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Abstract
The message passing framework has largely driven the success of GNNs, yet it
faces potential limitations: over-squashing, over-smoothing and expressiveness
constraints. A promising solution is structure-guided message passing, which
leverages the graph structure to guide information flow and better capture long-
range dependencies. We present EC-Gate, a lightweight plug-in that leverages
Expansion Contribution (EC)—a layer-wise measure of how edges expand the
receptive field—to drive group-wise gates that regulate message propagation. By
concentrating capacity on structurally critical edges, EC-Gate can improve the
sensitivity bound in large hidden dimensions, while limiting overfitting. EC-Gate
delivers significant improvements across synthetic and molecular benchmarks.
Remarkably, when implemented on a standard GCN backbone, it achieves state-
of-the-art performance on PCBA and competitive results on Lipo and AqSol,
showing that EC serves as a strong structural prior. Furthermore, the empirical
analysis of gate activations reveals how EC-Gate modulates message passing in
an anisotropic manner.

1 Introduction
Graph Neural Networks (GNNs) have emerged as a dominant approach for learning tasks on graph-
structured data. Their success largely stems from the message-passing framework, which forms
the backbone of most GNN architectures. Message Passing Neural Networks (MPNNs) operate
by iteratively updating node representations based on messages aggregated from neighbors. The
framework adapts to diverse graphs and ensures consistency across isomorphic graphs. However, this
paradigm exhibits several weaknesses—including limited expressivity [1, 2], over-smoothing [3, 4],
where node representations become overly similar across the graph, and over-squashing [5, 6], where
information from exponentially expanding neighborhoods is compressed into fixed-size embeddings.
These limitations hinder the ability of GNNs to capture long-range dependencies, which are crucial
for modeling complex systems and physical, chemical, and biological phenomena [7].

To improve the modeling of long-range dependencies, a widely explored solution is graph rewiring
[6–11], which enhances connectivity by modifying the graph structure to facilitate information flow
across distant nodes. However, rewiring presents limitations in many practical settings. Creating
shortcuts between distant nodes may disrupt the original topology of the graph, undermine the
iterative diffusion process, and create ambiguity in assigning features to synthetic edges that lack
clear semantic grounding. Empirical studies across multiple benchmarks [12–15] further report that
standard GNNs often remain competitive with, or even outperform, Graph Transformers [16, 17], as
an extreme form of rewiring, highlighting the importance of preserving the native graph structure
over excessive connectivity modifications.

Instead of rewiring, an alternative is to refine the information flow within the original graph through
anisotropic message passing (also called anisotropic aggregation), such as GAT [18, 19] and Gat-
edGCN [20], adaptively weight neighbour contributions based on both source and target node features.
Structure-based methods incorporate topological cues, either by directly modulating edge weights
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(e.g., based on degrees [21], substructure counts [22, 23], or Laplacian eigenvectors [24]) or by
enriching nodes with positional encodings [16, 25]. In addition to purely topological cues, Euclidean
space graphs such as meshes in physical simulations provide natural directional information through
relative positions, closely aligned with how physical quantities evolve across the system [26–28]. Pre-
vious work in molecular dynamics shows that the incorporation of such geometric signals is critical to
accurate and stable predictions [29–31]. However, such geometric signals are not always available or
sufficient, motivating further exploration of how structural properties can guide anisotropic message
passing.

Motivated by the idea of leveraging structural signals for anisotropic message passing, we propose
Expansion Contribution-Aware Gating (EC-Gate), a lightweight plug-in that modulates message
flow according to an edge’s Expansion Contribution—that is, the number of previously unreachable
nodes it introduces into a target’s receptive field at each layer. High-Expansion Contribution edges
directly channel long-range signals and often emerge as bottlenecks connecting distant regions, while
zero-contribution edges largely trace indirect routes that reinforce local refinement. Additionally,
Expansion Contribution varies across layers, aligning with the iterative diffusion characteristic of
message passing frameworks.

In this paper, we make the following contributions:

• We introduce Expansion Contribution, a novel edge-level label, and develop EC-Gate, a
lightweight and group-wise gating mechanism that integrates seamlessly with existing message-
passing GNNs.

• We theoretically show that EC-Gate can enhance expressiveness and improve the sensitivity
bound by widening structurally critical edges, thereby mitigating over-squashing while avoiding
overfitting.

