents the results of pairwise comparisons across various levels of instruction
difficulty. GLAN showcases superior performance compared to LLaMA-2, Orca 2, Mistral Instruct, and
even WizardLM-13B (note that GLAN contains only 7B parameters) on most difficulty levels and overall
scores. This suggests that GLAN demonstrates improved ability to process diverse instructions, regardless
of their difficulty or complexity. Also, note that GLAN falls behind GPT-3.5-turbo as other models in com-
parison. Additionally, we group Evol-Instruct test according to the 29 skills and observe the same trends.
Detailed results are listed in Appendix (Table 9 and 10). GLAN demonstrates strong performance on most
skills, especially in Math, Coding, and Reasoning. However, it slightly falls short in common-sense related
tasks. We also created GLAN-Test, similar to the Evol-Instruct Test but much larger in size, where GLAN
outperforms other models as well (see Appendix A.9).

Table 5: Pairwise comparison on various difficulty levels between GLAN and other models on Evol-Instruct
testset. The scores are the average gap of scores assigned by GPT-4, calculated as avg_score(GLAN) −
avg_score(x).

Difficulty
Ratio

LLaMA2-7B Orca2-7B Mistral-7B-Instruct Wizard-13B-V1.2 GPT-3.5-turbo

(1-5) Easy 41.00% 5.46 2.19 1.13 1.32 -1.22
(6-10) Hard 59.00% 5.38 2.28 1.68 0.99 -0.68

9



Under review as submission to TMLR

4 Related Work

Recent literature has extensively explored the collection of various human-made resources for instruction
tuning. An intuitive direction is to collect existing NLP datasets and corresponding task descriptions (Sanh
et al., 2022; Wang et al., 2022; Zhou et al., 2023a), typical LLMs such as BLOOMZ (Muennighoff et al.,
2023) and FLAN (Wei et al., 2022) are trained on this type of instruction tuning data. However, with only
tens to thousands of existing datasets available, the scope and diversity of instruction tuning are inevitably
limited. Another common practice is to implement instruction tuning with real-world human user prompts.
For instance, InstructGPT (Ouyang et al., 2022) was trained on high-quality human prompts submitted by
real-world users to OpenAI GPT APIs. Vicuna (Chiang et al., 2023) leverages user-shared prompts along
with ChatGPT responses for instruction tuning, and Dolly(Conover et al., 2023) was trained on simulated
human-user interactions written by over 5k employees. Nevertheless, acquiring instructional data from
human users typically involves high costs and involves privacy concerns.

As LLM capabilities improve, instruction tuning with LLM-generated data exhibits better scalability and
potential in addressing the super-alignment problem (Shen et al., 2023). Leveraging the in-context learning
ability of LLMs, Unnatural instructions (Honovich et al., 2023) and Self-instruct (Wang et al., 2023) sampled
seed instructions as examples to elicit LLMs to generate new instructions. Taking advantage of the rephrasing
ability of LLMs, WizardLM (Xu et al., 2023a) and WizardMath (Luo et al., 2023a) were trained using
Evol-Instruct. Evol-Instruct iteratively employs ChatGPT to rewrite seed instructions into increasingly
complex instructions. Similar to generation from seed instructions, carefully selected seed topics are used
for generating textbook-like synthetic data (Li et al., 2023) or self-chat multi-turn dialogues (Xu et al.,
2023b; Ding et al., 2023) for instruction tuning. However, models trained on these LLM-generated data only
work well in specific domains such as math (Luo et al., 2023a; Yu et al., 2024), dialogue (Xu et al., 2023b;
Ding et al., 2023) or open-ended question answering (Taori et al., 2023; Xu et al., 2023a). These methods
encounter challenges in generalization (Gudibande et al., 2024), as the data diversity is restricted by seed
instructions or seed topics.

