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ABSTRACT

Embodied cognition argues that intelligence arises from continuous sensorimotor
interaction with the world. It raises an intriguing question: do modern vision-
language models (VLMs), trained largely in a disembodied manner, exhibit signs
of embodied cognition? To investigate this, we introduce ENACT, a benchmark
that probes this question through world modeling from egocentric interaction.
Grounded in a partially observable Markov decision process (POMDP) framework,
ENACT comprises two complementary sequence reordering tasks: forward world
modeling (predicting an ordered sequence of future states from actions) and inverse
world modeling (inferring an ordered sequence of actions from state changes).
Correctly solving these tasks indicates that the model has a solid understanding of
how the environment will evolve given one’s actions. Our scalable dataset contains
8,972 QA pairs derived from diverse, long-horizon household activities in the
BEHAVIOR simulator. Experiments reveal a significant performance gap between
state-of-the-art VLMs and humans, which widens dramatically as interaction
horizons lengthen. We find that models consistently solve the inverse problem better
than the forward one and exhibit strong embodied biases, showing a preference
for right-handed actions and performance degradation with camera perspectives
that deviate from those of human vision. Code and supplementary materials are
available in our anonymous repository.
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Figure 1: Grounded in a POMDP framework, ENACT probes embodied cognition in a simple and
scalable way via world modeling through egocentric interaction (left). It poses two tasks (right
top): forward world modeling (ordering observations given actions) and inverse world modeling
(ordering actions given observations). Evaluation (right bottom) shows that GPT-5 performance drops
as step length scales, solves better on inverse task, and lags behind humans.

1 INTRODUCTION

Intelligent behavior in the physical world involves grounding abstract knowledge in interaction with
the environment. Embodied cognition argues that intelligence is not passively acquired, but enacted
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through a continuous sensorimotor interaction with the world (Smith & Gasser, 2005). This process
often integrates three key components: spatial perception of geometric structure, physical interaction
for causal learning, and linguistic abstraction for generalization, as emphasized within embodied
perspectives on cognition (Frick & Möhring, 2016; Thompson, 2005; Clark, 2006; Barsalou, 2020).

Despite the rapid progress in large foundation models like Vision-Language Models (VLMs) (OpenAI,
2025; DeepMind, 2025), these models are predominantly trained in a disembodied manner on internet-
scale non-interactive data, with many more tokens than a human’s lifetime experience. This raises
a natural question: do modern VLMs, trained largely in such a disembodied manner, exhibit
signs of embodied cognition? Existing benchmarks provide valuable insights by largely isolating
one dimension at a time: spatial perception in static scenes (Ramakrishnan et al., 2024), physical
interaction in contrived settings (e.g., a ball hits another ball in a clean environment; Yi et al., 2019;
Gao et al., 2025), or linguistic reasoning and planning (Li et al., 2024b). However, a critical gap
remains: studying these components in synergy within an embodied setting.

To this end, we introduce ENACT, a benchmark that probes embodied cognition through world
modeling via egocentric interaction. A world model (Ha & Schmidhuber, 2018) captures an envi-
ronment’s dynamics. In the context of embodied agents, we focus on two forms: forward dynamics,
which predict the next state from a given state and action, and inverse dynamics, which infer the
action from a state transition. Grounded in a partially observable Markov decision process (POMDP,
Åström, 1965, shown in Figure 1), we frame our tasks as sequence reordering to benchmark holistic
understanding of world models and avoid designer biases. Specifically: In forward world modeling,
given an initial observation and a sequence of abstract actions (symbolic scene graph (Johnson
et al., 2017) state transitions), the model must reorder a shuffled sequence of future observations. In
inverse world modeling, given an ordered sequence of observations, the model must reorder the
corresponding shuffled action sequence. Built with the BEHAVIOR simulator (Li et al., 2024a),
our dataset is scalable and well-suited for controlled experimentation, enabling probing of agent
properties like long-term memory, the perception-action loop, embodied awareness, and data biases.

To ensure the data scalability of ENACT, we design a data generation pipeline. Starting with human
demonstrations from BEHAVIOR, we replay them to generate trajectories with aligned symbolic
scene graphs (states) and egocentric RGB observations. We represent actions with abstract state
changes (e.g., Remove Open(fridge)). We then sample subsequences of desired lengths to
assemble the key-frame trajectories for our QAs. Our dataset is scalable because our combinatorial
sampling generates vast QAs from a single demonstration, and BEHAVIOR provides thousands
of such demonstrations. We then use templates to build QAs for two world modeling tasks. We
report two metrics at different granularities: Task Accuracy (exact ordering) and Pairwise Accuracy
(fraction of adjacent pairs correctly ordered).

Our experiments reveal that ENACT is challenging for current VLMs, which lag significantly behind
human performance (Figure 1). This performance gap widens as the task horizon increases, where
VLM accuracy degrades sharply with trajectory length while human performance remains high.
We also find that all models consistently perform better on inverse than forward world modeling.
Furthermore, we uncover two notable biases: VLMs show a clear preference for understanding right-
handed dynamics, and the performance of representative models like GPT-5 mini drops significantly
with non-human-eye-like camera configurations.

Overall, our contributions are threefold: (1) We introduce ENACT, a benchmark with a scalable
dataset for probing embodied cognition via forward and inverse world modeling from egocentric inter-
action. (2) We provide a large dataset of 8,972 QAs and a reproducible data generation pipeline using
the BEHAVIOR simulator to create diverse, long-horizon embodied tasks at scale. (3) Through exten-
sive experiments on state-of-the-art VLMs, we uncover their limitations in long-horizon embodied
world modeling and reveal sensitivities to embodied data biases.

2 ENACT: EGOCENTRIC INTERACTIVE EMBODIED COGNITION TEST

2.1 PROBLEM FORMULATION

We investigate the embodied cognition of VLMs by framing it as a world modeling problem, which
we probe using egocentric, interactive reasoning tasks. We formulate our benchmark from robot
demonstration data, comprised of state-observation pairs {(st, ot)}. The state st is a symbolic scene
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Figure 2: Overview of ENACT data curation pipeline. We first replay robot trajectories to
obtain aligned scene graphs (states) and RGB observations. The raw trajectory is then segmented
by identifying frames where an abstract state change occurs (i.e., the scene graph difference is
non-empty). From this set of segmented frames, we sample multiple key-frame trajectories, which
are finally used to construct the forward and inverse world modeling questions. Here N refers to the
number of all sampled trajectories across all step lengths.

graph from the simulator state space G, while the observation ot ∈ RH×W×3 is the corresponding
egocentric RGB image. A symbolic scene graph is a structured data model that represents the
objects in a scene as symbolic nodes (e.g., On(fridge)) and their relationships as edges (e.g.,
OnTop(pen, desk)). We view the underlying embodied task as a POMDP. As shown in Figure 2,
we first filter this raw data to identify all timestamps where an abstract scene graph state change occurs
(i.e., the scene-graph difference δ(st, st−1) ̸= ∅). This process yields a smaller, chronologically
ordered set of segmented frames, which serve as the candidate pool for our benchmark.

From the pool of segmented frames, we sample R trajectories, each with a chronologically ordered
tuple π = (i0, · · · , iL−1) of L key frames. This initial abstraction into discrete decision epochs
is similar to a semi-MDP (Sutton et al., 1999). However, we treat each of these final key-frame
trajectories as a self-contained POMDP instance with scene graphs Sπ and observations Oπ. For
k = 0, · · · , L − 2, the action connecting consecutive key frames is the visible scene-graph delta
ak := ∆Vis(sik+1

, sik), where ∆Vis returns the subset of differences in δ(sik+1
, sik) that are visible in

both images. Together, these actions form a discrete symbolic action spaceA. For notation simplicity,
we relabel indices in π for each key-frame trajectory to π = (0, · · · , L−1) and (sk, ok) := (sik , oik).

Building on these trajectories, we formalize two tasks. For forward world modeling, given the
current image o0, the correct ordered action sequence (a0, . . . , aL−2), and a shuffled list of next-state
images O′ = (o′1, . . . , o

′
L−1), the model outputs a permutation σ ∈ Sym([L − 1]) that orders the

images to match the actions: (o′σ(1), . . . , o
′
σ(L−1)) = (o1, . . . , oL−1). For inverse world modeling,

given o0, the correctly ordered state images (o1, . . . , oL−1), and a shuffled list of actions A′ =
(a′0, . . . , a

′
L−2), the model outputs a permutation τ ∈ Sym([L − 1]) that orders the actions to be

consistent with the state progression: (a′τ(1), . . . , a
′
τ(L−1)) = (a0, . . . , aL−2).

2.2 KEY-FRAME TRAJECTORIES SYNTHESIS FOR SCALABLE DATA GENERATION

Segmented Frames with Abstract State Changes. Raw robot trajectories often contain long
stretches with no semantic changes (e.g., gripper motion when opening the toolbox in Figure 2) . We
mark a timestamp t whenever the simulator state makes a minimal abstract state change (e.g., the
robot is now grasping the drill with the right hand). The BEHAVIOR simulator exposes boolean
and relational predicates, where flipping one predicate or updating a relation is our atomic state
change. A time t enters the candidate pool if the scene-graph difference δ(st, st−1) is nonempty.
To avoid near-duplicate frames, we compare each new change with the last accepted segmented
frame: we form a predicate-level change signature cj and keep t only if its cosine similarity with the
previous signature cj−1is below a threshold. This yields a chronological set of segmented frames
K = {t1 < · · · < tM} with (sti , oti). Thresholds and further details are in the Appendix A.2.1.

Key-Frame Trajectories Synthesis. From the segmented M frames, we sample length-L key-frame
trajectories π = (i0, . . . , iL−1) with 1≤ i0 < · · · < iL−1≤M , so indices do not need to be adjacent.

3
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Figure 3: Data sources and QA examples. ENACT is built from diverse, long-horizon activities
performed by real robots (left). We provide examples for (mid) forward world modeling and (right)
inverse world modeling. More QA examples and prompts are available in the Appendix A.3.3.

Each candidate is strictly validated: for every k, the visible state change ∆Vis(sik+1
, sik) is nonempty,

and the edited objects are visible in both images, except for object transitioning events (e.g., pineapple
being diced), where transient occlusion is permitted. We then treat each valid key-frame trajectory as
an individual POMDP instance, with Sπ and Aπ as defined in the problem formulation. To make
data generation scalable, we exploit that typically L < M (in practice L≤10 while M ≳30), and
we use skipping to convert trajectory construction into a “seat selection” combinatorics problem,
choosing L seats out of M , which yields at most

(
M
L

)
distinct candidates from a single trajectory.

The detailed algorithm is in the Appendix A.2.2.

Reordering Questions Generation. While multiple-choice questions suit single-step tasks, design-
ing unbiased distractors for long-horizon interactions is infeasible. We therefore adopt sequence
reordering, a simple formulation that avoids designer bias and requires a holistic understanding of the
entire interaction. These trajectories are then converted into the forward and inverse world-modeling
tasks by shuffling future states or actions, as specified in the problem formulation Section 2.1.

2.3 DATASET OVERVIEW AND EVALUATION DESIGN

Dataset Overview. We construct the benchmark from the BEHAVIOR simulator and challenge (Li
et al., 2024a). BEHAVIOR Challenge provides diverse long-horizon household activities, and we
select 29 activities from it and use one trajectory per activity to recover aligned pairs {(st, ot)}.
Each trajectory is segmented into segmented frames K, then converted into key-frame trajectories
and finally into two QA types: forward world modeling and inverse world modeling (examples in
Figure 3). Across step lengths L ∈ {3, . . . , 10} we sample about 560 items per L for each QA
type, yielding 8,972 total questions. The data uses common predicate classes (e.g., Open, Cooked,
Grasping), and distributions are shown in Figure 3. Full statistics appear in the Appendix A.3.1.

Evaluation Design. Multiple valid answers can exist for a given question. We therefore use an online
verifier that accepts any predicted permutation, σ or τ , that is consistent with the corresponding input
description constraints. Furthermore, we report two complementary metrics: Task accuracy captures
exact ordering, while Pairwise accuracy grants partial credit for near-correct sequences. Specifically,
(1) Task accuracy measures exact success at the question level. A question receives score 1 if the
verifier accepts the full prediction and 0 otherwise. The dataset score is the average over questions,
TA = (1/|D|)

∑
x∈D 1{accepted(x)}. (2) Pairwise accuracy measures stepwise consistency. For a

question with length L, we count how many adjacent pairs pass the verifier’s local check (state–action
for forward; action–state for inverse) and divide by L. We report the micro-average across the split,
PA =

(∑
x #correct pairs in x

)/(∑
x Lx

)
, which is equivalent to averaging per-item pairwise

scores when L is fixed. Detailed evaluation implementation can be found in the Appendix A.3.2.
3 EXPERIMENTS AND ANALYSIS

3.1 WORLD MODELING AS A PROXY FOR EVALUATING EMBODIED COGNITION

Experimental Setup. (1) VLM evaluation setup. We evaluate ENACT with 7 proprietary VLMs
from 3 families (OpenAI, 2025; DeepMind, 2025; Anthropic, 2025) and 23 open-weight models from
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Table 1: Evaluation on ENACT (Pairwise Accuracy). Dark gray indicates the best result within
each category (Proprietary or Open-Weight Models), and Light gray denotes the second-best result
within the category. Complete results are in the Table 9 (Task Accuracy) and 10 (Pairwise Accuracy).

Model
Forward World Modeling Inverse World Modeling

3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10
Proprietary Models

GPT-5 84.62 75.26 69.96 64.18 57.48 52.16 49.45 46.93 86.28 80.37 76.09 68.78 65.71 62.13 57.12 55.33
GPT-5 mini 87.50 76.25 70.65 63.41 58.14 52.38 46.65 44.11 85.05 76.77 75.43 67.67 63.79 57.04 55.04 50.02
GPT-5 nano 67.83 50.29 38.61 30.35 25.97 21.90 17.59 16.84 72.81 53.95 42.48 36.45 31.68 28.20 24.11 20.33
Gemini 2.5 Pro 86.10 76.42 69.83 60.80 53.26 48.12 40.12 36.98 87.94 81.18 75.39 70.03 66.03 62.91 57.78 56.62
Gemini 2.5 Flash 81.64 67.94 54.17 43.38 37.43 32.73 29.88 28.07 82.78 72.18 60.83 58.19 53.14 51.78 47.99 44.98
Gemini 2.5 Flash-Lite 64.34 49.07 38.70 33.87 27.81 25.44 23.31 20.31 69.58 57.55 46.04 39.09 34.06 30.18 27.51 23.16
Claude Sonnet 4 65.65 45.82 36.65 30.52 26.61 22.78 21.49 20.16 73.25 56.85 48.87 43.07 37.00 32.71 30.50 28.49

Open-Weight Models
GLM-4.5V 74.30 59.99 47.65 38.78 30.83 25.69 21.60 19.67 80.59 69.28 57.04 51.53 46.95 41.68 37.36 37.93
Llama-4-Mav-17B-128E-Ins 72.47 52.09 43.87 35.30 29.90 25.89 22.79 20.49 72.55 62.60 50.52 43.10 35.17 31.68 28.10 25.80
InternVL3.5-241B-A28B 75.79 62.25 50.83 45.85 37.84 32.88 27.85 25.24 82.26 70.09 60.61 53.38 45.90 39.35 34.12 30.56
Gemma-3-27b-it 63.29 44.66 32.04 25.82 22.11 19.50 16.74 16.29 64.95 48.37 40.04 33.87 28.53 23.63 21.74 19.36
QVQ-72B-Preview 69.14 52.96 40.83 36.27 33.16 30.63 26.30 24.76 71.33 58.77 48.43 44.36 40.26 39.30 36.66 36.58
Qwen2.5-VL-72B-Ins 78.15 60.05 49.87 41.92 36.77 31.73 28.03 25.07 77.80 65.85 53.30 48.19 44.07 37.57 33.76 36.27
Qwen2.5-VL-32B-Ins 67.83 55.46 44.35 35.75 27.52 26.42 22.01 18.07 63.55 59.70 54.57 51.01 49.36 47.17 41.47 40.16
Ovis2.5-9B 58.39 42.51 34.96 31.08 24.61 20.78 18.11 16.96 64.86 51.74 41.65 35.47 30.95 26.64 23.70 23.25
MiniCPM-V-4.5 60.75 38.73 33.65 25.47 24.81 21.40 21.56 18.33 69.23 53.08 47.35 39.55 34.87 30.63 27.05 25.71
Idefics3-8B-Llama3 60.23 36.99 31.83 24.25 21.29 20.80 20.46 17.71 47.38 33.86 27.26 23.48 19.87 18.50 17.04 15.16
Cosmos-Reason1 56.28 41.86 34.75 28.40 26.46 26.49 25.41 24.88 58.30 45.93 44.25 38.50 35.72 34.56 31.50 28.64
BAGEL 30.24 40.19 29.65 25.37 22.75 19.45 17.84 15.87 56.73 52.85 40.09 35.44 29.67 24.39 28.70 18.91

Human Performance 93.62 95.30 95.04 93.87 95.43 95.41 94.75 95.13 92.05 93.56 94.35 94.25 95.96 97.74 96.30 96.29

11 families (Wang et al., 2025; Bai et al., 2025; Hong et al., 2025; MetaAI, 2025; Team et al., 2025;
Lu et al., 2025; Yao et al., 2024; Azzolini et al., 2025; Team, 2024; Deng et al., 2025). For input,
all images are resized to 512× 512, and we use a unified prompt template per QA type. Models are
instructed to return a parsable Python list encoding a permutation of indices. We apply the online
verifier in Section 2.3 and report Task Accuracy and Pairwise Accuracy. (2) Human evaluation setup.
We also recruit trained annotators to answer the benchmark under the same and instructions as the
models. For inter-annotator agreement (IAA), we uniformly stratify 240 items over QA type and step
length, and collect independent labels from three annotators. We report Krippendorff’s α = 0.83,
indicating strong agreement among annotators. Full details are in the Appendix B.2.1 and B.1.1.

