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Abstract

Long-tailed semi-supervised learning poses a significant challenge in training mod-
els with limited labeled data exhibiting a long-tailed label distribution. Current
state-of-the-art LTSSL approaches heavily rely on high-quality pseudo-labels for
large-scale unlabeled data. However, these methods often neglect the impact of rep-
resentations learned by the neural network and struggle with real-world unlabeled
data, which typically follows a different distribution than labeled data. This paper
introduces a novel probabilistic framework that unifies various recent proposals
in long-tail learning. Our framework derives the class-balanced contrastive loss
through Gaussian kernel density estimation. We introduce a continuous contrastive
learning method, CCL, extending our framework to unlabeled data using reliable
and smoothed pseudo-labels. By progressively estimating the underlying label
distribution and optimizing its alignment with model predictions, we tackle the di-
verse distribution of unlabeled data in real-world scenarios. Extensive experiments
across multiple datasets with varying unlabeled data distributions demonstrate
that CCL consistently outperforms prior state-of-the-art methods, achieving over
4% improvement on the ImageNet-127 dataset. Our source code is available at
https://github.com/zhouzihao11/CCL.

1 Introduction

Semi-supervised learning (SSL) serves as a powerful approach for improving the generalization
capabilities of deep neural networks (DNNs) in scenarios where labeled data is scarce [37, 59, 6, 23].
The core concept of SSL methods typically involves assigning pseudo-labels to unlabeled data and
utilizing those with high confidence for model training [56, 71, 10]. However, many existing SSL
algorithms presuppose a balanced label distribution across both labeled and unlabeled datasets. In
real-world applications, datasets commonly exhibit a long-tailed label distribution [65, 28, 50, 67, 55],
leading to biased pseudo-label generation favoring majority classes [40, 3, 68, 24]. This discrepancy
challenges the effectiveness of SSL algorithms in addressing real-world datasets.

The exploration of long-tailed semi-supervised learning (LTSSL) has gained momentum to address the
challenge of biased pseudo-label distribution arising from class imbalance in labeled and unlabeled
data. Recent LTSSL approaches propose compensating for the learning of minority classes by
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distribution alignment [33, 63], data rebalancing [22, 38], and logit adjustment [64, 43] to rectify
the pseudo-label distribution. However, existing approaches often assume the equivalence of the
unlabeled data distribution with the labeled data or rely on predefined anchor distributions to estimate
the unlabeled data distribution [64, 43]. Furthermore, these methods primarily focus on correcting
model outputs without delving into the role of representation learning in improving performance.

This paper explicitly introduces an approach to obtain effective representations for long-tail learning
by adopting an information-theoretic view of DNNs. We present a probabilistic framework that
utilizes the deep variational information bottleneck method [1] to learn good representations and
demonstrate its unification of recent long-tail learning proposals, such as logit adjustment [44]
and balanced softmax [51], through approximating the density of class-conditional distribution in
different ways. Specifically, our framework encompasses class-balanced supervised contrastive
learning [73, 15] via Gaussian kernel density estimation. We extend this framework to address LTSSL
by adapting the supervised contrastive loss to unlabeled data using “continuous pseudo-labels”,
derived from model predictions and propagated labels, to mitigate confirmation bias. To account for
varying label distribution of unlabeled data, we progressively estimate the label distribution through a
moving average and adjust model predictions to align with the estimated distribution.

In summary, our contributions are as follows:
1. We propose a probabilistic framework which unifies many recent proposals in long-tail learning.

Specifically, popular class-balanced contrastive learning methods can be seen as special cases of
our framework when approximating the density using a Gaussian kernel.

2. We generalize the proposed framework to LTSSL and present a continuous contrastive learning
method based on reliable and smoothed pseudo-labels to address confirmation bias and improve
the quality of learned representations.

3. We conduct extensive experiments across several LTSSL datasets with diverse label distributions
of unlabeled data. The results show that our proposal substantially outperforms previous state-of-
the-art methods.

2 A Probabilistic Framework for Long-Tail Learning

In this section, we first introduce a general framework for learning good representations. Then, we
expand this framework to long-tail learning and illustrate how recent proposals can be regarded as
specific instances of our framework through three ways for density approximation.

Problem setup of long-tail learning. We consider a C-class classification problem with instance
space X and target space Y = {1, . . . , C}. Let Ps and Pt denote the source (training) and test
distributions on (X ,Y), respectively. We denote by Ps and Pt the corresponding probability density
(or mass) functions. Given a training dataset {(xi, yi)}Ni=1, where xi ∈ Rd is the training sample
and yi is the ground-truth label.

2.1 Learning good representations from information theoretical view

In this subsection, we rethink one of the most popular approaches to deal with representation learning,
i.e., contrastive learning. We derive many recent proposals in this branch from an information-
theoretic view. Let Z denote the latent representation of X induced by the encoder enc(·) parameter-
ized by Θ. From an information-theoretic view, an optimal representation Z is maximally informative
about the target Y , and minimally “memorizes” X . The information bottleneck [60] adopts mutual
information I(·) to measure information between two variables. Thus, optimal Z can be obtained by
maximizing the following objective:

Θ∗ = argmax
Θ

I(Z, Y ;Θ)− δI(Z,X;Θ), (1)

where δ ≥ 0 is a tradeoff parameter. The variational information bottleneck [1] solves the above
objective by variational inference. Based on the definition of I(·), we can rewrite Eq. (1) as:

I(Z, Y )− δI(Z,X) =

∫
dydzP(y,z) log

P(y | z)
P(y)

− δ

∫
dzdxP(x, z) log

P(z | x)
P(z)

, (2)

where we omit Θ for simplicity. Since P(y | z) =
∫
dxP(x | z)P(y | x) is intractable in Eq. (2), let

P̂(y | z) be a variational approximation to P(y | z) and considering that the Kullback-Leibler (KL)
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divergence KL[P(y | z), P̂(y | z)] is always positive, we have RHS of Eq. (2)’s lower bounded:∫
dxdydzP(x)P(y | x)P(z | x) log P̂(y | z)− δ

∫
dxdzP(x)P(z | x) log P(z | x)

P(z)
. (3)

Suppose we use an encoder of the form P(z | x) ∼ N (enc(x), ε2I) and P(z) ∼ N (0, I), the
second term of Eq. (3) equals the KL divergence KL[P(z | x),P(z)]. Since P(z | x) and P(z) are
normal distributions, it can be rewritten as: −δl( 12ε

2 − 1 − 2 log ε) − δ∥enc(x)∥2, where l is the
dimension of z. For a deterministic model, z is almost unique for each x, thus assuming ε is a small
constant close to 0. By integrating out P(z | x) and discarding constant terms, maximizing Eq. (3)
can be approximated by minimizing:

−
∫

dxP(x)
∫

dyP(y | x) log P̂(y | enc(x)) + δ ∥enc(x)∥2 . (4)

In the following of this paper, we denote the output of enc(x) as z (or zx for a particular sample
x) for simplicity. Minimizing Eq. (4) is equivalent to minimizing the following objective in the
distribution of test data on each x:

−
∑
k∈[C]

Pt(Y = k | x) log P̂t(Y = k | z) + δ∥z∥2. (5)

Notably, Eq. (5) can be seen as a general framework for learning good representations. If Ps(Y ) =
Pt(Y ) , Pt(Y = y | x) can simply be substituted by the ground-truth labels of training samples.
However, in long-tail learning, the class-probability function Pt(Y = y | x) is different from that of
the training data due to label distribution shift.