5 Conclusions

We propose GLAN, a general and scalable method for synthesizing instruction data. Experiments show that
GLAN can help large language models improve their capabilities in multiple dimensions, from mathematical
reasoning, coding, academic exams, and logical reasoning to general instruction following. Currently, our
synthetic data are based on the taxonomy of human knowledge and capabilities, and there are other types
of useful data that have not been covered. We are interested in designing methods with border coverage.
Our current instruction data are mostly question-answer pairs, and in the next step, we plan to generate
synthetic data of multi-turn conversations and long documents.
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A Appendix

A.1 Limitations

While GLAN presents significant advancements in academic benchmarks. However, there may still have
several limitations in real world deployment. The resulting LLMs train on generated data using GLAN may
occasionally produce factual incorrect (or even toxic) responses. Further training for refusal, hallucination
reduction as well as toxic content reduction should be performed before deployment.

A.2 Broader Impacts

Data synthesizing is crucial for the continual scaling of large language models, especially as we exhaust
available human data. GLAN demonstrates the potential to generate vast amounts of synthetic data from
scratch, paving the way for even larger-scale data synthesis efforts. While GLAN has shown the effectiveness
of synthetic data, we must point out that synthetic data may inherit and even amplify social biases present
in the frontier LLMs for generation. Future research should focus on developing techniques to identify and
correct biases in the generated datasets and models trained on them.

A.3 Prompt for Syllabus Generator

The prompt template for syllabus generation is in Table 6.

Table 6: Prompt template for Syllabus Generator.

You are an expert in {s.name}.

Using the given data, design a syllabus for teaching students at the specified level.
Note that example subtopics or descriptions are just give you an impression of what this class like.
Feel free to add extra subtopics if needed (remember you are the expert in {s.name}).

Data:
- Level: {s.level}
- Main Topic: {s.name}
- Description or Example Subtopics: {s.subtopics}

### Syllabus Design Guide
1. **Introduction**: Start with an overview of the primary topic for the syllabus.
2. **Class Details**: For each class session, provide:

- **Description**: Briefly describe the focus of the session.
- **Knowledge Points**: Enumerate key concepts or topics.
These will be used to craft homework questions.
- **Learning Outcomes & Activities**: Offer expected learning results and suggest related
exercises or activities.

A.4 Prompt for Instruction Generator

The prompt template for instruction generator is in Table 7.

A.5 Detailed Inference Cost

In this paper, we pair GLAN with the closed-source models GPT-4 and GPT-3.5. Since the architectures
of these models are not publicly disclosed, we report API costs instead of actual computational costs (i.e.,
FLOPs). We estimate the API cost for generating 10 million data points to be approximately 360K USD
when using GPT-4 and GPT-3.5 for answer generation.
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Table 7: Prompt template for Instruction Generator.

## Background
- You are an expert in {s.name} education and you have designed a syllabus (i.e., ‘## Syllabus‘)
- We invite you (again) to design ONE homework question for given class sessions and some
knowledge points.
- The student have already learned all class sessions up to the current sessions
(i.e., ‘## Current Session(s)‘).
- There might be multiple class session in ‘## Current Session(s)‘
- The designed homework question should focus on the topics in ‘## Current Session(s)‘ and you should
try to cover the given knowledge points in ‘## Given Knowledge Points‘
- We prefer homework questions leveraging multiple knowledge points and across different topics

## Syllabus
{A}

## Current Session(s)
{Ĉ}

## Given Knowledge Points
{K̂}

At the time of submission, we recommend using GPT-4o and GPT-4o-mini (for answer generation), re-
ducing the cost to about 66K USD. This is based on the consistent performance of GPT-4o over GPT-4
and GPT-4o-mini over GPT-3.5. Additionally, leveraging Mistral Large 2 and Mistral 8x7B (for answer
generation) can further reduce costs to around 42K USD.

Notably, API costs have significantly decreased over the past year, from 30/60 USD per million input/output
tokens to 2.5/10 USD per million input/output tokens. We anticipate that these costs will continue to decline.

Moreover, open-source models, such as LLaMA-3 (GenAI, 2024), present powerful alternatives. The inference
cost of GLAN when paired with these open-source models can be further reduced, making the application
of GLAN more feasible.

A.6 Task-specific Training Data

We provide the specific train/test values of different models on different benchmarks in Table 8.

A.7 Evol-Instruct Test Results on Different Difficulty Levels

The concrete Evol-Instruct test results on different difficulty levels are shown in Table 9.