We visualize Task Accuracy for GPT-5 and human annotators in Figure 1. Since many models collapse
at long horizons (L= 8–10, near-zero task success), we focus on the more informative Pairwise
Accuracy. We show the main results in Table 1. Further analysis can be seen in Appendix B.2.2

Is inverse world modeling easier than forward? Across families and step lengths, inverse con-
sistently outperforms forward, with the margin widening as L grows. For example, GPT-5 and
Gemini 2.5 Pro maintain clear gaps at L ≥ 6, and open-weight models such as GLM-4.5V and
Qwen2.5-VL also show higher inverse scores than forward for most L (see Table 1). These results
reveal a fundamental asymmetry: models are proficient at retrospective textual reasoning but remain
brittle when tasked with the prospective visual simulation required for forward planning.

How does performance change with step length? Accuracy decreases monotonically with L for
nearly every model, no matter proprietary or open-weight. Shorter tasks (L ≤ 4) are manageable for
several VLMs, while longer tasks (L ≥ 8) are challenging even for the strongest models. Pairwise
Accuracy slows down the performance drop compared to Task Accuracy, but follows the same trend.

Can VLMs achieve near-human performance? Human performance is far better than any evaluated
VLM. SOTA VLMs like GPT-5 and Gemini-2.5 Pro achieve comparable performance with humans
at step length 3, but the performance drops significantly when step length scales.

What is the performance comparison among VLMs? GPT-5 and Gemini 2.5 Pro are the
strongest overall in both forward and inverse settings. Several open-weight VLMs are competi-
tive: InternVL3.5-241B-A28B, GLM-4.5V, and Qwen2.5-VL often close much of the gap, and even
surpass Claude 4 Sonnet in multiple settings (e.g., inverse at L = 3–6). Notably, GPT-5 mini is highly
competitive, even achieving the best score in short and mid horizons (e.g., forward at L = 3, 7, 8).

Does Cosmos-Reason1, trained on embodied data, outperform other similar-sized models?
We compare Cosmos-Reason1-7B and other similar-sized VLMs in Table 10 and Figure 18. For
similar-sized models, Cosmos-Reason1-7B exhibits more stable and generally better performance
than other VLMs when the interaction horizon exceeds 5 steps.
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C.2: Robot Handedness Analysis

p-value

(sig)

Hand Precision(↑) Recall(↑) Mixing(↓)

Left 0.4483±0.0076 0.4087±0.0072 0.0938

Right 0.4976±0.0055 0.4958±0.0055 0.0467

Left 0.4040±0.0075 0.4040±0.0075 0.1858

Right 0.4618±0.0058 0.4618±0.0058 0.0949
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Figure 4: Probing experiment results with GPT-5 mini on ENACT. Heatmaps show two-tailed
unpaired t-test results against the baseline, using Pairwise Accuracy. p < 0.05 is considered
significant. Darker red means more significant. ∆ is the performance change from the baseline. If
significant and ∆ < 0, the setting is worse than the baseline. C.2 reports the robot’s performance on
the left- and right-hand predicates, where Mixing is the proportion of ground truth left or right cases
that are predicted as the other hand (i.e., mixing one hand into the other). ± means standard error.

� Key Takeaways: World Modeling as a Proxy for Evaluating Embodied Cognition

• Inverse consistently surpasses forward, and the margin grows as the horizon L increases.
• Accuracy declines steadily with step length L, and all VLMs drop sharper at long horizons.
• Humans demonstrate near-ceiling performance across all tested step lengths.

3.2 SENSITIVITY TO IMAGE REALISM

Since ENACT data is generated with the BEHAVIOR simulator. Despite being photo-realistic, we
ask whether VLMs are sensitive to image realism, thus identifying if there is a sim-to-real gap.

Experimental Setup. (1) Probing configuration. We use GPT-5 mini as the base model for SOTA
VLMs due to its strong cost-performance balance shown in Table 1. For diversity, we also evaluate
InternVL3.5-241B and report its performance across all settings in Figure 17. We evaluate step lengths
L ∈ {3, 6, 9}. For each L and each QA type (forward, inverse), we sample 50 items, yielding 300
total QAs. We report, for each setting, the Pairwise Accuracy difference ∆ = PAbaseline − PAvariant
and two-tailed unpaired p-values versus the baseline. |∆| < 0.05 will be considered as a small change.
(2) Image realism implementation. BEHAVIOR uses Isaac Sim (NVIDIA, 2025), our baseline uses
Ray Tracing (NVIDIA, 2021) with default global effects. We probe three alternatives on a realism
spectrum: Realistic (segmented frames translated to a real-world style using GPT-image-1 OpenAI
(2025)), Path Tracing (higher-fidelity rendering, Kajiya (1986)), and Ray Tracing Only (Ray Tracing
with global effects such as reflections and stage lights disabled). Detailed setup, prompts, and
examples are in the Appendix B.4. Results are summarized in Figure 4 (panel A).

Does rendering realism change performance? We find no statistically significant degradation or
improvement across the spectrum. All settings have p≥0.2 relative to the baseline, and observed
deltas are small across both QA types and all step lengths (Figure 4, A; Figure 17, A). This suggests
that both GPT-5 mini and InternVL3.5-241B are not sensitive to image realism in our embodied tasks.
We also generate 960 real-world QAs using the ENACT pipeline. Detailed in Appendix B.4.4, we
find that the tested model results mirror the simulator trends: inverse queries are easier than forward
ones, accuracy drops sharply with longer horizons, and the sim–real gap remains small.
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Table 2: Real-world evaluation of InternVL3.5-241B-A28B. Task and pairwise accuracies (%) on
960 QA pairs generated from real-world manipulation videos. We report performance across different
interaction horizons for both forward and inverse world modeling.

Metric
Forward (Real-World) Inverse (Real-World)

3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10

Task Accuracy 73.33 50.00 33.33 13.33 8.33 3.33 0.00 0.00 90.00 85.00 55.00 38.33 21.67 13.33 6.67 3.33
Pairwise Accuracy 80.00 67.78 61.25 49.00 38.89 37.14 26.88 25.74 90.00 88.33 72.92 57.67 44.17 43.57 31.04 26.85

� Key Takeaways: Image Realism

• GPT-5 mini and InternVL3.5-241B are robust to image realism variations on our tasks.

3.3 SENSITIVITY TO CAMERA CONFIGURATIONS

VLMs are mostly trained on RGB images that mirror how humans typically see the world. However,
different embodiments may have diverse camera configurations. We therefore test whether VLM
performance is sensitive to camera configuration, i.e., if dataset bias is present.

Experimental Setup. (1) Probing configuration. We reuse the setup from Section 3.2. We use
GPT-5 mini as the base VLM, and report InternVL3.5-241B in the Appendix B.5. (2) Camera FOV.
The baseline is Aperture 40. We probe Aperture 30, 60, 80, and Fisheye. Rendering and all other
parameters are held fixed. (3) Camera Height. The baseline is (1.75m) high for eye-level view used
in Behavior replays. We probe High (+0.5m) and Low (−0.25m). We choose (−0.25m) since a
lower height will consistently make relevant objects invisible. Examples are in the Appendix B.5.
Results are summarized in Figure 4 (panels B.1 and B.2).

Does field of view matter? Figure 4 (B.1) shows the results. A small change to Aperture 30 shows
no significant difference from baseline (p > 0.1). Larger deviations substantially hurt performance.
Aperture 60, 80, and Fisheye are consistently and significantly worse than baseline across QA types
and step lengths (p ≤ 0.01). This suggests that the model performs better with human-like intrinsics.

Does camera height matter? As shown in Figure 4 (B.2), increasing the camera height (High)
significantly reduces GPT-5 mini’s accuracy in the forward setting with ∆ = −0.13. By contrast, the
High inverse setting shows no statistically significant change, but with a notable performance drop
∆ = −0.06. For the Low camera, both forward and inverse are not significantly different from the
baseline, which may be because the −0.25 m is still within the normal human height distribution.

� Key Takeaways: Camera Configurations

• Models perform best on images that resemble what humans typically see.
• Large apertures, a fisheye lens, and a high camera will harm models’ performance greatly.

3.4 DO VLMS HAVE EMBODIED BIASES?

To further understand the nature of VLM embodiment, we investigate two potential biases: self-
awareness regarding the robot’s own body and handedness asymmetry, a common trait in humans.

Experimental Setup. We probe these two aspects using distinct experimental setups. (1) Robot
Appearance. To test for self-awareness, we assess whether VLMs can recognize their embodiment
regardless of its appearance. We reuse the probing configuration from Section 3.2, with GPT-5 mini
as the base model. The baseline is the default black-and-white robot appearance. We test three
variants: White Color, Random Color (robot color is randomized at each frame), and Skin Color
(robot is rendered with a human-like skin tone). (2) Handedness Asymmetry. Inspired by human
motor control, where approximately 89% of the population is right-handed (Papadatou-Pastou et al.,
2020), we investigate if VLMs exhibit a similar “dominant hand”. We analyze this configuration with
a predicate-level error analysis of all tested VLMs and report GPT-5 mini in Figure 4. We isolate
all errors related to the LeftGrasping and RightGrasping predicates. Using the framework
described in Section 3.5, we frame our metrics in terms of Precision and Recall. We also report Mixing
Rate, which measures the proportion of ground-truth state differences for one hand that the model
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incorrectly attributes to the other. Higher precision and recall with lower mixing indicate greater
proficiency. Appearance examples and handedness analysis are in the Appendix B.6.1 and B.6.2.

Are VLMs aware of their own embodiment, and is this awareness robust to changes in their
visual appearance? As shown in Figure 4 and Figure 17 (panel C.1), altering the robot’s appearance
has no statistically significant impact on performance for both GPT-5 mini and InternVL3.5-241B.
For all variants (White, Random, Skin Color), the performance deltas are small (|∆| < 0.05) and
the results are not significant (all p > 0.10). This suggests that the model’s understanding of its
interaction with the world is not tied to a specific visual representation of its own body.

Do VLMs exhibit a handedness asymmetry in their interactions with the world? Our analysis of
hand-related errors, summarized in Figure 4 (panel C.2), reveals a consistent and strong asymmetry
(complete error results are shown in Figure 39a and 39b). For both forward and inverse tasks, the right
hand consistently outperforms the left hand across all metrics. Precision and recall are substantially
higher for the right hand, while the mixing rate is significantly lower. For instance, in the forward
task, 9.38% of true left-hand changes were incorrectly identified as right-hand changes, whereas only
4.67% of right-hand changes were misattributed to the left. Full analysis is in Appendix C.1.

� Key Takeaways: Embodied Biases

• GPT-5 mini and InternVL3.5-241B are robust to the robot’s appearance.
• VLMs exhibit a significant right-handed bias, which is similar to human handedness.

3.5 ERROR ANALYSIS

3.5.1 PREPARATION FOR ERROR ANALYSIS

To gain a deeper insight into the reasoning failures of VLMs, we designed a systematic error analysis
framework. Evaluating errors directly from output permutations (e.g., comparing predicted order
[3, 2, 1] to ground truth [2, 3, 1] is difficult and often uninformative about the underlying cognitive
mistakes. Our approach instead converts the model’s output into a format that allows for a direct,
fine-grained comparison with the ground truth. For the forward world modeling task, we take
the model’s predicted permutation of images (o′σ(1), . . . , o

′
σ(L−1)) = (o1, . . . , oL−1) and compute

the corresponding sequence of actions (i.e., visible state differences) that this ordering implies:
âk := ∆Vis(s

′
σ(k+1), s

′
σ(k)). This yields a predicted action sequence (â0, · · · , âL−2). For the

inverse world modeling task, the model already outputs a predicted action sequence.

0% 25% 50% 75% 100%

Forward

Inverse

Entity Substitution
Predicate Substitution

Polarity Inversion
Omission

Hallucination

Figure 5: GPT-5 Error distribution across ENACT,
broken down by forward and inverse tasks.

With both a predicted and a ground-truth
action sequence, we can perform a pair-
wise comparison at each step k. Each
action ak is a set of atomic state differences
(e.g., {Add Open(fridge), Remove
Inside(basket, cabinet)}). By
comparing the predicted set âk with the
grounded-truth set ak, we can categorize each
atomic state difference. This comparison, sim-
ilar to analyzing a Venn diagram, yields three
primary outcomes for each ground-truth state
difference: (1) Correct: The state difference is
present in both the ground-truth and predicted
sets. (2) Omission: The state difference is in the
ground-truth set but missing from the prediction. (3) Hallucination: The state difference is in the
predicted set but not in the ground truth. Detailed setup is in the Appendix C

We assume each state difference is an independent event and aggregate these counts across all actions
and all questions in the dataset. Based on this framework, we classify errors into five main categories:

1. Entity Substitution. The model correctly identifies the state change predicate but applies it to
the wrong object(s).

2. Polarity Inversion. The model correctly identifies both the object(s) and the predicate, but
reverses the polarity of the change (e.g., ‘remove’ instead of ‘add’).
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3. Predicate Substitution. The model correctly identifies the object(s) involved but describes the
state change with an incorrect predicate.

4. Hallucination. The model predicts a state change that did not occur in the ground truth.
5. Omission. The model fails to predict a ground-truth state change that occurred.

Our error analysis for GPT-5, shown in Figure 5, reveals that the vast majority of errors fall into two
main categories: Omission and Hallucination. For the forward task, these two error types account
for a combined 81% of all failures. This figure is even higher for the inverse task, where they make
up nearly 84% of errors. This indicates that the model’s primary challenge is not misinterpreting the
specifics of a known state change, but rather correctly identifying which changes occurred and which
did not.

3.5.2 ERROR DISTRIBUTION ANALYSIS

While Omission and Hallucination errors are dominant in both settings, their distribution shifts
between tasks. In forward modeling, Hallucination is the most common error at 43.9%, followed
by Omission at 37.1%. Remarkably, in the inverse task, these two errors are perfectly balanced,
each accounting for exactly 41.8% of all failures. Other error types are far less frequent. Polarity
Inversion is more common in the forward setting (12.4%) than the inverse (9.2%). Interestingly,
Entity Substitution is also slightly more prevalent in the forward task (6.3% vs. 5.4%). Finally,
Predicate Substitution remains the rarest error type, though it is more pronounced in the inverse
setting (1.9%) compared to the forward task (0.3%). Detailed analysis can be found in the Appendix C.

4 RELATED WORK

Embodied Cognition. The theory of Embodied Cognition argues that intelligence arises from an
agent’s sensorimotor interaction within its environment, grounding abstract knowledge in perception
and action (Gibson, 2014; Varela et al., 2017; Clark, 1998; Brooks, 1991; O’regan & Noë, 2001;
Barsalou, 1999; Lakoff & Johnson, 2008). Within this framework, our work focuses on the integration
of three key components: spatial perception, physical interaction, and linguistic abstraction (Frick
& Möhring, 2016; Thompson, 2005; Clark, 2006; Barsalou, 2020). We propose to test these core
components of embodied cognition through world modeling via egocentric interaction.

World Modeling. World models learn action-conditioned dynamics for imagination and planning
(Ha & Schmidhuber, 2018; Hafner et al., 2019), achieving scalable gains from counterfactual rollouts
(Hafner et al., 2023; Bruce et al., 2024; Agarwal et al., 2025; Janner et al., 2022). However, their
grasp of embodied interaction remains limited, often due to a lack of physical grounding from
training on internet data (Bruce et al., 2024; Agarwal et al., 2025) or a failure to maintain causal
state progression (Finn & Levine, 2017; Ebert et al., 2018). Existing benchmarks reflect this gap,
often scoring superficial qualities (Tian et al., 2023; Chi et al., 2024; Yue et al., 2025), remaining
non-interactive (Bakhtin et al., 2019; Yi et al., 2019; Bear et al., 2021; Tung et al., 2023; Li et al.,
2024a; Yang et al., 2025), or overlooking the consequences of individual actions (Qin et al., 2024;
Chen et al., 2025). As argued by Xing et al. (2025), a world model should serve as a sandbox for
reasoning. Our benchmark is therefore designed to probe forward and inverse ordering with a clean
action space and scalable construction.