• Empirical results show that EC-Gate significantly and consistently improves the performance of
message-passing architectures across synthetic and molecular benchmarks, achieving state-of-
the-art results in the non-pretrained setting on PCBA and remaining competitive on Lipo and
AqSol. Empirical analysis of gate activations reveals that EC-Gate modulates message passing
anisotropically.

2 Related Work
2.1 Selection Mechanism in GNNs

A selection mechanism regulates how information propagates, appearing in various GNN forms such
as the channel-wise gating in GatedGCN [20] and attention-based neighbor weighting in GAT [18, 19].
Despite their conceptual simplicity, these mechanisms continue to achieve top performance in recent
benchmarks of classic GNNs [14, 15] and have been adopted in competitive application models [32].
The graph gradient has been used to construct a gate that adaptively determines whether a node should
update its representation with the aggregated messages [33]. MTGCN [34] introduces semantic tracks
for message routing and filters propagation based on learned category-aware affiliations. Other recent
approaches shift selection from individual neighbors to higher-level units, using state space models
to process compressed node sets or sequential subgraph embeddings [35–37]. Nevertheless, most
of these methods depend heavily on node features and often overlook the structural richness of the
graph.

2.2 Selective Width Expansion GNNs

One way to alleviate over-squashing is through width expansion, but it must be applied carefully
to avoid overfitting. To the best of our knowledge, only PANDA selectively expands the hidden
dimensions for nodes identified as potential bottlenecks, where bottlenecks are determined based
on pre-selected node centrality metrics [38]. However, this mechanism has two key limitations: (1)
Bottlenecks in a graph are dynamic, evolving with information flow during message passing. For
example, a node connected to a high-degree neighbor can still become a bottleneck by receiving a
large amount of information from that neighbor. Simply expanding the hidden state of the high-degree
node itself does not address this issue completely. (2) Not all tasks prioritize long-range dependencies.
In some cases, distant nodes introduce noise rather than useful information, suggesting the need for a
gating mechanism.
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3 Preliminaries
3.1 Notations.

A graph is represented as G = (V, E), where V is the set of nodes and E is the set of edges defining
connectivity. The adjacency matrix A ∈ {0, 1}N×N encodes an unweighted graph, where N = |V|
is the total number of nodes. Each node v ∈ V and edge e ∈ E is associated with features hv ∈ RD

and he ∈ RC , respectively. For v ∈ V , let N (v) denote the 1-hop neighbors of v, and Rl(v)
represent its receptive field at layer l. Formally, Rl(v) = {u ∈ V : d(v, u) ≤ l}, where d(v, u) is
the shortest-path distance between v and u. This receptive field includes all nodes whose features
contribute to the embedding of v at layer l.

3.2 Message Passing GNNs.

The Message Passing Neural Network (MPNN) framework defines node updates using a two-stage
process: message aggregation followed by feature update [39]. Specifically, node representations are
computed by stacking L layers of the form:

ml
v = agg

({
f l

(
hl−1
u ,hl−1

v ,heuv

)
: euv ∈ E

})
(1)

hl
v = coml

(
hl−1
v ,ml

v

)
(2)

for l = 1, . . . , L, where f l(·) computes messages from neighbors, agg() is a permutation-invariant
aggregator (e.g.,

∑
, max), and coml updates the node state. After l layers, hl

v contains information
from the l-hop neighborhood. A graph-level representation is then obtained via pooling (e.g., mean,
sum). Various GNN models emerge as specific cases of the MPNN framework [40]. A common
form of aggregation uses predefined scalar weights to combine messages from neighboring nodes,
as in aggl

({
f l(·)

})
=

∑
u∈N (v) f

l
(
hl−1
u

)
. This can be equivalently written using a Graph Shift

Operator (GSO) as
∑N

u=1 Avuf
l
(
hl−1
u

)
, where Avu ̸= 0 if and only if (u, v) ∈ E .

3.3 Sensitivity Bound.

The phenomenon of over-squashing can be understood in terms of the sensitivity of hl
v to an input

feature h0
u [6], where node u is at a distance l from node v. Building on this, Di Giovanni et al. [41]

analyzed the role of the network width in mitigating over-squashing through the Jacobian sensitivity
bound: ∥∥∥∥∥ ∂h(l)

v

∂h
(0)
u

∥∥∥∥∥
L1

≤ (κσwp)
l︸ ︷︷ ︸

model

(Sl
r,a)vu︸ ︷︷ ︸

topology

(3)

where κσ is the Lipschitz constant of the nonlinearity, w is the largest entry across all weight matrices,
p is the hidden dimension width, and l is the network depth. S is a graph shift operator, defined as
Sr,a = αrI+αaA, where the cr and ca represent the contributions of the residual and the aggregation
term. The bound is derived under degree-normalized adjacency. In a graph G, where Sl

r,a decays
exponentially with l, increasing the width p allows the MPNN to counteract this decay and mitigate
over-squashing. However, this comes with the risk of overfitting and poorer generalization [41].