A.8 Evol-Instruct Test Results on Different Skills

The concrete Evol-Instruct test results on different skills are shown in Table 10.

A.9 GLAN-Test Overall Results

GLAN-Test There are only hundreds of instructions in In IFEval and Evol-Instruct Test and we believe
the domains or skills they can cover are rather limited. Therefore, we propose a heldout test set using
GLAN data and we call it GLAN-Test. It contains 6,300 instructions on 126 disciplines (50 instructions
for each discipline). We further categorize the 126 disciplines to 8 distinct fields (i.e., Academic-Humanities,
Academic-Social Science, Academic-Natural Science, Academic-Applied Science, Academic-Formal Science,
Industry-Manufacturing, Industry-Services and Industry-Agriculture). We believe that the extensive domain
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Table 8: The evaluation of loss values between the test data and training data. Large positive ∆ (or ∆(%))
indicate task specific in-domain training data may be exposed to the model during training.

Benchmark/Loss LLaMA2-7B Orca2-7B Mistral-7B-Instruct WizardLM-13B-V1.2 GLAN-7B
Ltest 2.02 2.39 2.32 2.11 4.03

ARC-C Ltrain 2.03 2.34 2.33 2.12 4.06
∆ -0.01 0.05 -0.01 -0.01 -0.03

∆ (%) -0.5% 2.10% -0.43% -0.47% -0.74%
Ltest 2.10 2.47 2.51 2.18 4.31

ARC-E Ltrain 2.12 2.43 2.54 2.20 4.32
∆ -0.02 0.04 -0.03 -0.02 -0.01

∆ (%) -0.95% 1.61% -1.19% -0.91% -0.23%
Ltest 1.38 1.14 1.26 1.14 2.17

GSM8K Ltrain 1.38 1.01 1.26 1.09 2.15
∆ 0 0.13 0 0.05 0.02

∆ (%) 0% 11.4% 0% 4.39% 0.92%
Ltest 1.11 1.18 1.12 1.22 1.67

MATH Ltrain 1.14 1.15 1.15 1.24 1.70
∆ -0.03 0.03 -0.03 -0.02 -0.03

∆ (%) -2.70% 2.54% -2.67% -1.63% -1.79%
Table 9: Pairwise comparison on various difficulty levels between GLAN and other models on Evol-Instruct
testset. The scores are the average gap of scores assigned by GPT-4, calculated as avg_score(GLAN) −
avg_score(x).

Difficulty
Ratio

LLaMA2-7B Orca2-7B Mistral-7B-Instruct Wizard-13B-V1.2 GPT-3.5-turbo

1 5.1% 5.41 2.23 -0.37 -0.21 -2.41
2 8.7% 5.87 1.74 1.06 1.41 -1.18
3 12.4% 5.72 2.35 1.04 1.37 -1.14
4 10.5% 5.61 1.34 1.52 1.54 -0.92
5 4.1% 4.67 3.31 2.39 2.5 -0.45
6 19.3% 4.43 2.42 0.74 1.54 -1.36
7 11.0% 4.97 1.26 1.62 1.36 -0.41
8 17.9% 6.02 3.58 3.17 1.7 0.15
9 6.0% 6.35 4.2 1.36 0.9 -0.92
10 5.1% 5.14 -0.05 1.53 -0.54 -0.85

(1-5) Easy 41.00% 5.46 2.19 1.13 1.32 -1.22
(6-10) Hard 59.00% 5.38 2.28 1.68 0.99 -0.68

coverage of GLAN-Test renders it an effective test bed for the assessment of generalization capabilities in
LLMs. We adopt the same GPT-4 based evaluation protocol as in Evol-Instruct Test (previous paragraph).
We prompt GPT-4 to do a pairwise ranking of GLAN and other models in comparison. The overall results
and results across the 8 fields are presented in Table 11, where GLAN obtains higher GPT-4 scores than
Orca2-7B, Mistral-7B Instruct and WizardLM-13B, despite using only 7B parameters. GLAN still lag be-
hind GPT-4. Detailed results for the 126 fine-grained disciplines can be found in Appendix A.10 (see Table 12
for more details). GLAN demonstrates its effectiveness on multiple domains (or disciplines) such as Math-
ematics, Physics, Chemistry, Computer science, Electrical, Mechanical, etc., indicating that smaller models
may yield general improvements on various domains through strategic fine-tuning. Furthermore, it is noted
that GLAN demonstrates less-than-ideal performance across distinct disciplines such as American history,
Divinity, or Radiology. This observation underscores the potential for further refinement and development
of our methodology within these domains.