VLMs in Embodied AI. VLMs are central to embodied agents, acting as high-level planners (Ahn
et al., 2022; Huang et al., 2023b; 2022; Liang et al., 2022a; Huang et al., 2023a; 2024) or end-to-end
policies (Zitkovich et al., 2023; Kim et al., 2024; Team et al., 2024; Driess et al., 2023). However,
current applications are often confined to tabletop manipulation or simulated settings with limited
real-world execution (Lynch et al., 2023). Correspondingly, benchmarks tend to prioritize simple
instruction-following, neglecting the multi-step, consequence-aware reasoning essential for complex
interaction (Das et al., 2018; Padmakumar et al., 2022; Mees et al., 2022; Fan et al., 2022; Li et al.,
2024b; Yang et al., 2025). We address this gap by introducing a benchmark that uses egocentric
interaction to specifically probe an agent’s understanding of forward and inverse world modeling.
GVL (Ma et al., 2024) use VLMs as in-context value functions by casting task progress estimation
as a temporal ordering problem over shuffled frames from relatively short-horizon, fixed-camera
trajectories. In contrast, ENACT evaluates world modeling: agents must autoregressively predict
the next egocentric state conditioned on previous state and action in long-horizon household tasks
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with moving cameras, effectively acting as transition models rather than value models. We include
additional related work discussion in the Appendix D.

5 CONCLUSIONS AND LIMITATIONS

Conclusions. In this work, we introduced ENACT, a benchmark designed to evaluate the extent to
which embodied cognition emerges in VLMs trained on static datasets. By framing our evaluation
through the lens of forward and inverse world modeling from egocentric interaction, ENACT probes
a model’s understanding of environmental dynamics and the consequences of its actions. Grounded
in a POMDP, we evaluate two types of sequence reordering tasks: forward world modeling, which
predicts an ordered sequence of future states from actions, and inverse world modeling, which infers
an ordered sequence of actions from state changes. Our extensive experiments reveal a significant
performance gap between state-of-the-art VLMs and humans, a gap that widens dramatically as the
interaction horizon increases. We consistently found that models solve the inverse problem more
effectively than the forward one. Furthermore, our analysis uncovered strong embodied biases within
these models, including a preference for right-handed actions and a significant performance drop
with non-human-like camera perspectives. An in-depth error analysis showed that reasoning failures
are primarily driven by the omission and hallucination of state changes. ENACT provides a scalable
and insightful tool for charting a course toward more genuinely embodied artificial intelligence.

Limitations. Our work has limitations primarily related to its scope. First, while we introduce
several probing tasks that reveal key model biases, this set is not exhaustive. The experiments
on factors like camera configuration and agent appearance serve as foundational examples, but
the ENACT framework is designed to be an extensible tool. It can support future, more complex
investigations into a much broader spectrum of different embodied-related settings. Second, due to the
significant computational cost of our evaluation, the in-depth probing experiments were necessarily
focused on a representative subset of models and data. A broader evaluation across more architectures
and larger data scales would be beneficial to generalize our findings. Additionally, due to the frequent
physical inconsistency of generated rollouts and the difficulty of designing fair evaluation metrics,
which often require costly human studies, we do not evaluate video generative models on ENACT
(for unified VLMs, we evaluate BAGEL (Deng et al., 2025) and the result is shown in Table 9
and 10).

ETHICS STATEMENT

The ENACT benchmark was generated in the BEHAVIOR simulator to avoid the privacy risks
associated with real-world human data; it contains no human subjects or personally identifiable
information. All human annotators hired for evaluation were compensated at rates significantly
exceeding their local minimum wage and were not exposed to any sensitive content.

We acknowledge that the simulator may not fully capture the complexity of real-world environments,
which can introduce biases and limit the generalizability of our findings. Furthermore, the large-scale
models we evaluate carry a significant computational and environmental cost. While ENACT is
intended for academic research, we recognize that the technologies it helps develop could have
dual-use applications.

REPRODUCIBILITY STATEMENT

To ensure full reproducibility, our complete codebase is available at Anonymous Repository. This
repository contains all scripts for data generation using the BEHAVIOR simulator (Li et al., 2024a),
evaluation of all 29 Vision-Language Models, and analysis. Our implementation includes the
automated verifier, prompt templates, and the code to replicate our main experiments, controlled
probing studies (Sections 3.2, 3.3, and 3.4), and human baseline evaluation. The full ENACT dataset
will be publicly released upon publication.
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A ENACT: EGOCENTRIC INTERACTIVE EMBODIED COGNITION TEST

A.1 NOTATIONS

We list all the notations we used across the entire paper in the following two tables.

Table 3: Notation used throughout the paper.

Notation Short description Notation Short description

T # frames in a raw replay H,W image height and width
[M ] index set {1, 2, . . . ,M} M # segmented key frames
K segmented timestamps {t1 < · · · < tM} (oi, si) RGB & scene graph at timestamp ti
ot RGB image at time t st scene graph at time t
G space of scene graphs L target trajectory length (steps)
R # sampled trajectories E adjacency matrix on [M ] (DAG)
Adj(i) successors of node i |E| # edges in the DAG
δ(·, ·) scene-graph difference (see long) Vis(·) visibility predicate (see long)
∆vis(·, ·) visible-change extractor (see long) A action space
ai local action si+1 − si ai→j action from i to j
π key-frame trajectory (see long) Sπ state sequence along π
Aπ action sequence along π Π set of sampled trajectories
DP [ℓ, i] # paths of length ℓ ending at i wi end-node weight DP [L, i]
P predecessor set in backtracking Categorical(w) weighted discrete distribution
1{·} Iverson bracket (true=1, false=0) D datasets
c component in signature asig

i γ, transition The operation key in component
e The entity involved in component ρ The predicate in component

Notation Longer description

T = {(ot, st)}Tt=1 Raw replay trajectory with RGB observations ot ∈ RH×W×3 and scene
graphs st ∈ G.

δ(si, sj) A difference operator over scene graphs summarizing semantic changes (ob-
jects, relations, attributes) between frames i and j.

Vis(δ(si, sj)) Predicate returning 1 iff the semantic difference is visually verifiable; induces
an edge i→j when i < j and the predicate is true (frame skipping allowed).

∆vis(si, sj) ∈ A ∪ {∅} Action-level representation extracted from δ(si, sj); may be atomic or com-
posite and can be empty when no visible semantic change exists.

π = (i1, . . . , iL) Key-frame trajectory: strictly increasing indices with valid edges Eiℓ,iℓ+1 = 1
for all ℓ = 1, . . . , L− 1.

Sπ, Aπ Sequences induced by π: Sπ = (si1 , . . . , siL), Aπ =
(ai1→i2 , . . . , aiL−1→iL).

DP [ℓ, i] recurrence Base: DP [1, i] = 1. Recurrence: DP [ℓ, i] =
∑

j<i DP [ℓ− 1, j] · Eji for
ℓ = 2, . . . , L.

Mπ = ⟨{siℓ}, {aiℓ→iℓ+1}, P ⟩ Deterministic finite-horizon fragment induced by π with transition
P (siℓ , aiℓ→iℓ+1) = siℓ+1 .

asig
i Signature corresponding to an action ai, transformed from natural language

to predicate-based structural format.

A.2 KEY-FRAME TRAJECTORIES SYNTHESIS FOR SCALABLE DATA GENERATION

A.2.1 SEGMENTED FRAMES WITH ABSTRACT STATE CHANGES

Our motivation for segmenting raw robot trajectories stems from their inherent semantic sparsity.
For instance, in a task like opening a toolbox, hundreds of consecutive frames (at a 30Hz) may pass
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without any meaningful semantic change. Since we define our fundamental actions as abstract state
changes, our objective is to isolate precisely those frames where such changes occur. This process
ensures that we focus on the semantically significant moments of the interaction.

The BEHAVIOR simulator provides an RGB image and a corresponding scene graph, composed
of nodes and edges, for every frame. We define an atomic action as a difference in the scene graph
between two consecutive moments in time. These differences are categorized into three types: the
addition of a new node or relation, the removal of an existing one.

We provide examples of a scene graph and our scene graph differences for two adjacent segmented
frames, shown in Figure 6 and 7.

Our frame selection process is iterative. For a previously selected key-frame at time ti−1, we
search for the earliest subsequent frame tk that satisfies a set of criteria designed to ensure semantic
significance and visual clarity.

First, to handle discrepancies where the rule-based simulator updates the scene graph before a change
is visually apparent (e.g., registering an object as ‘OnTop’ upon initial contact), we introduce a
temporal stability filter: a state change is only considered a candidate if the resulting new state persists
for at least 40 frames. At our simulator’s 30Hz rate, this corresponds to ≈1.3s, which is consistent
with cognitive science findings that humans update attentional sub-events on the order of ∼1s (Wyble
et al., 2009; Gavazzi et al., 2013), and empirically yields reliable keyframe segmentation for our
household manipulation tasks. This value is a tunable hyperparameter rather than a hard constraint. It
can be adjusted for other environments or model classes within the same automated ENACT pipeline.

Second, to prevent the recording of minor, oscillatory state changes, such as those that might occur
from vibrations when a robot carries an object (e.g., a plate with a pizza), we employ a filtering
algorithm to suppress these small fluctuations in the scene graph.

Finally, to ensure that each selected key-frame represents a sufficiently distinct change from the
previous one, we implement a similarity check. We convert the scene graph difference between the
last selected frame ti−1 and a candidate frame tk into a one-hot vector, which serves as a unique
signature for that state change. We then compute the cosine similarity between the signature of the
change at tk and the signature of the previously accepted change at ti−1. We aim to find a balance
between maximizing the number of segmented frames and ensuring each frame depicts a clearly
visible state change. Through empirical evaluation, we determined a cosine similarity threshold of
0.97. A candidate frame tk is accepted only if its change signature’s similarity to the previous one is
below this threshold. This method effectively filters out near-duplicate frames while retaining a rich,
sequential set of key-frames that clearly chronicle the task’s progression.

A.2.2 KEY-FRAME TRAJECTORIES SYNTHESIS

Given the set of M segmented frames from the previous stage, the goal of Key-Frame Trajectory
Synthesis (KFTS, see Algorithm 1) is to efficiently sample a large number of valid trajectories
of a fixed length L. A trajectory is defined as a sequence of indices π = (i1, . . . , iL) such that
1 ≤ i1 < i2 < · · · < iL ≤ M . The key constraint is that for any two consecutive frames ik and
ik+1 in the trajectory, the state change between them must be semantically meaningful and visually
verifiable. The KFTS algorithm, detailed in Algorithm 1, accomplishes this efficiently by converting
the problem into path sampling on a Directed Acyclic Graph (DAG) and using dynamic programming.
The process consists of three main stages:

1. Directed Acyclic Graph (DAG) Construction: We first model the relationships between all
segmented frames. The M frames are treated as nodes in a graph. A directed edge exists from
frame i to frame j (where i < j) if and only if the state difference δ(si, sj) constitutes a valid,
visible transition. This validity is determined by a predicate Vis(·), which checks if the objects
involved in the state change are clearly visible in both frames, as described in Section 2.2. This
process results in an adjacency matrix E for a DAG, where Eij = 1 indicates a valid one-step
transition from frame i to j.

2. Dynamic Programming Path Counting: Instead of enumerating all possible
(
M
L

)
combinations,

we use dynamic programming (DP) to efficiently count the number of valid trajectories. We
build a DP table where DP [ℓ, i] stores the total number of valid trajectories of length ℓ that
terminate at frame i. The base case is DP [1, i] = 1 for all frames i, as any single frame is a
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A Scene Graph Example

{
’nodes’: [

{’name’: ’robot_r1’, ’category’: ’agent’, ’states’: []},
{’name’: ’plate_94’, ’category’: ’plate’, ’states’: []},
{’name’: ’plate_93’, ’category’: ’plate’, ’states’: []},
{’name’: ’bowl_92’, ’category’: ’bowl’, ’states’: []},
{’name’: ’bowl_91’, ’category’: ’bowl’, ’states’: []},
{’name’: ’pizza_90’, ’category’: ’pizza’, ’states’: []},
{’name’: ’pizza_89’, ’category’: ’pizza’, ’states’: []},
{’name’: ’floors_zqjkvm_0’, ’category’: ’floors’, ’states’: []},
{’name’: ’breakfast_table_xftrki_0’, ’category’: ’breakfast_table’, ’states’: []},
{’name’: ’fridge_petcxr_0’, ’category’: ’fridge’, ’states’: [’Open’]},
{’name’: ’drop_in_sink_lkklqs_0’, ’category’: ’drop_in_sink’, ’states’: []},
{’name’: ’straight_chair_uofiqj_0’, ’category’: ’straight_chair’, ’states’: []},
{’name’: ’bottom_cabinet_rhdbzv_0’, ’category’: ’bottom_cabinet’, ’states’: []}

],
’Edges’: [

{’from’: ’robot_r1’, ’to’: ’plate_93’, ’states’: [’RightGrasping’]},
{’from’: ’plate_94’, ’to’: ’pizza_90’, ’states’: [’Under’]},
{’from’: ’plate_94’, ’to’: ’breakfast_table_xftrki_0’, ’states’: [’OnTop’]},
{’from’: ’bowl_92’, ’to’: ’breakfast_table_xftrki_0’, ’states’: [’OnTop’]},
{’from’: ’bowl_91’, ’to’: ’breakfast_table_xftrki_0’, ’states’: [’OnTop’]},
{’from’: ’pizza_90’, ’to’: ’plate_94’, ’states’: [’OnTop’]},
{’from’: ’pizza_89’, ’to’: ’plate_93’, ’states’: [’OnTop’]},
{’from’: ’breakfast_table_xftrki_0’, ’to’: ’plate_94’, ’states’: [’Under’]},
{’from’: ’breakfast_table_xftrki_0’, ’to’: ’floors_zqjkvm_0’, ’states’: [’OnTop’]},
{’from’: ’straight_chair_uofiqj_0’, ’to’: ’floors_zqjkvm_0’, ’states’: [’OnTop’]}

]
}

Figure 6: A scene graph representation detailing the entities (nodes) and their semantic or physical
connections (edges) within the BEHAVIOR (Li et al., 2024a) environment.

A Scene Graph Difference Example

’2442’:
{
’type’: ’diff’,
’add’: {

’nodes’: [],
’edges’: [
{’from’: ’robot_r1’, ’to’: ’plate_93’, ’states’: [’RightGrasping’]}

]
},
’remove’: {

’nodes’: [],
’edges’: [
{’from’: ’plate_93’, ’to’: ’pizza_89’, ’states’: [’Under’]},
{’from’: ’plate_93’, ’to’: ’breakfast_table_xftrki_0’, ’states’: [’OnTop’]}

]
}

}

Figure 7: An example of a scene graph difference, representing a state change by specifying the
added and removed edges between objects.
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Algorithm 1: KFTS: Key-Frame Trajectory Sampling

Input: Segmented frames {(oi, si)}Mi=1, step length L ≥ 2, samples R, predicate Vis
Output: Set of key-frame trajectories Π
Build DAG: for 1 ≤ i < j ≤M do

Eij ← [ Vis(δ(si, sj)) ]

DP counting: initialize DP [1, i]← 1; for ℓ = 2..L do
for i = 1..M do

DP [ℓ, i]←
∑

j<i DP [ℓ− 1, j] · Eji

Weights: wi ← DP [L, i]; if
∑

i wi = 0 then
return ∅

Weighted backtracking sampling: Π← ∅; sample R end-nodes i(r)L ∼ Categorical(w)
for r = 1..R do

π ← [ i
(r)
L ], cur ← i

(r)
L

for ℓ = L..2 do
P ← { j < cur | Ej,cur = 1 ∧DP [ℓ− 1, j] > 0 }
if P = ∅ then

break
sample j⋆ ∈ P with prob ∝ DP [ℓ− 1, j]; prepend j⋆ to π; cur ← j⋆

if |π| = L then
add π to Π

return Π

valid path of length one. The table is filled using the recurrence:

DP [ℓ, i] =
∑
j<i

DP [ℓ− 1, j] · Eji

This equation sums the number of valid paths of length ℓ− 1 ending at any valid predecessor j
of frame i. After filling the table up to length L, the entry DP [L, i] gives the exact number of
distinct, valid, length-L trajectories that end at frame i.

3. Weighted Backtracking Sampling: With the DP table computed, we can sample trajectories
efficiently without bias. To generate one trajectory, we first sample an end-node iL from all
possible frames {1, . . . ,M}. The sampling is weighted, with the probability of selecting frame
i being proportional to its weight wi = DP [L, i]. This ensures that frames that can be part of
more trajectories are more likely to be chosen as endpoints.
Once the end-node iL is selected, we reconstruct the path backwards. To select the previous
node iL−1, we consider all valid predecessors j of iL (i.e., all j < iL where Ej,iL = 1). We
sample the predecessor j⋆ with a probability proportional to DP [L − 1, j⋆]. This process is
repeated iteratively: to find node ik, we sample from the predecessors of ik+1 with probabilities
proportional to the values in the DP [k, ·] row. This weighted backtracking ensures that every
valid trajectory of length L has a chance of being sampled, and the likelihood of sampling any
specific path is uniform across all valid paths. We repeat this procedure R times to generate the
desired number of trajectories.

This DP-based approach is highly scalable as its complexity is polynomial in M and L, making it far
more efficient than a brute-force combinatorial search, especially when M is large.