2.2 Probabilistic framework for long-tailed supervised learning

Since Ps(Y = y | x) ̸= Pt(Y = y | x), we cannot directly solve Eq. (5). However, since long-tail
learning typically assumes that Pt(Y ) is uniform and we work with the label shift assumption, i.e.,
Ps(x | Y = y) = Pt(x | Y = y), we can obtain Pt(Y = y | x) by Bayes’ theorem:

Pt(Y = y | x) = P(x | Y = y)∑
k∈[C] P(x | Y = k)

=

1
Ps(Y=y)Ps(Y = y | x)∑

k∈[C]
1

Ps(Y=k)Ps(Y = k | x)
. (6)

Throughout the paper, we use the notation P(x | Y = y) to represent either Ps(x | Y = y) or
Pt(x | Y = y). In practice, ∥z∥2 can be omitted in optimization because normalization is commonly
adopted in deep learning. In long-tail learning, minimizing Eq. (5) equals to minimizing:

−
∑
k∈[C]

1

Ps(Y = k)
Ps(Y = k | x) log P̂t(Y = k | z). (7)

According to Jensen’s inequality, Eq. (7) attains its minimum value if and only if P̂t(Y = k |
x)Ps(Y = k) ∝ Ps(Y = k | x) for k ∈ [C]. Hence, Eq. (7) can be replaced as follows:

J = −
∑
k∈[C]

P(Y = k)

Ps(Y = k)
Ps(Y = k | x) log P̂(Y = k | z), (8)

where P̂(Y = y | z) = P̂t(Y=y|z)P(Y=y)∑
k∈[C] P̂t(Y=k|z)P(Y=k)

and P(Y ) is an arbitrarily label distribution. Eq. (8)

can be seen as an extension of sample reweighting [52] and logit adjustment [44] using probabilistic
labels rather than discrete labels when P(Y ) is specified as Pt(Y ) and Ps(Y ), respectively. Besides,
Eq. (8) presents a unified framework that consolidates existing long-tail learning methods by
estimating P̂(z | Y = y) or P̂t(Y = y | z) in different ways. In the following, we discuss three ways
to estimate these terms.

Method 1: Explicitly specify P̂(z | Y = y) as a prior distribution such as vMF distribution [34] and
Wrapped Cauchy Distribution [27].

Method 2: Approximate P̂(z | Y = y) using a learnable linear classifier. Let {wi, bi}Ci=1 denote the
parameters of a linear layer, which is followed by a softmax to obtain the normalized probability:

P̂(z | Y = y) ∝ P̂t(Y = y | z) =
exp

(
z⊤wy + by

)∑
k∈[C] exp (z

⊤wk + bk)
. (9)
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Table 1: A unified view of popular long-tail learning methods from our framework. “–” means that
this method does not involve this issue and “×” indicates that the method has not resolved the issue.

Method Density estimation Label distribution shift Mini-batch computation of Eq. (10)

BALMS [51] Linear layer Reweighting –
LA [44] Linear layer Logit adjustment –

BCL [73] Gaussian kernel Reweighting Class-wise center
GML [57] Gaussian kernel Logit adjustment Class-wise queue
KCL [30] Gaussian kernel Balanced resampling ×
PaCo [15] Gaussian kernel Logit adjustment Class-wise center
Proco [20] Gaussian kernel Logit adjustment Class-wise vMF distribution

T-vMF [34] T-vMF distribution Logit adjustment –
WCDAS [27] Wrapped Cauchy distribution Logit adjustment –

Method 3: Approximate P̂(z | Y = y) via the Gaussian kernel. A new sample from class y should
be closer to all samples within class y and away from samples from other classes. Using the expected
similarity among all samples within the class to measure distance, we derive:

P̂(z | Y = y) ∝ P̂t(Y = y | z) =
Ex′∼P(·|Y=y) [κ (zx, zx′)]∑

k∈[C] Ex′∼P(·|Y=k) [κ (zx, zx′)]
, (10)

where κ(·, ·) represents the similarity between two samples, when we use Gaussian kernel
κ(zx, zx′) = exp(zx · zx′) and approximate expectation through empirical batch B = ∪k∈[C]Bk,
that is Ex′∼P(·|Y=y)[κ(zx, zx′)] ≈ 1

|By|
∑

x′∈By
exp(zx · zx′), Eq. (10) can be instantiated as:

P̂t(Y = y | z) =
1

|By|−1

∑
x′∈By\{x} exp (zx · zx′)∑

k∈[C]
1

|Bk|
∑

x′∈Bk
exp (zx · zx′)

. (11)

Interestingly, we observe that Eq. (11) resembles class-balanced contrastive loss. In the appendix, we
also show that the Gaussian kernel approximation is identical to conventional supervised contrastive
learning if the training data are class-balanced.

Notably, to ensure the computability of Ex′∼P(·|Y=y)[κ(zx, zx′)] in Eq. (10), it is essential to ensure
that samples are available from each class. Existing methods address this by class-wise queues,
class-wise centers, or class-wise vMF distribution, details of which are provided in the appendix.

Based on the above three density approximation methods, we find that many recent proposals in
long-tail learning can be derived from our framework. In Table 1, we summarize existing methods
based on the way they estimate the density, tackle the training/test label shift, and guarantee the
computation of Eq. (10) in mini-batch training.

3 CCL: Continuous Contrastive Learning

In this section, we introduce the proposed algorithm CCL, which extends the class-balanced con-
trastive learning presented in Eq. (8) with Gaussian kernel estimation in Eq. (11) to LTSSL.

3.1 Problem setup of long-tailed semi-supervised learning

Let Pl and Pu denote the joint distribution (X ,Y) for labeled data and unlabeled data, respectively.
We denote by Pl and Pu the corresponding probability density (or mass) functions. We possess
a labeled dataset {(xl

i, y
l
i)}Ni=1 of size N and an unlabeled dataset {xu

j }Mj=1 of size M , where
xl
i,x

u
j ∈ Rd. The proportion of labeled data from the entire dataset is η = N

M+N . Denote the
number of labeled data for class i as Ni, we have N1 ≥ N2 ≥ . . . ≥ NC if the classes are sorted
by cardinality in decreasing order. The imbalance ratio of labeled data is given by γl =

N1

NC
, while

the distribution of the label of the unlabeled data and its imbalance ratio γu are unknown. The
components of CCL include a feature extractor, two linear classifiers fs(·), fb(·) and a contrastive
feature projection head g(·).
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3.2 Balanced classifier training with estimated class prior

We develop our method based on FixMatch [56] following previous works [48, 64], and its objective
is: L̂ssl = L̂l + L̂u, where L̂l is a traditional cross-entropy loss. For unlabeled data, the method
operates by first generating pseudo-labels for unlabeled data using the model’s predictions and
selecting unlabeled data whose predicted maximum confidence is higher than a predefined threshold.
The consistency regularizer L̂u is then applied to two views of each selected sample.

Balanced FixMatch for LTSSL. First, since the labeled data follow a long-tailed distribution, which
we denote as πl, L̂l needs to be adjusted by logit adjustment [44] via Eq. (8):

L̂l(x
l, yl) = − log

P̂t

(
Y = yl | xl; fb

)
πl
yl∑

k∈[C] P̂t (Y = k | xl; fb)πl
k

. (12)

Second, FixMatch is prone to fit wrong pseudo-labels with high predictive confidence during training
[62, 3]. However, since the unlabeled data label distribution is inaccessible, pseudo-labels generated
by the classifier may be sub-optimal for its adherence to a uniform distribution. By Bayes’ theorem,
with given estimated unlabeled data label distribution π̂u, the “post-adjusted” model outputs for
sample xu can be formulated as:

P̂u (Y = y | xu; fb) =
P̂t (Y = y | xu; fb) π̂

u
y∑

k∈[C] P̂t (Y = k | xu; fb) π̂u
k

, (13)

Given pseudo-label ŷ = argmaxk∈[C] P̂u (Y = k | Aw(x
u); fb), where Aw(·) denotes the weak

data augmentation, L̂u is rewritten as:

L̂u(x
u, ŷ) = −M(xu) log

P̂t (Y = ŷ | As(x
u); fb) π̂

u
ŷ∑

k∈[C] P̂t (Y = k | As(xu); fb) π̂u
k

, (14)

where M(·) denotes the sample mask to select reliable pseudo-labels. We progressively update
π̂u using the exponential moving average (EMA) for each mini-batch by π̂u

y = (1 − α)π̂u
y +

α
|B|

∑
xu∈B P̂u (Y = y | xu; fb) , where α is a momentum updating parameter and B denotes an

unlabeled data subset. Directly using confidence selection can lead to a selected B with poor
calibration due to model overconfidence [41, 45]. Thus, the energy score [36] is adopted to filter
out reliable unlabeled data, which is defined as E(x) = −T · log

∑
k∈[C] e

fk(x)/T , where T is the
temperature and f(x) denotes the logits of x. We select reliable unlabeled data byME(xu) :=
I(E(xu) ≤ ζ) using a predefined threshold ζ, and construct B = {x | x ∈ Bu ∧ME(x) ̸= 0} for
the estimation of π̂u.