4 Proposed Method
We will first introduce the edge labeling process, followed by the framework details, and conclude
with a theoretical explanation of how our method mitigates over-squashing by selectively expanding
the message-passing width along key edges. Our implementation is available at GitHub.

4.1 Edge Labeling and Expansion Contribution

At layer l, an edge euv either enlarges the receptive field of v, bringing in nodes that were unreachable
at layer l−1, or routes information already accessible via other paths. We formalize this difference
with an edge-wise discrete label, the Expansion Contribution (EC), defined as follows.
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Layer  1 Layer  2 Layer  3

Figure 1: Illustrative example of layer-wise expansion behavior (with edge labels: for EC > 0,
for EC = 0). At Layer 1, message passing is in its initialization stage, where all nodes carry new

information and EC is indistinguishable. At higher layers, once the receptive field surpasses the graph
diameter, no new expansions occur; in this regime, accumulated historical EC statistics can be used
as guidance.

Algorithm 1 Expansion Contribution (EC) via Boolean Adjacency

Require: Adjacency A∈{0, 1}N×N , max depth L

Ensure: Edge-wise EC {c(ℓ)uv}
▷ Boolean operations: OR/AND/NOT as ∨,∧,¬;
▷ H(ℓ): reachable at exactly ℓ hops; C(ℓ): receptive field (reachable within ≤ ℓ)

1: H(1) ← A, C(0) ← I ▷ init
2: for ℓ = 2 to L do
3: H(ℓ) ← H(ℓ−1)A ▷ exactly-ℓ reachability
4: C(ℓ) ← C(ℓ−1) ∨H(ℓ) ▷ cumulative reachability
5: ∆(ℓ) ← H(ℓ) ∧ ¬C(ℓ−1) ▷ new-at-ℓ frontier
6: for all (u, v) with A[u, v] = 1 do
7: c

(ℓ)
uv ←

∥∥C(ℓ−1)[u, :] ∧ ∆(ℓ)[v, :]
∥∥
1

▷ expansion contribution
8: end for
9: end for

10: return {c(ℓ)uv}

Definition 1 (Expansion Contribution). LetRl(v) denote the receptive field of node v at layer l. For
an edge euv (message u→v), its Expansion Contribution at layer l is

cluv =
∣∣R l−1(u) ∩

(
R l(v) \ R l−1(v)

)∣∣ ∈ N.

This scalar quantifies how many previously unreachable nodes are brought into the receptive field of v
via euv at layer l. Intuitively, edges with larger cl lie on shortest routes with few intermediate nodes, so
they deliver long-range information with minimal dilution. In contrast, edges with cl = 0 mainly carry
information that has already arrived via other paths, often after passing through more intermediates, or
return previously propagated signals as feedback. A visual example of how Expansion Contribution
evolves across layers is illustrated in Figure 1. In practice, this value modulates message propagation
via a gating mechanism (see Section 4.2).

The expansion contribution of each edge does not depend on learnable model parameters and can thus
be predetermined. For implementation details, see Algorithm 1. The algorithm computes adjacency
powers Aℓ to capture ℓ-hop connectivity and identifies new connections at each layer by comparing
with previous powers Al−1. These operations consist of matrix multiplications and logical operations
over Boolean matrices, keeping the per-layer cost relatively lightweight. For large graphs, more
scalable alternatives such as breadth-first search can be employed.

Definition 1 implies the following coverage property.

Proposition 1 (Shortest-Path Coverage). Let w, v ∈ V with graph distance d(w, v) = m, and let
π = {exixi+1

}m−1
i=0 be any shortest path from w = x0 to v = xm. Then every edge on π has nonzero

expansion contribution at the corresponding layer:

c i+1
xixi+1

≥ 1, i = 0, 1, . . . ,m− 1.
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Proof. Fix i ∈ {0, . . . ,m − 1} and take z = w = x0 as a witness node. Along a shortest path,
d(xi+1, z) = i+1, hence z ∈ R i+1(xi+1) \ R i(xi+1). Also d(xi, z) = i, so z ∈ R i(xi). By
Definition 1, this gives c i+1

xixi+1
≥ 1.