Justification for Symbolic Scene Graphs. We opt for a symbolic scene graph representation, and
while it may not capture the fine-grained details of low-level motions, this abstraction is advantageous
for our objectives for two primary reasons. First, our focus is on detecting semantic changes
within a scene, a task that naturally aligns with the conceptual understanding capabilities of VLMs.
VLMs excel at reasoning about objects, their states, and relationships, rather than continuous motor
trajectories. Second, the symbolic predicates we employ are not merely abstract; they are grounded
in practical robotics applications. This is demonstrated through our experiments with a real-world
robot (Robot R1 Pro), confirming the real-world relevance of our chosen states. The feasibility
of this symbolic approach is further substantiated by its use in guiding the data collection for the
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BEHAVIOR benchmark, where these predicates defined the goal conditions for simulated activities
and enabled human annotators to clearly verify whether task states were successfully achieved.

A.2.3 QA GENERATION

The core of our benchmark is to evaluate embodied cognition through tasks that require an under-
standing of world dynamics. Traditionally, world models are evaluated on their ability to predict
forward dynamics (i.e., given a state and an action, predict the next state) or infer inverse dynamics
(i.e., given an initial and resulting state, infer the action that caused the transition). These evaluations
are often instantiated as simple one-step, multiple-choice questions.

Our approach deliberately departs from this paradigm by framing the tasks as multi-step, sequential
ordering problems. Instead of predicting a single outcome, the model must correctly sequence a
whole trajectory of observations or actions. This design provides a more comprehensive test of an
agent’s reasoning capabilities. As such, correctly sorting a sequence of images or actions indicates
that the model not only understands the basic inverse and forward dynamics of the world, but can
also leverage that understanding to reason about action consequences in long-horizon settings. This
ability to comprehend causal chains is a critical component of embodied cognition.

The generation of each question-answering (QA) pair follows a structured pipeline, beginning with a
sampled key-frame trajectory π. The process is as follows:

1. Action Sequence Generation. For the given key-frame trajectory π, we first compute the
corresponding action sequence, Aπ . Each action in this sequence represents the symbolic scene
graph difference between two consecutive key-frames. These symbolic differences are then
translated into clear, natural language descriptions (e.g., ”the agent grasps the knife with its right
hand”).

2. Forward World Modeling Task. To create a forward modeling question, we provide the
model with the first observation (image) and the complete, ordered sequence of natural language
actions. We then present the subsequent observations from the trajectory in a shuffled order. The
model’s task is to output the correct temporal ordering of these shuffled images. This entire set
of information is formatted into a dedicated prompt template.

3. Inverse World Modeling Task. For an inverse modeling question, we provide the model with
the complete, ordered sequence of observations (images) from the trajectory. We then present
the natural language descriptions of the actions in a shuffled order. The model’s task is to deduce
the correct sequence of actions that connects the given observations. Similarly, this is all inserted
into its own prompt template.

4. Standardized Output Format. To facilitate robust and automated evaluation, all models are
explicitly instructed to provide their answers in the format of a Python list of integers. For
instance, if the correct order for three shuffled items (indexed 0, 1, 2) is the second, then the
third, then the first, the expected output would be ‘[1, 2, 0]’. This ensures that responses are
unambiguous and easily parsable.

A.3 DATASET STATISTICS AND EVALUATION DESIGN

Table 6: The 11 predicate classes used to define abstract state changes in our benchmark.

Predicate Classes
RightGrasping LeftGrasping OnTop
Inside Under Contains
Covered Open ToggledOn
Cooked Transition

A.3.1 DATASET STATISTICS

Our data generation pipeline, built upon the BEHAVIOR simulator, is designed to be scalable and
capable of producing a vast number of distinct QA pairs. For the current iteration of our benchmark,
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Figure 8: The distribution of problems by the number of steps in our ENACT benchmark dataset is
shown for both forward (left) and inverse (right) world modeling tasks. The dataset is balanced, with
a nearly uniform distribution of problems ranging from 3 to 10 steps.

we have uniformly sampled a balanced set of 8,972 question-answering pairs from this larger potential
pool. This set is evenly divided between the forward and inverse world modeling tasks.

To ensure a comprehensive evaluation of models’ reasoning capabilities across different time horizons,
the sampled problems feature trajectory lengths varying from 3 to 10 steps. As illustrated in Figure 8,
this dataset is intentionally balanced, featuring a near-uniform distribution of problems for each step
length across both task types. This balance ensures that our evaluation is not biased towards shorter
or longer-term reasoning.

The abstract state changes that define the actions in our benchmark are grounded in a set of 11
symbolic predicates. These predicates describe relationships between the agent and objects, as well
as changes in object states. The complete list of predicates is detailed in Table 6.

A.3.2 EVALUATION DESIGN

From indices to dynamics. We grade what changes, not just which index. Each adjacent state pair
yields an action signature asig(si−1, si) = {c = (γ, e, ρ)}, turning scene-graph deltas into compact
semantics (operation γ on entity e and predicate ρ). For the reference sequence, we compute (i) the
visible subset Ci and (ii) the full set Fi. For a prediction, we compute C̃i (full diff). This uses state
differences as the model’s proxy answer and avoids brittle numeric matching.

Online verifier. Forward dynamics. After reconstructing the shuffled storyboard, we compare the
ground-truth index sequence τ and the prediction σ. Exact acceptance: σ = τ . Semantic acceptance
(when lengths match): for all steps i,

Ci ⊆ C̃i.

Intuition: the predicted step must cover the reference’s visible change. The overall decision is match
= (exact OR semantic); length-mismatched predictions are not accepted (but still get pairwise
credit below).

Inverse dynamics. The model orders actions. Exact acceptance: indices match. Semantic acceptance
(equal length): for all i,

C̃i ⊆ Fi,
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i.e., the predicted action description can be a concise subset of the full reference transition at that
position. Again, match = (exact OR semantic).

Metrics. Task accuracy (TA). Score 1 iff the verifier accepts the full prediction, else 0; average
over the split:

TA =
1

|D|
∑
x∈D

1{accepted(x)}.

Pairwise accuracy (PA). Measures stepwise consistency. If lengths match,

PA(x) =
1

L

L∑
i=1

1{Ci ⊆ C̃i (forward) or C̃i ⊆ Fi (inverse) }.

Accepted predictions have PA(x) = 1. If lengths differ, we compute PA via a monotone align-
ment between reference and predicted steps that maximizes the number of subset-satisfying pairs
(forward/inverse rule as above). We report the micro-average:

PA =

∑
x #correct pairs in x∑

x Lx
.

Summary. Multiple valid answers are allowed via the subset rules: forward requires
reference-visible ⊆ predicted, inverse requires predicted ⊆ reference-full. TA captures all-or-
nothing acceptance; PA gives graded credit for near-correct dynamics.

A.3.3 ENACT EXAMPLES

## Actions in Order

[Action 1] The top cabinet transitions to be open. 
The robot r1 stopped being using the right gripper 
to grasp the top cabinet.

[Action 2] The top cabinet is no longer open.

Forward World Modeling 3 Steps

## Ground Truth Order for Shuffled Next States
[2, 1]

## Shuffled Actions

[Action 1] The washer now becomes turned on. The 
washer stopped being open.

[Action 2] The teddy bear changes to be inside the 
washer. The robot r1 is no longer using the left 
gripper to grasp the teddy bear.

Inverse World Modeling 3 Steps

## Ground Truth Order for Shuffled Actions
[2, 1]

Figure 9: 3-Step Forward World Modeling (left) and Inverse World Modeling (right) samples.

B EXPERIMENTS AND ANALYSIS

B.1 HUMAN ANNOTATION

B.1.1 ANNOTATION INTERFACE & HUMAN PERFORMANCE EVALUATION

To establish an empirical upper bound on performance for the ENACT benchmark, we recruited three
trained annotators to complete the same set of tasks assigned to the Vision-Language Models (VLMs).
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## Actions in Order

[Action 1] The fridge becomes open.

[Action 2] The cutting board now becomes 
covered by the diced steak. The steak now 
becomes the diced steak.

[Action 3] The drop-in sink changes to be 
containing the diced pineapple. The robot r1 
changes to be using the right gripper to grasp the 
carving knife. The cutting board changes to be 
covered by the diced pineapple. The carving knife 
is no longer on top of and touching the 
countertop. The pineapple now becomes the diced 
pineapple.

[Action 4] The carving knife now becomes on top 
of and touching the countertop. The robot r1 is 
no longer using the right gripper to grasp the 
carving knife.

[Action 5] The robot r1 transitions to be using the 
right gripper to grasp the bowl. The drop-in sink 
stopped being containing the diced pineapple. The 
cutting board stopped being covered by the diced 
pineapple. The bowl stopped being inside the 
drop-in sink.

Forward World Modeling 6 Steps

## Ground Truth Order for Shuffled Next States
[3, 4, 1, 5, 2]

## Shuffled Actions

[Action 1] The robot r1 becomes using the right 
gripper to grasp the head cabbage. 

[Action 2] The robot r1 becomes using the left 
gripper to grasp the frying pan. The robot r1 
stopped being using the left gripper to grasp the 
chili. The frying pan stopped being on top of and 
touching the countertop. 

[Action 3] The robot r1 transitions to be using the 
right gripper to grasp the carving knife. The robot 
r1 stopped being using the right gripper to grasp 
the cutting board. The carving knife is no longer 
on top of and touching the countertop. 

[Action 4] The fridge changes to be open. The 
robot r1 is no longer using the right gripper to 
grasp the fridge. 

[Action 5] The frying pan now becomes on top of 
and touching the burner. The frying pan changes 
to be containing the diced head cabbage. The 
frying pan becomes covered by the diced head 
cabbage. The robot r1 is no longer using the left 
gripper to grasp the frying pan.

Inverse World Modeling 6 Steps

## Ground Truth Order for Shuffled Actions
[4, 1, 2, 5, 3]

Figure 10: 6-Step Forward World Modeling (left) and Inverse World Modeling (right) samples.
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## Actions in Order

[Action 1] The cutting board becomes covered by 
the diced steak. 

[Action 2] The carving knife now becomes on top 
of and touching the countertop. The robot r1 is 
no longer using the right gripper to grasp the 
carving knife. 

[Action 3] The bowl transitions to be on top of 
and touching the drop-in sink. 

[Action 4] The robot r1 changes to be using the 
right gripper to grasp the carving knife. The 
carving knife stopped being on top of and 
touching the countertop. 

[Action 5] The cutting board is no longer under 
the pineapple. The pineapple now becomes the 
half pineapple. 

[Action 6] The robot r1 transitions to be using 
the right gripper to grasp the bowl. The cutting 
board transitions to be covered by the diced 
pineapple. The robot r1 is no longer using the 
right gripper to grasp the carving knife. 

[Action 7] The bowl transitions to be inside the 
drop-in sink. The robot r1 stopped being using 
the right gripper to grasp the bowl. The bowl 
stopped being on top of and touching the 
countertop.

[Action 8] The robot r1 becomes using the left 
gripper to grasp the half pineapple. The bowl 
now becomes containing the diced pineapple. The 
cutting board stopped being covered by the diced 
pineapple.

Forward World Modeling 9 Steps

## Ground Truth Order for Shuffled Next States
[7, 6, 2, 5, 3, 8, 1, 4]

## Shuffled Actions

[Action 1] The robot r1 now becomes using the 
right gripper to grasp the beefsteak tomato.

[Action 2] The robot r1 now becomes using the 
left gripper to grasp the beefsteak tomato. The 
beefsteak tomato is no longer inside the paper 
bag. 

[Action 3] The fridge is no longer open. 

[Action 4] The paper bag changes to be on top 
of and touching the breakfast table. The robot 
r1 is no longer using the right gripper to grasp 
the paper bag. 

[Action 5] The paper bag is no longer on top of 
and touching the breakfast table. 

[Action 6] The robot r1 becomes using the 
right gripper to grasp the paper bag. 

[Action 7] The robot r1 is no longer using the 
right gripper to grasp the paper bag. 

[Action 8] The fridge changes to be open. The 
robot r1 changes to be using the right gripper 
to grasp the paper bag. The beefsteak tomato 
becomes inside the fridge. The robot r1 is no 
longer using the right gripper to grasp the 
beefsteak tomato. The robot r1 is no longer 
using the left gripper to grasp the beefsteak 
tomato.

Inverse World Modeling 9 Steps

## Ground Truth Order for Shuffled Actions
[1, 2, 8, 5, 4, 6, 7, 3]

Figure 11: 9-Step Forward World Modeling (left) and Inverse World Modeling (right) samples.
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Figure 12: The annotation interface used for evaluating human performance on Forward World
Modeling problems. Annotators are presented with a “Current State” image (top left) and an ordered
list of textual actions. The main task is to fill the “Next State” slots by selecting the correct image
from the shuffled Candidate Image Library on the right. The annotator must follow the sequence
of actions, using the result of the previous action as the starting point for the next, to determine the
correct chronological order of all future states.
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Figure 13: The annotation interface used for evaluating human performance on Inverse World
Modeling problems. Annotators are shown an ordered sequence of state transitions, displayed as
pairs of “Current State” and “Next State” images. For each transition, their task is to select the
correct action description from a shuffled Candidate Action Library that caused the visual change
between the two states.
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The annotators interacted with our customized human annotation interfaces implemented in Gradio,
which are illustrated in Figure 12 for the Forward World Modeling tasks and in Figure 13 for the
Inverse World Modeling tasks. Importantly, annotators followed exactly the same instructions and
task prompts as those provided to the VLMs, ensuring a fair and consistent comparison between
human and model performance. This setup allows us to quantify the extent to which current VLMs
approach human-level competence on the ENACT benchmark.

B.1.2 INTER-ANNOTATOR AGREEMENT ANALYSIS

To ensure the reliability of our human-generated labels, we conducted a rigorous Inter-Annotator
Agreement (IAA) analysis. The initial dataset was annotated by three annotators working on disjoint,
non-overlapping subsets, which precluded direct agreement measurement. We therefore implemented
a systematic cross-annotation protocol. For each task type (forward and inverse) and for each of the
eight step-length categories (from 3 to 10 steps), we randomly sampled five questions from each
annotator’s original assignment. This process created a balanced IAA evaluation set totaling 240
unique questions. Each of these sampled questions was then reassigned to the two annotators who
had not performed the original annotation. For example, the five items sampled from Annotator A’s
work for a given category were re-annotated independently by Annotator B and Annotator C.

Following this protocol, we assessed the resulting annotations using Krippendorff’s Alpha (α) (Krip-
pendorff, 2011), a robust statistical measure that is well-suited for this analysis as it accommodates
multiple annotators and is resilient to missing data. Given that our annotation task involved ordering,
we configured the analysis for ordinal data. The alpha coefficient is calculated based on the observed
and expected disagreement among annotators, according to the formula:

α = 1− Do

De

Here, Do represents the observed disagreement, which is calculated from the pairwise differences
between all annotations for each item. De is the expected disagreement, which represents the
disagreement that would occur by chance, derived from the marginal distribution of all annotations.
This balanced design ensured that every question in the IAA set received three independent labels,
allowing for robust pairwise agreement calculation across all three pairs of annotators (A vs. B, A vs.
C, and B vs. C) for each condition. To assess the stability of our α coefficient, we computed 95%
confidence intervals (CI) using the bootstrap percentile method with 1,000 resamples of the 240
evaluation items.

Our analysis yielded an overall Krippendorff’s Alpha of α = 0.8320, with a 95% bootstrap confi-
dence interval of [0.7879, 0.8682]. Given the established standard (Krippendorff, 1999; Hayes &
Krippendorff, 2007; De Swert, 2012), an alpha value above 0.80 indicates a high level of reliability.
This strong result confirms that our annotation guidelines are clear and consistently applied by the
annotators.

Pairwise agreement scores were also consistently high, further validating the reliability between
individual annotators:

• Annotator A01 - B02: α = 0.8180

• Annotator A01 - C03: α = 0.8265

• Annotator B02 - C03: α = 0.8518

In addition to the chance-corrected alpha metric, we found that the annotators were in perfect agree-
ment on 184 of the 240 selected questions, resulting in a agreement rate of 76.67%. Collectively,
these strong agreement metrics validate the reliability of our annotation process and the high quality
of the resulting dataset.

B.2 WORLD MODELING AS A PROXY FOR EVALUATING EMBODIED COGNITION

B.2.1 EXPERIMENTAL SETUP
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Table 7: We posit that ENACT reflects embodied world modeling reasoning rather than simple
temporal correlation. Unlike passive video prediction, our formulation explicitly conditions state
transitions on actions (Forward World Modeling) and infers actions from state changes (Inverse World
Modeling), thereby evaluating VLMs as transition models. Based on your suggestion, we include a
table that relates ENACT’s evaluation tasks to specific cognitive constructs.