Dual-branches training. Based on the observation that class-balanced training can be harmful
to representation learning, previous works [38, 64] have utilized another branch of the network
for standard training. In contrast to the balanced branch, the standard branch, denoted as fs(·),
optimizes the cross-entropy loss without employing logit adjustment to fit the original training data
distribution. We fuse the predictions of balanced and standard branches to reduce the confirmation
bias of pseudo-labels by:

P̂cls (Y = y | xu) =
1

2
P̂u (Y = y | xu; fb) +

1

2

P̂ (Y = y | xu; fs) π̂
∗
y∑

k∈[C] P̂ (Y = k | xu; fs) π̂∗
k

. (15)

The rationale behind the equation is that the standard branch necessitates the elimination of imbal-
anced label prior and then compensates for unlabeled label prior when predicting pseudo-labels,
which is achieved by defining π̂∗ = π̂u

πl+π̂u . Overall, the classification loss L̂cls is the combination
of losses for learning fs(·) and fb(·).

3.3 Continuous contrastive loss with reliable pseudo-labels

Apart from the classification loss and consistency regularizer, we aim to improve the quality of repre-
sentations by extending the framework presented in Section 2 to LTSSL. To achieve the adaptation
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of our framework, a primary obstacle must be addressed. The challenge arises from the unknown
ground-truth label Pu(Y = y | x) for unlabeled data, which results in the calculation of Eq. (8)
infeasible. We propose to utilize the continuous pseudolabel P̂cls(Y = y | xu) as derived from
the classifier in Eq. (15). Furthermore, Ex′∼P(·|Y=y)[κ (zx, zx′)] in Eq. (10) can be extended to
unlabeled data and approximated by an empirical data subset B:

Ex′∼P(·|Y=y) [κ (zx, zx′)] ≈
∑

x′∈B κ (zx, zx′) P̂cls (Y = y | x′)∑
x′∈B P̂cls (Y = y | x′)

. (16)

Plugging Eq. (16) into Eq. (10), we obtain the continuous pseudo-label P̂t(Y = y | xu;B) for xu.
Similar to Eq. (14), logit adjustment is used to handle label shift of unlabeled data by Bayes’ theorem,
and we can obtain:

L̂rpl = −
∑
k∈[C]

P̂cls(Y = k | xu) · log P̂u(Y = k | xu;B), (17)

where P̂u(Y = y | xu;B) =
P̂t(Y=y|xu;B)·π̂u

y∑
k∈[C] P̂t(Y=k|xu;B)·π̂u

k

. So far, the generalized framework using

continuous pseudo-labels for LTSSL is derived in Eq. (17), the critical issue is how to filter out a
reliable unlabeled data subset Bu such that the posterior estimation P̂cls(Y = y | x) in Eq. (16)
is calibrated. Similarly, directly using confidence selection may lead to model overconfidence. To
mitigate the confirmation bias in pseudo-labels produced by the learned classifier, we propose using
the energy score for data selection to ensure model calibration [26]. Combining with labeled data,
the loss L̂rpl is obtained with B = {x | x ∈ Bl ∨ (x ∈ Bu ∧ME(x) ̸= 0)}.

3.4 Continuous contrastive loss with smoothed pseudo-labels

To further mitigate the impact of inaccurate pseudo-labels P̂cls(Y = y | xu), we derive a com-
plementary contrastive loss with smoothed pseudo-labels. Specifically, we propose aligning the
representations of two views of a sample by imposing the weak-strong consistency regularization:

L̂spl = −
∑
k∈[C]

P̂ (Y = k | Aw (xu)) log P̂ (Y = k | As (x
u)) . (18)

In this part, we aim to derive P̂(Y = y | xu) by propagating labels from nearby samples in the
contrastive space. On the one hand, we take labeled data for B in Eq. (11) and construct the posterior
for unlabeled data. Logit adjustment is employed for tackling label shift of unlabeled data:

P̂(Y = y | xu;Bl
)
=

1
|By|

∑
x′∈By

κ (zxu , zx′) · π̂u
y∑

k∈[C]
1

|Bk|
∑

x′∈Bk
κ (zxu , zx′) · π̂u

k

. (19)

Eq. (19) can be viewed as a process of propagating labels from labeled data to unlabeled data. On
the other hand, we consider label propagation within unlabeled data, i.e., an unlabeled batch Bu is
used to estimate P̂(Y = y | xu;B). Assuming there is a sufficient amount of unlabeled data, we have
1

|Bu|
∑

xu∈Bu P̂(Y = y | xu;Bu) ≈ π̂u
y , hence the posterior can be approximated as:

P̂(Y = y | xu;Bu) ≈
∑

x′∈Bu κ (zxu , zx′) P̂ (Y = y | x′;Bu)∑
x′∈Bu κ (zxu , zx′)

. (20)

Let P(Y |X;B) represent a matrix stacked by [P(Y = 1 | x), . . . ,P(Y = C | x)]⊤ of x from B, we
can rewrite Eq. (20) in the form of matrix multiplication: P̂ (Y |Xu;Bu) = G · P̂ (Y |Xu;Bu) ,
where G is a similarity matrix and Gij =

κ(zxi
,zxj

)∑
xj∈Bu

κ(zxi
,zxj

) . It can be interpreted that similar

samples possess similar labels. By aggregating the predictions of labeled data and unlabeled data
with a fixed hyperparameter β, we obtain:

P̂ (Y |Xu) = βG · P̂ (Y |Xu) + (1− β)P̂
(
Y |Xu;Bl

)
⇒ P̂ (Y |Xu) = (1− β)(I − βG)−1 · P̂

(
Y |Xu;Bl

)
.

(21)

Subsequently, Eq. (21) can be plugged into Eq. (18) for calculating L̂spl. To sum up, the total
objective of CCL is:

L̂total = λ1L̂cls + (1− λ1) L̂rpl + λ2L̂spl (22)
where λ1 and λ2 are two hyperparameters.
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Table 2: Test accuracy in consistent setting on CIFAR10-LT and CIFAR100-LT datasets. The best
results are in bold.

CIFAR10-LT CIFAR100-LT

γ = γl = γu = 100 γ = γl = γu = 150 γ = γl = γu = 10 γ = γl = γu = 20

Algorithm N1 = 500 N1 = 1500 N1 = 500 N1 = 1500 N1 = 50 N1 = 150 N1 = 50 N1 = 150
M1 = 4000 M1 = 3000 M1 = 4000 M1 = 3000 M1 = 400 M1 = 300 M1 = 400 M1 = 300

Supervised 47.3±0.95 61.9±0.41 44.2±0.33 58.2±0.29 29.6±0.57 46.9±0.22 25.1±1.14 41.2±0.15
w/ LA [44] 53.3±0.44 70.6±0.21 49.5±0.40 67.1±0.78 30.2±0.44 48.7±0.89 26.5±1.31 44.1±0.42

FixMatch [56] 67.8±1.13 77.5±1.32 62.9±0.36 72.4±1.03 45.2±0.55 56.5±0.06 40.0±0.96 50.7±0.25
w/ DARP [33] 74.5±0.78 77.8±0.63 67.2±0.32 73.6±0.73 49.4±0.20 58.1±0.44 43.4±0.87 52.2±0.66
w/ CReST+ [63] 76.3±0.86 78.1±0.42 67.5±0.45 73.7±0.34 44.5±0.94 57.4±0.18 40.1±1.28 52.1±0.21
w/ DASO [48] 76.0±0.37 79.1±0.75 70.1±1.81 75.1±0.77 49.8±0.24 59.2±0.35 43.6±0.09 52.9±0.42