4.1.1 Comparison with Weisfeiler-Lehman (WL) Test

The Weisfeiler–Lehman (WL) test is a widely used, efficient tool est for graph isomorphism, but
it cannot distinguish certain non-isomorphic graph pairs. This limitation motivates the search for
methods with stronger discriminative power. Figure 2 illustrates a representative pair of graphs that
the 1-WL test fails on, but which can be separated by our method.
Proposition 2. Augmenting a GNN that is as expressive as the 1-WL test with expansion contribution
yields strictly stronger than the 1-WL test in distinguishing non-isomorphic graphs.

 𝑎

 𝑏

 𝑏

 𝑎

 𝑏

 𝑏

 𝑎 𝑏

 𝑏  𝑎

𝑏

 𝑏

Figure 2: Two graphs indistinguishable under the 1-WL test but separated by expansion contribution
(EC) values at the second layer.

4.2 EC-Gate: Expansion Contribution-Aware Gating

At each layer we modulate incoming messages with a multiplicative gate that depends only on the
edge-wise expansion contribution c l

uv. To keep the parameter overhead low, we adopt a grouped
design: every hidden vector h l−1

u ∈RD is split into G disjoint channel groups, and a single scalar
gate is shared within each group. The aggregated message is then computed as

ml
v =

∑
u∈N (v)

G⊕
k=1

gk
(
c l
uv

)
f l

(
h l−1
u

)
[k]

, (1)

where gk : N≥0 → [0, 1] is a lightweight MLP applied to a compressed version of EC (e.g.,
log(1 + EC)), followed by a sigmoid activation, f l

(
h l−1
u

)
[k]
∈ RD/G is the k-th group, and

⊕
concatenates the gated groups. This compression stabilizes training and reflects our focus on whether
an edge contributes new information (EC>0) rather than its exact expansion magnitude. Channel-wise
gating is a special case of our grouped design with G = D. Since c l

uv depends only on graph
structure, the overall procedure is isomorphism-invariant. This design can be seamlessly integrated
into a wide range of message-passing GNNs. In practice, if EC-Gate is applied immediately after
nonlinear activations or in models that already employ gating operations (e.g., GatedGCN), it may
lead to overly sparse signals and unstable training. In such cases, we precede EC-Gate with a linear
projection. Otherwise, EC-Gate can be used directly.

4.3 Improving Sensitivity Bound via EC-Gate

We analyze how EC-Gate mitigates over-squashing through the sensitivity bound in Eq. 3. The
exponential decay of information from distant nodes poses a challenge; although a uniform increase
in hidden width p alleviates this, it simultaneously increases the risk of overfitting. EC-Gate, instead,
can concentrate capacity along structurally critical routes without increasing the global width.
Proposition 3. A GNN equipped with EC-Gate improves the sensitivity bound by selectively increas-
ing hidden dimension along structurally critical edges, without expanding width uniformly across the
graph.

Proof. Fix the global hidden width p in a degree-normalized GNN with EC gates. Let u, v be nodes
with shortest-path distance l = d(u, v), and let P(l)

u→v denote the set of all u→ v shortest paths of
length l. Write Sr,a = crI+ caA, and let ae denote the corresponding entry of Sr,a on edge e
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From Eq. 3, when l = d(u, v) only length-l terms contribute to (Sl
r,a)vu, hence∥∥∥ ∂h(l)

v

∂h
(0)
u

∥∥∥
L1

≤ (κσwp)
l

∑
π∈P(l)

u→v

∏
e∈π

ae. (4)

We now incorporate EC-Gate via the effective width on edges. Split the hidden dimension into G
equal groups; let gk(ce) ∈ [0, 1] be the group gate on edge e. Define effective width as,

peff(e) = ρe p, ρe =
1
G

G∑
k=1

gk(ce) ∈ [0, 1].