A.10 GLAN-Test Results on Different Disciplines

16



Under review as submission to TMLR

Table 10: Pairwise comparison on various skills between GLAN and other models on Evol-Instruct testset.
The scores are the average gap of scores assigned by GPT-4, calculated as avg_score(GLAN)−avg_score(x).

Skill
Ratio

LLaMA2-7B Orca2-7B Mistral-7B-Instruct Wizard-13B-V1.2 GPT-3.5-turbo

Math 8.7% 6.58 2.16 2.41 2.46 -1.42
Code Generation 8.3% 6.16 3.87 4.22 2.59 -0.25
Writting 8.3% 5.2 0.79 -0.22 0.24 -1.1
Computer Science 6.9% 7.1 4.4 0.83 1.22 0.02
Reasoning 6.0% 6.3 2.52 3.38 3.02 0.62
Complex Format 5.5% 3.13 3.5 -0.17 2.41 -1.96
Code Debug 4.6% 5.85 2.3 1.4 0.2 -2.5
Common-Sense 4.1% 6.5 3.19 -1.33 -0.92 -2.78
Counterfactual 3.7% 7.06 2.15 3 1.5 0.72
Multilingual 3.2% 7.35 0.79 1.71 -0.68 -2.75
Roleplay 2.8% 7.08 2.25 3.5 0.92 -0.59
Biology 2.8% 6.66 2.75 1.46 -0.09 1.38
Technology 2.8% -0.08 2.54 -3 -1.5 -2.75
Ethics 2.8% 6.59 3.38 2.41 5.42 -0.21
TruthfulQA 2.3% 3.1 3.7 -1.05 -1.3 -0.85
Sport 2.3% 4.3 0.55 -0.2 4.8 -0.3
Law 2.3% 7.7 4.65 5.85 1.7 0.2
Medicine 2.3% 3.9 -2.05 1.9 0.15 -1.25
Literature 2.3% 6.3 1.9 0.2 1.45 -0.15
Entertainment 2.3% 4.5 2.7 -3 1.9 -3.2
Art 2.3% 4.9 1 2.9 -0.85 -2.05
Music 2.3% 4.4 4.1 0.5 1.45 -2.3
Toxicity 1.8% 7.25 3.12 3.75 1.63 -1.32
Economy 2.3% 6 0.15 1.9 0 0
Physics 2.3% 6.8 2.5 4.35 3.65 -1
History 1.8% 4.12 -0.56 3.76 -0.31 0.12
Academic Writing 1.8% 6.76 6.37 2.44 1.37 0.62
Chemistry 0.9% 9.5 0.63 5.25 2.5 0.75
Philosophy 0.5% 11 -0.25 0.25 -0.25 0.5
Avg.(29 skills) 100% 5.42 2.24 1.41 1.16 -0.95

Table 11: Pairwise comparison between GLAN and other models on GLAN-Test (the 126 disciplines are
categorized into 8 fields for clarity of the illustration). The scores are the average gap of scores assigned by
GPT-4, calculated as avg_score(GLAN)− avg_score(x).

Field (Ratio) Orca2-7B Mistral-7B-Instruct WizardLM-13B-V1.2 GPT-4
Academic-Humanities (15.9%) 0.79 0.25 0.02 -0.62
Academic-Social Science (7.9%) 1.22 0.21 0.09 -0.63
Academic-Natural Science (4.0%) 1.73 1.23 0.53 -0.5
Academic-Applied Science (42.1%) 1.58 0.32 0.08 -0.58
Academic-Formal Science (3.2%) 3.87 2.48 2.32 -0.55
Industry-Manufacturing (12.7%) 2.26 0.56 0.33 -0.43
Industry-Services (11.9%) 1.82 0.23 0.09 -0.5
Industry-Agriculture (2.4%) 1.2 0.46 0.13 -0.33
Overall (100.0%) 1.61 0.43 0.19 -0.55
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Table 12: Pairwise comparison across 126 disciplines (or domains) on GLAN-Test. The scores are generated
from the average gap between GLAN and other model x in assessment scores assigned by GPT-4, calculated
as avg_score(GLAN)− avg_score(x).