FixMatch + LA [44] 75.3±2.45 82.0±0.36 67.0±2.49 78.0±0.91 47.3±0.42 58.6±0.36 41.4±0.93 53.4±0.32
w/ DARP [33] 76.6±0.92 80.8±0.62 68.2±0.94 76.7±1.13 50.5±0.78 59.9±0.32 44.4±0.65 53.8±0.43
w/ CReST+ [63] 76.7±1.13 81.1±0.57 70.9±1.18 77.9±0.71 44.0±0.21 57.1±0.55 40.6±0.55 52.3±0.20
w/ DASO [48] 77.9±0.88 82.5±0.08 70.1±1.68 79.0±2.23 50.7±0.51 60.6±0.71 44.1±0.61 55.1±0.72

FixMatch + ABC [38] 78.9±0.82 83.8±0.36 66.5±0.78 80.1±0.45 47.5±0.18 59.1±0 .21 41.6±0.83 53.7±0.55
w/ DASO [48] 80.1±1.16 83.4±0.31 70.6±0.80 80.4±0.56 50.2±0.62 60.0±0.32 44.5±0.25 55.3±0.53

FixMatch + ACR [64] 81.6±0.19 84.1±0.39 77.0±1.19 80.9±0.22 51.1±0.32 61.0±0 .41 44.3±0.21 55.2±0.28
FixMatch + CPE [43] 80.7±0.96 84.4±0.29 76.8±0.53 82.3±0.34 50.3±0.34 59.8±0.16 43.8±0.28 55.6±0.15
FixMatch + CCL 84.5±0.38 86.2±0.35 81.5±0.99 84.0±0.21 53.5±0.49 63.5±0.39 46.8±0.45 57.5±0.16

Table 3: Test accuracy under inconsistent setting (γl ̸= γu) on CIFAR10-LT and STL10-LT datasets.
γl = 100 for CIFAR10-LT, and 10 and 20 for STL10-LT dataset. The best results are in bold.

CIFAR10-LT (γl ̸= γu) STL10-LT (γu =N/A)

γu = 1 (uniform) γu = 1/100 (reversed) γl = 10 γl = 20

Algorithm N1 = 500 N1 = 1500 N1 = 500 N1 = 1500 N1 = 150 N1 = 450 N1 = 150 N1 = 450
M1 = 4000 M1 = 3000 M1 = 4000 M1 = 3000 M = 100k M = 100k M = 100k M = 100k

FixMatch 73.0±3.81 81.5±1.15 62.5±0.94 71.8±1.70 56.1±2.32 72.4±0.71 47.6±4.87 64.0±2.27
w/ DARP [33] 82.5±0.75 84.6±0.34 70.1±0.22 80.0±0.93 66.9±1.66 75.6±0.45 59.9±2.17 72.3±0.60
w/ CReST [63] 83.2±1.67 87.1±0.28 70.7±2.02 80.8±0.39 61.7±2.51 71.6±1.17 57.1±3.67 68.6±0.88
w/ CReST+ [63] 82.2±1.53 86.4±0.42 62.9±1.39 72.9±2.00 61.2±1.27 71.5±0.96 56.0±3.19 68.5±1.88
w/ DASO [48] 86.6±0.84 88.8±0.59 71.0±0.95 80.3±0.65 70.0±1.19 78.4±0.80 65.7±1.78 75.3±0.44
w/ ACR [64] 92.1±0.18 93.5±0.11 85.0±0.99 89.5±0.17 77.1±0.24 83.0±0.32 75.1±0.70 81.5±0.25
w/ CPE [43] 92.3±0.17 93.3±0.21 84.8±0.88 89.3±0.11 73.1±0.47 83.3±0.14 69.6±0.20 81.7±0.34
w/ CCL 93.1±0.21 93.9±0.12 85.0±0.70 89.8±0.31 79.1±0.43 84.8±0.15 77.1±0.33 83.1±0.18

4 Experiments

In this section, we conducted comprehensive experiments to verify the effectiveness of the proposed
continuous contrastive learning method (CCL) on CIFAR10-LT, CIFAR100-LT, STL10-LT, and
ImageNet-127 [29, 18] datasets. To simulate real-world unlabeled data, we tested our method on
diverse label distributions of unlabeled data. Due to limited space, we defer the detailed experimental
settings to the appendix.

4.1 Results on CIFAR10/100-LT and STL10-LT

For consistent (γl = γu) setting, results are presented in Table 2. From the results, we can see
that CCL consistently outperforms all comparison methods by a large margin. In particular, CCL
improves the previous state-of-the-art approach ACR by 2.8% on average. This verifies that the
representations learned by our proposed contrastive losses are more discriminative because both CCL
and ACR utilize a dual-branch network.

For inconsistent (γl ̸= γu) setting, we present the results in Table 3 and Table 4. Following
prior works, we compare all methods using unlabeled data following uniform and reversed label
distributions on CIFAR10/100-LT datasets. On the STL10-LT dataset, the underlying unlabeled
data distribution is naturally inaccessible. In general, CCL achieves the best results in all settings.
Particularly, CCL obtains an average performance gain of 1.6% over ACR without using predefined
anchor distributions. The results indicate that our method is able to accurately estimate the unlabeled
data distribution with calibrated pseudo-labels.
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4.2 Results on ImageNet-127

ImageNet-127 is a naturally long-tailed dataset and has been used to test LTSSL methods in the
recent literature [22, 64]. Following previous works, we downsample the original images to smaller
sizes of 32×32 or 64×64 pixels using the box method from the Pillow library and randomly select
10% training samples to construct the labeled data. Learning discriminative representations and a
balanced classifier is essential to achieve high performance. From the results in Table 5, we can see
that CCLachieves superior results for image sizes of 32×32 and 64×64. It outperforms ACR by
4.3% and 4.2% in test accuracy.

Table 4: Test accuracy on CIFAR100-LT in uniform
and reversed settings. The best results are in bold.

γu = 1 (uniform) γu = 1/10 (reversed)

Algorithm N1 = 50 N1 = 150 N1 = 50 N1 = 150
M1 = 400 M1 = 300 M1 = 400 M1 = 300

FixMatch 45.5±0.71 58.1±0.72 44.2±0.43 57.3±0.19
w/ DARP [33] 43.5±0.95 55.9±0.32 36.9±0.48 51.8±0.92
w/ CReST [63] 43.5±0.30 59.2±0.25 39.0±1.11 56.4±0.62
w/ CReST+ [63] 43.6±1.60 58.7±0.16 39.1±0.77 56.4±0.78
w/ DASO [48] 53.9±0.66 61.8±0.98 51.0±0.19 60.0±0.31
w/ ACR [64] 57.9±0.56 65.8±0.91 51.7±0.22 63.3±0.17
w/ CCL 59.8±0.28 67.9±0.70 54.4±0.14 64.7±0.22

Table 5: Test accuracy on ImageNet-127.
The best results are in bold.

Algorithm 32× 32 64× 64

FixMatch 29.7 42.3
w/ DARP [33] 30.5 42.5
w/ DARP+cRT [33] 39.7 51.0
w/ CReST+ [63] 32.5 44.7
w/ CReST++LA [63] 40.9 55.9
w/ CoSSL [22] 43.7 53.9
w/ TRAS [66] 46.2 54.1
w/ ACR [64] 57.2 63.6
w/ CCL 61.5 67.8

4.3 Comprehensive evaluation of the proposed method

Understanding of balanced Fixmatch and dual-branch. First, balanced Fixmatch can be viewed as
a separate EM algorithm process [17, 21], where the E-step involves estimating suitable pseudo-labels
for unlabeled data through π̂u, and the M-step updates the model and obtains a new π̂u. As can be
seen in Table 6, balanced Fixmatch achieves performance comparable to the recent state-of-the-art
method ACR. Furthermore, dual-branch significantly enhances the performance of data under highly
skewed long-tail distributions (consistent setting), with an averaged 1.5% improvement.

Table 6: Ablation studies of our proposed algorithm. “Con”, “Uni”, and “Rev” represent consistent,
uniform, and reversed, respectively.

CIFAR10-LT CIFAR100-LT

Dual-branch Reliable PL Smoothed PL Energy mask Con Uni Rev Con Uni Rev

✓ 81.0 91.8 84.2 49.3 57.0 51.5
✓ ✓ 82.1 92.0 84.5 51.2 57.3 52.1
✓ ✓ ✓ 83.5 92.8 84.7 52.7 58.5 53.2
✓ ✓ ✓ 83.2 92.7 84.8 51.9 58.4 53.2
✓ ✓ ✓ 83.8 92.7 84.8 52.7 59.1 53.9
✓ ✓ ✓ ✓ 84.3 93.1 85.0 53.5 59.9 54.4
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Figure 1: Comparison of class prior estimation error and ECE on CIFAR100-LT.