Therefore each width term in (4) is reweighted by ρe, yielding∥∥∥ ∂h(l)
v

∂h
(0)
u

∥∥∥
L1

≤ (κσw)
l

∑
π∈P(l)

u→v

∏
e∈π

(
ae peff(e)

)
. (5)

The bound in (5) remains below or equal to that in (4). Equality holds by setting ρe = 1 on the
shortest path edges, whereas non-participating edges at this layer may remain below 1. Finally, by
Proposition 1, shortest-path edges have positive EC at their corresponding layer; As the gates gk
are capable of learning nondecreasing responses to EC, shortest-path edges naturally receive larger
ρe than indirect-path edges, thereby enabling EC-Gate to selectively increase effective width along
structurally critical edges without uniform widening.

To connect EC-Gate with structural bottlenecks, we relate expansion contribution (EC) to edge
betweenness centrality (EBC) (see Appendix A.1.1). EBC counts how often an edge lies on shortest
paths over all source–target pairs, whereas EC is a local, target-conditioned measure: at layer l,
c l
uv > 0 precisely when u→v is a shortest-path step toward v. Summing over layers up to the graph

diameter,
∑diam(G)

l=1 c l
uv, yields a target-restricted analogue of EBC(euv). Edges with consistently

large EC values thus coincide with high-EBC “bridge” edges, i.e., structural bottlenecks. Thus,
EC-Gate can naturally emphasize these edges when long-range signals transmitted through them
contribute positively to the task.

5 Experiments
In this section, we first evaluate EC-Gate on controlled synthetic benchmarks to examine its abil-
ity to capture long-range dependencies, and then on real-world molecular datasets. Additionally,
Appendix A.3.1 provides a CliquePath case study illustrating effective gate evolution and node
sensitivity.

5.1 Synthetic Datasets

Figure 3: Graph Diame-
ter Distribution in Synthetic
Graphs (excluding extremely
rare large diameters).

Setup. We construct a synthetic benchmark to evaluate GNN per-
formance on tasks requiring long-range information, following the
task setup as [42], which includes single-source shortest-path (SSSP)
length, node eccentricity and graph diameter prediction. These tasks
require reasoning over global graph structure rather than relying
solely on local neighborhoods. Each node is assigned a random
feature drawn from a standard normal distribution, and for SSSP an
additional binary feature marks the source node. The dataset contains
approximately 10,000 graphs with 50–70 nodes (split 10:1:2 into
training, validation, and test), generated from diverse graph models
including Erdős–Rényi, Barabási–Albert, stochastic block models,
k-Nearest Neighbors, and power-law cluster graphs. As summa-
rized in Table 4 (Appendix) and illustrated in Figure 3, the synthetic
graphs are generated using the listed parameters and exhibit diam-
eter distributions mostly between 3 and 10, avoiding trivial cases
such as fully connected graphs. For backbone models, we integrate
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Figure 4: Performance Across Depths for Baseline and EC-Gated Models on Synthetic Tasks.

EC-Gate into GCN and GatedGCN, representing isotropic and gated (anisotropic) message-passing
architectures. For depths beyond 5, EC values are approximated by reusing averages from earlier
layers to reduce overhead and to examine whether historical expansion statistics may capture deeper
edge contributions.

Results. Figure 4 reports test performance across increasing depths for GCN and GatedGCN
backbones, with and without EC-Gate. At 8 layers, where under-reaching is no longer a major
limitation, EC-Gate achieves substantial error reductions on all tasks, by 73.7% and 38.3% for
SSSP, 74.8% and 83.4% for Eccentricity, and 76.7% and 85.0% for Diameter, using GCN and
GatedGCN backbones, respectively. Although GatedGCN incorporates feature-based gating, it
does not consistently outperform GCN—performing worse on the Eccentricity and Diameter tasks—
whereas EC-Gate improves both backbones. This difference arises because in SSSP, the source node is
explicitly marked by features, making feature-based gating effective; in contrast, for Eccentricity and
Diameter, where node features are random, only structural cues are informative, allowing EC-Gate to
excel. Moreover, for depths beyond 5, where EC values are approximated by averaging those from
earlier layers, the upward performance trend persists, suggesting that historical expansion statistics
capture deeper edge contributions.

5.2 Chemical Datasets

Setup. The second task set consists of real-world molecular graph benchmarks. We use PCBA [43],
a multi-task binary classification dataset with 437.9K molecular graphs and 128 bioactivity labels,
evaluated by average precision (AP). We also include Lipo [43], a regression benchmark containing
experimental octanol–water partition coefficients (lipophilicity) for 4.2K compounds, and AqSol [44],
also a regression dataset of 9.8K molecular graphs with experimentally measured aqueous solubility.
These molecular properties are considered essential for drug discovery.