Discipline Orca-2-7b Mistral-7B-Instruct-v0.1 WizardLM-13B-V1.2 GPT-4
Avg. 1.61 0.43 0.19 -0.55
Advertising 1.92 0.46 0.21 -0.04
Aerospace industry 3.24 1.24 0.6 -0.42
Agriculture 2.44 0.04 -0.05 -0.48
American history -0.49 -0.27 -0.76 -0.83
American politics 1.23 -0.3 -0.4 -0.87
Anthropology 0.59 0.17 0.06 -0.27
Applied mathematics 3.75 2.6 2.74 -0.47
Archaeology 2.59 -0.11 0.1 -0.56
Architecture and design 2.63 0.34 0.4 -0.37
Astronomy 1.01 0.83 0.03 -0.44
Automotive industry 1.27 0.71 0.46 -0.06
Biblical studies -0.05 0.33 -0.47 -0.65
Biology 1.09 0.22 -0.09 -0.17
Business 3.61 1.14 0.88 -0.26
Chemical Engineering 3.15 1.6 1.18 -0.77
Chemistry 3.06 2.09 0.8 -0.87
Civil Engineering 1.94 0.74 0.75 -0.25
Clinical laboratory sciences 1.32 0.94 -0.11 -0.47
Clinical neuropsychology 2.15 0.29 0.25 -0.4
Clinical physiology 2.07 0.41 0.51 -0.08
Communication studies 0.3 0.26 -0.15 -0.3
Computer science 4.29 1.45 1.9 -0.33
Cultural industry 3.15 0.44 0.05 -0.36
Dance 2.11 0.21 0.4 -0.47
Dentistry 1.67 0.66 0.48 0.01
Dermatology 2.12 0.55 -0.05 -0.65
Divinity -0.34 -0.17 -0.48 -0.89
Earth science 0.39 0.44 -0.08 -0.33
Economics 2.62 0.96 0.62 -0.4
Education 2.67 0.42 0.2 -0.84
Education industry 2.19 0.4 0.56 -1.33
Electric power industry 3.23 1.31 0.39 -0.79
Electrical Engineering 3.81 1.26 1.41 -0.34
Emergency medicine 2.04 0.44 -0.18 -0.86
Energy industry 3.59 0.98 0.54 -0.22
Environmental studies and forestry 0.12 0.41 0.1 -0.45
Epidemiology 3.02 0.52 0.33 -0.46
European history 0.14 0.62 0.15 -0.18
Fashion 2.5 0.66 0.47 -0.53
Film 0.76 0.45 -0.16 -0.78
Film industry 1.58 0.46 0.25 -0.59
Fishing industry 1.67 1 0.57 -0.09
Floral 1.92 0.89 0.58 -0.09
Food industry 3.64 0.12 0.14 -0.42
Foreign policy 2.4 0.49 0.16 -0.46
Geography 0.88 0.6 0.28 -0.66
Geriatrics 2.19 -0.32 -0.56 -0.71
Gynaecology 1.05 -0.27 -0.26 -0.67
Healthcare industry 1.62 -0.25 0.14 -0.5
Hematology 0.35 0.32 -0.05 -0.72
History 0.75 0.54 -0.04 -0.38
Holistic medicine 0.85 0.48 0.26 -0.27
Hospitality industry 2.36 0.48 0.28 -0.07
Housing 4.04 0.15 -0.22 -0.62
Industrial robot industry 3.84 1.22 0.84 -0.71
Infectious disease 1.76 0.14 0.18 -0.56
Insurance industry 2.67 0.42 0.61 -0.4
Intensive care medicine 1.11 0.56 0.08 -0.33
Internal medicine 1.02 0.45 -0.01 -0.42
Journalism 2.77 -0.13 -0.21 -0.69
Languages and literature 0.45 0.05 -0.39 -0.84
Law 0.42 0.39 0.04 -0.49