How to estimate a relatively accurate π̂u? Our method for estimating π̂u is equivalent to MLLS
[53], which is an EM process. Accurate estimation of π̂u is only achievable when the model is
calibrated [25]. Since the confirmation bias is induced by self-training, using confidence selection
may result in overconfident but wrong pseudo-labels and hurt the calibration [45, 41]. In contrast, the
energy score leverages the probability density of the predictions, exhibiting reduced vulnerability
to overconfidence [39]. Thus, we propose energy selection for a reliable unlabeled data subset on
which the model is calibrated, thereby enabling the accurate estimation of π̂u. We use expected
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calibration error [26] (ECE) to assess model calibration. The tail of the curve of Figure 1c and 1d
can be interpreted as overconfidence in false pseudo-labels caused by self-training. As can be seen in
Figure 1a and 1b, the L1 distance between the true class prior of unlabeled data and π̂u, estimated
from data subset selected using energy, is significantly smaller compared to when confidence is used
for selection, inducing a more balanced classifier training.

Continuous contrastive learning with reliable pseudo-labels. We carried out a comparative
experiment by removing the continuous reliable pseudo-labels loss. The results reflect an averaged
0.8% drop on CIFAR10/100-LT, demonstrating its efficacy for learning high-quality representation.
Moreover, we verified that the data subset filtered by energy selection obtains excellent model
calibration. Figure 1c and 1d show energy achieves better calibration than confidence thresholding.

Continuous contrastive learning with smoothed pseudo-labels. Similarly, we conducted a compar-
ative experiment by removing the continuous smoothed pseudo-labels loss. As can be seen in Table 6,
the performance decreases in all three settings on CIFAR10/100-LT datasets, showing the necessity
for a consistency regularization constraint for feature alignment within the contrastive learning space.

4.4 Results under more class distributions
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Figure 2: Generalize to more realistic LTSSL
settings for ACR and CCL on CIFAR10/100-LT
dataset in fixed γl and various γu settings.

Similar to ACR, to evaluate our method’s ef-
fectiveness under more imbalanced settings, we
conducted further experiments on CIFAR100-
LT, maintaining a fixed γl = 20 and adjusting
the imbalance ratio γu of the unlabeled data
from consistent to reversed. We set N1 = 50
and M1 = 400 (with MC = 400 in the
reversed scenario) and compared the results
with ACR as shown in Figure 2. The results
demonstrate that our method consistently out-
performs ACR in all scenarios.

5 Related Work

Long-tailed learning (LTL). Early strategies tackling LTL involve two aspects: resampling and
reweighting. Resampling methods [9, 5, 8, 54] either undersample majority classes or oversample
minority classes, which may result in information loss or overfitting. Reweighting methods [52, 16, 2,
12] assign different weights for each class or training sample. BBN [72] and Decoupling [31] claim
that re-balancing can negatively impact representation. They propose a two-branch structure or a
two-stage paradigm to address it. Logit adjustment methods [7, 44] learn larger margins for minority
classes by obtaining optimal Bayesian classifiers. Recently, several methods [30, 15, 73, 20, 57] have
been proposed to improve the representation learning based on supervised contrastive learning [32].

Long-tailed semi-supervised learning (LTSSL). Most semi-supervised learning (SSL) methods
use unlabeled data by assigning pseudo-labels to unlabeled data [37, 6, 56, 71, 10] or aligning
predictions of different views of the input by consistency regularization [59]. PAWS [4] leverages
self-supervised representations derived from unlabeled data, and RoPAWS [46] further refines the
model predictions using labeled data through kernel density estimation. However, most of these
works assume a balanced class distribution of labeled and unlabeled data, which may be violated in
real-world applications.

Recently, LTSSL has gained considerable attention due to its applicability in numerous real-life
scenarios. Recent works mitigate pseudo-labels bias by distribution alignment or label refinement [33,
63, 69]. Some others focus on balanced classifier training to overcome long-tailed label distribution
[38, 22, 66]. Regrettably, these methods simply assume an identical long-tailed distribution for
labeled and unlabeled data, which may still be unrealistic. Considering the unknown unlabeled data
distribution, which can be mismatched with the labeled distribution, DASO [48] mixes the outputs of
linear and semantic classifiers to improve the quality of pseudo-labels. ACR [64] and CPE [43] refine
consistency regularization or train multiple expert branches based on predefined anchor distributions.
However, how to improve representation learning in LTSSL is ignored in most existing works.
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6 Conclusion

This paper presents a probabilistic framework that unifies many recent methods in long-tail learning.
Our framework is equivalent to supervised contrastive learning when approximating the class-
conditional function using the Gaussian kernel. We further extend the contrastive learning objective
to LTSSL based on continuous pseudo-labels to improve the learned representations. We utilize
both reliable pseudo-labels generated by the model and smoothed pseudo-labels propagated from
nearby samples to mitigate confirmation bias. Extensive experiments demonstrate that our proposed
method achieves state-of-the-art performance in all settings. We hope that our work can motivate
more research for LTSSL from the perspective of representation learning.
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A Comparison with Supervised Contrastive Learning

As we have derived in Eq. (10) and use the Gaussian kernel density estimation in Eq. (11), if we
simply assume the data are class-balanced, it simplifies to:

P̂(Y = y | z) =

(
1

|By|−1

∑
x′∈By\{x} exp (zx · zx′)

)
P(Y = y)∑

k∈[C]

(
1

|Bk|
∑

x′∈Bk
exp (zx · zx′)

)
P(Y = k)

=

∑
x′∈By\{x} exp (zx · zx′)∑

k∈[C]

∑
x′∈Bk

exp (zx · zx′)
=

∑
x′∈By\{x} exp (zx · zx′)∑

x′∈B exp (zx · zx′)
.

(23)

The loss of supervised contrastive learning has two forms, i.e., L̂in
scl and L̂out

scl , which is distinguished
by the position of summation over positive samples at the log(·). Thus, we get:

L̂in
scl(x, y) = − log

∑
x′∈By\{x} exp (zx · zx′)∑

x′∈B exp (zx · zx′)

∝ − log

1
|By|−1

∑
x′∈By\{x} exp (zx · zx′)∑

x′∈B exp (zx · zx′)

Jensen
≤ − 1

|By| − 1

∑
x′∈By\{x}

log
exp (zx · zx′)∑

x′∈B exp (zx · zx′)
= L̂out

scl (x, y).

(24)

which is consistent with the original paper’s derivation.

B Analysis of Existing Long-Tail Learning Methods

As we have derived before, here we dive deep into the analysis of existing methods and demonstrate
that they all belong to our unified framework.

B.1 Discussion of Gaussian kernel estimation

Balanced contrastive learning [73] (BCL) was proposed to solve long-tailed problems with improved
supervised contrastive learning. BCL involves two key techniques: class averaging and class
complement. BCL averages out the contributions of different classes in the denominator to ensure
class equal distribution, meanwhile, it takes nonlinear mapping of the classifier parameters to form a
learnable class center to ensure that every class has at least one sample in a mini-batch:

Ex′∼P(·|Y=k) [κ (zx, zx′)] ≈ 1

|Bk|+ 1

∑
x′∈Bk∪{ck}

exp (zx · zx′) . (25)

However, BCL ignores the problem of the original long-tailed distribution in the training dataset,
necessitating a reweighting operation. Let π denote the class prior, we have:

L̂bcl(x, y) = −
1

πy
log

1
|By|

∑
x′∈By∪{cy}\{x} exp (zx · zx′)∑

k∈[C]
1

|Bk|+1

∑
x′∈Bk∪{ck} exp (zx · zx′)

. (26)

Gaussian mixture likelihood loss [57] (GML) initiates its approach from the concept of mutual in-
formation, employing the Gaussian kernel. GML integrates contrastive learning with logit adjustment
to enhance its performance.