Task Action–Effect Reasoning Causal Inference Affordance Recognition Embodied Awareness Temporal Abstraction

Forward ✓ × ✓ ✓ ✓
Inverse × ✓ ✓ ✓ ✓

To ensure a fair and consistent comparison across all models, we employed a standardized evaluation
protocol. For each task type (forward and inverse world modeling), a unified question prompt template
was used. All input images were resized to a uniform resolution of 512× 512 pixels before being
passed to the models. To ensure deterministic and reproducible outputs, the decoding temperature
for all models was set to 0. Models were instructed to return their answers as a parsable Python list
representing the permutation of indices, as shown in Figure 14 and Figure 15. A comprehensive list
of the specific models used in our evaluation is provided in Table 8. We deliberately choose one
prompt template across all experiments because we follow the design choice mentioned in Liang et al.
(2022b), that the models should adapt to users’ input, instead of the reverse case.

Table 8: Details of Vision Language Models (VLMs) assessed in this study.

Organization Model Name Release Date Full Name Evaluation Pipeline

Proprietary Models

OpenAI
GPT-5 2025-08 gpt-5-2025-08-07 OpenAI API
GPT-5-mini 2025-08 gpt-5-mini-2025-08-07 OpenAI API
GPT-5-nano 2025-08 gpt-5-nano-2025-08-07 OpenAI API

Google
Gemini 2.5 Pro 2025-06 gemini-2.5-pro Gemini API
Gemini 2.5 Flash 2025-06 gemini-2.5-flash Gemini API
Gemini 2.5 Flash-Lite 2025-06 gemini-2.5-flash-lite Gemini API

Anthropic Claude Sonnet 4 2025-05 claude-sonnet-4-20250514 Anthropic API

Open-Weight Models

Zhipu AI GLM-4.5V 2025-08 GLM-4.5V Zhipu Foundation Model Open Platform API
GLM-4.1V-Thinking 2025-07 GLM-4.1V-Thinking-FlashX Zhipu Foundation Model Open Platform API

Meta Llama-4-Scout-17B-16E-Ins 2025-04 meta-llama/Llama-4-Scout-17B-16E-Instruct ModelScope API
Llama-4-Mav-17B-128E-Ins 2025-04 meta-llama/Llama-4-Mav-17B-128E-Instruct ModelScope API

Shanghai AI Lab

InternVL3.5-241B-A28B 2025-08 OpenGVLab/InternVL3.5-241B-A28B Intern API
InternVL3.5-14B 2025-08 OpenGVLab/InternVL3.5-14B Hugging Face Transformers
InternVL3.5-8B 2025-08 OpenGVLab/InternVL3.5-8B Hugging Face Transformers
InternVL3.5-4B 2025-08 OpenGVLab/InternVL3.5-4B Hugging Face Transformers

Google
Gemma-3-27b-it 2025-03 google/gemma-3-27b-it Gemini API
Gemma-3-12b-it 2025-03 google/gemma-3-12b-it Gemini API
Gemma-3-4b-it 2025-03 google/gemma-3-4b-it Gemini API

Alibaba

QVQ-72B-Preview 2024-12 Qwen/QVQ-72B-Preview ModelScope API
Qwen2.5-VL-72B-Ins 2025-01 Qwen/Qwen2.5-VL-72B-Instruct ModelScope API
Qwen2.5-VL-32B-Ins 2025-01 Qwen/Qwen2.5-VL-32B-Instruct ModelScope API
Qwen2.5-VL-7B-Ins 2025-01 Qwen/Qwen2.5-VL-7B-Instruct Hugging Face Transformers
Qwen2.5-VL-3B-Ins 2025-01 Qwen/Qwen2.5-VL-3B-Instruct Hugging Face Transformers

AIDC Ovis2.5-9B 2025-08 AIDC-AI/Ovis2.5-9B Hugging Face Transformers
Ovis2.5-2B 2025-08 AIDC-AI/Ovis2.5-2B Hugging Face Transformers

OpenBMB MiniCPM-V-4.5 2025-08 openbmb/MiniCPM-V-4.5 Hugging Face Transformers
MiniCPM-o-2.6 2025-01 openbmb/MiniCPM-o-2.6 Hugging Face Transformers

Hugging Face Idefics3-8B-Llama3 2024-08 HuggingFaceM4/Idefics3-8B-Llama3 Hugging Face Transformers

Nvidia Cosmos-Reason1 2025-05 nvidia/Cosmos-Reason1 Hugging Face Transformers

Forward World Modeling Prompt

You are a capable agent designed to infer multi-step forward dynamics transitions in
embodied decision-making. Your goal is to predict the correct sequence of future
states that result from applying a given series of actions to an initial state.

## Your Task
You will be provided with a single **Current State Image** and a set of shuffled

**Future State Images** (labeled 1, 2, 3, etc.). To determine their correct order,
you must follow the sequence of actions provided below.

1. Start with the **Current State Image**.
2. Apply the **first action** from the ‘Actions in Order‘ list to this state.
3. Find the **Future State Image** that matches the outcome of this action.

This is the first state in the correct sequence.
4. Next, apply the **second action** to the state you just identified.
5. Find the corresponding image among the remaining future states.
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6. Continue this process until all actions have been applied and all future states
have been ordered.

## Output Format
Your response **must be only** a Python list of integers representing the correct
chronological order of the future state image labels. Do not include any other text,
reasoning, or explanation.

**Example:**
If you determine the correct sequence is
’Next State 1’ -> ’Next State 3’ -> ’Next State 2’,
Your output must be: ‘[1, 3, 2]‘

## Actions in Order
{STATE_CHANGES}

Now, please provide your answer in the requested format.

Figure 14: The prompt used to evaluate VLMs on the multi-step Forward World Modeling task.
The model must order shuffled future state images by reasoning over a given action sequence.

Inverse World Modeling Prompt

You are a capable agent designed to infer multi-step inverse dynamics transitions in
embodied decision-making. Your goal is to determine the correct chronological order
of actions that caused the state transitions shown in a sequence of images.

## Your Task
You will be given an ordered sequence of images that show a scene evolving over time,
along with a shuffled list of the actions that caused these changes.

To solve this, you must:
1. Analyze the transition from the first image to the second. Determine the specific

visual change that occurred.
2. From the **Shuffled Actions** list provided below, identify the single action that

best describes this change.
3. Repeat this process for all subsequent pairs of images (second to third, third to

fourth, etc.) until you have correctly ordered all the actions.

## Output Format
Your response **must be only** a Python list of integers representing
the correct order of the action labels.
Do not include any other text, reasoning, explanations, or code formatting.

**Example:**
If the correct sequence is [Action 2] -> [Action 3] -> [Action 1],
your output must be: ‘[2, 3, 1]‘

## Shuffled Actions
{SHUFFLED_ACTIONS}

Now, please provide your answer in the requested format.

Figure 15: The prompt used to evaluate VLMs on the multi-step Inverse World Modeling task. The
model must order a set of shuffled actions by reasoning over an ordered sequence of state images.

B.2.2 DETAILED ANAYLSIS

A detailed examination of the full experimental results, presented in Table 9 (Task Accuracy) and
Table 10 (Pairwise Accuracy), reveals several consistent trends across all evaluated Vision-Language
Models (VLMs). We highlight three primary observations below.
First, models consistently achieve higher accuracy on the inverse world modeling task compared to
the forward world modeling task. This performance gap is evident across nearly all models, regardless
of size or architecture. For instance, in Task Accuracy, Gemini 2.5 Pro scores 81.99% on 3-step
forward modeling but 87.76% on 3-step inverse modeling. More notably, this margin widens as the
reasoning horizon L increases. For the same model at 10 steps, the forward accuracy drops to 3.60%,
while the inverse accuracy remains significantly higher at 14.40%. This suggests that ordering a
sequence of known actions to match a visual outcome (inverse) is an easier cognitive task for current
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VLMs than predicting a sequence of visual outcomes from a set of abstract actions (forward), which
requires a more robust capacity for simulation and prediction.
Second, the performance of all VLMs steadily declines as the step length L increases. This trend is
universal across both tasks and metrics. The accuracy degradation is particularly sharp for longer
horizons, with most models seeing their Task Accuracy fall to near-zero levels for tasks involving
7 or more steps. Even the top-performing proprietary models, such as GPT-5 and Gemini 2.5 Pro,
experience a dramatic drop-off, indicating a fundamental challenge in maintaining long-term causal
chains and handling the combinatorial complexity that arises with each additional step. This highlights
the current limitations of VLMs in multi-step, long-horizon reasoning.
Finally, there is a substantial performance gap between all VLMs and human evaluators. As shown
in the final row of each table, human performance is consistently strong and stable across all step
lengths, achieving Task Accuracy scores around 90% and Pairwise Accuracy scores exceeding 95%
in many cases. Unlike the models, human accuracy does not degrade sharply as L increases. This
near-ceiling performance validates our benchmark as a solvable yet challenging test of embodied
cognition and underscores the significant progress required for VLMs to achieve human-level causal
understanding and world modeling.
Why VLMs Perform Better on Inverse than Forward? The superior performance on inverse
modeling can be attributed to the nature of the reasoning involved. The inverse task is a constrained
matching problem: the model observes a sequence of visual outcomes and must simply order the
corresponding textual actions. This leverages the core strength of VLMs in visual perception and
language grounding. Conversely, the forward task is an unconstrained simulation problem. It requires
the model to predict a sequence of visual states from abstract actions, demanding a generative
understanding of causal dynamics and intuitive physics. This form of predictive world modeling is a
known weakness of current VLMs (Tung et al., 2023), which are trained primarily as descriptive, not
simulative, systems.

Table 9: Evaluation on ENACT (Task Accuracy). Dark gray indicates the best result within each
category (Proprietary or Open-Weight Models), and Light gray denotes the second-best result within
the category.

Model
Forward World Modeling Inverse World Modeling

3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10

Proprietary Models
GPT-5 80.59 62.72 47.13 33.62 20.24 11.58 7.30 5.00 86.19 72.65 59.65 43.73 33.68 24.04 17.15 13.00
GPT-5 mini 83.39 62.72 45.22 31.71 19.02 9.12 5.29 2.80 84.79 67.42 58.09 41.11 29.67 18.07 13.50 8.60
GPT-5 nano 58.57 30.66 9.74 3.83 1.40 0.00 0.00 0.00 72.03 39.02 17.22 8.19 3.14 1.05 0.36 0.00
Gemini 2.5 Pro 81.99 62.72 47.30 29.79 17.80 10.00 3.28 3.60 87.76 73.52 58.61 43.38 33.51 23.68 15.88 14.40
Gemini 2.5 Flash 75.52 50.52 25.22 14.29 6.28 2.98 1.28 0.20 82.52 61.15 38.96 27.70 17.98 13.86 6.20 3.80
Gemini 2.5 Flash-Lite 52.97 27.18 10.09 3.83 1.40 0.18 0.18 0.00 69.06 42.33 19.83 8.54 4.71 0.88 0.73 0.00
Claude Sonnet 4 56.29 24.91 8.52 2.96 0.70 0.00 0.00 0.00 72.73 42.16 24.17 13.59 6.98 2.63 1.46 1.00

Open-Weight Models
GLM-4.5V 66.08 40.77 18.09 8.54 1.57 0.35 0.18 0.00 79.55 57.32 32.52 20.38 11.69 5.44 1.64 0.40
GLM-4.1V-Thinking 57.52 28.40 11.30 2.26 0.35 0.18 0.00 0.00 73.43 39.37 12.00 4.53 0.87 0.53 0.00 0.00
Llama-4-Scout-17B-16E-Ins 58.74 21.43 5.04 1.74 0.70 0.18 0.00 0.00 64.34 34.32 10.26 2.96 1.75 0.00 0.18 0.00
Llama-4-Mav-17B-128E-Ins 63.99 32.58 14.78 4.36 1.57 0.35 0.00 0.00 71.50 49.30 24.35 11.85 4.19 1.58 0.55 0.00
InternVL3.5-241B-A28B 67.83 43.38 21.22 12.02 4.71 1.05 0.36 0.00 81.99 59.76 40.35 24.22 15.18 7.37 4.56 2.00
InternVL3.5-14B 46.33 14.81 3.48 1.05 0.00 0.00 0.00 0.00 66.43 45.12 23.65 11.85 5.93 1.93 1.28 0.40
InternVL3.5-8B 54.72 25.09 5.39 1.05 1.22 0.18 0.00 0.00 63.99 40.24 20.00 6.79 3.49 0.53 0.36 0.20
InternVL3.5-4B 54.55 22.13 6.43 2.09 0.52 0.00 0.00 0.00 63.64 32.93 16.00 5.75 2.27 0.53 0.18 0.00
Gemma-3-27b-it 53.15 22.82 5.57 0.87 0.17 0.18 0.00 0.00 63.46 31.88 14.61 5.05 1.57 0.35 0.00 0.60
Gemma-3-12b-it 51.22 21.78 6.09 1.05 0.17 0.00 0.00 0.00 52.80 27.53 9.74 2.79 1.75 0.35 0.00 0.00
Gemma-3-4b-it 52.80 20.56 1.57 0.17 0.70 0.00 0.00 0.00 52.45 18.12 3.83 1.92 0.17 0.00 0.00 0.00
QVQ-72B-Preview 60.84 29.79 8.17 2.09 0.70 0.00 0.00 0.00 66.96 40.24 16.87 6.97 3.84 1.23 0.55 0.00
Qwen2.5-VL-72B-Ins 71.68 40.42 18.96 7.84 3.32 1.23 0.00 0.00 75.87 53.48 29.74 17.77 11.52 4.74 1.46 0.40
Qwen2.5-VL-32B-Ins 51.40 32.75 10.09 3.48 0.52 0.00 0.00 0.00 39.34 33.45 19.13 8.89 6.11 2.11 0.91 0.00
Qwen2.5-VL-7B-Ins 22.73 23.17 5.39 0.52 0.17 0.00 0.00 0.00 70.10 41.11 16.52 5.23 1.05 0.00 0.00 0.00
Qwen2.5-VL-3B-Ins 45.98 13.76 5.91 0.70 0.17 0.00 0.00 0.00 56.64 32.75 13.39 5.75 1.05 0.18 0.00 0.00
Ovis2.5-9B 47.55 23.00 10.61 2.96 1.05 0.18 0.00 0.00 62.76 35.54 16.00 6.27 1.75 0.35 0.00 0.00
Ovis2.5-2B 39.69 17.77 5.91 0.87 0.52 0.00 0.00 0.00 48.43 23.87 8.52 1.57 0.00 0.00 0.00 0.00
MiniCPM-V-4.5 48.43 19.16 8.35 1.92 0.52 0.18 0.00 0.00 68.01 37.98 22.09 9.41 3.66 1.75 0.18 0.20
MiniCPM-o-2.6 26.05 17.07 5.22 1.57 0.00 0.00 0.00 0.00 38.64 27.35 11.30 2.44 0.52 0.18 0.00 0.00
Idefics3-8B-Llama3 48.08 16.20 2.26 0.52 0.17 0.00 0.00 0.00 46.33 16.72 2.96 1.57 0.00 0.00 0.00 0.00
Cosmos-Reason1 45.45 21.43 5.04 0.52 0.17 0.00 0.00 0.00 51.92 29.09 12.02 3.31 0.52 0.18 0.00 0.00
BAGEL 25.87 17.77 3.83 2.09 0.17 0.00 0.00 0.00 56.29 35.89 14.61 7.14 2.97 0.18 0.18 0.00

Human Performance 90.38 92.16 89.74 85.71 88.31 87.02 85.58 84.00 91.78 90.24 88.70 88.15 89.53 92.28 87.73 85.00

B.2.3 CONTACT EXPERIMENT

To verify that our conclusions are not an artifact of using only “state change” predicates in ENACT,
we add an ablation in which key frames are also gated on changes in binary contact relations between
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Table 10: Evaluation on ENACT (Pairwise Accuracy). Dark gray indicates the best result within
each category (Proprietary or Open-Weight Models), and Light gray denotes the second-best result
within the category.