PEPTIDES tasks from LRGB [45] are excluded from our evaluation, as recent analysis [46], suggests
that these tasks do not substantially involve long-range dependencies and their receptive fields remain
largely constrained to one hop throughout training. They can be solved to near state-of-the-art
performance with shallow GCNs, such as a 3-layer model [15]. In contrast, PCBA tends to perform
better with deeper GNNs (e.g., ≥ 10 layers), as observed from recent hyperparameter sweeps [15].
Additionally, PCBA, Lipo and AqSol present strong overfitting tendencies. These characteristics
make them suitable benchmarks to evaluate EC-Gate’s ability to enhance long-range dependency
modeling while controlling overfitting. Our model does not incorporate any positional or structural
encodings, but utilizes edge features. Hyperparameter settings are provided in Table 3.

Results. Tables 1, and 2 present results on PCBA, Lipo, and AqSol, and compare EC-Gated GNNs
with previously reported models. On PCBA, EC-Gated GCN achieves an AP of 30.2%, matching the
current state of the art and improving by 6.9% over our plain GCN baseline. Notably, our baselines
exceed the performance of GCN+ and GatedGCN+, underscoring the strength of our reference point.
On Lipo, we compare against models that exploit 3D geometry, including those pretrained on large
molecular datasets. Here, the 3D conformations are generated using cheminformatics toolkits, which
provide approximate but not fully realistic geometries. EC-Gated GCN and GatedGCN remain
competitive, ranking just below Uni-Mol, even though we do not have 3D coordinates. This suggests
that expansion contribution provides a structural prior comparable to 3D geometric information,
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Table 1: Results on PCBA. Top two:
Best, Second. Following [15].

Model PCBA
(AP% ↑)

GraphTrans 27.61±0.29
SAN 27.65±0.42
EGT pre-trained 28.61±0.24
GraphGPS 29.07±0.28
Specformer 29.72±0.23
Exphormer 28.49±0.25
GECO 29.61±0.08

GCN+
w/o PE 26.67±0.34

GCN+
w PE 27.21±0.46

GatedGCN+
w/o PE 28.13±0.22

GatedGCN+
w PE 29.81±0.24

O
ur

s GCN 28.24±0.20
GCN EC-Gate 30.18±0.17
GatedGCN 28.89±0.28
GatedGCN EC-Gate 29.99±0.21

Table 2: Performance on Lipo and AqSol. Top two results
in each column are highlighted: Best, Second. † reported by
[43]; ‡ by [44].

Model Lipo
(RMSE ↓)

AqSol
(MAE ↓)

GCN 0.797±0.02
† 1.372±0.02

‡

GIN 0.757±0.01
† 1.894±0.02

‡

GatedGCN w/ PE – 0.996±0.01
†

GROVER pre-trained [47] 0.823±0.01 –
GeoGNN w/ 3D geo. [48] 0.666±0.03 –
GEM pre-trained, w/ 3D geo. [48] 0.660±0.01 –
Uni-Mol pre-trained, w/ 3D geo. [49] 0.603±0.01 –
GraphTransformer [16] – 1.110±0.01
Graph-UNets [50] 0.716±0.01 1.063±0.02
MeGraph [51] 0.688±0.01 1.002±0.02

O
ur

s GCN 0.715±0.016 1.244±0.029
GCN EC-Gate 0.659±0.005 0.966±0.017

GatedGCN 0.714±0.008 1.228±0.024
GatedGCN EC-Gate 0.645±0.009 0.942±0.010

and the two can potentially complement each other when combined. On Lipo, our method remains
competitive and achieves up to 22.4% improvement over the baseline.

…Gate
Activations

0 
1 

…
 

21

Layer 2 Layer 3
EC: 0 1 2 0 1 2 0 1 2 0 1 2

Layer 7 Layer 8

(a) GatedGCN

Layer 2 Layer 3
EC: 0 1 2 0 1 2 0 1 2 0 1 2

Layer 7 Layer 8

…

0 
1 

…
 

59

(b) GCN

Figure 5: Comparison of learned gate activations across different GNN backbones (GCN vs. Gat-
edGCN) on PCBA. Both backbones exhibit similar trends: at early layers, gates tend to amplify
high-EC edges; at deeper layers, they partly suppress high-EC edges.
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5.3 Empirical Analysis of EC-Gate Behaviour