L̂gml(x, y) = − log

1
|By|+|Qy|−1

∑
x′∈By∪Qy\{x} exp (zx · zx′)πy∑

k∈[C]
1

|Bk|+|Qk|
∑

x′∈Bk∪Qk
exp (zx · zx′)πk

. (27)

It proposes a class-wise queue Q = ∪Ck=1Qk to ensure a balanced class occurrence in a mini-batch.
However, it does not propose a unified framework, and the understanding is not deep enough.

Some other methods: In this section, we compare some other methods that use contrastive learning
and analyze their mistakes.
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K-positive contrastive learning [30] (KCL) is based on supervised contrastive learning, using K
samples of the same class in the molecule to ensure balanced feature space. Putting in our unified
framework, we can obtain the following:

Ex′∼P(·|Y=y) [κ (zx, zx′)] ≈ 1

|K|
∑

x′∈B′;B′⊆By,|B′|=K

exp (zx · zx′) , (28)

L̂in
kcl(x, y) = − log

1
|K|

∑
zx′∈B′;B′⊆By,|B′|=K exp (zx · zx′)∑

zx′∈B exp (zx · zx′)

Jensen
≤ − 1

|K|
∑

zx′∈B′;B′⊆By,|B′|=K

log
exp (zx · zx′)∑

zx′∈B exp (zx · zx′)
= L̂out

kcl (x, y).

(29)

Compared with the above, it regrettably still uses the same unprocessed denominator of SCL and
cannot ensure that each mini-batch contains an equal number of samples from each class, nor that
each class contributes equally, rendering it suboptimal for long-tailed learning. In addition, Eq. (28)
is equivalent to the resampling technique.

Parametric contrastive learning [15] (PaCo) introduces a set of parametric class-wise learnable
centers and uses adjustable parameters α for loss with respect to them. Our framework is used to
derive its original form. First, we can obtain:

Ex′∼P(·|Y=k) [κ (zx, zx′)] ≈ β

|Bk|
∑

x′∈Bk

exp (zx · zx′) + (1− β) exp (zx · ck) (30)

where β is a fixed coefficient. Then, we can derive the PaCo loss as follows.
L̂paco(x, y) =

− log

(
β

|By|
∑

x′∈By\{x} exp (zx · zx′) + (1− β) exp (zx · cy)
)
P(Y = y)∑

k∈[C]

(
β

|Bk|
∑

x′∈Bk
exp (zx · zx′) + (1− β) exp (zx · ck)

)
P(Y = k)

≈ − log

(
α
∑

x′∈By\{x} exp (zx · zx′) + exp (zx · cy)
)
P(Y = y)∑

k∈[C]

(
α
∑

x′∈Bk
exp (zx · zx′) + exp (zx · ck)

)
P(Y = k)

(31)

where α = βP(Y=y)
(1−β)|By| . PaCo explicitly uses the parametric class center to ensure balanced class

occurrence in a mini-batch. However, It ignores the class-equal contribution in loss computation,
which can still be suboptimal.

Probabilistic contrastive learning [20] (Proco) simply assumes that the normalized features in
contrastive learning follows a mixture of von Mises-Fisher (vMF) distributions on a unit ball, its
probability density function has the following form:

fp
(
z;µy, ρy

)
=

1

Cp (κy)
eρµ

⊤z,

Cp(ρ) =
(2π)p/2I(p/2−1)(ρ)

ρp/2−1
I(p/2−1)(z) =

∞∑
k=0

1

k!Γ(p/2− 1 + k + 1)

(z
2

)2k+p/2−1
(32)

where parameters (µy, ρy) need to be estimated. The advantage is that Proco can estimate (µy, ρy)
using an online mini-batch, such that it can be derived as a closed form of expected contrastive loss.
Despite the assumed vMF distribution, it still uses Gaussian kernel estimation:

Ex′∼P(·|Y=y) [κ (zx, zx′)] ≈ Ezx′∼P̂vMF(·|Y=y) [κ (zx, zx′)] =
Cp(λ(zx, y))

Cp (ρy)
(33)

where λ(zx, y) represents a fixed function related to zx,µy, ρy . Thus, the loss objective of Proco is:

L̂proco(x, y) = − log P̂s(Y = y | z) = − log

Cp(λ(zx,y))·πy

Cp(ρy)∑
k∈[C]

Cp(λ(zx,k))·πk

Cp(ρk)

. (34)

However, the assumed distribution of Proco stills needs to be estimated (µy, ρy) using EMA of
different batches, which is essentially a similar approach to the momentum queue used in GML.
There still exist problems of inconsistent distribution of z in different mini-batches, and the strong
assumption about P(z | Y = y) which may not follow the vMF distribution.
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B.2 Discussion of explicitly assigning a specified distribution

Previous work mainly focused on P(z | Y = y) through modeling cos θy =
µ⊤

y z

∥µy∥∥z∥ .

T-vMF [34] models cos θy as vMF distribution:

f (cos θy; ρy) =
1

C (ρy)
eρy cos θy = C ′(ρy)e

ρy∥z−µy∥ = C ′(ρy)se(
∥∥z − µy

∥∥ , ρy). (35)

Due to the inherent properties of the exponential function, the posterior quickly converges to 0,
despite a large

∥∥z − µy

∥∥. Such a compact measuring function might hamper model training, since
tailed samples hardly enjoy back-propagation due to vanishing gradient. To overcome this problem,
T-vMF introduces a family of modeling methods as follows:

fq (cos θy; ρy) = C ′(ρy)

[
1− (1− q)

1

2
ρy

∥∥z − µy

∥∥] 1
1−q

= C ′(ρy)sq(
∥∥z − µy

∥∥ , ρy), (36)

where sq(
∥∥z − µy

∥∥ , ρy) = [
1− (1− q) 12ρy

∥∥z − µy

∥∥] 1
1−q . Technically, T-vMF models P̂t(Y =

y | z) as follows:

P̂t(Y = y | z) = eφq,ρ⟨z,µy⟩∑
k∈[C] e

φq,ρ⟨z,µk⟩
, (37)

φq,ρ

〈
z,µy

〉
= 2

sq(
∥∥z − µy−

∥∥ , ρ)− sq(2, ρ)

sq(0, ρ)− sq(2, ρ)
− 1 ∈ [−1, 1] . (38)

Thus, the loss objective of T-vMF is:

L̂T−vMF(x, y) = − log P̂s(Y = y | z) = − log
πye

φq,ρ⟨z,µy⟩∑
k∈[C] πkeφq,ρ⟨z,µk⟩

. (39)

WCDAS [27] The accuracy of the posterior approximation is a crucial factor influencing the method’s
performance. Unlike t-vMF, which directly specifies the P(z | Y = y) with fixed parameters,
WCDAS seeks an optimal parametric probability density function of P(z | Y = y).

Modeling cos θy as the Wrapped Cauchy distribution with trainable parametric ϑ = [ϑ1, . . . , ϑC ],
WCDAS models P̂t(Y = y | z) as follows:

f (cos θy;ϑy) =
1− ϑ2

y

2Π(1 + ϑ2
y − 2ϑy cos θy)

, (40)

P̂t(Y = y | z) = ef(cos θy ;ϑy)∑
k∈[C] e

f(cos θk;ϑk)
. (41)

Thus, the loss objective of WCDAS is:

L̂WCDAS(x, y) = − log P̂s(Y = y | z) = − log
πye

f(cos θy ;ϑy)∑
k∈[C] πkef(cos θk;ϑk)

. (42)

C Mathematical Notations

To ensure clarity and precision throughout this paper, we provide a comprehensive list and definitions
of the key mathematical symbols and terms used in this section. Each symbol is defined with its
specific meaning and context to ensure consistency and accuracy across the document.

D Illustration of The Proposed Algorithm

D.1 Illustration of The Overall Proposed Algorithm

CCL consists of two parts: the classification part and the contrastive learning part. The classification
part uses logit rectification of the classifier by class prior estimated with a dual-branch. For the
contrastive learning part, the energy score is used to select reliable unlabeled data which are merged
with labeled data for continuous contrastive loss to ensure calibration. Besides, information of labeled
data and unlabeled are used in a decoupled manner while maintaining the constraints of aligning
feature in the contrastive learning space, thereby forming a smoothed contrastive loss.