Model
Forward World Modeling Inverse World Modeling

3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10

Proprietary Models
GPT-5 84.62 75.26 69.96 64.18 57.48 52.16 49.45 46.93 86.28 80.37 76.09 68.78 65.71 62.13 57.12 55.33
GPT-5 mini 87.50 76.25 70.65 63.41 58.14 52.38 46.65 44.11 85.05 76.77 75.43 67.67 63.79 57.04 55.04 50.02
GPT-5 nano 67.83 50.29 38.61 30.35 25.97 21.90 17.59 16.84 72.81 53.95 42.48 36.45 31.68 28.20 24.11 20.33
Gemini 2.5 Pro 86.10 76.42 69.83 60.80 53.26 48.12 40.12 36.98 87.94 81.18 75.39 70.03 66.03 62.91 57.78 56.62
Gemini 2.5 Flash 81.64 67.94 54.17 43.38 37.43 32.73 29.88 28.07 82.78 72.18 60.83 58.19 53.14 51.78 47.99 44.98
Gemini 2.5 Flash-Lite 64.34 49.07 38.70 33.87 27.81 25.44 23.31 20.31 69.58 57.55 46.04 39.09 34.06 30.18 27.51 23.16
Claude Sonnet 4 65.65 45.82 36.65 30.52 26.61 22.78 21.49 20.16 73.25 56.85 48.87 43.07 37.00 32.71 30.50 28.49

Open-Weight Models
GLM-4.5V 74.30 59.99 47.65 38.78 30.83 25.69 21.60 19.67 80.59 69.28 57.04 51.53 46.95 41.68 37.36 37.93
GLM-4.1V-Thinking 67.31 49.48 38.43 31.29 25.80 21.50 20.14 18.73 75.35 56.27 46.57 36.79 29.61 24.56 23.91 25.80
Llama-4-Scout-17B-16E-Ins 68.18 42.62 34.30 30.52 28.50 26.57 25.94 31.20 66.00 50.00 41.30 37.04 29.73 25.61 22.45 26.54
Llama-4-Mav-17B-128E-Ins 72.47 52.09 43.87 35.30 29.90 25.89 22.79 20.49 72.55 62.60 50.52 43.10 35.17 31.68 28.10 25.80
InternVL3.5-241B-A28B 75.79 62.25 50.83 45.85 37.84 32.88 27.85 25.24 82.26 70.09 60.61 53.38 45.90 39.35 34.12 30.56
InternVL3.5-14B 54.90 36.53 27.87 25.47 22.02 18.73 18.29 20.60 69.06 59.52 49.00 43.45 37.61 32.28 29.31 28.58
InternVL3.5-8B 64.42 44.83 31.48 24.32 23.62 21.50 19.30 15.47 65.03 56.10 45.35 37.67 35.02 29.62 26.41 23.60
InternVL3.5-4B 63.11 42.04 30.26 26.13 21.73 20.28 19.64 21.98 64.95 50.12 41.61 35.78 29.00 26.57 27.55 24.04
Gemma-3-27b-it 63.29 44.66 32.04 25.82 22.11 19.50 16.74 16.29 64.95 48.37 40.04 33.87 28.53 23.63 21.74 19.36
Gemma-3-12b-it 62.33 43.55 32.78 25.68 22.45 20.40 17.70 16.71 53.23 43.79 34.43 29.90 25.57 22.31 21.60 18.16
Gemma-3-4b-it 61.98 41.17 35.70 35.16 30.51 26.17 26.73 25.80 53.06 36.41 29.52 26.38 22.66 24.44 33.71 33.62
QVQ-72B-Preview 69.14 52.96 40.83 36.27 33.16 30.63 26.30 24.76 71.33 58.77 48.43 44.36 40.26 39.30 36.66 36.58
Qwen2.5-VL-72B-Ins 78.15 60.05 49.87 41.92 36.77 31.73 28.03 25.07 77.80 65.85 53.30 48.19 44.07 37.57 33.76 36.27
Qwen2.5-VL-32B-Ins 67.83 55.46 44.35 35.75 27.52 26.42 22.01 18.07 63.55 59.70 54.57 51.01 49.36 47.17 41.47 40.16
Qwen2.5-VL-7B-Ins 26.84 43.90 32.00 23.07 19.66 16.69 11.82 11.31 70.54 56.45 42.43 32.89 25.07 19.52 16.72 17.42
Qwen2.5-VL-3B-Ins 58.22 35.31 30.57 24.08 20.36 17.44 14.87 15.07 57.43 49.13 40.48 34.88 28.33 26.14 22.97 20.51
Ovis2.5-9B 58.39 42.51 34.96 31.08 24.61 20.78 18.11 16.96 64.86 51.74 41.65 35.47 30.95 26.64 23.70 23.25
Ovis2.5-2B 46.94 38.85 32.65 26.86 25.63 22.21 22.49 24.87 54.28 44.08 35.43 29.06 27.84 25.56 27.62 29.29
MiniCPM-V-4.5 60.75 38.73 33.65 25.47 24.81 21.40 21.56 18.33 69.23 53.08 47.35 39.55 34.87 30.63 27.05 25.71
MiniCPM-o-2.6 35.31 39.37 29.48 31.78 27.66 26.39 24.59 27.42 54.11 48.26 44.70 40.00 38.28 36.12 33.23 31.71
Idefics3-8B-Llama3 60.23 36.99 31.83 24.25 21.29 20.80 20.46 17.71 47.38 33.86 27.26 23.48 19.87 18.50 17.04 15.16
Cosmos-Reason1 56.28 41.86 34.75 28.40 26.46 26.49 25.41 24.88 58.30 45.93 44.25 38.50 35.72 34.56 31.50 28.64
BAGEL 30.24 40.19 29.65 25.37 22.75 19.45 17.84 15.87 56.73 52.85 40.09 35.44 29.67 24.39 28.70 18.91

Human Performance 93.62 95.30 95.04 93.87 95.43 95.41 94.75 95.13 92.05 93.56 94.35 94.25 95.96 97.74 96.30 96.29

Table 11: Effect of including contact changes in key-frame selection. Task and pairwise accuracies
(%) of InternVL3.5–241B when key frames are triggered by both state changes and contact changes.

Metric
Forward (with contact changes) Inverse (with contact changes)

3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10

Task Accuracy 86.67 43.33 36.67 20.00 3.45 3.33 0.00 0.00 90.00 73.33 30.00 26.67 16.67 3.33 6.67 0.00
Pairwise Accuracy 90.00 72.22 60.00 53.33 48.28 42.38 31.67 34.44 90.00 82.22 55.83 57.33 46.11 32.86 38.75 27.78
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objects (e.g., touch / no-touch). Concretely, we augment the symbolic predicate set so that both
state changes and contact changes trigger key-frame sampling, while keeping the rest of the pipeline
unchanged, and re-evaluate InternVL3.5–241B on the resulting trajectories.
As shown in Table 11, the qualitative trends remain the same as in our main results. Inverse world
modeling consistently outperforms forward modeling across all horizons (e.g., 86.67% vs. 90.00%
task accuracy at 3 steps, and 3.45% vs. 16.67% at 7 steps), and both task and pairwise accuracies
still drop substantially as the number of interaction steps increases for both directions. This suggests
that our findings are robust to the choice of symbolic key-frame criteria and are not driven by sparsity
introduced by state-change-only sampling.

B.2.4 HOW DOES ACTION REPRESENTATION AFFECT VLMS’ PERFORMANCE?

Table 12: Effect of action representation on InternVL3.5–241B. Task and pairwise accuracies (%)
on a 2,304-QA subset of ENACT under three action encodings.

Metric
Forward Inverse

3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10

Vanilla (Natural Language)
Task Accuracy 68.97 35.17 27.59 8.97 6.90 2.07 0.69 0.00 83.45 60.69 44.14 24.83 13.79 7.59 4.14 0.00
Pairwise Accuracy 76.21 57.70 57.41 41.24 38.85 30.34 29.05 26.52 83.45 69.66 61.72 53.10 47.01 40.39 34.40 27.25

Symbolic Predicates
Task Accuracy 67.59 40.00 20.00 9.66 4.14 0.69 1.38 0.00 79.86 51.03 40.00 23.45 8.97 5.52 2.76 0.73
Pairwise Accuracy 74.48 61.61 48.97 41.52 35.75 32.12 30.34 25.68 79.86 62.99 58.62 51.59 39.43 36.85 32.07 24.33

Emoji-Style Encodings
Task Accuracy 65.52 44.14 18.62 11.03 8.28 0.69 0.69 0.00 77.24 48.28 35.17 23.45 12.41 7.59 2.76 0.00
Pairwise Accuracy 73.10 64.60 48.62 39.45 38.05 27.49 26.72 23.93 77.93 61.38 59.14 45.38 40.80 36.06 27.16 25.30

Our primary goal is to evaluate VLMs under the standard interface of natural-language actions, but
this leaves open whether the inverse advantage is merely a consequence of language priors, i.e.,
models being better at mapping visuals to familiar verbs than to unfamiliar symbolic actions. To probe
this, we construct a subset of ENACT trajectories with 2,304 QAs and compare three action–predicate
encodings while keeping the underlying videos and questions fixed: (1) the original natural-language
descriptions (“vanilla”), (2) structured symbolic predicates, and (3) emoji-style encodings. Table 12
reports task and pairwise accuracies of InternVL3.5–241B across horizons for all three settings.
Across all representations, we observe the same qualitative pattern as in our main results: inverse
world modeling consistently outperforms forward modeling at comparable horizons, and performance
for both directions degrades sharply as the number of interaction steps increases. While absolute
accuracies vary slightly across encodings, the inverse > forward gap is preserved even with purely
symbolic or emoji-style actions, suggesting that our conclusions are not driven solely by natural-
language priors.

B.2.5 HOW OFTEN DO ACCEPTED PREDICTIONS OMIT PARTS OF TRANSITIONS?

Our semantic verifier operates with subset inclusion: a predicted transition is accepted as semantically
correct if its predicate set is a subset of the ground-truth transition and does not contain any predicates
that contradict the ground truth. In other words, we allow partial correctness (omitting some true
predicates), but never accept hallucinated predicates that conflict with the annotated transition.
To quantify how often such omissions occur among accepted predictions, we measure mismatch
ratios at two granularities: (i) a data-level mismatch ratio, computed per QA as the fraction of
semantically accepted predictions whose predicate set is a strict subset of the ground truth; and (ii) a
pair-level mismatch ratio, computed per ordered pair in the reordering task as the fraction of accepted
pairs where at least one element is a strict subset of the corresponding ground truth transition. Results
for GPT-5, InternVL3.5–241B, and human annotators are shown in Table 13.
At the data level, all models (and humans) exhibit very low mismatch rates (≈1–2%), indicating that
most semantically accepted predictions recover the full transition. At the pair level, models show
higher mismatch ratios than humans (around 14–15% vs. 3.6%), reflecting that they occasionally
capture only a subset of the true transition when comparing two candidate steps.
Overall, this suggests that while our verifier does grant some partial credit, such cases are relatively
rare at the QA level and do not dominate the evaluation.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table 13: Mismatch rates among semantically accepted predictions. Data-level and pair-level
mismatch ratios (%) for cases where the semantic verifier accepts a prediction but its predicate set is
a strict subset of the ground-truth transition.

Model Data-Level Mismatch (%) Pair-Level Mismatch (%)

GPT-5 1.65 15.31
Human 2.26 3.62
InternVL3.5-241B 1.49 13.96

B.3 PROBING EXPERIMENTS COMMON SETUP

To gain deeper insights into model sensitivities, we conducted a series of probing experiments. This
section outlines the common experimental framework that applies to our analyses of Image Realism
(Section B.4), Camera Configurations (Section B.5), and Robot Appearance (Section B.6.1).
For these experiments, we selected two representative models. Given its strong balance of perfor-
mance and computational cost in our main results, we chose GPT-5 mini as our primary model to
represent state-of-the-art proprietary VLMs. To include a strong open-weight counterpart, we also
selected InternVL3.5-241B-A28B, which demonstrated robust performance among open models.

## Actions in Order

[Action 1] The drop-in sink now becomes under the 
cutting board. The cutting board becomes on top of 
and touching the drop-in sink. The countertop now 
becomes under the cutting board. The cutting 
board is no longer on top of and touching the 
countertop. The robot r1 is no longer using the left 
gripper to grasp the cutting board.

[Action 2] The carving knife transitions to be on 
top of and touching the countertop. The robot r1 is 
no longer using the right gripper to grasp the 
carving knife.

Forward 3-Step Example - Baseline 

## Ground Truth Order for Shuffled Next States
[2, 1]

## Shuffled Actions

[Action 1] The cutting board changes to be on top 
of and touching the drop-in sink. The drop in sink 
transitions to be under the cutting board. The 
countertop changes to be under the cutting board. 
The robot r1 is no longer using the left gripper to 
grasp the cutting board.

[Action 2] The robot r1 stopped being using the 
right gripper to grasp the steak.

Inverse 3-Step Example - Baseline 

## Ground Truth Order for Shuffled Actions
[2, 1]

Figure 16: Illustrative trajectories of Forward World Modeling and Inverse World Modeling for a
representative baseline question.

To ensure the experiments were comprehensive yet manageable, we focused on step lengths L ∈
{3, 6, 9}, covering short, medium, and long-term reasoning horizons. For each of these lengths and for
both the forward and inverse tasks, we randomly sampled 50 questions. This resulted in a consistent
test bed of 300 total question-answering pairs for each experimental setting. We maintained the same
question prompts used in the main benchmark experiments to isolate the effect of the variable being
tested. The default setting used in our benchmark dataset serves as the baseline for all comparisons.
For each setting, we report the Pairwise Accuracy along with its standard error. In our summary
heatmaps (Figure 4 for GPT-5 mini and Figure 17 for InternVL3.5-241B-A28B), we use ∆ to
visualize the performance difference between a variant and the baseline. To assess the statistical
significance of these differences, we perform a two-tailed unpaired Welch’s t-test. An unpaired test
is appropriate as each question is evaluated in an independent session. We specifically use Welch’s
t-test as it does not assume equal variance between the two groups being compared (baseline vs.
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variant). We report the p-value for each comparison and consider a result to be statistically significant
if p < 0.05. We qualitatively classify any performance change where |∆| < 0.05 as a small change.
We show one baseline question and its images for both forward and inverse settings in Figure 16, and
for other settings, we only show their images, as they all share the same question text and answers.

C.2: Robot Handedness Analysis
p-value

(sig)

Hand Precision(↑) Recall(↑) Mixing(↓)

Left 0.2991±0.0067 0.2626±0.0060 0.1373

Right 0.3465±0.0048 0.3427±0.0048 0.0628

Left 0.2821±0.0065 0.2820±0.0065 0.2179

Right 0.3294±0.0051 0.3295±0.0051 0.1099

F
or

w
ar

d
In

ve
rs

e

Figure 17: Probing experiment results with InternVL3.5-241B-A28B on ENACT. Heatmaps
show two-tailed unpaired p-values against the baseline, using Pairwise Accuracy. p < 0.05 is
considered significant. Darker red means more significant. ∆ is the performance change from the
baseline. If significant and ∆ < 0, the setting is worse than the baseline. C.2 reports the robot’s
performance on the left- and right-hand predicates, where Mixing is the proportion of ground truth
left or right cases that are predicted as the other hand (i.e., mixing one hand into the other hand).
Note that, although InternVL3.5-241B-A28B performance is less significant than GPT-5 mini, the
|∆| across unnatural camera configurations still remains high (> 0.05) when the same settings are
significant for GPT-5 mini.

B.4 SENSITIVITY TO IMAGE REALISM

Although the BEHAVIOR simulator is designed to be photo-realistic, we were curious whether a
“sim-to-real” gap might still exist due to subtle differences in rendering quality. Specifically, we
sought to investigate if such a gap affects performance on our world modeling tasks and to quantify
the impact of rendering fidelity on the reasoning capabilities of state-of-the-art Vision-Language
Models, such as GPT-5 mini. In the following sections, we detail the experimental setup for evaluating
model performance across various levels of image realism.

B.4.1 REALISTIC: GENERATED IMAGES AS REAL WORLD PROXY

Since our activities are diverse and complex, reproducing simulator outputs in the real world on a
one-to-one basis would incur prohibitively high costs. However, with the advent of powerful image
generation models with the ability of image-scale reproduction (e.g., GPT-image-1), it is feasible to
use them as a real-world proxy to convert frames rendered by simulator into realistic styles, which
provides a cost-effective and well-aligned alternative.
Constructing prompts for high-accuracy style transfer poses several challenges. First, since our
segmented frames are extracted from a replayed robot trajectory, the generated realistic frames
corresponding to the trajectory must preserve consistent content and style, including object shapes
and appearances, lighting conditions, material properties, and camera parameters. Second, image
generation models often demonstrate instability and errors in understanding fine-grained structures of
robotic arms (particularly the gripper) and in interpreting robotic actions. To mitigate these issues,
we establish a detailed set of rules and incorporate them into the prompt design (Figure 21), which
improves both stability and fidelity in the generated outputs.
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Inverse World Modeling

Cosmos-Reason1-7B
InternVL3.5-8B

Qwen2.5-VL-7B-Ins
Gemma-3-12b-it

Ovis2.5-9B
MiniCPM-V-4.5-8B

Idefics3-8B-Llama3

Figure 18: Comparison between Cosmos-Reason1 and other similar-sized models.
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Figure 19: Probing image realism with GPT-5 and InternVL3.5-241B-A28B. (a) Forward
dynamics; (b) Inverse dynamics. Bar plots report Pairwise Accuracy across four rendering set-
tings—Realistic, Path Tracing, Ray Tracing (Baseline), and Ray Tracing Only. Error bars denote
±SEM. The baseline x-tick is bolded.

Forward – Realistic Frame Inverse – Realistic Frame

Figure 20: Examples of simulator frames converted into realistic styles for both Forward World
Modeling (left) and Inverse World Modeling (right) trajectories.
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Project Instruction and Prompt for Image Generation

## Below are the instructions and regulations, treat them as the sole, global reference
for all image generations you are going to perform.

## Core Objective
Convert simulator screenshots into photorealistic PBR images. Change style only;
do not change content.

## Content Lock (Content-Locked)
Preserve the count, position, size, geometry, and pose of all objects.
The robot hand and knife angles, shapes, and actions must match exactly.

## Camera crop and viewpoint must remain unchanged.
The outdoor scene must remain daytime; tree and fence silhouettes must not change.
If realism conflicts with content, content fidelity takes precedence.

## Style Requirements

* Lighting: Warm under-cabinet tungsten (3200-3600 K) + soft window daylight fill.