Activation Patterns of EC-Gate. We analyze EC-Gate activations across different depths and
edge expansion classes, with an example on PCBA shown in Figure 5. EC-Gate partitions each
hidden vector into channel groups, with scalar gates that assign distinct weights to each group.
At shallow depths (e.g., Layer 2), gate activations remain relatively smooth: most gates respond
moderately across edge classes, typically lowering weights on zero-EC edges while raising them on
expansion-contributing edges. At deeper layers (e.g., Layer 7–8), the activations become slightly
more contrasted and some gates tend to suppress high-EC edges, whereas others show the opposite
tendency. This shows that EC-Gate does not indiscriminately amplify distant signals; instead, it
selectively filters and strengthens long-range information when beneficial. The pattern that activations
vary with EC values is also observed in Lipo and AqSol (see Appendix A.3.2). As a counterexample,
models showing nearly indistinguishable activations for inputs with different EC values fail to capture
such selective gating behavior.

Figure 6: Overfitting Comparison on PCBA, Lipo, and AqSol

Figure 7: Layerwise DE

Over-smoothing Analysis. Figure 7 compares the Dirichlet energies
of hidden representations across layers for GCN and its EC-Gate
variant. EC-Gate maintains higher energy across layers, even with
residual connections in the baseline, due to its structure-aware selec-
tive information reception, which helps mitigate oversmoothing.

Overfitting Analysis. Figure 6 plots training–test performance on
three molecular tasks. We observe that, at comparable training lev-
els, EC-Gate consistently achieves better test performance. This
observations align with our theoretical analysis in Section 4.3, pro-
viding empirical evidence that EC-Gate mitigates overfitting even
with large hidden dimensions.

6 Conclusion
We introduce a structure-guided message passing approach that selec-
tively captures long-range signals and shows promise in alleviating
GNN limitations such as restricted expressivity and over-smoothing. Additionally, we acknowledge
that the EC value, as a dynamic edge attribute, can be integrated into general GNN frameworks in
various ways. The gating mechanism employed here is designed to enhance theoretical clarity and
interpretability.

Limitations and Future Work. EC-Gate performs well across our reported benchmarks, but its
benefits decrease on graphs lacking structural information, such as fully connected or regular grid
graphs, where nodes share almost identical neighborhood structures. This limitation, shared by other
structure-driven methods, means that in such cases, feature- or geometry-based mechanisms can serve
as alternatives for anisotropic aggregation. Molecules are inherently three-dimensional, with atomic
arrangements in 3D space playing a crucial role in determining their properties. However, widely
used benchmarks, such as OGB-MOL, omit 3D geometric information, resulting in evaluations that
are primarily 2D. A natural next step is to extend EC-Gate to 3D molecular graphs to quantify the
additional value of structural cues when combined with geometry, thus providing a more realistic
assessment of its potential impact in practical applications.
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A Appendix
A.1 Supplementary Definitions

A.1.1 Edge betweenness centrality

Edge betweenness centrality (EBC) quantifies the importance of an edge in a graph by measuring
how frequently it appears in shortest paths between node pairs. Given a graph G = (V, E), the
betweenness centrality of an edge eu,v ∈ E is defined as:

B(eu,v) =
∑

s̸=t∈V

σst(eu,v)

σst
, (6)

where σst is the total number of shortest paths between nodes s and t, and σst(eu,v) is the number of
those paths that pass through edge eu,v .

A.1.2 Dirichlet Energy.

Over-smoothing is often assessed by measuring node feature similarity, with Dirichlet energy [52]
commonly used to quantify variation across neighbors.

E lDir =
1

|E|
∑
v∈V

∑
u∈N (v)

∥h(l)
v − h(l)

u ∥22. (7)

As GNNs go deeper, excessive smoothing causes EDir to decay exponentially, leading to node
embeddings collapsing into nearly identical values. As discriminative power declines, expressiveness
is constrained, creating a key obstacle in GNN development.

A.2 Experimental Details

A.2.1 Model Architectures and Hyperparameters

All experiments were conducted in the following software and hardware environments: Python 3.11,
PyTorch 2.5.1, PyTorch Geometric 2.7.0, CUDA 12.4.

Table 3: Hyperparameter settings of EC-Gated GCN for all datasets. Parenthesized values correspond
to the settings for EC-Gated GatedGCN, which only differ slightly from GCN; separate tables are
omitted for brevity. ∗ “Group Size” refers to the number of disjoint channel groups in EC-Gate, each
modulated by an independent scalar gate.