16



Table 7: List of common mathematical symbols used in this paper.

Symbol Definition

X ⊂ Rd,Y ⊂ [C] Feature space and target space
Ps, Pt Joint distribution of training and test data in LTL, respectively
Pl, Pu Joint distribution of labeled and unlabeled data in LTSSL, respectively

{(xi, yi)}Ni=1∼PN
s Training set in LTL{(

xl
i, y

l
i

)}N

i=1
∼PN

l Labeled training set in LTSSL{
xu
j

}M

j=1
∼PM

u Unlabeled training set in LTSSL
{N1, . . . , NC} Number of samples for each class in labeled data
{M1, . . . ,MC} Number of samples for each class in unlabeled data

πl, π̂u True class prior of labeled data and estimated one of unlabeled data, respectively
X,Y, Z Random variable of input, target, and latent feature space, respectively
P, P̂ Probability density function and its variational approximation, respectively
Ps Probability density function of training distribution in LTL
Pt Probability density function of test distribution (with uniform label distribution)

Pl,Pu Probability density function of L,U , respectively
P̂cls Estimated posterior of unlabeled data with dual-branch
enc(·) Encoder that maps X to Z
Θ Parameters of the encoder
I(·) Mutual information of two random variables
κ(·, ·) Similarity between two latent features
M,ME Sample mask of confidence and energy score, respectively
fs(·), fb(·) Standard branch and balanced branch, respectively

g(·) Projection head
B Data mini-batch
Bl,Bu Mini-batch of labeled and unlabeled data, respectively

Figure 3: Illustration of the proposed framework.
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Algorithm 1 Continous Contrastive Learning (CCL)

Input: labeled dataset and unlabeled dataset, standard branch fs and balanced branch fb, projection
head g, class prior of labeled dataset πl, estimated unlabeled dataset class distribution π̂u, number
of iterations in each epoch T , scaling parameter τ .
Require: Weak augmentation Aw(·), strong augmentation As(·), loss weight coefficients λ1, λ2.
for t = 1 to T do
{(x(l)

i , y
(l)
i )}|B

l|
i=1 ← Sample a batch of labeled data

{x(u)
j }

|Bu|
j=1 ← Sample a batch of unlabeled data

# Balanced classifier training with estimated class prior
Calculate pseudo label ŷ = argmaxk∈[C] P̂cls (Y = k | Aw(x

u)) via Eq. (15)
Calculate classification loss L̂cls
Update estimated class distribution π̂u via EMA by energy score selection
# Continuous contrastive loss with reliable pseudo-labels
Merge reliable unlabeled data selected based on energy score with labeled data to construct B
Calculate loss L̂rpl via Eq. (17) with B
# Continuous contrastive loss with smoothed pseudo-labels
Calculate G using unlabeled data
Compute posterior P̂ (Y | Aw(x

u)) and P̂ (Y | As(x
u)) using Eq. (21)3

Calculate consistency regularization loss L̂spl via Eq. (18)
# Total Objective
L̂total = λ1L̂cls + (1− λ1) L̂rpl + λ2L̂spl
Updatefs and fb and g based on∇Ltotal using SGD

end for

D.2 Illustration of Reliable Pseudo-labels and Smoothed Pseudo-labels

Figure 4: Illustration of reliable pseudo-labels and smoothed pseudo-labels in CCL. To generalize
the framework in Section 2 to LTSSL, the main challenge is unknown Pu(Y = y | xu), where xu

denotes a sample in the unlabeled dataset. We first approximate Pu(Y = y | xu) using the output
of the calibrated and integrated classifier and use energy score to filter out reliable unlabeled data,
ensuring the model’s calibration, which constitutes the reliable pseudo-labels subset. Furthermore,
we can also estimate the unknown Pu(Y = y | xu) by leveraging the smoothness assumption.
Specifically, we construct smoothed pseudo-labels by propagating labels from nearby samples using
the Gaussian kernel density estimation.

E Pseudo Code of The Proposed Algorithm

Algorithm 1 summarizes the whole framework of the proposed CCL, which is clearly divided into
three components: balanced classifier, continuous contrastive learning with reliable and smoothed
pseudo-labels, respectively.
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F Experimental Setup

Training datasets. Our experimental analysis uses a variety of commonly adopted SSL datasets,
including CIFAR10-LT [35], CIFAR100-LT [35], STL10-LT [13], and ImageNet-127 [22] in various
ratios of class imbalance γ and various ratios of the amount of labeled data η. To create imbalanced
versions of these datasets, we consider the long-tailed imbalance where the frequency of data points
decreases exponentially from the largest to the smallest class, that is, the number of samples in class c
is Nc = N1×γ− c−1

C−1 for labeled data and Mc = M1×γ− c−1
C−1 for unlabeled data. We use Cutout [19]

and Randaugment [14] for strong augmentation on unlabeled data, and we use SimAugment [11] on
labeled data for continuous contrastive loss with smoothed pseudo-labels. Like recent LTSSL works,
we consider three class distribution patterns for unlabeled data, namely, consistent, uniform, and
reversed settings.

• CIFAR10-LT: Following ACR [64], we conduct experiments with all comparison methods
in settings where N1 = 500,M1 = 4000 and N1 = 1500,M1 = 3000. We adopt imbalance
ratios of γl = γu = 100 and γl = γu = 150 for consistent settings, while for uniform
and reversed settings, we use γl = 100, γu = 1 and γl = 100, γu = 1/100, respectively.

• CIFAR100-LT: Like CIFAR10-LT, we perform experiments in configurations where N1 =
50,M1 = 400 and N1 = 150,M1 = 300. For the consistent settings, we use imbalance
ratios of γl = γu = 10 and γl = γu = 20. In contrast, for the uniform and reversed
settings, we apply γl = 10, γu = 1 and γl = 10, γu = 1/10, respectively.

• STL10-LT: Given the absence of ground-truth labels for the unlabeled data of the STL10
dataset, we manage the experiments by adjusting the imbalance ratio of the labeled data.
Following ACR, we consider the labeled imbalance ratio of γl = 10 or γl = 20.

• ImageNet-127: ImageNet127 was first introduced in an earlier research [29] and utilized in
LTSSL by CReST. This dataset consolidates the 1000 classes [18] from ImageNet into 127
classes, grouping them according to the WordNet hierarchy. For ImageNet-127, we follow
the original setting in CoSSL [22] (γl = γu ≈ 286).

Implementation details. Our experimental configuration largely aligns with Fixmatch [56] and ACR
[64]. Specifically, we apply the Wide ResNet-28-2 [70] architecture to implement our method on the
CIFAR10-LT, CIFAR100-LT and STL10-LT datasets; and ResNet-50 on ImageNet-127. We adopt the
common training paradigm that the network is trained with standard SGD [47, 49, 58] for 500 epochs,
where each epoch consists of 500 mini-batches, and a batch size of 64 for both labeled and unlabeled
data. We use a cosine learning rate decay [42] where the initial rate is 0.03, we set τ = 2.0 for logit
adjustment on all datasets, except for ImageNet-127, where τ = 0.1. We set the temperature T = 1
and the threshold ζ = −8.75 for the energy score following [69], and we set λ1 = 0.7, λ2 = 1.0 on
CIFAR10/100-LT and λ1 = 0.7, λ2 = 1.5 on STL10-LT and ImageNet-127 datasets for the final
loss. We set β = 0.2 in Eq. (21) for smoothed pseudo-labels loss. To show the effectiveness of our
approach, we perform a comparative analysis with several existing LTSSL algorithms, including
DARP [33], CReST [63], DASO [48], ABC [38], and TRAS [66]. We also consider the most popular
LTSSL methods ACR [64] and CPE [43]. The performance evaluation of these methods is based
on the top-1 accuracy metric on the test set. We present the mean and standard deviation of the
results from three independent runs for each method. In addition, our method is implemented using
the PyTorch library and experimented on an NVIDIA RTX A6000 (48 GB VRAM) with an Intel
Platinum 8260 (CPU, 2.30GHz, 220 GB RAM).