* Tone: Filmic contrast, smooth highlight roll-off, no crushed blacks or blown
highlights.

* Camera: approximately 35 mm, f/2.8-4, shallow DOF; subject sharp with gently blurred
background.

* Shadows: Realistic soft shadows, contact shadows, and ambient occlusion.

## Materials:

* Metal knife and trims: Brushed, anisotropic metal.

* Robot: Matte polymer.

* Cutting board and countertop: Sealed/oiled wood grain.

* Glass/walls: Glossy glass with realistic reflections and refractions.

* Post-processing: Subtle camera grain; light vignette.

* Prohibited: Cartoonish look, plastic sheen, bloom, oversaturation, hard outline
sharpening, fake lighting effects.

## Acceptance Criteria

* Edge alignment: SSIM >= 0.95 (along object boundaries).

* Segmentation: IoU >= 0.98 for robot, knife, cutting board, outdoors.

* Color difference: delta Hue <= 3°, delta L <= 6.

* Knife shape error: <= 1 px.

* Outdoor tree/fence silhouette error: <= 1-2 px.

## Implementation Suggestions

* Use low denoise strength 0.20-0.35, CFG 4-6.

* Negative prompt: forbid new objects, geometry changes,
cartoonish/oversaturated/plastic textures.

* Detail pass: add micro-surface material detail + light film grain.

Now, review and summarize what you have learned from these instructions.

Following the instructions you have learned, transform the given image into realistic
photograph style.

Figure 21: The prompt used to generate realistic photographic style images from segmented frames
(of a replayed robot trajectory).

B.4.2 PATH TRACING SETUP

To generate the highest-fidelity images for our analysis of image realism, we utilized path tracing.
This was achieved directly through the built-in, real-time path tracing engine provided by the NVIDIA
Isaac Sim simulator. An example can be seen in Figure 22.

Forward – Path Tracing Inverse – Path Tracing

Figure 22: The figure illustrates Forward World Modeling (left) and Inverse World Modeling
(right) trajectories rendered using the path tracing engine in NVIDIA Isaac Sim.
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B.4.3 RAY TRACING ONLY SETUP

This setup was designed to represent an intermediate rendering quality (representing ‘unrealistic’).
While it still utilizes the ray tracing pipeline as its foundation, we manually disabled several advanced
lighting and post-processing effects to reduce visual fidelity. Specifically, we turned off the following
features: reflections, DLSS, ambient occlusion, sampled lighting, ambient light, and flow. The
resulting visual style, which lacks these richer effects, can be seen in Figure 23.

Forward – Ray Tracing Only Inverse – Ray Tracing Only

Figure 23: Examples of an intermediate rendering style created with a simplified ray tracing pipeline
for Forward World Modeling (left) and Inverse World Modeling (right) trajectories.

B.4.4 PERFORMANCE ON SELF-COLLECTED REAL-WORLD VIDEOS

To directly evaluate long-horizon world modeling in the real world, we record manipulation videos
in three diverse environments with varying lighting conditions and object sets. For each clip, we
exhaustively annotate key frames with scene graphs that are format-compatible with our simulator
data, and then apply the ENACT pipeline to automatically generate 960 QA pairs. We report task
accuracy and pairwise accuracy of InternVL3.5-241B-A28B across different interaction horizons in
Table 2.

The real-world results exhibit the same trends as our simulator-based evaluation:
(1) Inverse world modeling is consistently easier than forward modeling. Across all horizons,
InternVL3.5-241B-A28B achieves substantially higher task and pairwise accuracies on inverse
queries than on forward queries (e.g., 90.0 vs. 73.3 task accuracy at 3 steps, and 3.3 vs. 0.0 at 10
steps), indicating that inferring past states from an observed outcome is easier than predicting future
states.
(2) Performance degrades sharply with the interaction horizon. Both task and pairwise accuracies
drop rapidly as the number of manipulation steps increases. For forward modeling, task accuracy
decreases from 73.33% at 3 steps to 13.33% at 6 steps and reaches 0% at 9–10 steps. Inverse
modeling is more robust but still suffers a strong decline (from 90.00% at 3 steps to 3.33% at 10
steps), highlighting the difficulty of long-horizon reasoning in realistic videos.
(3) Limited sim–real gap in our setup. The absolute numbers on real-world videos are comparable
to those obtained in the simulator, and we do not observe a substantial systematic performance
drop. This suggests that, under our ENACT pipeline and scene-graph representation, the dominant
challenge for current VLMs is long-horizon world modeling itself rather than low-level sim–real
rendering differences.

Table 14: Robustness to random perturbations in predicate deltas. Mean ± standard deviation
(%) over three random seeds on a 2,304-QA subset of ENACT for InternVL3.5–241B.

Metric 3 4 5 6 7 8 9 10

Forward (with random perturbations)
Task Accuracy 68.51± 1.44 37.47± 2.11 25.75± 1.74 10.80± 1.59 4.60± 2.11 1.61± 0.80 0.92± 0.40 0.00± 0.00
Pairwise Accuracy 75.52± 1.19 59.77± 1.82 54.48± 2.54 42.25± 1.30 37.36± 1.30 30.90± 0.59 28.76± 0.43 25.98± 1.01

Inverse (with random perturbations)
Task Accuracy 83.45± 0.69 58.39± 3.40 43.91± 1.05 22.76± 2.07 13.79± 0.00 6.67± 2.22 4.14± 2.07 0.73± 1.26
Pairwise Accuracy 83.45± 0.69 68.74± 1.40 61.49± 0.72 52.46± 0.69 45.59± 1.23 39.70± 1.64 35.09± 2.57 29.01± 1.64

B.4.5 ROBUSTNESS TO NOISE IN PREDICATE DELTAS

To assess whether our conclusions are sensitive to noise in the abstract transitions, we run a robustness
study on a subset of 2,304 QAs sampled from ENACT. For each trajectory, we randomly perturb
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the symbolic predicates in the abstract deltas and re-run both forward and inverse evaluations for
InternVL3.5–241B over three random seeds. Table 14 reports the mean ± standard deviation across
seeds.
Across all horizons, we observe only very small standard deviations, and the qualitative trends remain
unchanged: Inverse world modeling consistently outperforms forward world modeling at comparable
horizons, and performance for both directions degrades sharply as the number of steps increases.
These results indicate that our findings are stable across activities and robust to random perturbations
in the predicate deltas, rather than being driven by a few particularly clean or favorable trajectories.

B.5 SENSITIVITY TO CAMERA CONFIGURATIONS

B.5.1 CAMERA APERTURE SETUP

Our default baseline is aperture 40. We also investigate apertures 30, 60, and 80. Examples can refer
to Figure 24, 25, and 26.

Forward – Aperture 30 Inverse – Aperture 30

Figure 24: Example trajectories of Forward World Modeling (left) and Inverse World Modeling
(right), captured with a camera aperture of 30.

Forward – Aperture 60 Inverse – Aperture 60

Figure 25: Example trajectories of Forward World Modeling (left) and Inverse World Modeling
(right), captured with a camera aperture of 60.

Forward – Aperture 80 Inverse – Aperture 80

Figure 26: Example trajectories of Forward World Modeling (left) and Inverse World Modeling
(right), captured with a camera aperture of 80.
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Figure 27: Probing camera field-of-view (FOV) with GPT-5 and InternVL-3.5-241B-A28B.
(a) Forward dynamics; (b) Inverse dynamics. Bar plots report Pairwise Accuracy across five lens
settings—Aperture 30, Aperture 40 (Baseline), Aperture 60, Aperture 80, and Fisheye. Error bars
denote ±SEM; the baseline tick is bolded.

B.5.2 FISHEYE LENS SETUP

Isaac Sim provides the fisheye lens settings. We choose fisheyePolynomial, which is the most
similar to a daily fisheye lens, such as GoPro, as our evaluated target. The effect can be seen in the
example Figure 28.

Forward – Fisheye Inverse – Fisheye

Figure 28: Example trajectories of Forward World Modeling (left) and Inverse World Modeling
(right), captured with a fisheye-style camera.

B.5.3 CAMERA HEIGHT SETUP

The default setting height is 1.75 m, we also investigate the high (+0.5m) setting and low
(−0.25m)setting, and the examples are shown in Figure 29 and 30.

Forward – High Inverse – High

Figure 29: Example trajectories of Forward World Modeling (left) and Inverse World Modeling
(right), captured from a camera height of 2.25 m.

B.6 DO VLMS HAVE EMBODIED BIASES?
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Forward – Low Inverse – Low

Figure 30: Example trajectories of Forward World Modeling (left) and Inverse World Modeling
(right), captured from a camera height of 1.5 m.
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Figure 31: Probing camera height with GPT-5 and InternVL-3.5-241B-A28B. (a) Forward
dynamics; (b) Inverse dynamics. Bar plots report Pairwise Accuracy across three viewpoints—High,
Mid (Baseline), and Low. Error bars denote ±SEM; the baseline tick is bolded.

B.6.1 ROBOT APPEARANCE

We test three variants: White Color, Random Color (robot color is randomized at each frame), and
Skin Color (robot is rendered with a human-like skin tone). Examples can be referred to Figure 32, 33,
and 34.

Forward – White Color Inverse – White Color

Figure 32: Example trajectories of Forward World Modeling (left) and Inverse World Modeling
(right), with the robot gripper rendered in white.

B.6.2 HANDEDNESS ASYMMETRY

Based on our experimental setup (C.1). We further examine whether predictions involving agent
interactions reflect real-world handedness asymmetry (typically favoring the right hand).
The analysis shows that humans consistently outperformed all models in precision, recall, and hand-
mixing rate. Among models, InternVL-3.5-241B-A28B showed the weakest performance, while
GPT-5 and GPT-5 mini were more balanced across forward and inverse tasks than Gemini-2.5 Pro,
which favored the inverse setting. A consistent pattern also emerges: in both humans and models,
and across both task types, right-hand precision and recall systematically exceed those of the left
(Figures 37, 38). Furthermore, left-to-right mixing rate (ground-truth left-hand components wrongly
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Forward – Random Color Inverse – Random Color

Figure 33: Example trajectories of Forward World Modeling (left) and Inverse World Modeling
(right), with the robot gripper rendered in a random color at each frame.

Forward – Skin Tone Inverse – Skin Tone

Figure 34: Example trajectories of Forward World Modeling (left) and Inverse World Modeling
(right), with the robot gripper rendered in a human skin–like color.

predicted as right-hand ones) substantially exceeds the reverse (Figure 39). This analysis also shows
a consistent right-hand advantage across forward and inverse tasks, for both models and humans
in precision, recall, and hand-mixing rate. Right-hand usage appears to serve as a cognitive and
statistical default, which may shaped by real-world dominance and data imbalance, while left-hand
recognition appears to be more fragile.

C ERROR ANALYSIS

C.1 METHODOLOGY FOR ERROR CALCULATIONS

Signature Modeling from Scene Graph-level Differences For error analysis, it is found hard to
recognize predicate-level or semantic-level errors through natural language-based actions, i.e. visible
differences between consecutive states. Hence, we parse the raw (natural language) action predicates
as a signature into a sequence of unique state-change signature (asig0 , asig1 , . . . ).

ci ::= (γ, e1, ρ, e2) | (γ, e, ρ) | (transition, e, ρfrom → ρto), γ ∈ {add, remove}

To further structure these signatures, each signature asigi is then modeled as a finite set of components
{c1, c2, . . . }. Each component ci represents an atomic unit of state change. We distinguish three
categories of components: edge components (addition or removal γ of predicates ρ between two
entities e1 and e2), node components (addition or removal γ of the predicate ρ of entity e), and node
transition components (transition from the previous predicate ρfrom to new predicate ρto of an entity
e).

Error Modeling from Signatures We categorize errors from two perspectives: structural and
semantic. Structural errors concern the form of actions and include entity substitution (object
replacement), predicate substitution (relation/attribute replacement), polarity inversion (add, remove
or transition), omission, and hallucination. Semantic errors concern interpretation and are grouped
into spatial relations (misplaced object positions), functional states (incorrect functionalities or status),
material states (wrong physical properties), and agent interaction (misattributed agent actions).
Both perspectives are based on comparing component sets of paired ground-truth and predicted
signatures. For each pair, we compute set-level differences and classify components into missing
(in ground truth only), matched (in both), and hallucinated (in prediction only). To support this
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Figure 35: Probing robot appearance with GPT-5 and InternVL-3.5-241B-A28B.(a) Forward
dynamics; (b) Inverse dynamics. Bar plots report Pairwise Accuracy across four styles—White Color,
Fancy (Baseline), Random Color, and Skin Color. Error bars denote ±SEM; the baseline tick is
bolded.
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Figure 36: Illustration of overlaps between ground truth and GPT-5 predictions sets for left and right
hands related signatures in forward and inverse tasks. The size of ellipses project the total counts
of signatures, and overlaps denote matched signatures (center regions) or mixing errors (cross-hand
overlaps).

categorization, we preprocess the signature dataset into structured data with these three groups of
components, as outlined in Algorithm 2.
To categorize structural errors, we define criteria for each component type (edge, node, transition
node). Entity Substitution occurs when entities differ while other fields match; Predicate Substitution
when the predicate differs; and Polarity Inversion when only the operation (add/remove) differs. After
pairwise classification, remaining unmatched ground-truth components are categorized to Omission,
and unmatched predicted components as Hallucination.
After structural error categorization, each component is further labeled by semantic error type: Spatial
Relations, Functional States, Material States, or Agent Interactions. Labeling uses a predefined
mapping table that links all observed predicates to their semantic categories. When a component
contains a listed predicate, the table is consulted to assign its semantic label. The overall workflow of
error detection and categorization is illustrated in Algorithm 3.

Handedness Asymmetry Error Modeling To systematically capture handedness asymmetry,
we compute for left- and right-hand components: precision (correct matches over predicted), recall
(correct matches over ground truth), and the hand-mixing rate (the fraction of ground-truth left-hand
components predicted as right, or vice versa).
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Figure 37: Precision of left/right hand related components prediction in (a) forward and (b) inverse
tasks, with models Gemini2.5Pro, GPT-5, GPT-5 mini, InternVL3.5-241B-A28B, and Human. Error
bars indicate the standard error (SE).
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Figure 38: Recall of left/right hand related components prediction in forward task, with models
Gemini2.5Pro, GPT-5, GPT-5 mini, InternVL3.5-241B-A28B and Human. Error bars indicate the
standard error (SE).

Gemini2.5Pro GPT-5 GPT-5 mini InternVL3.5-
241B-A28B

Human0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Forward Hand Mixing Rate

Left  Right Bias
Right  Left Bias

(a)

Gemini2.5Pro GPT-5 GPT-5 mini InternVL3.5-
241B-A28B

Human0.00

0.05

0.10

0.15

0.20

0.25
Inverse Hand Mixing Rate

Left  Right Bias
Right  Left Bias

(b)

Figure 39: Hand-mixing rate, i.e.the ratio of left/right hand-mixing to all ground truth left/right and
components in (a) forward and (b) inverse task, with models Gemini2.5Pro, GPT-5, GPT-5 mini,
InternVL3.5-241B-A28B and Human. Error bars indicate the standard error (SE).
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Figure 40: The amount of total errors made by Gemini2.5Pro, GPT-5, GPT-5 mini, InternVL3.5-
241B-A28B, and Human, under (a) forward tasks and (b) inverse tasks.

For computing the hand-mixing rate, we define left–right mixing at the level of each signature-level
difference (with missing, matched, and hallucinated components). If the missing set contains left- (or
right-) hand usage, while the hallucinated set lacks the same hand but includes the opposite one, then
all missing components involving that hand are counted as left-to-right (or right-to-left) mixing, as
outlined in Algorithm 4.

C.2 STRUCTURAL ERROR ANALYSIS

We compared error patterns in forward and inverse tasks across Gemini-2.5 Pro, GPT-5, GPT-5 mini,
InternVL-3.5-241B-A28B, and human predictions (Figures 40). All models showed markedly higher
error rates than humans, with InternVL-3.5-241B-A28B producing the most errors overall.
Using our component-level categorization, we analyzed structural error distributions across Gemini-
2.5 Pro, GPT-5, GPT-5 mini, InternVL-3.5-241B-A28B, and Humans (Figure 41). The results
are consistent: Omission and Hallucination each account for over 40% of errors, while Predicate
Substitution is rare. This suggests a prevalence of coverage failures (missing or spurious components)
rather than fine-grained reasoning. Notably, humans show relatively more Entity Substitution,
Predicate Substitution, and Polarity Inversion, highlighting a potential difference in error patterns
between humans and models.
Cross-condition comparison shows that Omission dominates in the forward setting, whereas in the
inverse setting Omission and Hallucination are balanced, with Predicate Substitution also more
frequent. For qualitative analysis, we sampled representative GPT-5 cases for each structural error
type, stratified by forward and inverse tasks (Figure 42, 43, 44, 45, 46).