Leisure industry 1.49 0.12 -0.09 -0.49
Library and museum studies 1.52 0.5 0.33 -0.32
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Discipline Orca-2-7b Mistral-7B-Instruct-v0.1 WizardLM-13B-V1.2 GPT-4
Linguistics 0.39 0.38 -0.12 -0.96
Logic 2.95 1.56 1.62 -0.79
Materials Science and Engineering 1.71 0.97 0.54 -0.91
Mathematics 4.69 3.81 2.73 -0.61
Mechanical Engineering 2.25 1.71 1.15 -0.95
Medical toxicology 0.62 0 0.11 -1.01
Medicine 1.49 0.93 0.36 -0.37
Military sciences 0.42 0.53 0.17 -0.45
Mining 3.17 0.32 0.41 -0.61
Music 2.85 0.38 1.07 -0.05
Music industry 2.05 -0.03 -0.08 -0.8
Nursing 1.49 0.14 -0.12 -0.59
Nutrition 1.15 -0.2 -0.13 -0.65
Obstetrics 1.49 0.08 -0.43 -0.53
Ophthalmology 0.97 0.01 -0.47 -0.97
Otolaryngology 1.51 -0.44 -0.29 -1.11
Pathology 0.23 0.35 0.19 -0.72
Pediatrics 1.62 0.55 -0.34 -0.47
Performing arts 0.38 0.09 -0.36 -1.06
Petroleum industry 3.12 0.44 0.08 -0.54
Pharmaceutical industry 2.75 0.41 0.4 -0.46
Pharmaceutical sciences 0.77 0.19 0.16 -0.8
Philosophy 0.51 0.25 0.49 -0.64
Physics 3.15 2.67 2.05 -0.73
Political science 0.04 -0.05 -0.31 -0.91
Prehistory 0.35 0.19 0.05 -0.41
Preventive medicine 2.69 0.57 0.09 -0.36
Psychiatry 2.93 0.27 -0.07 -0.32
Psychology 0.53 -0.02 -0.3 -0.96
Public administration 0.94 -0.27 0.1 -1.2
Public health 1.21 0.07 0.22 -0.56
Public policy 0.78 -0.06 -0.28 -0.92
Pulp and paper industry 1.13 0.63 0.57 -0.25
Radiology -0.17 -0.19 -0.82 -0.62
Real estate industry 1.01 0.02 -0.12 -0.5
Religious Studies 0.38 0 -0.32 -0.63
Retail industry 1.1 -0.25 -0.37 -0.6
Semiconductor industry 1.49 0.64 0.71 -0.42
Sexology 1.81 -0.44 -0.37 -0.96
Shipbuilding industry 1.54 0.37 0.42 -0.32
Social work 0.93 -0.42 -0.53 -0.77
Sociology 1.49 0.21 0.76 -0.3
Steel industry 0.88 0.45 0.09 -0.34
Surgery 0.86 -0.02 -0.35 -0.73
Systems science 1.9 0.56 0.41 -0.45
Telecommunications industry 1.81 0.4 0.39 -0.27
Television 0.37 -0.33 -0.69 -1
Textile industry 0.82 -0.26 -0.68 -0.59
Theatre 0.31 -0.27 -0.34 -1.07
Theology -0.38 0.37 -0.45 -0.54
Tobacco industry 0.59 -0.13 -0.48 -0.67
Transport industry 1.19 -0.33 -0.36 -0.56
Transportation 1.74 0.26 0.17 -0.74
Urology 0.05 -0.29 -0.36 -0.64
Veterinary medicine -0.14 0.36 -0.31 -0.62
Video game industry 1.67 0.2 -0.24 -0.62
Visual arts 0.98 0.22 0.26 -0.56
Water industry 0.9 -0.11 -0.09 -0.51
Wood industry 1.36 0.5 0.31 -0.25
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