G In-depth Analysis

G.1 Sensitive analysis of hyperparameters

As outlined in figure 5a, CCL is relatively robust to the fluctuation of β from 0.1 to 0.4. However,
when β is set to 0, the propagation within unlabeled data is ignored, resulting in a performance
decrease of about 0.9%. Thus, the necessity of using Eq. (21) is verified. In addition, figures 5b and
5c both demonstrate that CCL is robust to loss weighting coefficients λ1 and λ2 within a certain range.

3The matrix inversion operation is implemented using torch.inverse(), which utilizes the fast singular
value decomposition. The time complexity is O(|Bu|3).
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However, it is worth noting that when λ1 = 1.0, the proposed continuous reliable pseudo-labels loss
is ignored, resulting in performance degradation.
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Figure 5: Sensitive analysis of hyperparameters under consistent setting of CIFAR100-LT.

G.2 Time and Space Complexity Analyses

In this section, we conduct analyses of the time and space complexity of the proposed method. Denote
feature space dimension D, batch size B and the number of classes C, the time and space complexity
of CCL can be seen in Table 8 and analysis details as follows.

For time complexity, calculating Lrpl requires two main parts, calculating kernel similarities by
multiplying two matrix of size B × D and D × B with complexity O(B2D), and calculating
Ex′∼P(·|Y=y) [κ (zx, zx′)] by multiplying two matrix of size B × B and B × C with complexity
O(B2C). Calculating Lspl requires a further calculating part compared to Lrpl: inverse matrix
I − βG in Eq.(21) with complexity O(B3) by utilizing the fast singular value decomposition.

For space complexity, calculating two losses requires two additional storage spaces, first sample
pairwise kernel similarity requires space with complexity O(B2), and P̂ (Y |Xu) requires space
with complexity O(BC).

Generally, given B = 64, C = 100 and D = 256. Compared to the scale of model parameters,
CCL adds negligible overhead relative to the neural network’s computational cost when computing
loss. We further report the averaged mini-batch training time with a single 3090 GPU and the GPU
memory usage in Table 9 and Table 10. As seen from these tables, the training time and space
consumptions of CCL are comparable to the existing state-of-the-art method ACR when CCL applies
additional data augmentations to labeled data for representation learning.

Table 8: Time and space complexity of two continuous contrastive loss of CCL.

CCL loss Time complexity Space complexity

Lrpl O(B2D +B2C) O(B2 +BC)
Lspl O(B2D +B2C +B3) O(B2 +BC)

Table 9: Average batch time of each algorithm.

Algorithm CIFAR-10 CIFAR-100 STL-10
ACR 0.073 sec/iter 0.083 sec/iter 0.114 sec/iter
CCL 0.102 sec/iter 0.111 sec/iter 0.143 sec/iter

G.3 Confusion matrix

Figure 6 presents the confusion matrix on the test set generated by CCL and ACR, which is
calculated on the CIFAR10-LT dataset under γl = γu = 100 and γl = γu = 150 settings. As
we can see in the top row of the figure, ACR often misclassifies the minority class “7” and “8”
into the majority class “4” and “0”, respectively. In comparison, CCL effectively mitigates this
misclassification phenomenon by achieving an average improvement of 7.5%. Similarly in the
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Table 10: GPU memory usage of each algorithm.

Algorithm CIFAR-10 CIFAR-100 STL-10

ACR 2054M 2057M 2236M
CCL 2230M 2232M 2642M

(a) ACR (γl=γu=100) (b) CCL (γl=γu=10) (c) ACR (γl=γu=150) (d) CCL (γl=γu=150)

Figure 6: Confusion matrices of the predictions on the test set of CIFAR10-LT.

second row, CCL achieved an extraordinarily high accuracy of 78% for class “9”, which shows a
significant gain of 37% compared to ACR. CCL also achieves higher overall accuracy.

G.4 Precision and recall

To conduct a more in-depth analysis of the effectiveness of pseudo-labels generated by the proposed
dual-branch fusion approach, we calculated the precision and recall of the pseudo-labels assigned
to unlabeled data by ACR and CCL on CIFAR10-LT and CIFAR100-LT datasets. Specifically, we
use γl = γu = 100 and γl = γu = 150 settings on CIFAR10-LT dataset and all three consistent,
uniform, reversed settings on CIFAR100-LT dataset and we grouped the results of CIFAR100 into
10 categories, each category containing 10 classes, since CIFAR100 comprises 100 classes. As can be
seen in figure 8, CCL achieves significantly improved precision of pseudo-labels for tailed classes “9”
and “10” on CIFAR10 dataset, while also achieving better recall for head classes. Similarly in Figure
7, CCL achieves overall better precision and recall compared to ACR regardless of the distribution
mismatch scenario. It clearly shows that the pseudo-labels generated by CCL are more capable of
alleviating the confirmation bias of tailed classes without sacrificing the performance of head classes.

G.5 Visualization

Furthermore, we employ the t-distributed stochastic neighbor embedding (t-SNE) [61] to visualize
the representations learned by the CCL method and contrast them with those from the previous
ACR method. The comparative results on the test set, under consistent settings, are depicted in
Figure 9. The figure demonstrates that the representations derived from CCL provide more distinct
classification boundaries.

H Limitation

Our paper examines existing long-tailed learning methods through the lens of information theoretical
view, proposing a unified framework. However, we have not established theoretical proof for the
convergence of features within this framework. In the future, we intend to provide further theoretical
analysis from the perspective of neural collapse.
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(a) ACR on γl = γu = 10
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(b) ACR on γl = 10, γu = 1
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(c) ACR on γl = 10, γu = 1/10

1 2 3 4 5 6 7 8 9 10
Class index

0.0

0.2

0.4

0.6

0.8

Pr
ec

is
io

n 
/ R

ec
al

l(%
)

(d) CCL on γl = γu = 10
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(e) CCL on γl = 10, γu = 1
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(f) CCL on γl = 10, γu = 1/10

Figure 7: The precision and recall of pseudo-labels for ACR and CCL on CIFAR100-LT dataset in
consistent, uniform, reversed settings.
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(a) ACR (γl=γu=100)
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(b) CCL (γl=γu=100)
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(c) ACR (γl=γu=150)
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(d) CCL (γl=γu=150)

Figure 8: The precision and recall of pseudo-labels for ACR and CCL on CIFAR10-LT dataset in
consistent settings.

I Broader Impact

The positive impacts of this work are two-fold: 1) It enhances the fairness of the classifier in semi-
supervised learning, preventing potential biases in deep models, such as an unfair AI primarily serving
the majority, which could lead to discrimination based on gender, race, or religion; 2) It enables the
easy collection of larger image datasets without the need for mandatory class-balancing preprocessing.
For example, in training classifiers for real-world natural image scenes using the proposed method,
we do not need to consider whether the distribution of unlabeled data matches that of the labeled
data or if every class in the labeled data has an equal number of samples. However, negative effects
might occur if the proposed long-tailed semi-supervised classification technique is misused. In the
wrong hands, this approach could be exploited for unethical purposes, such as targeting or identifying
minority groups for detrimental reasons.
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(a) ACR on γl = γu = 100
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(b) CCL (ours) on γl = γu = 100
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(c) ACR on γl = γu = 150
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(d) CCL (ours) on γl = γu = 150

Figure 9: The t-SNE visualization of the test set for ACR and CCL on CIFAR-10-LT dataset in
consistent settings.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly articulated our contributions at the end of the abstract and the
introduction. Additionally, the research scope of this paper is introduced at the beginning of
both the abstract and the introduction.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our method are analyzed in the appendix of this paper.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All experimental results were obtained by implementing the proposed method
and running it on the dataset. All results are reproducible.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have made the source code publicly available via the link described in the
abstract.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In the appendix, we provide a detailed description of the experimental setup,
including the creation of the dataset, hyperparameter settings, as well as the pseudocode for
our method and diagrams of the model structure.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: In the experimental section, we present statistical results, including the mean
and variance of accuracy, ECE calibration metrics, and line graphs estimating prior errors.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]
Justification: The computational resources we used are detailed in the appendix.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our code adheres to the NeurIPS Code of Ethics and does not violate any
ethical guidelines.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss societal impacts in the appendix.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not employ high-risk data or models, thus posing no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The assets from several recent works that we utilized are all cited in our paper.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
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