Hyperparameter PCBA Lipo AqSol

# GNN Layers 8 8 8
With Edge Feature True True True
Normalization BN BN BN
Dropout 0.4 0.2 0.2
Residual Connections True True True
With PE False False False
Hidden Dim 600 (420) 180 (120) 120 (100)
Graph Pooling GlobalAttn GlobalAttn GlobalAttn
Gate Groups∗ 10 10 20

Batch Size 512 32 32
Learning Rate 0.002 0.002 0.002
# Epochs 50 50 50
# Warmup Epochs 5 5 5
Learning Rate scheduler CosAnnealing CosAnnealing CosAnnealing
Weight Decay 0 2e-5 2e-5

# Parameters 7.0M (8.2M) 0.8M (1.1M) 0.3M (0.5M)

The input node features are initialized using the OGB-provided atom and bond encoders. Each layer
performs propagation, normalization, activation, and dropout sequentially, with an optional residual
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connection. As listed in Table 3, we adopt Global Attention Pooling for graph-level readout. Given
node embeddings {hi}ni=1, the pooled representation is computed as:

hgraph =

n∑
i=1

αi hi, where αi =
exp

(
gθ(hi)

)∑n
j=1 exp

(
gθ(hj)

) , (8)

where gθ(·) is a learnable gate network implemented as a 3-layer MLP with Batch Normalization.

A.2.2 Synthetic Graphs Construction

Table 4: Synthetic graphs with the number of nodes N ∈ [50, 70], generated from diverse random
graph models under parameter ranges chosen to ensure moderate sparsity.

Generator Parameter Range in
Code

Structural Characteristics / Role of Parame-
ters

Weight

Watts–Strogatz (WS) k ∈ {5, . . . , 15}, β ∼
U(0.02, 0.1)

Small-world graph; k sets node degree, β
controls rewiring and shortcut density.

0.15

Stochastic Block Model (SBM) B ∈ {4, . . . , 8}, pin ∼
U(0.4, 0.8), pout ∼
U(0.02, 0.1)

Community-structured graph; pin and pout
control intra/inter-block density. Block sizes
follow a Dirichlet distribution.

0.15

Random Geometric Graph (kNN) k ∈ {5, . . . , 15} in 2D
unit square

Spatial graph; each node connects to k near-
est neighbors, larger k gives denser local re-
gions.

0.15

Barabási–Albert (BA) m ∈ {1, . . . , 4} Scale-free network via preferential attach-
ment; m controls edges formed by each new
node.

0.15

Power-Law Cluster m ∈ {1, . . . , 4},
p△ ∼ U(0.1, 0.4)

BA model with triadic closure; m sets new
edges, p△ adds triangles for higher cluster-
ing.

0.15

Erdős–Rényi (ER) p ∼ U(0.05, 0.2) Random graph; edges appear independently
with probability p, controlling density and
diameter.

0.25
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A.3 Supplementary Experimental Results

A.3.1 Graph Transfer

We provide an small but intuitive case study on a CliquePath transfer task (inspired by [41]), where
the GNN must transfer the feature from a distant source node to the target node, thereby relying
solely on long-range information to achieve successful prediction. Figure 8b shows how the effective
width, as defined in Section 4.3, evolves across layers.

S T

(a) An Example of CliquePath (S and
T denote the source and target nodes.)

(b) Effective Gate Activations Across
Layers

(c) Comparison of Node Sen-
sitivity and Accuracy

Figure 8: (a) In this graph transfer task, a source node in a clique with a one-hot feature must
be recovered by a distant target node; all other nodes hold constant features. (b) Gates exhibit
monotonic growth with EC, highlighting selective amplification of high-EC edges that transmit
distant information. (c) In this setting, the EC-Gated GCN achieves high accuracy, with a marked
increase in node sensitivity.

A.3.2 Activation Patterns

Layer 2  … Layer 8
EC: 0 1 2

(a) Lipo

EC: 0 1 2

Layer 2  … Layer 8

(b) AqSol

Figure 9: Layer-wise EC-Gate activation patterns with GCN backbone. As EC changes, the EC-Gate
values differ at each layer, serving as evidence of the method’s effectiveness. Some gates vary only
slightly with EC, which is reasonable since some features’ passage is independent of EC.
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