C.3 SEMANTIC ERROR ANALYSIS

In our semantic error analysis (Figure 47), all systems—Gemini-2.5 Pro, GPT-5, GPT-5 mini,
InternVL-3.5-241B-A28B, and humans—show a similar pattern: errors are concentrated in Spatial
Relations and Agent Interaction, reflecting difficulties in reasoning about object positions and agent
actions (e.g., left/right-hand grasping). A task-dependent asymmetry also appears: spatial-relations
errors are more common in forward tasks, while agent-interaction errors are higher in inverse tasks.
For illustration, we sample representative GPT-5 cases for each semantic category under both settings
(Figures 48, 49, 50, 51).
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Figure 41: The structural error distributions of typical LLMs (GPT-5, GPT-5 mini, Gemini2.5Pro and
InternVL3.5-241B-A28B (referred as InternVL3.5... in figure)) and Human-level prediction in both
forward and inverse tasks.
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𝑎0
The robot r1 changes to be using the right 
gripper to grasp the butter cookie.

The robot r1 now becomes using the right 
gripper to grasp the Swiss cheese. 

𝑎0

Forward Structural Error Example (GPT-5)

Error Type: Entity Substitution

𝑜0 𝑜1

𝑎0

Reason: The model substituted Swiss cheese with 
butter cookie, while keeping the remaining terms 
accurate.

Task: assembling gift baskets.

𝑎0 The dice transitions to be inside the bookcase. 

The board game changes to be inside the 
bookcase.

𝑎0

Inverse Structural Error Example (GPT-5)

Error Type: Entity Substitution

𝑜0 𝑜1

𝑎0

Reason: The model substituted The board game with the 
dice, while keeping the remaining terms accurate.

Task: collecting children's toys.

Figure 42: Example of structural error Entity Substitution by GPT-5 under forward and inverse
tasks.

𝑎0
The Tupperware transitions to be under the 
half chicken. The half chicken now becomes 
on top of and touching the Tupperware.

The half chicken becomes inside the 
Tupperware.

𝑎0

Error Type: Predicate Substitution

𝑜0 𝑜1

𝑎0

Reason: The half chicken should be on top of the 
Tupperware, but the model predicted it as being inside 
the Tupperware. 

Task: clearing food from table into fridge.

Forward Structural Error Example (GPT-5)

𝑎2
The robot r1 transitions to be using the left 
gripper to grasp the Swiss cheese.

The robot r1 now becomes using the right 
gripper to grasp the Swiss cheese.

𝑎2

Inverse Structural Error Example (GPT-5)

Error Type: Predicate Substitution

𝑜3 𝑜4

𝑎3

Reason: The robot should be using the left gripper, but 
the model predicted it as using the right gripper.

Task: assembling gift baskets.

Figure 43: Example of structural error Predicate Substitution by GPT-5 under forward and inverse
tasks.
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𝑎1
The baking sheet becomes covered by the 
diced Vidalia onion. 

The baking sheet is no longer containing 
the diced Vidalia onion. 

𝑎1

Forward Structural Error Example (GPT-5)

Error Type: Polarity Inversion

𝑜1 𝑜2

𝑎1

Reason: The baking sheet should transit from state “no 
onion” to “has onion”, but the model predicted inversely, 

Task: making pizza.

𝑎0
The cutting board is no longer on top of and 
touching the bar. 

The cutting board changes to be on top of and 
touching the bar. 

𝑎0

Inverse Structural Error Example (GPT-5)

Error Type: Polarity Inversion

𝑜0 𝑜1

𝑎0

Reason: The cutting board should transit from state ”on 
top of the bar” to “no longer on top of the bar”, but the 
model predicted inversely.

Task: chopping an onion.

Figure 44: Example of structural error Polarity Inversion by GPT-5 under forward and inverse tasks.

𝑎0
The robot r1 changes to be using the left 
gripper to grasp the microwave.

The microwave now becomes turned on.
𝑎0

Forward Structural Error Example (GPT-5)

Error Type: Omission

𝑜0 𝑜1

𝑎0

Reason: The model omitted the action “The robot r1 
changes to be using the left gripper to grasp the 
microwave.” which is supposed to be predicted, 

Task: cooking hot dogs.

𝑎0 The bottom cabinet without top becomes open.

The Tupperware is no longer inside the bottom 
cabinet no top.

𝑎0

Inverse Structural Error Example (GPT-5)

Error Type: Omission

𝑜0 𝑜1

𝑎0

Reason: The model omitted the action “The bottom 
cabinet without top becomes open.” which is supposed 
to be predicted. 

Task: freezing pies.

Figure 45: Example of structural error Omission by GPT-5 under forward and inverse tasks.
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𝑎0
The robot r1 changes to be using the left 
gripper to grasp the microwave.

The microwave now becomes turned on.
𝑎0

Forward Structural Error Example (GPT-5)

Error Type: Hallucination

𝑜0 𝑜1

𝑎0

Reason: The model hallucinated the action The 
microwave now becomes turned on which should not be 
predicted in current action,

Task: cooking hot dogs.

𝑎0 The bottom cabinet without top becomes open.

The Tupperware is no longer inside the bottom 
cabinet no top.

𝑎0

Inverse Structural Error Example (GPT-5)

Error Type: Hallucination

𝑜0 𝑜1

𝑎0

Reason: The model hallucinated the action “The 
Tupperware is no longer inside the bottom cabinet no 
top.” which should not be predicted in current action, 

Task: freezing pies.

Figure 46: Example of structural error Hallucination by GPT-5 under forward and inverse tasks.

0% 25% 50% 75% 100%

GPT-5 Forward

GPT-5 Inverse

GPT-5 mini Forward

GPT-5 mini Inverse

Gemini2.5Pro Forward

Gemini2.5Pro Inverse

InternVL3.5... Forward

InternVL3.5... Inverse

Human Forward

Human Inverse

Spatial Relations Functional States Material States Agent Interactions

Figure 47: The semantic error distributions of typical LLMs (GPT-5, GPT-5 mini, Gemini2.5Pro and
InternVL3.5-241B-A28B (referred as InternVL3.5... in figure)) and Human-level prediction in both
forward and inverse tasks.
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𝑎0
The Tupperware transitions to be under the 
half chicken. The half chicken now becomes 
on top of and touching the Tupperware.

The half chicken becomes inside the 
Tupperware.

𝑎0

Forward Semantic Error Example (GPT-5)

Error Type: Spatial Relations

𝑜0 𝑜1

𝑎0

Reason: the model made a mistake when predicting an 
action related to the spatial position of the half chicken 
(on top of). 

Task: clearing food from table into fridge.

𝑎0
The cutting board is no longer on top of and 
touching the bar. 

The cutting board changes to be on top of and 
touching the bar. 

𝑎0

Inverse Semantic Error Example (GPT-5)

Error Type: Spatial Relations

𝑜0 𝑜1

𝑎0

Reason: The model made a mistake when predicting an 
action related to the spatial position of cutting board (on 
top of).

Task: chopping an onion.

Figure 48: Example of semantic error Spatial Relations by GPT-5 under forward and inverse tasks.

𝑎0
The robot r1 changes to be using the left 
gripper to grasp the microwave.

The microwave now becomes turned on.
𝑎0

Forward Semantic Error Example (GPT-5)

Error Type: Functional States

𝑜0 𝑜1

𝑎0

Reason: The model made a mistake when predicting an 
action related to the microwave’s functionality (turned 
on),

Task: cooking hot dogs.

𝑎0
The robot r1 changes to be using the right 
gripper to grasp the tube of toothpaste. 

The soap dispenser now becomes turned on. 𝑎0

Inverse Semantic Error Example (GPT-5)

Error Type: Functional States

𝑜0 𝑜1

𝑎0

Reason: The model made a mistake related to the 
functionality of soap dispenser (turned on) when 
predicting an action.

Task: sorting household items.

Figure 49: Example of semantic error Functional States by GPT-5 under forward and inverse tasks.
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𝑎0
The Vidalia onion is no longer inside the drop-
in sink.

The Vidalia onion stopped being inside the 
drop in sink. The Vidalia onion now becomes 
the diced Vidalia onion.

𝑎0

Forward Semantic Error Example (GPT-5)

Error Type: Material States

𝑜0 𝑜1

𝑎0

Reason: The model made a mistake when predicting 
the material state of the Vidalia onion (diced).

Task: chopping an onion.

𝑎0
The Vidalia onion now becomes the diced 
Vidalia onion. 

The baking sheet transitions to be covered 
by the grated cheese.

𝑎0

Inverse Semantic Error Example (GPT-5)

Error Type: Material States

𝑜0 𝑜1

𝑎0

Reason: The model made a mistake when predicting an 
action related to the material state of the Vidalia onion 
(diced).

Task: making pizza.

Figure 50: Example of semantic error Material States by GPT-5 under forward and inverse tasks.

𝑎0
The robot r1 changes to be using the right 
gripper to grasp the butter cookie.

The robot r1 now becomes using the right 
gripper to grasp the Swiss cheese. 

𝑎0

Forward Semantic Error Example (GPT-5)

Error Type: Agent Interactions

𝑜0 𝑜1

𝑎0

Reason: The model made a mistake when predicting 
an action involving the agent’s interaction (grasp 
using the gripper).

Task: assembling gift baskets.

𝑎2
The robot r1 transitions to be using the left 
gripper to grasp the Swiss cheese.

The robot r1 now becomes using the right 
gripper to grasp the Swiss cheese.

𝑎2

Inverse Semantic Error Example (GPT-5)

Error Type: Agent Interactions

𝑜3 𝑜4

𝑎3

Task: assembling gift baskets.

Reason: The model made a mistake when predicting 
an action involving the agent’s interaction (grasp 
using the gripper).

Figure 51: Example of semantic error Agent Interactions by GPT-5 under forward and inverse tasks.
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Algorithm 2: Action-level Parsing of Signatures Data

Input: Dataset of signatures Dsig , each with ground-truth signatures asiggt and predicted
signatures asigp

Output: Data of signatures D′
sig with missing, matched and hallucinated components

Signatures filtering: D′
sig ← ∅

foreach (asiggt , a
sig
p ) ∈ Dsig do

if |asiggt | = |asigp | then
add (asiggt , a

sig
p ) to D′

sig

else
discard (asiggt , a

sig
p )

Action-pairwise Comparison: foreach (asiggt , a
sig
p ) ∈ D′

sig do
/* cmi : missing components, cma : matched components, ch :

hallucinated components */
cmi ← ∅, cma ← ∅, ch ← ∅
foreach (cgt, cp) ∈ (asiggt , a

sig
p ) do

if cgt = cp then
add cgt to cma

else
add cgt to cmi

add cp to ch

add (cmi, cma, ch) to D′
sig , discard (asiggt , a

sig
p )

return D′
sig
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Algorithm 3: Action-level Structural and Semantic Error Categorization
Input: Parsed signatures dataset D′

sig , predicates preds
Output: Categorized errors dataset Derr

Structural errors categorization: PI ← ∅, PS ← ∅, ES ← ∅, OM ← ∅, HA← ∅
foreach asig ∈ D′

sig do
(Cmi, Ch)← (cmi(a

sig), ch(a
sig))

(cmi, ch)← FindPairwiseErrors (Cmi, Ch,polarity inversion);
if (cmi, ch) ̸= ∅ then

add (cmi, ch) to PI
remove (cmi, ch) from asig

(cmi, ch)← FindPairwiseErrors (Cmi, Ch,predicate substitution);
if (cmi, ch) ̸= ∅ then

add (cmi, ch) to PS
remove (cmi, ch) from asig

(cmi, ch)← FindPairwiseErrors (Cmi, Ch, entity substitution);
if (cmi, ch) ̸= ∅ then

add (cmi, ch) to ES
remove (cmi, ch) from asig

foreach cmi ∈ Cmi do
add mi to OM

foreach ch ∈ Ch do
add h to HA

/* PI: Polarity Inversion, PS: Predicate Substitution, ES:
Entity Substitution, OM: Omission, HA: Hallucination */

Derr ← (PI, PS,ES,OM,HA)
Semantic errors labeling: foreach c in Derr do

foreach pred in preds do
if pred ∈ c then

label c with SemanticError(pred)

return Derr
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Algorithm 4: Dataset-Level Detection of Left–Right Hand Confusion
Input: Dataset of signature-level differences Ddiff = {(cmi, cma, ch)}
Output: Confusion dataset Dhand = {(Dl2r,Dr2l)}
Left to right hand confusion: Dl2r ← ∅
foreach (cmi, cma, ch) ∈ Ddiff do

if ∃m ∈ cmi that involves left hand then
if ∃h ∈ ch that involves left hand then

continue,
else if ∃h ∈ ch that involves right hand then

foreach m ∈ cmi do
if m involves left hand then

add m to Dl2r

Right to left hand confusion: Dr2l ← ∅
foreach (cmi, cma, ch) ∈ Ddiff do

if ∃m ∈ cmi that involves right hand then
if ∃h ∈ ch that involves right hand then

continue,
else if ∃h ∈ ch that involves left hand then

foreach m ∈ cmi do
if m involves right hand then

add m to Dr2l

Dhand ← (Dl2r,Dr2l)
return Dhand
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D ADDITIONAL RELATED WORK

Embodied Cognition. The embodiment hypothesis holds that intelligence emerges from the
ENACT coupling of perception and action within a physical, social, and linguistic world (Smith
& Gasser, 2005). Meaning is not passively acquired but constructed through coherent bindings of
spatial perception, physical interaction, and linguistic understanding—capacities that scaffold one
another rather than develop in isolation. Philosophical and cognitive traditions echo this stance,
emphasizing that cognition is shaped by morphology and situated experience (Clark, 1998; Varela
et al., 2017; Gibson, 2014; Barsalou, 1999). This view motivates evaluating embodied agents not
merely as robotic systems but as probes into the conditions under which general intelligence can
arise.

World Modeling. World modeling operationalizes embodied cognition by learning action-
conditioned dynamics that support prediction and planning (Ha & Schmidhuber, 2018; Hafner
et al., 2019). Beyond forward modeling, inverse reasoning about the actions that produced observed
outcomes, under partial observability, connects naturally to a POMDP framing (Åström, 1965; Sutton
et al., 1999). Recent methods explore transformer-based dynamics (Chen et al., 2022) and propose
diagnostics for temporal abstraction and causality (e.g., CATER and CLEVRER) (Girdhar et al.,
2020; Yi et al., 2019). Several benchmarks extend this direction. Dang et al. (2025) introduce
ECBench under the theme of embodied cognition, but their evaluation focuses on multimodal per-
ception QA without grounding in MDP theory or assessment of interactive dynamics, leaving the
role of action and consequence largely unexplored. By contrast, Gao et al. (2025) examines whether
vision–language models acquire internal models of the world, studying both spatial reasoning and
physical interactions in contrived static setups. While non-egocentric, this work provides useful
insight into how large models capture specific dimensions of reasoning. More recently, Chen et al.
(2025) evaluates sequence-level coherence by having models predict the order of intermediate clips
given only an initial and final state. While this assesses high-level planning, our benchmark, EN-
ACT, differs in several fundamental ways to probe a more fine-grained understanding of interaction
dynamics. First, their work lacks a clear action space, defining actions as video clips, which can lead
to inconsistent semantic granularity. Second, their prediction of the entire intermediate sequence
tests one-shot planning rather than a step-by-step, causal understanding of how actions lead to state
changes. Furthermore, their evaluation is limited to forward prediction, whereas ENACT also probes
inverse modeling. Finally, ENACT is built with a scalable data generation pipeline specifically
designed to serve as a controlled proxy for probing the properties of VLM-based embodied agents. In
doing so, it complements prior benchmarks by grounding embodied world modeling in long-horizon,
fine-grained dynamics.

Vision–Language Models for Embodied Agents. Scaled foundation models advance vi-
sual–linguistic reasoning, yet their primarily disembodied training raises a natural question of whether
embodied cognition emerges without interaction (OpenAI, 2025; DeepMind, 2025; Anthropic, 2025).
Robotics integrates VLMs as planners and policies—grounding language in affordances and control
(Ahn et al., 2022; Huang et al., 2023b; 2022; Liang et al., 2022a; Driess et al., 2023; Zitkovich et al.,
2023; Kim et al., 2024; Team et al., 2024). Parallel embodied agents in simulation assess navigation
and interaction (Anderson et al., 2018; Das et al., 2018; Shridhar et al., 2020; Padmakumar et al.,
2022; Mees et al., 2022; Fan et al., 2022), while egocentric corpora broaden sensorimotor coverage
(Damen et al., 2018; Grauman et al., 2022). Complementary benchmarks probe isolated facets:
spatial perception in static scenes (Ramakrishnan et al., 2024; Yin et al., 2025), contrived physical
interactions (Yi et al., 2019; Bakhtin et al., 2019), or purely linguistic reasoning (Li et al., 2024b),
whereas ENACT unifies these elements via egocentric trajectories and evaluates consequence-aware
world modeling over extended horizons.

E THE USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs), including Google’s Gemini 2.5 Pro and OpenAI’s GPT-5, as
auxiliary tools to assist with writing, editing, and conducting the literature review for this manuscript.
All content was critically revised and fact-checked by the human authors to ensure its scientific
validity and originality. The authors are fully responsible for all statements and conclusions presented
in this paper. Specifically, we use LLMs for polishing our wording and writing, and we use LLMs to
retrieve several related works.
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